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ABSTRACT

Numerical simulations within a cold dark matter (DM) cosmology form haloes whose density profiles have a steep inner slope
(‘cusp’), yet observations of galaxies often point towards a flat central ‘core’. We develop a convolutional mixture density neural
network model to derive a probability density function (PDF) of the inner density slopes of DM haloes. We train the network
on simulated dwarf galaxies from the NIHAO and AURIGA projects, which include both DM cusps and cores: line-of-sight
velocities and 2D spatial distributions of their stars are used as inputs to obtain a PDF representing the probability of predicting
a specific inner slope. The model recovers accurately the expected DM profiles: ~ 82 per cent of the galaxies have a derived
inner slope within £0.1 of their true value, while ~ 98 per cent within £0.3. We apply our model to four Local Group dwarf
spheroidal galaxies and find results consistent with those obtained with the Jeans modelling based code GRAVSPHERE: the Fornax
dSph has a strong indication of possessing a central DM core, Carina and Sextans have cusps (although the latter with large
uncertainties), while Sculptor shows a double peaked PDF indicating that a cusp is preferred, but a core cannot be ruled out.
Our results show that simulation-based inference with neural networks provide a innovative and complementary method for the
determination of the inner matter density profiles in galaxies, which in turn can help constrain the properties of the elusive DM.
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1 INTRODUCTION

Dark matter (DM) haloes that form in simulations within a Lambda
cold dark matter (ACDM) cosmological context have a characteristic
density profile, which has a logarithmic inner slope of —1 (the NFW
profile Navarro, Frenk & White 1996). Such a steep inner density
profile has been referred to as a ‘cusp’. Nevertheless, observations
of dwarf galaxies inhabiting these haloes have shown discrepancies
with the predictions of the model, showing significant evidence that
several of these galaxies have a flat inner density profile, with slope
approaching zero, referred to as a ‘cored’ profile (Moore 1994). The
discrepancy between theory and observations has been referred to as
the ‘core-cusp’ problem (e.g. Simon et al. 2005; de Blok et al. 2008;
Bullock & Boylan-Kolchin 2017).

While over the years several alternative DM models have been
proposed to tackle this issue (e.g. Spergel & Steinhardt 2000;
Kaplinghat, Tulin & Yu 2016; Schneider et al. 2017), it has been
also shown that cores can be explained within ACDM considering
the effect that baryons have on DM matter. Navarro, Eke & Frenk
(1996) showed that if gas is slowly accreted on to a dwarf galaxy

* E-mail: expox7@gmail.com

and then suddenly removed through processes such as stellar winds
or supernovae feedback, the DM distribution can expand, lowering
the central density of the halo. This effect of DM heating is small
in realistic conditions (Gnedin & Zhao 2002), but Read et al. (2006)
showed that if the effect repeats over several cycles of star formation,
it accumulates leading to a complete core formation. This core can be
permanent if the outflows are sufficiently rapid (Pontzen & Governato
2012). Modern hydrodynamical simulations of dwarf galaxies that
take into consideration baryonic feedback and have a sufficiently
high density threshold for star formation have indeed succeeded
at creating DM cores (e.g. Governato et al. 2010; Di Cintio et al.
2014a; Tollet et al. 2016; Chan et al. 2015). Still, the ‘cusp-core’
problem is far from being completely solved, due to the difficulties
of uncovering the underlying DM distribution in observed dwarf
galaxies, and significant effort has gone into the development and
improvement of methods to infer the inner DM density profile of
such galaxies.

Analysis of the rotation velocity of gas in low surface brightness
galaxies, for example, allow to derive and fit their underlying DM
distribution suggesting the presence of a DM core in such systems
(e.g. Moore 1994; Gentile et al. 2004; de Blok et al. 2008; Lelli,
McGaugh & Schombert 2016). On the other side, in pressure-
supported galaxies that are devoid of gas, such as the dwarf spheroidal
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galaxies (dSphs) found within the Local Group, the kinematic
information on which dynamical modelling relies on, comes from
the line-of-sight velocity distribution of their stellar component. A
variety of methods have been employed on dwarf galaxies to derive
their central DM density, such as Jeans (e.g. van der Marel 1994;
Kleyna et al. 2001; Battaglia et al. 2008; Read, Walker & Steger
2019; Collins et al. 2021) or Schwarzschild (e.g. Schwarzschild 1979;
Cappellari et al. 2006; van den Bosch & de Zeeuw 2010; Breddels
et al. 2013; Breddels & Helmi 2013) modelling. The results in the
literature seem to point to cored DM profiles being favoured over
cuspy ones in the Fornax dSph (e.g. Geha et al. 2006; Walker &
Penarrubia 2011; Brook & Di Cintio 2015; Pascale et al. 2018),
while in the case of Sculptor, another very well studied system, it
is still very much debated if its DM halo is cored or cuspy, perhaps
pointing to the presence of a mild cusp (e.g. Breddels & Helmi 2013;
Zhu et al. 2016; Hayashi, Chiba & Ishiyama 2020) (for a review
on these topics, see Battaglia et al. 2022 and references therein).
A central limitation of the previously mentioned models, however,
comes from the uncertainty in the anisotropy of the stellar orbits,
in the case of Jeans modelling, which causes a degeneracy with the
underlying mass profile (Binney & Mamon 1982); Schwarzschild
modelling, on the other end, is hampered by its sensitivity to the
available data (Kowalczyk, Lokas & Valluri 2017).

In this work, we present an alternative and innovative method to
discriminate between cusps and cores in dwarf galaxies based on
machine learning techniques. Namely, we use convolutional mixture
density neural networks to determine a posterior distribution of
the inner profile of DM haloes. This general approach has been
successfully implemented for measuring cluster masses from galaxy
dynamics (e.g. Ho et al. 2019; Kodi Ramanah et al. 2020; Kodi
Ramanah, Wojtak & Arendse 2021). The neural network uses
as inputs the phase-space mappings of positional and dynamical
distributions of stars within galaxies. We use a suite of 171 dwarf
galaxies from the NIHAO project with different initial conditions
and parameters (Wang et al. 2015; Dutton et al. 2020) and 12 dwarf
galaxies from the AURIGA project (Grand et al. 2017) as a training
set for the network. We then apply our novel model to four dwarf
spheroidal galaxies satellites of the Milky Way to infer the inner
slope of their DM density profiles.

The paper is organized as follows. In Section 2, we present
the simulation data set and the machine learning architecture. In
Section 3, we show the results of the trained model on the test set.
We then apply the model to observed dwarf galaxies in Section 4.
The conclusions are discussed in Section 5.

2 METHODS

2.1 The training set

To train our model, we need a large set of simulated dwarf galaxies
with well-known density profiles. We use fully cosmological simu-
lations from NIHAO (Wang et al. 2015) and AURIGA (Grand et al.
2017) projects, in which DM and baryonic matter evolve together,
making our training set as realistic as possible.

Importantly, we need to include simulations of galaxies with both
cusps and cores in their central region, and with various stellar
masses, in order to minimize any systematic dependence of cusp and
core on properties such as mass. Indeed, the fiducial NIHAO galaxies
have a density profile highly correlated with mass (Di Cintio et al.
2014b; Maccio et al. 2020), which could possibly allow the machine
learning code to predict cusp or core based on any indicator of total
mass, rather than by the details of the stellar velocities and positions.

Applying deep learning to core-cusp problem
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To maximize the neural network’s ability to find and differentiate
input data features directly related to their inner slope, it is prudent
to avoid any non-physical correlation in the data set between the inner
slope and other galaxy features. We therefore use simulations that
have a range of different physical and/or parametric inputs, meaning
that our final suite of simulations includes a range of inner slopes at
various masses and sizes. We firstly include dwarf galaxies within
the fiducial NIHAO model, ranging in halo mass from ~ 10° M, to
10" Mg, and stellar mass from an order of 10°> Mg, to 10°> M. This
model includes energy feedback from massive stars and supernovae
(Stinson et al. 2006), which has been shown to be able to modify
the inner density profile and result in cores, particularly in simulated
galaxies with stellar mass between 107 and 10° M, (Di Cintio et al.
2014a). We also use simulations of dwarfs from Dutton et al. (2020)
that employs the same model as the fiducial NIHAO ones, but with
different star formation thresholds, ranging from pyesn = 0.1 to
100 particles per cm™3: this translates into galaxies of a similar
stellar mass ending up with different density profiles, as the star
formation density threshold has been shown to be one of the most
important parameter for core formation in baryonic simulations (see
Benitez-Llambay et al. 2019; Dutton et al. 2020). We further add
a set of simulations with no stellar feedback run from the same
initial conditions as fiducial NIHAO (Wang et al. 2015). The lower
total feedback energy results in different inner density profiles than
simulations in which the stellar feedback is included, for the same
initial conditions, therefore further increasing the desired diversity
of central DM profiles at a given galaxy mass. Finally, we include
12 simulated dwarf galaxies from the AURIGA project (Grand et al.
2017), all of which have a central DM cusp.

We have 183 simulated dwarf galaxies in total: 60 simulations from
the fiducial NIHAO suite (Wang et al. 2015), 101 simulations from
Dutton et al. (2020) with varying density thresholds and varying
density profile, 10 simulations without stellar feedback also from
Wang et al. (2015) and 12 simulations from Grand et al. (2017).
All together, these simulations have a range in halo mass between
My =3 x 10° Mg and My, = 4 x 10" Mg. NIHAO simulations
resolve the mass profile of galaxies to below 1 per cent of their virial
radius at all masses, while AURIGA simulations are constructed to
have a maximum physical softening of ~370 pc.

We define the DM inner slope value of the simulated galaxies
as the slope at 150 pc of the DM density profile of each galaxy.
This value is extrapolated from the fit of the density profile to a
double-power law profile (Di Cintio et al. 2014b) in order to avoid
the noise effect of the computed density profile of the simulations
in inner regions very close to the softening length.! We end up with
a set of simulated dwarfs exhibiting a range of density profiles: the
relationship between stellar mass and inner slope of DM halo for our
full data set can be seen in Fig. 1.

To increase the size of our training set, we use three different
output time-steps for each galaxy: z =0, z = 0.112, and z = 0.226.
Each simulated galaxy is already virialized at these redshifts, and it
is therefore possible to take different snapshots of the dwarf. For the
cosmological parameters from Planck Collaboration XIII (2016),
the time between z = 0 and z = 0.112 is roughly 1.46 Gyr and
between z = 0.112 and z = 0.226 is 1.27 Gyr. These time differences
between snapshots correspond to multiple dynamical times of the
galaxies from the data set, typically of the order of 1072 or 107!

IThis extrapolation is reasonable considering that AURIGA galaxies, al-
though not resolved at r < 370 pc, consistently show a cuspy inner density,
i.e. there is no sign of an artificial central DM core.

MNRAS 519, 4384-4396 (2023)
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Figure 1. Relationship between the inner slope of the DM density profiles
y (defined as the logarithmic slope at 150 pc) and the stellar mass of the
simulated galaxies in our data set. The green horizontal line marks the value
of y for a NWF profile.
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Figure 2. Example of cored and cuspy galaxies from our simulation dataset.
Here, each row represents a different galaxy. Left columns: Rendering of the
stars in a face-on view. Central columns: Rendering of the stars with an edge-
on orientation. Right columns: DM density profiles and fit to a double-power
law model (Jaffe 1983; Merritt et al. 2006).

Gyr for stars at distances to the centre under which 90 per cent of
the stars of the galaxies are found. While this procedure does not
change greatly the range of the obtained density profiles, it does
change the position and velocities of the stars within each galaxy.
We end up with a sample of 549 galaxy snapshots which we will
use as training set for our method. We show in Fig. 2 examples

MNRAS 519, 4384-4396 (2023)

of stellar renderings of cored and cuspy simulated galaxies together
with their corresponding DM profiles. We then proceed to select stars
within each galaxy snapshot. Typically, the number of stars for which
spectroscopic data is available for Local Group dwarf galaxies is the
order of hundreds or thousands, while the number of star particles
available in our simulated galaxies range from a few hundred to
several million, with a mean number of about 10° stellar particles in
each galaxy.

Therefore, in order to simulate an observational sample of stars,
and to further expand our training set, we have divided each simulated
galaxy’s complete sample of stars into a minimum of 20 subsets, each
made of randomly selected stars. The number of stars within each
subset of a given galaxy is dependent on the total number of star
particles in the simulation, with an upper limit of 10* stars and a
lower limit of 200 stars. The stars of each subset are then projected
in arbitrary sky planes to simulate galaxies observed from different
viewing angles. These projected stars are defined by their position
(Xproj» Yproj) and their line-of-sight velocity vy os. We oversample some
galaxies by making multiple projections to each of their subset, and
undersample some galaxies, with the objective of making the training
set have a uniform distribution of inner slopes: this avoids biases in
the model during training. We end up with a total of 10 273 data
sets to train our model, each composed of randomly selected stars
within different simulated galaxies and at different viewing angles,
for which we stored information about their positions (Xproj, Yproj) and
line-of-sight velocities v os.

2.2 The information inputs

The inputs of our deep neural network model are continuous 2D
probability density functions (PDFs) of the distribution of stars in
projected phase spaces, constructed with bivariate kernel density
estimations (KDEs). The mapping generated with KDEs allows us
to encapsulate the features of the original discrete distributions in the
same form even if each galaxy subset is represented by a different
number of stars.

2.2.1 Kernel density estimation

Let Xy, X»,..., X, denote a sample of size n from a random variable
with density f, each variable being a two-dimensional vector for the
case of a bivariate KDE. The kernel density estimate of f at the point
X is given by

Ffalx) = m ,2_1: K [H"x - X)), )
where K is a kernel function and H is a 2x2 bandwidth matrix.

The KDE sums up the density contributions from the collection
of data points at the evaluation point x, so that data points close to x
contribute significantly to the total density, while data points further
away from x contribute less. The shape of those contributions is
determined by K, and their dimensions and orientation by H. Usually
the kernel function K is chosen to be a probability density symmetric
about zero (Sheather 2004). In this work, we use a 2D Gaussian
kernel:

K(u) = 2m) 2| H|exp (—%uTH_lu) , )

where u = x — X;. For the bandwidth matrix, a scaling factor « is
multiplied by the covariance matrix of the data. For the selection of
k, we use Scott’s Rule (Scott 1992), which, for equally weighted
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Figure 3. Model inputs for a cored and a cuspy galaxy, each one represented face-on and edge-on. The logarithmic slope at 150 pc is y = —0.20 for the cored

galaxy and y = —1.32 for the cuspy galaxy. From top to bottom: A 3-colour image of the stars in the galaxy; the PDF in the {x,y} phase space; and the PDF in

the { Rproj, OL0s } phase space.

points and two dimensions is k = n%l, where n is the number of
data points. This leads to a fairly strong smoothing, which interested
us to reduce the relevance of the number of stars and strengthen the
overall evaluation of the data as opposed to individual stars.

2.2.2 Model inputs

From the projected information (positions in the x—y plane and vy os)
of the sample of stars representing each galaxy we have made two
maps:

(i) A PDF sampled at 64 x 64 points with the distribution of stars
in {x,y} phase space, between —2 kpc and 2 kpc in each coordinate,
in the reference system where (x,y) = (0,0) is the centre of the galaxy.

(ii) A PDF sampled at 64 x 64 points with the distribution of
stars in {ﬁpmj, Dros} phase space, where Iépmj = /x2 4+ y2/Ry;,
is the radial position normalized by the half-light radius Ry, and
DLos = VLOS/ Pog per cent 18 the line-of-sight velocity normalized by
the 98 per cent percentile of the absolute value of vy og of all stars of
the sample. Iépmj ranges from O to 1, and 0 g ranges from —1 to 1.

Note that both the 2 kpc bounds in the positional data PDF and
the limit up to Ry in the velocity PDF imply ignoring star data
outside these regions. During the testing phase many bounds and

normalization methods were tested. With the current data set, the
limits used in the work are the ones that gave the best results. A
likely explanation is that the information provided by stars outside
these limits is negligible and their presence in the PDFs only detracts
from the stars closer to the centre of the galaxy, where the key
information for determining the internal slope is found.

In Fig. 3, we show our model inputs, as the PDFs corresponding
to both maps, for a cored (left) and cuspy (right) galaxy.

2.3 The model

In this work, we use mixture density convolutional neural networks
(MDCNNSs) to map the input data composed of the two PDFs
described in Section 2.2.1 into the inner slopes of the DM profiles
of the galaxy associated to those two PDFs. We approximate the
posterior distribution of the slopes with the sum of two Gaussian
distribution whose parameters are estimated by the neural network.?
Our model takes as input a two channel image consisting of the PDFs
onthe { Rynoj, d10s } phase space and the {x,y} phase space separately.

The use of a double Gaussian yields more accurate predictions than using a
single one. On the other hand, using more than two Gaussians does not lead
to more accurate slope predictions.

MNRAS 519, 4384-4396 (2023)
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Figure 4. Schematic representation of our double channel MDCNN architecture to infer inner slopes of the DM profiles (slope at 150 pc) of galaxies from
their 2D phase-space mappings of positional and dynamical distributions of stars. The MDCNN extracts the spatial features from the phase-space mappings
and gradually compresses into high-order features until describing the input with only five parameters, which are used as parameters of a double Gaussian

corresponding to the probability density distribution of the inner slopes values.

The images are passed through two convolutional sequential layers.
The outputs of the two convolutional branches are then concatenated
and fed into a three layer fully connected network. The final output
consists of five parameters that parametrize the joint double Gaussian
posterior.

A schematic view of the architecture used in this work can be seen
in Fig. 4, while a more in-depth description of the different layers
and neural network methods can be found in the Appendix.

2.3.1 Training and evaluation

The training is done over a training set consisting of 10 273 galaxy
subsets with their respective inner slopes, which act as targets.
The loss function to minimize during the training is the negative
logarithmic likelihood of the training sample, defined as

N
L=—InLx=—Y In[p,10)], 3)
i=1
where ¢; is the inner slope of the galaxy subset i and 0 the set of
parameters of the distribution p,. For a certain galaxy subset, the
likelihood is the value of the PDF (defined with a double Gaussian
distribution as the output of the last layer) in its real inner slope
value; i.e. the probability the model predicts for the inner slope of
the galaxy to be its correct value:

2
pe(xl0) = ¢;N(x, 1j, o)), “

j=1

where N(x, 1, 0;) is the j Gaussian with mean pu; and standard
deviation o}, ¢; is the weight of the j Gaussian, so that Z;’il o =1,
and 6 is then a set of six parameters (mean, standard deviation, and
weight of the two Gaussians), one of which is not independent due
to the normalization criterion.

The minimization of the loss function is done with the adaptative
moment estimation (ADAM) optimizer, an algorithm for optimiza-

MNRAS 519, 4384-4396 (2023)

tion that uses the gradient descent iterative technique. Between the
popular learning-method algorithms, ADAM is shown to compare
favourably in performance and computational cost (Kingma & Ba
2015). After training, the evaluation of the model outputs a double
Gaussian distribution that can be understood as an approximation
to the true posterior distribution of the inner slope of a given input,
given the prior distribution of the inner slopes in the training data set.
This posterior then represents the probability that the model assigns
a certain value of the inner slope, given the set of observables under
the prior of the training set.

Usually, the test data set for the final evaluation of the converged
model is constructed by randomly taking a sufficient number of
elements from the complete data set to correctly represent all feature
variety in the data. In this work, due to the limited number of galaxies
available, removing too many galaxies with varying characteristics
from the training data set is expected to worsen the performance of
the model, since we do not have many different examples of galaxies
with similar characteristics to each other. To properly evaluate the
model, we have performed multiple complete training runs using
only 10 galaxies as validation and test data sets in each one, changing
the galaxies that would come out of the training data set in each of
the training runs to evaluate the network in several projections of
every galaxy. This allows us to analyse the consistency of the model
training and its performance in a large number of galaxies without
compromising the training data set.

2.3.2 Representing uncertainties

The output posterior distribution represents the random or aleatoric
uncertainty in the slope prediction of the final model, but it does
not represent the uncertainty due to the stochastic nature of the
weight determination while training the neural network (epistemic
uncertainty), which can lead to different models for the same training
conditions when dealing with limited data. We use the Monte
Carlo dropout method (MC-Dropout) (Gal & Ghahramani 2015) to
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approximate the epistemic uncertainty that is based on the repeated
evaluation of the same input, randomly setting to O the weights on
some layers while doing each inference, to construct a final evaluation
with statistical information about the epistemic uncertainty. Gal &
Ghahramani (2015) showed that applying dropout during inference
is equivalent to an approximation to a probabilistic Deep Gaussian
process. It means we can measure the epistemic uncertainty by
applying the dropout layer during inference for a statistically relevant
number of them, acquiring a predictive mean and variance for each
point of the posterior distribution. The constructed final posterior
for each galaxy projection is the normalized mean of 100 double
Gaussian posteriors inferred by the model with active dropout layers.

3 RESULTS

The goal of our work is to infer the logarithmic inner slope of the
mass density profile in the central region of a galaxy (from now
on: inner slope) from spectroscopic data of a random sample of its
stars. To do so, all simulated galaxies and their subsets of stars are
randomly projected in several sky planes, to simulate several viewing
angles, and the neural network is trained to infer the inner slope of the
galaxy from the positions and line-of-sight velocities of its stars. For
each galaxy the neural network outputs, a PDF which approximates
the posterior probability of obtaining a specific inner slope given the
inputs.

3.1 Predicting DM inner slopes

We define two different methods to construct the predicted slope
value y from the posteriors:

(i) by using the mode of the posterior distribution (i.e. the
maximum of the PDF): ¥ pred. mode-
(ii) by using the mean of the normalized posterior distribution:

Y Pred, mean -

The deviation € of a prediction from its true value is defined as
€; = YReal — Y Pred, i» Where ¥ rey is the real slope at 150 pc of the DM
profile of a galaxy simulation. The results for the mode method can
be seen in Fig. 5, which shows the difference between the real and
predicted slopes of our simulated dwarf galaxies, ¥ Rreal — ¥ Preds S @
function of the real slope. Each point represents the mean deviation
for every projection of each individual galaxy, while the deviation
bars indicate the minimum and the maximum value amongst every
possible projection of each galaxy. Shaded-coloured horizontal areas
represent increasing uncertainty ranges, from +0.05 to 0.4.

The mean global absolute deviation on the predicted inner slope,
for all the galaxies in our set, is of . = 0.056 for the mode method
and of pe = 0.068 for the second method. Note that while cuspy
and ‘in between’ galaxies are scattered around Y reas — Yprea = O,
cored galaxies tending towards y = 0 are necessarily only scattered
at YReal — Vrred > 0, since by construction the maximum possible
inner slope is 0.

In Table 1, we can see the percentages of correctly predicted
inner slopes, taking into account all the projections of every galaxy
(middle column) and each galaxy individually (right column), for our
complete test data set, within several uncertainty ranges. Roughly, 82
per cent of the galaxies recover the correct, real inner slope within
+0.1, while 98 percent of them lie within |YRrea — ¥preal < 0.3.
These ranges are clearly small enough to shed light on the discussion
regarding the presence or not of cores in dwarf galaxies.

Finally, a histogram of the deviation distribution for every pro-
jection of each galaxy (i.e. 10 273 in total) can be seen in Fig. 6,

Applying deep learning to core-cusp problem

4389

ue = 0.056, 0. = 0.075
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Figure 5. Difference between real and predicted value of DM profiles
inner slopes (defined at 150 pc) versus real inner slope, for the simulated
galaxies used in this work, defining the predicted value as the mode of the
posterior distribution. Each point represents the mean y real — ¥ pred for all the
projections of each individual galaxy, while error bars span the range between
the minimum and the maximum deviation amongst every possible projection
of each galaxy. Coloured areas represent increasing deviation ranges, from
0.05 to 0.4.

Table 1. Percentage of all the projections (central column) and of individual
galaxies (right column) whose predicted inner slope lies within a given
deviation range X, i.e. |€|] = |VReal — ¥Pred, mode] < X. Here, we used the
mode of the posteriors method to derive the inner slopes.

Percentage of projections

Deviation range (£ X) with Percentage of galaxies with
lel =X le] <X

0.05 66.67 67.80

0.1 80.79 81.92

0.2 94.35 94.35

0.3 98.31 98.31

0.4 99.44 98.87

N¢ of projections

- —0.4 -0.2 0.0 0.2 04

YReal - Ypred

Figure 6. Distribution of yReal—) Pred, mode fOr every projection of each
galaxy in our training set.
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Figure 7. Standard deviation o s of each posterior PDF versus yReal, for
the simulated galaxies used in this work. Each point represents the mean
standard deviation of each posterior, for every projection of an individual
galaxy. The error bars range between the minimum and maximum standard
deviation value of the posteriors of all the projections of that galaxy.

indicating that the values of yrea—Y pred are peaked at and roughly
symmetrically distributed around 0O, except for very cored galaxies
that have by definition Ygea—Vpreda = 0, as already stated, and
a small asymmetry towards predicting stronger cores in galaxies
in the range of small deviations. We showed that our method
predicts accurately the expected inner slope of galaxies regardless
of their actual real slope, with a mostly uniform scatter of o,
=0.075.

3.2 Uncertainty in the inference

In Fig. 7, we show the standard deviation o s of each posterior PDF
from every galaxy in the test data set, defined as the square root of
the variance of the normalized posterior:

Opos = / (¥ — Ipos)* P(y) dy, (5)

where P(y) is the normalized posterior distribution and 1ty is the
mean of the distribution:

o0
Mpos :/ yP(y)dy. (6)
—00
The mean of all the o, of the data set, Hopos s is around 0.1 and
only 8.99 percent of the projections have values of o, greater
than 0.2, uncertainties that are small enough to clearly distinguish
between cores and cusps in the vast majority of cases. Fig. 7 shows
that the standard deviation o, of each posterior PDF is uniform
across the inner slopes values, i.e. the width of the PDFs does
not depend on the inner slope of galaxies, such that the model is
not biased towards recovering with higher accuracy either cusps
or cores. Most galaxies show a significant variation in the size of
their uncertainties depending on the projection, indicating that the
amplitude of the uncertainty is strongly correlated with the angle of
observation.

Table 2 shows the percentage of the test data set projections
for which the true value of their inner slope is recovered within
different multiples of o . If we approximate the posteriors to single
Gaussians (which is a proper approximation for roughly 90 per cent
of the projections), a well-calibrated uncertainty should provide
around 68 percent of the outputs within a confidence level of 1
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Table 2. Percentage of predictions within increasing o pos ranges X, defined
as [YReal — ¥Pred| = X.

Region Percentage of projections for which y real
is within region

1—0 pos 86.29

2—0 pos 97.57

3—0 pos 99.73

— 0 pos- Our greater percentage (~ 86 per cent) of projections within
the confidence level of 1 — o, indicates that the model is over-
predicting the uncertainties o, yielding broader posteriors than
it should. This can be an effect of a too high dropout rate (see
Section A) during training, which has been shown to have such
a outcome on the results of probabilistic neural network models
(Ghosh et al. 2022). As it is, our model should be interpreted as
conservative, since a future, better calibrated MDCNN would provide
even tighter uncertainties in recovering the true inner slope of a
galaxy.

3.3 Effect of viewing angle on the inference of DM slopes

Most of the posteriors for the different projections have an approx-
imately normal distribution (the second Gaussian disappearing or
constituting a skewness correction to the main Gaussian), but several
of them have two distinct peaks. Specifically, around 30 per cent of
the galaxies have double peaks in more than 10 percent of their
posteriors. 54 per cent of these galaxies are cored while 46 per cent
are cuspy, indicating that the appearance of double peaks in the
PDFs arises in both scenarios (here, we define as cored galaxies
those with inner slope —0.6 < y < 0, and cuspy any galaxy with
y < —0.6). In Figs 8 and 9, we show the PDFs and posteriors
of two galaxies at different observation angles, spanning the range
between a face-on and a edge-on view. Strikingly, these images
show that the width of the PDFs as well as the appearance of
double peaks are strongly related to the viewing angle of the
galaxy. This indicates that the appearance of double peaks is a
consequence of the fact that some information on the underlying
DM profiles is hidden when viewing the galaxy at some particular
angle, while it is released and efficiently passed to the network when
looking at the galaxy from other angles: this finding has profound
consequences for the interpretation of ‘cusp-cores’ in dwarfs. For
example, in Fig. 9 we observe that the double peaks in the posterior
distribution disappear when the galaxy is seen edge-on, while a face-
on configuration provides a second peak that mimics the presence of a
cusp.

However, this is just an example, and we have several cases
of galaxies in which the double peaks appear in edge-on view
and disappear in face-on, so that the appearance of these multiple
peaks is not related to a specific edge-on or face-on configuration:
indeed, the distribution of angles for those PDFs showing double
peaks is uniform throughout the complete data set. The occurrence,
significance and widths of the double peaked PDFs will be explored
in future works, as it goes beyond the scope of this paper.

4 APPLICATION TO OBSERVED GALAXIES

We proceed to test our model with real observed galaxies, in order
to ensure the applicability of the model and to verify that the neural
network is not detecting features of simulated galaxies that do not
correspond to any real physical system. We selected four dSphs for
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Figure 8. Probability density distributions used by the neural network as
input in the case of one simulated galaxy subset seen at 0° (face-on), 45° and
90° (side-on), alongside with the Bayesian posteriors predicted by the model.
Left columns: PDFs in the {x,y} phase space. Central columns: PDFs in the
{Iépm_i, dLos } phase space. Right columns: predicted Bayesian posterior in
the space of inner slope of the DM profile (slope at 150 pc); shaded regions
represent the standard deviation of the posterior values for the MC-Dropout
inferences at each slope point, while the blue vertical line shows the mode
(maximum) of the posterior distribution and the black one the true value of
the inner DM slope.

which detailed spectroscopic samples of stellar-kinematic data have
been published. At this stage, we adopt the catalogues by Walker,
Mateo & Olszewski (2009) to directly compare our results with those
obtained using the code GRAVSPHERE, as in Read et al. (2019). The
selected galaxies are Carina, Sextans, Fornax and Sculptor, for which
we further use the center position, velocity, ellipticity and half-light
radius as compiled in Battaglia et al. (2022).

To build our input PDFs, we considered only those stars with a
90 per cent or higher probability of being part of the galaxy and we
took the mean value of the line-of-sight velocity for those stars with
multiple measurements. We do not take observational uncertainties
into account, since adding noise to the data by making use of
uncertainties in the line-of-sight velocity only goes so far as to alter
the mean, maximum, and width of the posteriors by an order of 102
over multiple iterations for these four galaxies. This may change in
the future if more data sources with less accurate measurements, such
as proper motion, are added. A full and formal treatment of the effect
of observational uncertainties will be included in future work, but
their inclusion does not affect the results presented here. In total, we
considered 460 stars for Carina, 1353 for Fornax, 809 for Sculptor
and 327 for Sextans, and we used their projected x—y positions and
line-of-sight velocities. The x—y positions are normalized using the
circularized half-light radius R}, = Rp+/1 — ell, where Ry, and
ell are the half-light radius and ellipticity from Battaglia et al.
(2022).

4.1 Deriving central DM density slopes of dSphs with CNNs

We now infer the inner slope of the observed dwarfs. Fig. 10 shows
the posterior distributions constructed by the model for each observed
galaxy. Fornax presents a very narrow peak around y = —0.38,
indicating that this galaxy has a strong central DM core, while a
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secondary peak would give a 12 percent probability that the inner
slope is around y = —0.81. This is consistent with several previous
works that predict a cored profile for Fornax (see Goerdt et al.
2006; Walker & Penarrubia 2011; Brook & Di Cintio 2015; Pascale
et al. 2018, amongst others). For the other three galaxies, a cusp is
predicted with varying degrees of certainty. The model has a clear
peak around y = —1.06 for Carina, which roughly corresponds to
the slope of an NFW profile at 150 pc.

Sextans presents a relatively large uncertainty in the inner slope
value, as depicted by the quite broad PDFs, with a broad peak
around y = —1.25 and a strong right wing that does not fall
below 10 per cent of the peak value until it reaches y = —0.68.
Finally, Sculptor peaks at y = —1.08, but it has a wide secondary
peak, predicting a 18 percent probability of having a mild core
with y = —0.75. A small core was derived for Sculptor by using
kinematical data and a mass-dependent profile fit in Brook & Di
Cintio (2015), in agreement with the Walker & Pefarrubia (2011)
and Agnello & Evans (2012) methods that, employing multiple stellar
populations within a galaxy, also predicted a core in such dwarf (see
also Zhu et al. 2016; Breddels et al. 2013; Hayashi et al. 2020).
Other studies, however, surprisingly predict a cusp for Sculptor after
all (Richardson & Fairbairn 2014), highlighting the importance of
deriving the DM density of this dSphs with several different methods.
Our derived posterior distributions offer great versatility in interpret-
ing the results, allowing for a more complex analysis compared to
models that only allow for uncertainty ranges around the inferred
value.

We compare the results of our model with the inner slopes
inferred for these same galaxies at 150 pc using GRAVSPHERE,
a non-parametric spherical Jeans analysis code, which make use
of photometric and kinematic data from the galaxies (Read et al.
2019). The inferred values, along with their 68 per cent confidence
intervals (in our case, taking the primary maximum as reference),
are listed in Table 3. The derived values are consistent between the
two models, within their respective uncertainty ranges, indicating
that our neural network model is making predictions similar to
those obtained by Jeans analysis. Furthermore, the accuracy of
our neural network is greater, with errors roughly an order of
magnitude smaller than those of GRAVSPHERE: this preliminary
finding will be expanded and explored in more detail in future
work.

Compared to GRAVSPHERE and similar codes, the neural network
approach is significantly faster. In a modern laptop, GRAVSPHERE
will need about half a day to run an analysis of one of these
galaxies, whereas the neural network can be trained with the amount
of data used in this work in less than half an hour on a standard
GPU. Furthermore, the training and the evaluation are independent
calculation in a neural network model, which means that, once
the model has been trained, its application to any input data to
construct the posterior distribution is nearly instantaneous. This
feature will not change no matter how much the model is expanded
and complexified to perform more complete analyses of the galaxy of
interest.

4.2 Testing the similarity of training versus observational data

When training a neural network with simulations to then perform
inference on real data, there is always the risk that the network
will detect and learn from specific features of the simulation code
that do not correspond to reality, and this would cause issues when
interpreting observational data, as they have different qualities than
those used in the training set. We can test the degree to which our
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Figure 9. Probability density distributions used by the neural network as input in the case of one simulated galaxy subset seen at 0° (face-on), 45° and
90° (side-on), alongside with the Bayesian posteriors predicted by the model. Left columns: PDFs in the {x,y} phase space. Central columns: PDFs in the
{Iépmj; dros } phase space. Right columns: predicted Bayesian posterior in the space of inner slope of the DM profile (slope at 150 pc); shaded regions represent
the standard deviation of the posterior values for the MC-Dropout inferences at each slope point. The red vertical line shows the primary maximum of the
posterior distribution (the mode), the green one the secondary maximum and the black one the true value of the inner DM slope. As a blue line, the mean
between primary and secondary maximum is shown, when two peaks exist (in the bottom panel, instead, the blue line represents the unique maximum). This
example shows how the appearance of double peaks in the posterior distributions is strongly related to the viewing angle.

network sees observational data as equivalent to the data it has
been trained on by observing the parameter space of the test data
set, defined as the set of all combinations of the six parameters
corresponding to each element of such data set. Namely, our outputs
are defined by the mean, standard deviation and weight of two
Gaussians: this 6D parameter space will have regions populated
with points and regions completely empty, corresponding to the
combinations of parameters that do not parametrize the character-
istics of any physical system found in the data set. If the neural
network does not see differences in the input with respect to the
data it has been trained on, the resulting parameters, coming from
the evaluation of observational data with our model, will fall within
the populated regions of the parameter space of the simulation data
set.

MNRAS 519, 4384-4396 (2023)

To be able to visualize the 6D parameter space and test if this
is the case, we use the Uniform Manifold Approximation and Pro-
jection (UMAP) for Dimension Reduction technique from Mclnnes,
Healy & Melville (2018) to perform a dimension reduction from 6D
to 2D, thus mapping each combination of means, standard deviations
and weights to only two adimensional parameters representing
such ‘contraction’, preserving the global structure of the original
parameter space. This allows to visualize the parameter space in 2D.
The result of the dimension reduction process from the complete test
sample can be seen in Fig. 11, alongside with the position of the
four observed dwarf galaxies shown in the same parameter space,
each indicated as coloured star. As expected, the spatial location of
the points in the parameter space is strongly linked to the value of
their inner slope: points with a similar inner slope cluster together,
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Figure 10. Bayesian posterior distributions in the space of inner slope of DM profiles (slope at 150 pc) predicted by our neural network model for the observed
dSphs Carina, Sextans, Sculptor, and Fornax. Shaded regions represent the standard deviation of the posterior values for the MC-Dropout inferences at each
slope point. In each panel, the global maximum of the posterior distribution as well as the mean value are indicated, together with primary and secondary peaks
when they exist. Fornax has the strongest signature of a central DM density core, while Carina has the strongest signature of having an NFW profile. Sextans is
cuspy, though with a large uncertanity, while Sculptor is cuspy with a secondary peak indicating a mild core.

Table 3. Inner slope of the DM profile (at 150 pc) for Carina, Sextans,
Sculptor and Fornax galaxies predicted by GRAVSPHERE () Gs) and our neural
network (y ), with their 68 percent confidence intervals (for the neural
network posterior, taking the primary maximum as reference). The agreement
between the two methods is encouraging.

YGS VNN
Carina -1 .23f8;§§ —1.0670.0
Sextans —0.951’8:32 -1 -251—8:(2)3
Fornax —0.30f8:§é _0-38t8:8é
Sculptor —0.83f8j§2 _1-08t8:82

showing that the network is properly parametrizing the inner slope
of galaxies during training. Interestingly, the four observed galaxies
fall into the regions occupied by the simulated ones, which indicates
that the model is considering them as data of equivalent nature as

the test data. However, the fact that all four are close to the edges
of the simulation input parameters could indicate the presence of
some features that the model has not found in the simulations. The
possible causes of this will be explored in future work employing a
larger observational sample.

5 CONCLUSIONS

We present a novel model for determining the slope of the inner
density profile of DM haloes with robust uncertainty quantification
using machine learning techniques. The goal of this work is to be
able to infer such density slopes (y) by simply using positions and
velocities of stars within galaxies. Our method uses mixture density
convolutional neural networks with a Gaussian density layer backend
to model complex galaxy substructure. We use line-of-sight velocities
and positions of stars projected on the sky within simulated dwarf
galaxies, employing Kernel Density Estimations (KDEs) to construct
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Figure 11. Representation of the parameter space for the test data from
simulated galaxies reduced to two-dimension with a UMAP, colour coded by
the real expected inner DM slope. Plotted as coloured stars are the locations
in the reduced parameter space of Carina, Sextans, Sculptor and Fornax
galaxies. Note that different inner slopes occupy different areas of the plot and,
importantly, observed dwarf galaxies fall well within the simulation region,
indicating that the neural network model is not seeing relevant differences
between the simulated data with which we have fed it and the observational
data.

continuous 2D PDFs of the distribution of such stars in {Iépmj, Dros }
and {x,y} phase space, which serve as input to our neural network
using a double channel architecture (Figs 3 and 4).

We train and evaluate our model using a large set of fully
cosmological simulations of dwarf galaxies with halo masses of
10° to 10" Mg, and stellar masses of 10° to 10°3 Mg, from the
NIHAO and AURIGA projects (Wang et al. 2015; Dutton et al. 2020;
Grand et al. 2017). The use of different physical models employed in
these simulations allows us to have a range of density profiles at each
particular galaxy mass, including both cores and cusps (Fig. 1). All
simulated galaxies and their subsets of stars are randomly projected
in several sky planes, to simulate several viewing angles.

The loss function to minimize during the training is the negative
logarithmic likelihood of the training sample, defined as a double
Gaussian probability distribution, which is the output of our Gaussian
density layer backend. This allows a flexible probabilistic represen-
tation of the results, which yields accurate and statistically consistent
uncertainties. For each galaxy, the neural network outputs a PDF that
gives the posterior probability of a certain slope to be the inner slope
of the galaxy.

The main results of this work are listed here:

(1) The inner slope of simulated galaxies is predicted with a mean
absolute deviation of u, = 0.056 (where the deviation is defined as
€ = YReal — Vpred> and the predicted inner slope, ¥ pyeq, is obtained
from the mode of the PDFs) and a standard deviation of o, = 0.075
for the whole sample (Figs 5 and 6).

(i1) 82 per cent (98 per cent) of the galaxies have their inner slope
correctly determined within % 0.1 (0.3) of their true value (Table 1).

(iii) The posteriors PDFs have a mean standard deviation of o pos =
0.108, showing no bias towards more accuracy for cuspy or cored
galaxies (Fig. 7).
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(iv) While in most cases the output of the model is a single peaked
PDF, in ~ 30 per cent of the galaxies some of their projections
show a double peak: we demonstrated that this is related to some
viewing angles, indicating the importance of properly determining
the inclination of galaxies (Figs 8 and 9).

(v) When applied to a set of four observed dSphs, our model
recovers their inner slopes yielding values consistent with those
obtained with the Jeans modelling based code GRAVSPHERE as in
Read et al. (2019) (Table 3).

(vi) We found that the Fornax dSph has a strong indication of
having a central DM core, Carina and Sextans have cusps (although
the latter with a large uncertainty), while Sculptor shows a double
peaked PDF indicating that a cusp is preferred, but a core cannot
be ruled out (Fig. 10). These results are in agreement with several
previously derived inner slopes for these galaxies.

The current architecture could be used as a basis for building
models that provide a more complete output, such as a prediction of
the full density profile of galaxies. The nature of the neural network
allows it to be constantly extended and improved. While we have
implemented a network of relatively low complexity, there are a
series of interesting possibilities with a further level of sophistication
that are worth exploring. For example, the use of normalizing flows
may yield to more robust results (Kodi Ramanah et al. 2020) while
the use of a 3D convolutional network applied to PDFs defined in
the {x, y, DLos } phase space has given good results in galaxy cluster
masses inference (Kodi Ramanah et al. 2021).

In the future, the architecture of this model could be expanded
by including more input data, such as surface brightness profiles or
proper motion of stars from missions like GAIA (Gaia Collaboration
2021). Furthermore, the inclusion of other spectroscopic samples
present in the literature, as well as of those soon to be acquired with
upcoming facilities, will certainly be beneficial for this analysis.
Adapting the architecture and introducing more information may
enable the network to improve accuracy and reduce the range of
variability of the results with respect to the angle of observation, an
avenue that will be explored in future works.

We have shown that deep learning techniques provide an innova-
tive method for the determination of the inner DM profile in dwarf
galaxies, complementary to the use of Jeans and Schwarzschild
modelling, achieving great accuracy and offering a complex rep-
resentation of uncertainties.

Our newly developed neural network method is a promising tool
for the study of the mass distribution within dwarf galaxies, which
in turn can help discriminate between different models and, in such,
constraining the properties of the elusive DM.
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APPENDIX: DETAILS ON THE NEURAL
NETWORK MODEL

A neural network can be formally described as a trainable and flexible
approximation of a model M : d — t. The networks maps an input
data d to a prediction 7 of the target 7. This network is parametrized by
a set of trainable weights and a set of hyperparameters. The weights
are iteratively optimized during training to minimize a particular
loss function, which provides a measure of how close the network
prediction 7 is to the target 7.

In this work, we use convolutional neural networks (CNNs), a
class of deep neural networks (DNNs), to construct a neural network
in which the input data d are the two PDFs described in Section 2.2.2,
and the targets ¢ are the inner slopes of the galaxy subsets associated
with those two PDFs. We then make a mixture density convolutional
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neural network (MDCNN) by embedding a mixture density layer
within the CNN as the last layer.

A1 Deep neural networks

Any neural network is conformed by a set of neuron layers, defined
by the following function:

fx)=gW- -x+D), (A1)

where x is the input of the layer, W is the weight matrix (which each
element being the weight of each element of the vector x), and b is
a vector called the bias parameter of the layer. g(z) is known as the
activation function, which purpose is to break the linearity between
the input and the output of the neuron.

A DNN is a neural network conformed by more than one neuron
layer. The layers between the input layer (the layer that takes as
inputs the input data of the neural network) and the output layer (the
layer that gives as output the outputs of the neural network) are called
hidden layers.

A feed-forward DNN is a DNN where the neuron layers are
evaluated in sequence, passing information from layer to layer
without recurrence, which means we can describe the output £
of the /th layer as

B = g(W® . p'=D 4 ), (A2)

The training of the model is done by optimizing the weight matrices
WO, A model is trained on a set of input data d for which the targets
t are known iteratively. In each iteration, the network performance
(the similarity between the outputs 7 and the targets #) is evaluated
using a loss function, and the weights are actualized to minimize that
function by an optimization algorithm. When the loss function stops
decreasing and converges to a certain value, the network is said to
be optimized. The performance evaluation is done, then, on a set of
independent data the model has not seen during training.

A2 Convolutional neural networks

CNNs are a particular type of DNNs especially suited for problems
where spatially correlated information is crucial. The main feature of
a CNN is the presence of convolutional layers, which are constructed
in a way that restrict neurons in one layer to receive information only
from within a small neighbourhood of the previous layer. This allows
neurons to extract simple features from subsets of the previous layer,
forming higher order features in subsequent layers.

A convolutional layer is designed as follows: A convolutional
kernel, commonly referred to as a filter, of a given size, encoding
a set of neurons, is applied to each pixel (in the case of 2D images
as inputs) of the input image and its vicinity, as it scans through the
whole region. A given pixel in a specific layer is only a function
of the pixels in the preceding layer which are enclosed within the
window defined by the kernel, known as the receptive field of the
layer. This yields a feature map that encodes high values in the
pixels which match the pattern encoded in the weights and biases
of the corresponding neurons in the convolutional kernel, which are
optimized during training (Kodi Ramanah et al. 2021).

A convolutional layer may be described as a linear operation with
the discrete convolution implemented via matrix multiplication. In
terms of equation (A2):

B =g [ SR kD 450 (A3)

ieM;
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where k is the convolutional kernel (the filter) and M,; is the receptive
field of the neuron j. One convolutional layer could have multiple
filters, which repeat this operation with different kernels, constructing
many feature maps per layer, known as channels.

The receptive field is usually defined by the dimensions of the
filter, the stride and the existence or not of padding. The application
of the filter can be described as a process of sliding it over the input
image of the convolutional layer. We call stride to the number and
direction of pixels you move the filter at each step, and padding to
the addition of empty pixels around the edges with the purpose of
alleviating information loss around the edges.

Usually, a CNN is a series of pairs of convolutional layers followed
by a pooling layer as a subsampling or dimensionality reduction step,
a process which will reduce the initial input image to a compact
representation of features. Then, that representation is reshaped as a
vector, which is subsequently passed to a sequence of dense layers
(LeCun, Bengio & Hinton 2015). This design allows the neural
network to autonomously extract meaningful spatial features from
the input image. The stack of several convolutional layers builds an
internal hierarchical representation of features encoding the most
relevant information from the input image. Stacking subsequent
convolutional layers naturally strengthens the sensitivity of the most
internal layers to features on increasingly larger scales, because the
size of the receptive field becomes larger as we go deeper in the CNN.

A3 Mixture density neural networks

A MDNN is a network with layers whose outputs follow a multidi-
mension probability distribution, called mixture density layers. This
layers take as inputs n nodes, with n being the number of parameters
in the desired distribution, transform their values to respect the
parameter constraints of the distribution and interpret them as those
parameters to construct it. When used as the last layer of the network,
it allows join optimization of the features from the DNN together
with a bayesian posterior backend, combining the advantages of deep
feature extraction with probabilistic representation of the results.

A4 Details on the architecture

The schematic view of the architecture used in this work can be seen
in Fig. 4

The convolutional sequences are constructed using pairs of convo-
lutional and pooling layers, followed by a dropout layer. The pooling
layers downsample their input along its spatial dimension using the
Max Pooling method, which takes the maximum value over a certain
input window for each channel. The dropout layers randomly set
input units to 0 with a certain frequency called the dropout rate, and
scales the rest such that the sum over all inputs is unchanged. This
is done to prevent overfitting during training. The joint sequence
of dense layer stars with a normalization layer that applies batch
normalization to the nodes coming from the previous convolutional
sequences. This normalization maintains the mean of the output
close to 0 and its standard deviation close to 1. The final mixture
density layer gives a probability distribution defined in the range of
possible inner slopes for a given galaxy subset and transform our
double channel CNN into an MDCNN. This probability distribution
is understood as a posterior under the prior distribution of inner slopes
with which the network has trained, which allows us to evaluate the
uncertainty of the individual predictions of the model.

This paper has been typeset from a TeX/I&TEX file prepared by the author.
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