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A B S T R A C T 

Numerical simulations within a cold dark matter (DM) cosmology form haloes whose density profiles have a steep inner slope 
(‘cusp’), yet observations of galaxies often point towards a flat central ‘core’. We develop a convolutional mixture density neural 
network model to derive a probability density function (PDF) of the inner density slopes of DM haloes. We train the network 

on simulated dwarf galaxies from the NIHAO and AURIGA projects, which include both DM cusps and cores: line-of-sight 
velocities and 2D spatial distributions of their stars are used as inputs to obtain a PDF representing the probability of predicting 

a specific inner slope. The model reco v ers accurately the expected DM profiles: ∼ 82 per cent of the galaxies have a derived 

inner slope within ±0.1 of their true value, while ∼ 98 per cent within ±0.3. We apply our model to four Local Group dwarf 
spheroidal galaxies and find results consistent with those obtained with the Jeans modelling based code GRAVSPHERE : the Fornax 

dSph has a strong indication of possessing a central DM core, Carina and Sextans have cusps (although the latter with large 
uncertainties), while Sculptor shows a double peaked PDF indicating that a cusp is preferred, but a core cannot be ruled out. 
Our results show that simulation-based inference with neural networks provide a innov ati ve and complementary method for the 
determination of the inner matter density profiles in galaxies, which in turn can help constrain the properties of the elusive DM. 

Key w ords: galaxies: dw arf – galaxies: evolution – galaxies: formation – galaxies: haloes – (cosmology:) dark matter. 
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 I N T RO D U C T I O N  

ark matter (DM) haloes that form in simulations within a Lambda
old dark matter ( � CDM) cosmological context have a characteristic
ensity profile, which has a logarithmic inner slope of −1 (the NFW
rofile Navarro, Frenk & White 1996 ). Such a steep inner density
rofile has been referred to as a ‘cusp’. Ne vertheless, observ ations
f dwarf galaxies inhabiting these haloes have shown discrepancies
ith the predictions of the model, showing significant evidence that

everal of these galaxies have a flat inner density profile, with slope
pproaching zero, referred to as a ‘cored’ profile (Moore 1994 ). The
iscrepancy between theory and observations has been referred to as
he ‘core-cusp’ problem (e.g. Simon et al. 2005 ; de Blok et al. 2008 ;
ullock & Boylan-Kolchin 2017 ). 
While o v er the years sev eral alternativ e DM models hav e been

roposed to tackle this issue (e.g. Spergel & Steinhardt 2000 ;
aplinghat, Tulin & Yu 2016 ; Schneider et al. 2017 ), it has been

lso shown that cores can be explained within � CDM considering
he effect that baryons have on DM matter. Navarro, Eke & Frenk
 1996 ) showed that if gas is slowly accreted on to a dwarf galaxy
 E-mail: expox7@gmail.com 

(  

M  

s  

Pub
nd then suddenly remo v ed through processes such as stellar winds
r supernovae feedback, the DM distribution can expand, lowering
he central density of the halo. This effect of DM heating is small
n realistic conditions (Gnedin & Zhao 2002 ), but Read et al. ( 2006 )
howed that if the effect repeats o v er sev eral c ycles of star formation,
t accumulates leading to a complete core formation. This core can be
ermanent if the outflows are sufficiently rapid (Pontzen & Go v ernato
012 ). Modern hydrodynamical simulations of dwarf galaxies that
ake into consideration baryonic feedback and have a sufficiently
igh density threshold for star formation have indeed succeeded
t creating DM cores (e.g. Go v ernato et al. 2010 ; Di Cintio et al.
014a ; Tollet et al. 2016 ; Chan et al. 2015 ). Still, the ‘cusp-core’
roblem is far from being completely solved, due to the difficulties
f unco v ering the underlying DM distribution in observed dwarf
alaxies, and significant effort has gone into the development and
mpro v ement of methods to infer the inner DM density profile of
uch galaxies. 

Analysis of the rotation velocity of gas in low surface brightness
alaxies, for example, allo w to deri ve and fit their underlying DM
istribution suggesting the presence of a DM core in such systems
e.g. Moore 1994 ; Gentile et al. 2004 ; de Blok et al. 2008 ; Lelli,

cGaugh & Schombert 2016 ). On the other side, in pressure-
upported galaxies that are devoid of gas, such as the dwarf spheroidal
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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1 This extrapolation is reasonable considering that AURIGA galaxies, al- 
though not resolved at r < 370 pc, consistently show a cuspy inner density, 
i.e. there is no sign of an artificial central DM core. 
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alaxies (dSphs) found within the Local Group, the kinematic 
nformation on which dynamical modelling relies on, comes from 

he line-of-sight velocity distribution of their stellar component. A 

ariety of methods have been employed on dwarf galaxies to derive 
heir central DM density, such as Jeans (e.g. van der Marel 1994 ;
leyna et al. 2001 ; Battaglia et al. 2008 ; Read, Walker & Steger
019 ; Collins et al. 2021 ) or Schw arzschild (e.g. Schw arzschild 1979 ;
appellari et al. 2006 ; van den Bosch & de Zeeuw 2010 ; Breddels
t al. 2013 ; Breddels & Helmi 2013 ) modelling. The results in the
iterature seem to point to cored DM profiles being fa v oured o v er
uspy ones in the Fornax dSph (e.g. Geha et al. 2006 ; Walker &
e ̃ narrubia 2011 ; Brook & Di Cintio 2015 ; Pascale et al. 2018 ),
hile in the case of Sculptor, another very well studied system, it

s still very much debated if its DM halo is cored or cuspy, perhaps
ointing to the presence of a mild cusp (e.g. Breddels & Helmi 2013 ;
hu et al. 2016 ; Hayashi, Chiba & Ishiyama 2020 ) (for a re vie w
n these topics, see Battaglia et al. 2022 and references therein). 
 central limitation of the previously mentioned models, however, 

omes from the uncertainty in the anisotropy of the stellar orbits,
n the case of Jeans modelling, which causes a de generac y with the
nderlying mass profile (Binney & Mamon 1982 ); Schwarzschild 
odelling, on the other end, is hampered by its sensitivity to the

vailable data (Kowalczyk, Łokas & Valluri 2017 ). 
In this work, we present an alternative and innov ati ve method to

iscriminate between cusps and cores in dwarf galaxies based on 
achine learning techniques. Namely, we use convolutional mixture 

ensity neural networks to determine a posterior distribution of 
he inner profile of DM haloes. This general approach has been 
uccessfully implemented for measuring cluster masses from galaxy 
ynamics (e.g. Ho et al. 2019 ; Kodi Ramanah et al. 2020 ; Kodi
amanah, Wojtak & Arendse 2021 ). The neural network uses 
s inputs the phase-space mappings of positional and dynamical 
istributions of stars within galaxies. We use a suite of 171 dwarf
alaxies from the NIHAO project with different initial conditions 
nd parameters (Wang et al. 2015 ; Dutton et al. 2020 ) and 12 dwarf
alaxies from the AURIGA project (Grand et al. 2017 ) as a training
et for the network. We then apply our no v el model to four dwarf
pheroidal galaxies satellites of the Milky Way to infer the inner 
lope of their DM density profiles. 

The paper is organized as follows. In Section 2 , we present
he simulation data set and the machine learning architecture. In 
ection 3 , we show the results of the trained model on the test set.
e then apply the model to observed dwarf galaxies in Section 4 .

he conclusions are discussed in Section 5 . 

 M E T H O D S  

.1 The training set 

o train our model, we need a large set of simulated dwarf galaxies
ith well-known density profiles. We use fully cosmological simu- 

ations from NIHAO (Wang et al. 2015 ) and AURIGA (Grand et al.
017 ) projects, in which DM and baryonic matter evolve together, 
aking our training set as realistic as possible. 
Importantly, we need to include simulations of galaxies with both 

usps and cores in their central region, and with various stellar
asses, in order to minimize any systematic dependence of cusp and 

ore on properties such as mass. Indeed, the fiducial NIHAO galaxies 
ave a density profile highly correlated with mass (Di Cintio et al.
014b ; Macci ̀o et al. 2020 ), which could possibly allow the machine
earning code to predict cusp or core based on any indicator of total

ass, rather than by the details of the stellar velocities and positions.
o maximize the neural network’s ability to find and differentiate 
nput data features directly related to their inner slope, it is prudent
o a v oid any non-physical correlation in the data set between the inner
lope and other galaxy features. We therefore use simulations that 
ave a range of different physical and/or parametric inputs, meaning 
hat our final suite of simulations includes a range of inner slopes at
arious masses and sizes. We firstly include dwarf galaxies within 
he fiducial NIHAO model, ranging in halo mass from ∼ 10 9 M � to
0 11.5 M � and stellar mass from an order of 10 5 M � to 10 9.5 M �. This
odel includes energy feedback from massive stars and supernovae 

Stinson et al. 2006 ), which has been shown to be able to modify
he inner density profile and result in cores, particularly in simulated
alaxies with stellar mass between 10 7 and 10 9 M � (Di Cintio et al.
014a ). We also use simulations of dwarfs from Dutton et al. ( 2020 )
hat employs the same model as the fiducial NIHAO ones, but with
ifferent star formation thresholds, ranging from ρ thresh = 0.1 to 
00 particles per cm 

−3 : this translates into galaxies of a similar
tellar mass ending up with different density profiles, as the star
ormation density threshold has been shown to be one of the most
mportant parameter for core formation in baryonic simulations (see 
en ́ıtez-Llambay et al. 2019 ; Dutton et al. 2020 ). We further add
 set of simulations with no stellar feedback run from the same
nitial conditions as fiducial NIHAO (Wang et al. 2015 ). The lower
otal feedback energy results in different inner density profiles than 
imulations in which the stellar feedback is included, for the same
nitial conditions, therefore further increasing the desired diversity 
f central DM profiles at a given galaxy mass. Finally, we include
2 simulated dwarf galaxies from the AURIGA project (Grand et al.
017 ), all of which have a central DM cusp. 
We have 183 simulated dwarf galaxies in total: 60 simulations from 

he fiducial NIHAO suite (Wang et al. 2015 ), 101 simulations from
utton et al. ( 2020 ) with varying density thresholds and varying
ensity profile, 10 simulations without stellar feedback also from 

ang et al. ( 2015 ) and 12 simulations from Grand et al. ( 2017 ).
ll together, these simulations have a range in halo mass between
 halo = 3 × 10 9 M � and M halo = 4 × 10 11 M �. NIHAO simulations

esolve the mass profile of galaxies to below 1 per cent of their virial
adius at all masses, while AURIGA simulations are constructed to 
ave a maximum physical softening of ∼370 pc. 
We define the DM inner slope value of the simulated galaxies

s the slope at 150 pc of the DM density profile of each galaxy.
his value is extrapolated from the fit of the density profile to a
ouble-power law profile (Di Cintio et al. 2014b ) in order to a v oid
he noise effect of the computed density profile of the simulations
n inner regions very close to the softening length. 1 We end up with
 set of simulated dwarfs exhibiting a range of density profiles: the
elationship between stellar mass and inner slope of DM halo for our
ull data set can be seen in Fig. 1 . 

To increase the size of our training set, we use three different
utput time-steps for each galaxy: z = 0, z = 0.112, and z = 0.226.
ach simulated galaxy is already virialized at these redshifts, and it

s therefore possible to take different snapshots of the dwarf. For the
osmological parameters from Planck Collaboration XIII ( 2016 ), 
he time between z = 0 and z = 0.112 is roughly 1.46 Gyr and
etween z = 0.112 and z = 0.226 is 1.27 Gyr. These time differences
etween snapshots correspond to multiple dynamical times of the 
alaxies from the data set, typically of the order of 10 −2 or 10 −1 
MNRAS 519, 4384–4396 (2023) 
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M

Figure 1. Relationship between the inner slope of the DM density profiles 
γ (defined as the logarithmic slope at 150 pc) and the stellar mass of the 
simulated galaxies in our data set. The green horizontal line marks the value 
of γ for a NWF profile. 

Figure 2. Example of cored and cuspy galaxies from our simulation dataset. 
Here, each row represents a different galaxy. Left columns: Rendering of the 
stars in a face-on view. Central columns: Rendering of the stars with an edge- 
on orientation. Right columns: DM density profiles and fit to a double-power 
law model (Jaffe 1983 ; Merritt et al. 2006 ). 
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yr for stars at distances to the centre under which 90 per cent of
he stars of the galaxies are found. While this procedure does not
hange greatly the range of the obtained density profiles, it does
hange the position and velocities of the stars within each galaxy.
e end up with a sample of 549 galaxy snapshots which we will

se as training set for our method. We show in Fig. 2 examples
NRAS 519, 4384–4396 (2023) 
f stellar renderings of cored and cuspy simulated galaxies together
ith their corresponding DM profiles. We then proceed to select stars
ithin each galaxy snapshot. Typically, the number of stars for which

pectroscopic data is available for Local Group dwarf galaxies is the
rder of hundreds or thousands, while the number of star particles
vailable in our simulated galaxies range from a few hundred to
everal million, with a mean number of about 10 5 stellar particles in
ach galaxy. 

Therefore, in order to simulate an observational sample of stars,
nd to further expand our training set, we have divided each simulated
alaxy’s complete sample of stars into a minimum of 20 subsets, each
ade of randomly selected stars. The number of stars within each

ubset of a given galaxy is dependent on the total number of star
articles in the simulation, with an upper limit of 10 4 stars and a
ower limit of 200 stars. The stars of each subset are then projected
n arbitrary sky planes to simulate galaxies observed from different
iewing angles. These projected stars are defined by their position
 x proj , y proj ) and their line-of-sight velocity v LOS . We o v ersample some
alaxies by making multiple projections to each of their subset, and
ndersample some galaxies, with the objective of making the training
et have a uniform distribution of inner slopes: this avoids biases in
he model during training. We end up with a total of 10 273 data
ets to train our model, each composed of randomly selected stars
ithin different simulated galaxies and at different viewing angles,

or which we stored information about their positions ( x proj , y proj ) and
ine-of-sight velocities v LOS . 

.2 The information inputs 

he inputs of our deep neural network model are continuous 2D
robability density functions (PDFs) of the distribution of stars in
rojected phase spaces, constructed with bi v ariate kernel density
stimations (KDEs). The mapping generated with KDEs allows us
o encapsulate the features of the original discrete distributions in the
ame form even if each galaxy subset is represented by a different
umber of stars. 

.2.1 Kernel density estimation 

et X 1 , X 2 ,..., X n denote a sample of size n from a random variable
ith density f , each variable being a two-dimensional vector for the

ase of a bi v ariate KDE. The kernel density estimate of f at the point
x is given by 

 h ( x ) = 

1 

n | H | 1 / 2 
n ∑ 

i= 1 

K 

[
H 

−1 / 2 ( x − X i ) 
]
, (1) 

here K is a kernel function and H is a 2x2 bandwidth matrix. 
The KDE sums up the density contributions from the collection

f data points at the e v aluation point x , so that data points close to x 
ontribute significantly to the total density, while data points further
way from x contribute less. The shape of those contributions is
etermined by K, and their dimensions and orientation by H . Usually
he kernel function K is chosen to be a probability density symmetric
bout zero (Sheather 2004 ). In this work, we use a 2D Gaussian
ernel: 

( u ) = (2 π) −3 / 2 | H | 1 / 2 exp 

(
−1 

2 
u 

T H 

−1 u 

)
, (2) 

here u = x − X i . For the bandwidth matrix, a scaling factor κ is
ultiplied by the covariance matrix of the data. For the selection of
, we use Scott’s Rule (Scott 1992 ), which, for equally weighted

art/stac3799_f1.eps
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Figure 3. Model inputs for a cored and a cuspy galaxy, each one represented face-on and edge-on. The logarithmic slope at 150 pc is γ = −0.20 for the cored 
galaxy and γ = −1.32 for the cuspy galaxy. From top to bottom: A 3-colour image of the stars in the galaxy; the PDF in the { x , y } phase space; and the PDF in 
the { ̂  R proj , ̂  v LOS } phase space. 
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2 The use of a double Gaussian yields more accurate predictions than using a 
single one. On the other hand, using more than two Gaussians does not lead 
to more accurate slope predictions. 
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oints and two dimensions is κ = n 
−1 
6 , where n is the number of

ata points. This leads to a fairly strong smoothing, which interested 
s to reduce the rele v ance of the number of stars and strengthen the
 v erall e v aluation of the data as opposed to indi vidual stars. 

.2.2 Model inputs 

rom the projected information (positions in the x –y plane and v LOS )
f the sample of stars representing each galaxy we have made two
aps: 

(i) A PDF sampled at 64 x 64 points with the distribution of stars
n { x , y } phase space, between −2 kpc and 2 kpc in each coordinate,
n the reference system where ( x , y ) = (0,0) is the centre of the galaxy.

(ii) A PDF sampled at 64 x 64 points with the distribution of
tars in { ̂  R proj , ̂  v LOS } phase space, where ˆ R proj = 

√ 

x 2 + y 2 /R hlr 

s the radial position normalized by the half-light radius R hlr and 
ˆ  LOS = v LOS /P 98 per cent is the line-of-sight velocity normalized by 
he 98 per cent percentile of the absolute value of v LOS of all stars of
he sample. ˆ R proj ranges from 0 to 1, and ˆ v LOS ranges from −1 to 1. 

Note that both the 2 kpc bounds in the positional data PDF and
he limit up to R hl in the velocity PDF imply ignoring star data
utside these regions. During the testing phase many bounds and 
ormalization methods were tested. With the current data set, the 
imits used in the work are the ones that gave the best results. A
ikely explanation is that the information provided by stars outside 
hese limits is negligible and their presence in the PDFs only detracts
rom the stars closer to the centre of the galaxy, where the key
nformation for determining the internal slope is found. 

In Fig. 3 , we show our model inputs, as the PDFs corresponding
o both maps, for a cored (left) and cuspy (right) galaxy. 

.3 The model 

n this work, we use mixture density convolutional neural networks 
MDCNNs) to map the input data composed of the two PDFs
escribed in Section 2.2.1 into the inner slopes of the DM profiles
f the galaxy associated to those two PDFs. We approximate the
osterior distribution of the slopes with the sum of two Gaussian
istribution whose parameters are estimated by the neural network. 2 

ur model takes as input a two channel image consisting of the PDFs
n the { ̂  R proj , ̂  v LOS } phase space and the { x , y } phase space separately.
MNRAS 519, 4384–4396 (2023) 
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M

Figure 4. Schematic representation of our double channel MDCNN architecture to infer inner slopes of the DM profiles (slope at 150 pc) of galaxies from 

their 2D phase-space mappings of positional and dynamical distributions of stars. The MDCNN extracts the spatial features from the phase-space mappings 
and gradually compresses into high-order features until describing the input with only five parameters, which are used as parameters of a double Gaussian 
corresponding to the probability density distribution of the inner slopes values. 
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he images are passed through two convolutional sequential layers.
he outputs of the two convolutional branches are then concatenated
nd fed into a three layer fully connected network. The final output
onsists of five parameters that parametrize the joint double Gaussian
osterior. 
A schematic view of the architecture used in this work can be seen

n Fig. 4 , while a more in-depth description of the different layers
nd neural network methods can be found in the Appendix. 

.3.1 Training and evaluation 

he training is done o v er a training set consisting of 10 273 galaxy
ubsets with their respective inner slopes, which act as targets.
he loss function to minimize during the training is the ne gativ e

ogarithmic likelihood of the training sample, defined as 

 = − ln L ∗ = −
N ∑ 

i= 1 

ln 
[
p g ( t i | θ ) 

]
, (3) 

here t i is the inner slope of the galaxy subset i and θ the set of
arameters of the distribution p g . For a certain galaxy subset, the
ikelihood is the value of the PDF (defined with a double Gaussian
istribution as the output of the last layer) in its real inner slope
alue; i.e. the probability the model predicts for the inner slope of
he galaxy to be its correct value: 

 g ( x| θ ) = 

2 ∑ 

j= 1 

φj N ( x, μj , σj ) , (4) 

here N ( x, μj , σj ) is the j Gaussian with mean μj and standard
eviation σ j , φj is the weight of the j Gaussian, so that 

∑ n g 
j= 1 φj = 1,

nd θ is then a set of six parameters (mean, standard deviation, and
eight of the two Gaussians), one of which is not independent due

o the normalization criterion. 
The minimization of the loss function is done with the adaptative
oment estimation (AD AM) optimizer , an algorithm for optimiza-
NRAS 519, 4384–4396 (2023) 
ion that uses the gradient descent iterative technique. Between the
opular learning-method algorithms, ADAM is shown to compare
a v ourably in performance and computational cost (Kingma & Ba
015 ). After training, the e v aluation of the model outputs a double
aussian distribution that can be understood as an approximation

o the true posterior distribution of the inner slope of a given input,
iven the prior distribution of the inner slopes in the training data set.
his posterior then represents the probability that the model assigns
 certain value of the inner slope, given the set of observables under
he prior of the training set. 

Usually, the test data set for the final e v aluation of the converged
odel is constructed by randomly taking a sufficient number of

lements from the complete data set to correctly represent all feature
ariety in the data. In this work, due to the limited number of galaxies
vailable, remo ving too man y galaxies with varying characteristics
rom the training data set is expected to worsen the performance of
he model, since we do not have many different examples of galaxies
ith similar characteristics to each other. To properly e v aluate the
odel, we have performed multiple complete training runs using

nly 10 galaxies as validation and test data sets in each one, changing
he galaxies that would come out of the training data set in each of
he training runs to e v aluate the network in several projections of
very galaxy. This allows us to analyse the consistency of the model
raining and its performance in a large number of galaxies without
ompromising the training data set. 

.3.2 Representing uncertainties 

he output posterior distribution represents the random or aleatoric
ncertainty in the slope prediction of the final model, but it does
ot represent the uncertainty due to the stochastic nature of the
eight determination while training the neural network (epistemic
ncertainty), which can lead to different models for the same training
onditions when dealing with limited data. We use the Monte
arlo dropout method (MC-Dropout) (Gal & Ghahramani 2015 ) to
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Figure 5. Difference between real and predicted value of DM profiles 
inner slopes (defined at 150 pc) versus real inner slope, for the simulated 
galaxies used in this work, defining the predicted value as the mode of the 
posterior distribution. Each point represents the mean γ Real − γ Pred for all the 
projections of each individual galaxy, while error bars span the range between 
the minimum and the maximum deviation amongst every possible projection 
of each galaxy. Coloured areas represent increasing deviation ranges, from 

0.05 to 0.4. 

Table 1. Percentage of all the projections (central column) and of individual 
galaxies (right column) whose predicted inner slope lies within a given 
deviation range X, i.e. | ε| = | γ Real − γ Pred, mode | ≤ X . Here, we used the 
mode of the posteriors method to derive the inner slopes. 

Deviation range ( ± X) 
Percentage of projections 

with Percentage of galaxies with 
| ε| ≤ X | ε| ≤ X 

0.05 66.67 67.80 
0.1 80.79 81.92 
0.2 94.35 94.35 
0.3 98.31 98.31 
0.4 99.44 98.87 

Figure 6. Distribution of γ Real −γ Pred, mode for every projection of each 
galaxy in our training set. 
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pproximate the epistemic uncertainty that is based on the repeated 
 v aluation of the same input, randomly setting to 0 the weights on
ome layers while doing each inference, to construct a final e v aluation 
ith statistical information about the epistemic uncertainty. Gal & 

hahramani ( 2015 ) showed that applying dropout during inference 
s equi v alent to an approximation to a probabilistic Deep Gaussian
rocess. It means we can measure the epistemic uncertainty by 
pplying the dropout layer during inference for a statistically rele v ant
umber of them, acquiring a predictive mean and variance for each 
oint of the posterior distribution. The constructed final posterior 
or each galaxy projection is the normalized mean of 100 double 
aussian posteriors inferred by the model with active dropout layers. 

 RESULTS  

he goal of our work is to infer the logarithmic inner slope of the
ass density profile in the central region of a galaxy (from now

n: inner slope) from spectroscopic data of a random sample of its
tars. To do so, all simulated galaxies and their subsets of stars are
andomly projected in several sky planes, to simulate several viewing 
ngles, and the neural network is trained to infer the inner slope of the
alaxy from the positions and line-of-sight velocities of its stars. For
ach galaxy the neural network outputs, a PDF which approximates 
he posterior probability of obtaining a specific inner slope given the 
nputs. 

.1 Predicting DM inner slopes 

e define two different methods to construct the predicted slope 
alue γ from the posteriors: 

(i) by using the mode of the posterior distribution (i.e. the 
aximum of the PDF): γ Pred, mode . 
(ii) by using the mean of the normalized posterior distribution: 

Pred, mean . 

The deviation ε of a prediction from its true value is defined as
i = γ Real − γ Pred, i , where γ Real is the real slope at 150 pc of the DM
rofile of a galaxy simulation. The results for the mode method can
e seen in Fig. 5 , which shows the difference between the real and
redicted slopes of our simulated dwarf galaxies, γ Real − γ Pred , as a 
unction of the real slope. Each point represents the mean deviation 
or every projection of each individual galaxy, while the deviation 
ars indicate the minimum and the maximum value amongst every 
ossible projection of each galaxy. Shaded-coloured horizontal areas 
epresent increasing uncertainty ranges, from ±0.05 to ±0.4. 

The mean global absolute deviation on the predicted inner slope, 
or all the galaxies in our set, is of με = 0.056 for the mode method
nd of με = 0.068 for the second method. Note that while cuspy
nd ‘in between’ galaxies are scattered around γ Real − γ Pred = 0, 
ored galaxies tending towards γ = 0 are necessarily only scattered 
t γ Real − γ Pred ≥ 0, since by construction the maximum possible 
nner slope is 0. 

In Table 1 , we can see the percentages of correctly predicted
nner slopes, taking into account all the projections of every galaxy 
middle column) and each galaxy individually (right column), for our 
omplete test data set, within several uncertainty ranges. Roughly, 82 
per cent of the galaxies reco v er the correct, real inner slope within

0.1, while 98 per cent of them lie within | γ Real − γ Pred | ≤ 0.3.
hese ranges are clearly small enough to shed light on the discussion

egarding the presence or not of cores in dwarf galaxies. 
Finally, a histogram of the deviation distribution for every pro- 

ection of each galaxy (i.e. 10 273 in total) can be seen in Fig. 6 ,
MNRAS 519, 4384–4396 (2023) 
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Figure 7. Standard deviation σ pos of each posterior PDF versus γ Real , for 
the simulated galaxies used in this work. Each point represents the mean 
standard deviation of each posterior, for every projection of an individual 
galaxy. The error bars range between the minimum and maximum standard 
de viation v alue of the posteriors of all the projections of that galaxy. 
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Table 2. Percentage of predictions within increasing σ pos ranges X, defined 
as | γ Real − γ Pred | ≤ X . 

Region Percentage of projections for which γ Real 

is within region 

1 −σ pos 86.29 
2 −σ pos 97.57 
3 −σ pos 99.73 
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ndicating that the values of γ Real −γ Pred are peaked at and roughly
ymmetrically distributed around 0, except for very cored galaxies
hat have by definition γ Real −γ Pred ≥ 0, as already stated, and
 small asymmetry towards predicting stronger cores in galaxies
n the range of small deviations. We showed that our method
redicts accurately the expected inner slope of g alaxies reg ardless
f their actual real slope, with a mostly uniform scatter of σ ε

 0.075. 

.2 Uncertainty in the inference 

n Fig. 7 , we show the standard deviation σ pos of each posterior PDF
rom every galaxy in the test data set, defined as the square root of
he variance of the normalized posterior: 

2 
pos = 

∫ ∞ 

−∞ 

( γ − μpos ) 
2 P ( γ ) d γ, (5) 

here P ( γ ) is the normalized posterior distribution and μpos is the
ean of the distribution: 

pos = 

∫ ∞ 

−∞ 

γP ( γ ) d γ. (6) 

he mean of all the σ pos of the data set, μσpos , is around 0.1 and
nly 8.99 per cent of the projections have values of σ pos greater
han 0.2, uncertainties that are small enough to clearly distinguish
etween cores and cusps in the vast majority of cases. Fig. 7 shows
hat the standard deviation σ pos of each posterior PDF is uniform
cross the inner slopes values, i.e. the width of the PDFs does
ot depend on the inner slope of galaxies, such that the model is
ot biased towards reco v ering with higher accurac y either cusps
r cores. Most galaxies show a significant variation in the size of
heir uncertainties depending on the projection, indicating that the
mplitude of the uncertainty is strongly correlated with the angle of
bservation. 
Table 2 shows the percentage of the test data set projections

or which the true value of their inner slope is reco v ered within
ifferent multiples of σ pos . If we approximate the posteriors to single
aussians (which is a proper approximation for roughly 90 per cent
f the projections), a well-calibrated uncertainty should provide
round 68 per cent of the outputs within a confidence level of 1
NRAS 519, 4384–4396 (2023) 
σ pos . Our greater percentage ( ∼ 86 per cent ) of projections within
he confidence level of 1 − σ pos indicates that the model is o v er-
redicting the uncertainties σ pos , yielding broader posteriors than
t should. This can be an effect of a too high dropout rate (see
ection A ) during training, which has been shown to have such
 outcome on the results of probabilistic neural network models
Ghosh et al. 2022 ). As it is, our model should be interpreted as
onserv ati ve, since a future, better calibrated MDCNN would provide
ven tighter uncertainties in reco v ering the true inner slope of a
alaxy. 

.3 Effect of viewing angle on the inference of DM slopes 

ost of the posteriors for the different projections have an approx-
mately normal distribution (the second Gaussian disappearing or
onstituting a skewness correction to the main Gaussian), but several
f them have two distinct peaks. Specifically, around 30 per cent of
he galaxies have double peaks in more than 10 per cent of their
osteriors. 54 per cent of these galaxies are cored while 46 per cent
re cuspy, indicating that the appearance of double peaks in the
DFs arises in both scenarios (here, we define as cored galaxies

hose with inner slope −0.6 < γ < 0, and cuspy any galaxy with
< −0.6). In Figs 8 and 9 , we show the PDFs and posteriors

f two galaxies at different observation angles, spanning the range
etween a face-on and a edge-on view . Strikingly , these images
how that the width of the PDFs as well as the appearance of
ouble peaks are strongly related to the viewing angle of the
alaxy. This indicates that the appearance of double peaks is a
onsequence of the fact that some information on the underlying
M profiles is hidden when viewing the galaxy at some particular

ngle, while it is released and efficiently passed to the network when
ooking at the galaxy from other angles: this finding has profound
onsequences for the interpretation of ‘cusp-cores’ in dwarfs. For
xample, in Fig. 9 we observe that the double peaks in the posterior
istribution disappear when the galaxy is seen edge-on, while a face-
n configuration provides a second peak that mimics the presence of a
usp. 

Ho we ver, this is just an example, and we hav e sev eral cases
f galaxies in which the double peaks appear in edge-on view
nd disappear in face-on, so that the appearance of these multiple
eaks is not related to a specific edge-on or face-on configuration:
ndeed, the distribution of angles for those PDFs showing double
eaks is uniform throughout the complete data set. The occurrence,
ignificance and widths of the double peaked PDFs will be explored
n future works, as it goes beyond the scope of this paper. 

 APPLI CATI ON  TO  OBSERV ED  G A L A X I E S  

e proceed to test our model with real observed galaxies, in order
o ensure the applicability of the model and to verify that the neural
etwork is not detecting features of simulated galaxies that do not
orrespond to any real physical system. We selected four dSphs for
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Figure 8. Probability density distributions used by the neural network as 
input in the case of one simulated galaxy subset seen at 0 ◦ (face-on), 45 ◦ and 
90 ◦ (side-on), alongside with the Bayesian posteriors predicted by the model. 
Left columns: PDFs in the { x , y } phase space. Central columns: PDFs in the 
{ ̂  R proj , ̂  v LOS } phase space. Right columns: predicted Bayesian posterior in 
the space of inner slope of the DM profile (slope at 150 pc); shaded regions 
represent the standard deviation of the posterior values for the MC-Dropout 
inferences at each slope point, while the blue vertical line shows the mode 
(maximum) of the posterior distribution and the black one the true value of 
the inner DM slope. 
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hich detailed spectroscopic samples of stellar-kinematic data have 
een published. At this stage, we adopt the catalogues by Walker, 
ateo & Olszewski ( 2009 ) to directly compare our results with those

btained using the code GRAVSPHERE , as in Read et al. ( 2019 ). The
elected galaxies are Carina, Se xtans, F ornax and Sculptor, for which
e further use the center position, velocity, ellipticity and half-light 

adius as compiled in Battaglia et al. ( 2022 ). 
To build our input PDFs, we considered only those stars with a

0 per cent or higher probability of being part of the galaxy and we
ook the mean value of the line-of-sight velocity for those stars with

ultiple measurements. We do not take observational uncertainties 
nto account, since adding noise to the data by making use of
ncertainties in the line-of-sight velocity only goes so far as to alter
he mean, maximum, and width of the posteriors by an order of 10 −2 

 v er multiple iterations for these four galaxies. This may change in
he future if more data sources with less accurate measurements, such 
s proper motion, are added. A full and formal treatment of the effect
f observational uncertainties will be included in future work, but 
heir inclusion does not affect the results presented here. In total, we
onsidered 460 stars for Carina, 1353 for Fornax, 809 for Sculptor 
nd 327 for Sextans, and we used their projected x –y positions and
ine-of-sight velocities. The x –y positions are normalized using the 
ircularized half-light radius R 

′ 
hlr = R hlr 

√ 

1 − ell , where R hlr and 
ll are the half-light radius and ellipticity from Battaglia et al. 
 2022 ). 

.1 Deriving central DM density slopes of dSphs with CNNs 

e now infer the inner slope of the observed dwarfs. Fig. 10 shows
he posterior distributions constructed by the model for each observed 
alaxy. Fornax presents a very narrow peak around γ = −0.38, 
ndicating that this galaxy has a strong central DM core, while a
econdary peak would give a 12 per cent probability that the inner
lope is around γ = −0.81. This is consistent with several previous
orks that predict a cored profile for Fornax (see Goerdt et al.
006 ; Walker & Pe ̃ narrubia 2011 ; Brook & Di Cintio 2015 ; Pascale
t al. 2018 , amongst others). For the other three galaxies, a cusp is
redicted with varying degrees of certainty. The model has a clear
eak around γ = −1.06 for Carina, which roughly corresponds to 
he slope of an NFW profile at 150 pc. 

Sextans presents a relatively large uncertainty in the inner slope 
alue, as depicted by the quite broad PDFs, with a broad peak
round γ = −1.25 and a strong right wing that does not fall
elow 10 per cent of the peak value until it reaches γ = −0.68.
inally, Sculptor peaks at γ = −1.08, but it has a wide secondary
eak, predicting a 18 per cent probability of having a mild core
ith γ = −0.75. A small core was derived for Sculptor by using
inematical data and a mass-dependent profile fit in Brook & Di
intio ( 2015 ), in agreement with the Walker & Pe ̃ narrubia ( 2011 )
nd Agnello & Evans ( 2012 ) methods that, employing multiple stellar
opulations within a galaxy, also predicted a core in such dwarf (see
lso Zhu et al. 2016 ; Breddels et al. 2013 ; Hayashi et al. 2020 ).
ther studies, ho we ver, surprisingly predict a cusp for Sculptor after

ll (Richardson & Fairbairn 2014 ), highlighting the importance of 
eriving the DM density of this dSphs with se veral dif ferent methods.
ur derived posterior distributions offer great versatility in interpret- 

ng the results, allowing for a more complex analysis compared to
odels that only allow for uncertainty ranges around the inferred 

alue. 
We compare the results of our model with the inner slopes

nferred for these same galaxies at 150 pc using GRAVSPHERE ,
 non-parametric spherical Jeans analysis code, which make use 
f photometric and kinematic data from the galaxies (Read et al.
019 ). The inferred values, along with their 68 per cent confidence
ntervals (in our case, taking the primary maximum as reference), 
re listed in Table 3 . The derived values are consistent between the
wo models, within their respective uncertainty ranges, indicating 
hat our neural network model is making predictions similar to 
hose obtained by Jeans analysis. Furthermore, the accuracy of 
ur neural network is greater, with errors roughly an order of
agnitude smaller than those of GRAVSPHERE : this preliminary 
nding will be expanded and explored in more detail in future
ork. 
Compared to GRAVSPHERE and similar codes, the neural network 

pproach is significantly faster. In a modern laptop, GRAVSPHERE 

ill need about half a day to run an analysis of one of these
alaxies, whereas the neural network can be trained with the amount
f data used in this work in less than half an hour on a standard
PU. Furthermore, the training and the e v aluation are independent 

alculation in a neural network model, which means that, once 
he model has been trained, its application to any input data to
onstruct the posterior distribution is nearly instantaneous. This 
eature will not change no matter how much the model is expanded
nd complexified to perform more complete analyses of the galaxy of
nterest. 

.2 Testing the similarity of training versus observational data 

hen training a neural network with simulations to then perform 

nference on real data, there is al w ays the risk that the network
ill detect and learn from specific features of the simulation code

hat do not correspond to reality, and this would cause issues when
nterpreting observational data, as they have different qualities than 
hose used in the training set. We can test the degree to which our
MNRAS 519, 4384–4396 (2023) 
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Figure 9. Probability density distributions used by the neural network as input in the case of one simulated galaxy subset seen at 0 ◦ (face-on), 45 ◦ and 
90 ◦ (side-on), alongside with the Bayesian posteriors predicted by the model. Left columns: PDFs in the { x , y } phase space. Central columns: PDFs in the 
{ ̂  R proj , ̂  v LOS } phase space. Right columns: predicted Bayesian posterior in the space of inner slope of the DM profile (slope at 150 pc); shaded regions represent 
the standard deviation of the posterior values for the MC-Dropout inferences at each slope point. The red vertical line shows the primary maximum of the 
posterior distribution (the mode), the green one the secondary maximum and the black one the true value of the inner DM slope. As a blue line, the mean 
between primary and secondary maximum is shown, when two peaks exist (in the bottom panel, instead, the blue line represents the unique maximum). This 
example shows how the appearance of double peaks in the posterior distributions is strongly related to the viewing angle. 
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etwork sees observational data as equivalent to the data it has
een trained on by observing the parameter space of the test data
et, defined as the set of all combinations of the six parameters
orresponding to each element of such data set. Namely, our outputs
re defined by the mean, standard deviation and weight of two
aussians: this 6D parameter space will hav e re gions populated
ith points and regions completely empty, corresponding to the

ombinations of parameters that do not parametrize the character-
stics of any physical system found in the data set. If the neural
etwork does not see differences in the input with respect to the
ata it has been trained on, the resulting parameters, coming from
he e v aluation of observ ational data with our model, will fall within
he populated regions of the parameter space of the simulation data 
NRAS 519, 4384–4396 (2023) 

et. t  
To be able to visualize the 6D parameter space and test if this
s the case, we use the Uniform Manifold Approximation and Pro-
ection (UMAP) for Dimension Reduction technique from McInnes,
ealy & Melville ( 2018 ) to perform a dimension reduction from 6D

o 2D, thus mapping each combination of means, standard deviations
nd weights to only two adimensional parameters representing
uch ‘contraction’, preserving the global structure of the original
arameter space. This allows to visualize the parameter space in 2D.
he result of the dimension reduction process from the complete test
ample can be seen in Fig. 11 , alongside with the position of the
our observed dwarf galaxies shown in the same parameter space,
ach indicated as coloured star. As expected, the spatial location of
he points in the parameter space is strongly linked to the value of
heir inner slope: points with a similar inner slope cluster together,
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Figure 10. Bayesian posterior distributions in the space of inner slope of DM profiles (slope at 150 pc) predicted by our neural network model for the observed 
dSphs Carina, Sextans, Sculptor, and Fornax. Shaded regions represent the standard deviation of the posterior values for the MC-Dropout inferences at each 
slope point. In each panel, the global maximum of the posterior distribution as well as the mean value are indicated, together with primary and secondary peaks 
when they exist. Fornax has the strongest signature of a central DM density core, while Carina has the strongest signature of having an NFW profile. Sextans is 
cuspy, though with a large uncertanity, while Sculptor is cuspy with a secondary peak indicating a mild core. 

Table 3. Inner slope of the DM profile (at 150 pc) for Carina, Sextans, 
Sculptor and Fornax galaxies predicted by GRAVSPHERE ( γ GS ) and our neural 
network ( γ NN ), with their 68 per cent confidence intervals (for the neural 
network posterior, taking the primary maximum as reference). The agreement 
between the two methods is encouraging. 

γ GS γ NN 

Carina −1 . 23 + 0 . 39 
−0 . 35 −1 . 06 + 0 . 05 

−0 . 04 

Sextans −0 . 95 + 0 . 25 
−0 . 25 −1 . 25 + 0 . 25 

−0 . 09 

Fornax −0 . 30 + 0 . 21 
−0 . 28 −0 . 38 + 0 . 01 

−0 . 02 

Sculptor −0 . 83 + 0 . 30 
−0 . 25 −1 . 08 + 0 . 08 

−0 . 04 
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howing that the network is properly parametrizing the inner slope 
f galaxies during training. Interestingly, the four observed galaxies 
all into the regions occupied by the simulated ones, which indicates 
hat the model is considering them as data of equi v alent nature as
he test data. Ho we ver, the fact that all four are close to the edges
f the simulation input parameters could indicate the presence of 
ome features that the model has not found in the simulations. The
ossible causes of this will be explored in future work employing a
arger observational sample. 

 C O N C L U S I O N S  

e present a no v el model for determining the slope of the inner
ensity profile of DM haloes with robust uncertainty quantification 
sing machine learning techniques. The goal of this work is to be
ble to infer such density slopes ( γ ) by simply using positions and
elocities of stars within galaxies. Our method uses mixture density 
onvolutional neural networks with a Gaussian density layer backend 
o model complex galaxy substructure. We use line-of-sight velocities 
nd positions of stars projected on the sky within simulated dwarf
alaxies, employing Kernel Density Estimations (KDEs) to construct 
MNRAS 519, 4384–4396 (2023) 
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Figure 11. Representation of the parameter space for the test data from 

simulated galaxies reduced to two-dimension with a UMAP, colour coded by 
the real expected inner DM slope. Plotted as coloured stars are the locations 
in the reduced parameter space of Carina, Sextans, Sculptor and Fornax 
galaxies. Note that different inner slopes occupy different areas of the plot and, 
importantly, observed dwarf galaxies fall well within the simulation region, 
indicating that the neural network model is not seeing rele v ant dif ferences 
between the simulated data with which we have fed it and the observational 
data. 
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ontinuous 2D PDFs of the distribution of such stars in { ˆ R proj , ̂  v LOS }
nd { x , y } phase space, which serve as input to our neural network
sing a double channel architecture (Figs 3 and 4 ). 
We train and e v aluate our model using a large set of fully

osmological simulations of dwarf galaxies with halo masses of
0 9 to 10 11.5 M �, and stellar masses of 10 5 to 10 9.5 M �, from the
IHA O and A URIGA projects (Wang et al. 2015 ; Dutton et al. 2020 ;
rand et al. 2017 ). The use of different physical models employed in

hese simulations allows us to have a range of density profiles at each
articular galaxy mass, including both cores and cusps (Fig. 1 ). All
imulated galaxies and their subsets of stars are randomly projected
n several sky planes, to simulate several viewing angles. 

The loss function to minimize during the training is the ne gativ e
ogarithmic likelihood of the training sample, defined as a double
aussian probability distribution, which is the output of our Gaussian
ensity layer backend. This allows a flexible probabilistic represen-
ation of the results, which yields accurate and statistically consistent
ncertainties. For each galaxy, the neural network outputs a PDF that
ives the posterior probability of a certain slope to be the inner slope
f the galaxy. 
The main results of this work are listed here: 

(i) The inner slope of simulated galaxies is predicted with a mean
bsolute deviation of με = 0.056 (where the deviation is defined as
= γ Real − γ Pred , and the predicted inner slope, γ Pred , is obtained

rom the mode of the PDFs) and a standard deviation of σ ε = 0.075
or the whole sample (Figs 5 and 6 ). 

(ii) 82 per cent (98 per cent ) of the galaxies have their inner slope
orrectly determined within ± 0.1 (0.3) of their true value (Table 1 ).

(iii) The posteriors PDFs have a mean standard deviation of σ pos =
.108, showing no bias towards more accuracy for cuspy or cored
alaxies (Fig. 7 ). 
NRAS 519, 4384–4396 (2023) 
(iv) While in most cases the output of the model is a single peaked
DF, in ∼ 30 per cent of the galaxies some of their projections
how a double peak: we demonstrated that this is related to some
iewing angles, indicating the importance of properly determining
he inclination of galaxies (Figs 8 and 9 ). 

(v) When applied to a set of four observed dSphs, our model
eco v ers their inner slopes yielding values consistent with those
btained with the Jeans modelling based code GRAVSPHERE as in
ead et al. ( 2019 ) (Table 3 ). 
(vi) We found that the Fornax dSph has a strong indication of

aving a central DM core, Carina and Se xtans hav e cusps (although
he latter with a large uncertainty), while Sculptor shows a double
eaked PDF indicating that a cusp is preferred, but a core cannot
e ruled out (Fig. 10 ). These results are in agreement with several
re viously deri ved inner slopes for these galaxies. 

The current architecture could be used as a basis for building
odels that provide a more complete output, such as a prediction of

he full density profile of galaxies. The nature of the neural network
llows it to be constantly extended and impro v ed. While we hav e
mplemented a network of relatively low complexity, there are a
eries of interesting possibilities with a further level of sophistication
hat are worth e xploring. F or e xample, the use of normalizing flows
ay yield to more robust results (Kodi Ramanah et al. 2020 ) while

he use of a 3D convolutional network applied to PDFs defined in
he { x , y , ˆ v LOS } phase space has given good results in galaxy cluster

asses inference (Kodi Ramanah et al. 2021 ). 
In the future, the architecture of this model could be expanded

y including more input data, such as surface brightness profiles or
roper motion of stars from missions like GAIA (Gaia Collaboration
021 ). Furthermore, the inclusion of other spectroscopic samples
resent in the literature, as well as of those soon to be acquired with
pcoming facilities, will certainly be beneficial for this analysis.
dapting the architecture and introducing more information may

nable the network to impro v e accurac y and reduce the range of
ariability of the results with respect to the angle of observation, an
venue that will be explored in future works. 

We have shown that deep learning techniques provide an innova-
ive method for the determination of the inner DM profile in dwarf
alaxies, complementary to the use of Jeans and Schwarzschild
odelling, achieving great accuracy and offering a complex rep-

esentation of uncertainties. 
Our ne wly de veloped neural network method is a promising tool

or the study of the mass distribution within dwarf galaxies, which
n turn can help discriminate between different models and, in such,
onstraining the properties of the elusive DM. 
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PPENDI X:  DETA I LS  O N  T H E  N E U R A L  

E T WO R K  M O D E L  

 neural network can be formally described as a trainable and flexible 
pproximation of a model M : d → t . The networks maps an input
ata d to a prediction ̄t of the target t . This network is parametrized by
 set of trainable weights and a set of hyperparameters. The weights
re iteratively optimized during training to minimize a particular 
oss function, which provides a measure of how close the network
rediction t̄ is to the target t . 
In this work, we use convolutional neural networks (CNNs), a 

lass of deep neural networks (DNNs), to construct a neural network
n which the input data d are the two PDFs described in Section 2.2.2 ,
nd the targets t are the inner slopes of the galaxy subsets associated
ith those two PDFs. We then make a mixture density convolutional
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eural network (MDCNN) by embedding a mixture density layer
ithin the CNN as the last layer. 

1 Deep neural networks 

ny neural network is conformed by a set of neuron layers, defined
y the following function: 

 ( x ) = g( W · x + b) , (A1) 

here x is the input of the layer, W is the weight matrix (which each
lement being the weight of each element of the vector x ), and b is
 vector called the bias parameter of the layer. g ( z ) is known as the
cti v ation function, which purpose is to break the linearity between
he input and the output of the neuron. 

A DNN is a neural network conformed by more than one neuron
ayer. The layers between the input layer (the layer that takes as
nputs the input data of the neural network) and the output layer (the
ayer that gives as output the outputs of the neural network) are called
idden layers. 
A feed-forward DNN is a DNN where the neuron layers are

 v aluated in sequence, passing information from layer to layer
ithout recurrence, which means we can describe the output h 

( l) 

f the l th layer as 

h 

( l) = g( W 

( l) · h 

( l−1) + b ( l) ) . (A2) 

he training of the model is done by optimizing the weight matrices
W 

( l) . A model is trained on a set of input data d for which the targets
 are kno wn iterati vely. In each iteration, the network performance
the similarity between the outputs t̄ and the targets t ) is e v aluated
sing a loss function, and the weights are actualized to minimize that
unction by an optimization algorithm. When the loss function stops
ecreasing and converges to a certain value, the network is said to
e optimized. The performance e v aluation is done, then, on a set of
ndependent data the model has not seen during training. 

2 Convolutional neural networks 

NNs are a particular type of DNNs especially suited for problems
here spatially correlated information is crucial. The main feature of
 CNN is the presence of convolutional layers, which are constructed
n a way that restrict neurons in one layer to receive information only
rom within a small neighbourhood of the previous layer. This allows
eurons to extract simple features from subsets of the previous layer,
orming higher order features in subsequent layers. 

A convolutional layer is designed as follows: A convolutional
ernel, commonly referred to as a filter, of a given size, encoding
 set of neurons, is applied to each pixel (in the case of 2D images
s inputs) of the input image and its vicinity, as it scans through the
hole re gion. A giv en pix el in a specific layer is only a function
f the pixels in the preceding layer which are enclosed within the
indow defined by the kernel, known as the receptive field of the

ayer. This yields a feature map that encodes high values in the
ixels which match the pattern encoded in the weights and biases
f the corresponding neurons in the convolutional kernel, which are
ptimized during training (Kodi Ramanah et al. 2021 ). 
A convolutional layer may be described as a linear operation with

he discrete convolution implemented via matrix multiplication. In
erms of equation ( A2 ): 

h 

( l) 
j = g 

⎛ 

⎝ 

∑ 

i∈ M j 

h 

( l−1) × k 
( l) 
ij + b ( l) j 

⎞ 

⎠ , (A3) 
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here k is the convolutional kernel (the filter) and M j is the receptive
eld of the neuron j . One convolutional layer could have multiple
lters, which repeat this operation with different kernels, constructing
any feature maps per layer, known as channels. 
The receptive field is usually defined by the dimensions of the

lter, the stride and the existence or not of padding. The application
f the filter can be described as a process of sliding it o v er the input
mage of the convolutional layer. We call stride to the number and
irection of pixels you move the filter at each step, and padding to
he addition of empty pixels around the edges with the purpose of
lleviating information loss around the edges. 

Usually, a CNN is a series of pairs of convolutional layers followed
y a pooling layer as a subsampling or dimensionality reduction step,
 process which will reduce the initial input image to a compact
epresentation of features. Then, that representation is reshaped as a
ector, which is subsequently passed to a sequence of dense layers
LeCun, Bengio & Hinton 2015 ). This design allows the neural
etwork to autonomously extract meaningful spatial features from
he input image. The stack of several convolutional layers builds an
nternal hierarchical representation of features encoding the most
ele v ant information from the input image. Stacking subsequent
onvolutional layers naturally strengthens the sensitivity of the most
nternal layers to features on increasingly larger scales, because the
ize of the receptive field becomes larger as we go deeper in the CNN.

3 Mixture density neural networks 

 MDNN is a network with layers whose outputs follow a multidi-
ension probability distribution, called mixture density layers. This

ayers take as inputs n nodes, with n being the number of parameters
n the desired distribution, transform their values to respect the
arameter constraints of the distribution and interpret them as those
arameters to construct it. When used as the last layer of the network,
t allows join optimization of the features from the DNN together
ith a bayesian posterior backend, combining the advantages of deep

eature extraction with probabilistic representation of the results. 

4 Details on the ar chitectur e 

he schematic view of the architecture used in this work can be seen
n Fig. 4 

The convolutional sequences are constructed using pairs of convo-
utional and pooling layers, followed by a dropout layer. The pooling
ayers downsample their input along its spatial dimension using the

ax Pooling method, which takes the maximum value o v er a certain
nput window for each channel. The dropout layers randomly set
nput units to 0 with a certain frequency called the dropout rate, and
cales the rest such that the sum o v er all inputs is unchanged. This
s done to prev ent o v erfitting during training. The joint sequence
f dense layer stars with a normalization layer that applies batch
ormalization to the nodes coming from the previous convolutional
equences. This normalization maintains the mean of the output
lose to 0 and its standard deviation close to 1. The final mixture
ensity layer gives a probability distribution defined in the range of
ossible inner slopes for a given galaxy subset and transform our
ouble channel CNN into an MDCNN. This probability distribution
s understood as a posterior under the prior distribution of inner slopes
ith which the network has trained, which allows us to evaluate the
ncertainty of the individual predictions of the model. 
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