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Introduction
Regional patterns of Holocene relative sea-level (RSL) change 
around the British Isles are strongly controlled by glacial isostatic 
adjustment (GIA). The magnitude of the GIA signal is related to 
the growth and retreat of former ice sheets and, as such, is spa-
tially and temporally variable. Lying at the periphery of two for-
mer ice sheets (i.e. the British-Irish and the larger Fennoscandian 
ice sheets) and subject to the influence of proglacial forebulge 
collapse, the British Isles occupies a complex and isostatically 
transitional area between uplift and subsidence, providing a key 
testing ground for GIA models. Holocene relative sea-level data 
from geological archives in regions which straddle the boundaries 
between uplift and subsidence arguably provide the most sensi-
tive tests for these models (Rushby et al., 2019).

In contrast to Britain, where a high-quality and widely distrib-
uted database of Holocene RSL observations has been compiled 
(Shennan et al., 2018), there remains a paucity of RSL data for 
Ireland, with the available record fragmentary, both in terms of 
geographical spread and temporal range. In particular, sites in 
western Ireland are rare and most constraints on sea level are cur-
rently of low resolution, with large uncertainties or limited quan-
tification of the relationship between the sea-level indicator and 
contemporaneous tidal levels (i.e. the indicative meaning) 
(Brooks et al., 2008). Studies by Shaw and Carter (1994) and 
Carter et al. (1989) allow broad patterns of Holocene RSL and 
coastal evolution to be constrained, and have more recently been 

supplemented by further RSL data (Edwards et al., 2017). Never-
theless, significant gaps between the field data and GIA model-
ling persist.

To address the scarcity and poor resolution of existing RSL 
data from northwest Ireland, in this paper we seek to derive a 
new high-resolution proxy-based RSL reconstruction from a salt 
marsh in western Donegal. For the first time at any site in Ire-
land, we reconstruct sea-level changes from a continuous salt-
marsh sequence dating back 2500 years using a quantitative 
transfer function approach. This contrasts with previous studies 
that have, to date, only provided discrete estimates of the posi-
tion of relative sea levels at particular points in time, rather than 
a near-continuous reconstruction from which both the patterns 
and rates of RSL changes may be discerned. Our reconstruction 
and an updated interpretation of existing sea-level data from the 
region together provide a robust dataset against which GIA 
models can be tested and validated. We undertake an initial 
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assessment of the performance of several published GIA models 
and highlight the implications for understanding the extent and 
thickness of the last British-Irish Ice Sheet.

Study area
Sedimentary environments along the west coast of Ireland are 
typically sandy, dynamic and storm dominated due to their 
exposed aspect (Delaney and Devoy, 1995; Duffy and Devoy, 
1998). Nevertheless, low energy embayments are present in shel-
tered locations, providing suitable conditions for the formation 
of salt marshes and the accumulation of fine-grained and organic 
sediments (Curtis and Skeffington, 1998). Based on previous 
studies (Gallagher et al., 1996; Wheeler et al., 1999), we identi-
fied the tidal marsh at Bracky Bridge (54.756°–8.433°, Figure 1) 
as having a suitable sedimentary record for developing relative 
sea-level reconstructions using a quantitative biostratigraphic 
approach. Bracky Bridge is located near to the village of Ardara 
in County Donegal, around 50 km north of Donegal town. The 
site is situated at the head of Loughros Beg estuary, within the 
Slieve Tooey/Tomore Island/Loughros Beg Bay special area of 
conservation.

The head of Loughros Beg estuary is framed by quartzite, 
schist and diamictite of the Loughros and Port Askaig forma-
tions, with till mantling the bedrock to the north and south of the 
Bracky Bridge marsh (Geological Survey of Ireland, 2022). The 
estuary is sand-filled and characterised by extensive intertidal 
flats with low-tide ebb channels (Burningham and Cooper, 
2004). These channels are dynamic in their behaviour in the 
lower estuary, but stable in the upper reaches over centennial 

timescales (Burningham, 2008). A small area of salt marsh, cov-
ering approximately 0.1 km2 (Figure 1d), occupies the head of 
the estuary. The Bracky River borders the marsh on its eastern 
side, before merging with the Owentocleer River and flowing 
across the northern margin of the site. Grazed fields occupy ele-
vations above the reach of tides to the south of the marsh.

The mean annual rainfall in the catchment is approximately 
1600 mm yr−1 (Met Éireann, 2022) and the catchment is approxi-
mately 48 km2 in area (Burningham and Cooper, 2004). The wet 
climate is reflected in the salt-marsh vegetation, which does not 
display particularly distinct halophytic zonation and is dominated 
by Juncus maritimus (Sheehy Skeffington and Wymer, 1991; 
Wheeler et al., 1999). Grasses, including Puccinellia maritima, 
are encountered at lower elevations of the marsh, while the transi-
tion to the freshwater zone is marked by the dominance of bryo-
phytes. Human impacts are limited at present, although cows 
infrequently graze the marsh (Wheeler et al., 1999).

The Donegal coast is mesotidal. While the closest permanent 
tide gauges to Bracky Bridge are located 100 km to the northeast 
(Malin Head) and 75 km to the southwest (Enniscrone Pier), the 
UK Admiralty provides predictions for Loughros More Bay, less 
than 10 km to the northwest of Bracky Bridge (United Kingdom 
Hydrographic Office, 2016). Mean high water of spring tides 
(MHWST), a key datum for comparison of modern microfossil 
assemblages between sites (Barlow et al., 2013; Zong and Horton, 
1999), lies 4.0 m above chart datum. While no data are available 
for the elevation of Mean Tide Level (MTL) with respect to chart 
datum, interpolation between Admiralty predictions for Burton-
port and Killybegs (locations in Figure 1b) indicates MTL is 
around 2.13 m, giving a MTL to MHWST range of 1.87 m. As 
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MTL is within ±0.03 m of 0 m Ordnance Datum Malin (ODM) at 
both Burtonport and Killybegs (Neill, 2020), no adjustment is 
required to convert from ODM to m MTL.

We do not currently have data to establish whether up-estuary 
tidal amplification or dampening occurs. Such modification to the 
tidal range in the present day would influence the calculation of 
standardised elevations during the development of regional trans-
fer functions (see Statistical analysis and transfer function devel-
opment section), but would not influence rates of reconstructed 
RSL change. Nevertheless, changes in tidal range over time 
would introduce additional uncertainties into reconstructions and 
are evaluated in the discussion section.

Gallagher et al. (1996) and Wheeler et al. (1999) previously 
investigated the stratigraphic record of the site. While the Bracky 
River crosses the northern margin of the site at present, these 
stratigraphic investigations suggest the position of the river chan-
nel has changed over time and previously occupied a position at 
the south of the marsh. While the seaward edge of the tidal marsh 
is formed by a cliff approximately 0.7 m high, the location of the 
marsh edge has remained relatively unchanged since at least 1835 
CE (Gallagher et al., 1996).

Methods
Modern microfossil distributions
To characterise the distributions of foraminifera and diatoms in the 
contemporary environment and develop approaches for reconstruct-
ing relative sea level from fossil sequences (see Statistical analysis 
and transfer function development section), we investigate a train-
ing set of samples from the modern marsh surface. The 1 cm-thick 
modern samples were taken from stations arranged along three tran-
sects ranging from the lowest vegetated marsh to the freshwater 
zone above the limit of tides (Figure 1). Levelling to a temporary 
benchmark, which was later surveyed using a differential Global 
Positioning System, provided the elevation of each sample. We 
express all elevations relative to Ordnance Datum Malin (ODM), 
the mean sea level at Malin Head between 1960 and 1969.

We prepared samples for the identification and quantifica-
tion of foraminifera following the methods of Scott and Medi-
oli (1980). We added rose Bengal at the time of sampling to 
differentiate between live and dead foraminifera (Walton, 
1955), sieved samples to between 63 and 500 μm, split samples 
using a wet splitter (Scott and Hermelin, 1993), and picked 
specimens under water. Species identifications follow Murray 
(1971, 1979). Where densities were sufficient, we counted a 
minimum of 200 specimens. Where this total could not be 
achieved in a single 1/8 split, we counted further splits or the 
entire sample. Kemp et al. (2020) conclude that transfer func-
tion performance stabilises at lower total count sizes; therefore, 
we focus our presentation of results on samples with dead 
counts exceeding 30 specimens.

We analysed diatom assemblages following the preparation 
and analysis methods of Palmer and Abbott (1986) and Battarbee 
et al. (2001). Species identifications were made with reference to 
Krammer and Lange-Bertalot (1991, 1997) as a primary source, 
supplemented by Van der Werff and Huls (1958) and Hartley 
(1996). Nomenclature conforms with the World Register of Marine 
Species (WoRMS Editorial Board, 2022). Total counts exceeded 
300 for all samples and we include all species’ relative abundances 
in subsequent statistical analyses, with no transformation. Salinity 
classifications follow Denys (1991) and Vos and de Wolf (1993).

Stratigraphy and biostratigraphy
Tidal marshes have the potential to preserve long and continuous 
records of relative sea-level change in their stratigraphy (Barlow 
et al., 2013; Shennan, 1982). We conducted reconnaissance 

coring of the Bracky Bridge marsh using a closely spaced transect 
of hand-driven gouge cores (Figure 1), with sediments logged 
using the Troels-Smith system of sediment classification (Troels-
Smith, 1955). Levelling to the benchmark provided the elevation 
of the top of each core. We recovered a representative core and 
selected basal samples for subsequent laboratory analyses using a 
5 cm-diameter Russian-type corer. All core sections and basal 
samples were stored in flexible non-PVC plastic wrap, with rigid 
plastic tubing to provide protection, and refrigerated in the dark at 
4°C before further analyses.

We prepared and analysed core and basal samples for foramin-
ifera and diatoms following the same methods as applied to the 
modern samples (see Modern microfossil distributions section). 
Each core subsample was 1 cm thick, with a resolution increasing 
from one sample every 4 cm at the base of the core to contiguous 
samples in the uppermost 20 cm.

Statistical analysis and transfer function 
development
We investigate clustering in the modern microfossil datasets using 
the Partitioning Around Medoids (PAM) algorithm (Kaufman and 
Rousseeuw, 1990; Rousseeuw and Kaufman, 1987) in Matlab 
v.2019b, testing for 2–10 clusters and accepting the optimum num-
ber that provides the highest average silhouette width. Detrended 
Correspondence Analysis (DCA; Hill and Gauch, 1980) provides 
a complementary approach for visualising clustering; we conduct 
this in the CANOCO software package v.4.54 (Ter Braak and Smi-
lauer, 2002). Detrended Canonical Correspondence Analysis 
(DCCA; Ter Braak, 1986) in CANOCO quantifies the variance in 
the assemblage data explained by elevation and indicates the rate 
of species turnover along the elevation gradient.

Transfer functions relate the distribution of a selected micro-
fossil group to an explanatory environmental variable, with the 
subsequent calibration step providing predictions of the environ-
mental variable from fossil assemblage data along with sample-
specific uncertainties (Imbrie and Kipp, 1971; Kemp et al., 2015). 
We relate the distribution of microfossil assemblages to marsh-
surface elevation, seeking models that can then predict the eleva-
tion at which a fossil assemblage was most likely deposited, 
known as the palaeomarsh-surface elevation. The length of the 
first DCCA axis guides the selection of suitable model types for 
transfer function development, with lengths >2 σ favouring the 
use of unimodal rather than linear approaches (Birks, 1995).

The appropriate spatial scale of modern training sets has been 
widely debated (Gehrels et al., 2001; Hocking et al., 2017; Horton 
and Edwards, 2005; Watcham et al., 2013; Woodroffe and Long, 
2010). Local training sets containing a smaller number of samples 
from a single site typically provide smaller uncertainties, while 
larger ‘regional’ training sets incorporating samples from multi-
ple sites characterise a broader range of environments and, there-
fore, potentially provide better analogues for fossil assemblages. 
We assess whether our local training set provides an appropriate 
range of analogues for fossil samples by calculating minimum 
dissimilarity coefficients (MinDC) using the squared chord dis-
tance metric (Birks, 1995) in the Rioja R package (Juggins, 2015). 
The 20th percentile of the minimum dissimilarities between the 
modern samples provides the boundary between fossil samples 
classed as having ‘poor’ analogues and those with fair analogues, 
while the fifth percentile is the boundary between those with ‘fair’ 
and ‘good’ analogues (Watcham et al., 2013).

To increase the potential availability of good modern ana-
logues for fossil samples, we combine the Bracky Bridge surface 
samples with published diatom assemblages from sites in west-
ern Scotland (Barlow et al., 2013; Shennan et al., 1995; Innes 
et al., 1996; Zong and Horton, 1999), south Wales (Gehrels et al., 
2001) and southwestern England (Gehrels et al., 2001). Together, 
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this regional diatom training set consists of 323 samples from 13 
sites (Figure 1) and forms part of a larger UK diatom training set 
that also includes samples from the east coast of England (Wood-
roffe et al., submitted). To account for differences in tidal range 
and, therefore, the vertical distribution of diatom assemblages 
between sites, we use a standardised water level index (SWLI) as 
the environmental variable, scaled to the vertical range between 
mean tide level (MTL) and mean high water of spring tides 
(MHWST) at each site (Zong and Horton, 1999). Increasing the 
number and diversity of samples within a training set moves the 
modern MinDC percentile boundaries, leading to a higher likeli-
hood of finding analogues that would be classed as ‘good’. We 
therefore also look for an absolute decrease in MinDC values and 
identify the location of the closest analogues for each fossil sam-
ple to ensure that the regional training set does indeed offer an 
improvement over the local training set.

We develop transfer functions from the Bracky Bridge and 
Regional training sets using Weighted Averaging (WA; Ter Braak, 
1987) and Weighted Averaging Partial Least Squares (WAPLS; Ter 
Braak and Juggins, 1993) in the Rioja R package. Transfer functions 
based on regional training sets often provide lower levels of preci-
sion (i.e. larger cross-validated errors) due to increased variability in 
assemblages unrelated to elevation. To address this, we develop 
locally weighted (LW) transfer functions that dynamically select the 
most similar modern samples to each fossil sample and generate a 
series of unique transfer functions using WAPLS (i.e. LW-WAPLS). 
The modern samples are selected using their minimum dissimilarity 
coefficients (chord squared distance metric) and we specify that 
each successive model contains the 50 closest modern samples, fol-
lowing Birks (2012). We develop the locally weighted model using 
the R code of Rush et al. (2021). For all models, we use a 1000-cycle 
bootstrapping approach for cross validation.

We select the final transfer function model for calibrating fos-
sil assemblages based on the cross-validated correlation between 
observed and predicted elevations (r2

boot), the root mean squared 
error of prediction (RMSEP), and the distribution of residual dif-
ferences between observed and predicted elevations. We do not 
remove any samples based on their bootstrapped residuals. For 
WAPLS models, we accept the minimum adequate model, only 
considering the addition of a further component when it offers a 
decrease in RMSEP exceeding 5% (Barlow et al., 2013; Birks 
et al., 1998).

Bayesian approaches offer an alternative to classical transfer 
function models, alleviating the need to decide between linear and 
unimodal representations of species’ distributions (Cahill et al., 
2016). While Bayesian models are beginning to be used for 
proxy-based sea-level reconstruction, all studies to date have 
focussed on foraminiferal training sets with species’ diversities 
often two orders of magnitude lower than the diatom dataset pre-
sented here. Due to the computational expense associated with 
such a large dataset, we do not investigate Bayesian approaches.

Chronology
We develop an age-depth model for the Bracky Bridge core by 
combining accelerator mass spectrometry (AMS) radiocarbon 
dating and radionuclide analyses. Radiocarbon samples consisted 
of horizontally bedded detrital terrestrial plant material that were 
dated at the Aarhus AMS Dating Centre, Aarhus University, Den-
mark. We report dates as conventional radiocarbon ages (14C 
years before present) and calibrate to calendar years using the 
IntCal20 calibration curve (Reimer et al., 2020). In addition to the 
radiocarbon dates from the core, we dated three further basal sam-
ples, including one bulk sample.

Supplementing the radiocarbon data in the upper part of the 
core, we use the short-lived radionuclide 210Pb to refine the age 
model. We determined the activities of 210Pb and its parent isotope 

226Ra in contiguous 1 cm samples from the uppermost 30 cm. 
After freeze drying and homogenisation, radio-isotopes were 
measured by gamma spectroscopy using a Canberra low-energy 
Germanium detector at the Dunstaffnage Laboratory of the Scot-
tish Marine Association in Oban, UK. We also ascertained activi-
ties of 137Cs, which can be used as a marker of the early 1950s 
onset and 1963 CE peak in atmospheric nuclear weapons testing, 
alongside other fallout peaks including the 1986 CE Chernobyl 
nuclear disaster (Foucher et al., 2021).

To derive an age-depth model for the core, we incorporate 
radiocarbon and 210Pb data in a Bayesian framework in the rplum 
package (Blaauw et al., 2022) in R. This approach enables the 
seamless integration of 210Pb data with other chronological infor-
mation and removes the need to remodel outputs from traditional 
210Pb depositional models (Aquino-López et al., 2018, 2020). 
From this age-depth model, we derive age estimates and 2σ 
uncertainties in calibrated years before present (cal yr BP, where 
present is 1950 CE) for depths corresponding to each of the 
microfossil samples.

Relative sea level
Subtracting the palaeomarsh-surface elevation from the field 
elevation of each sample provides reconstructions of the verti-
cal position of past sea level. We combine these with the mod-
elled age of each sample to reconstruct RSL change over time. 
To graphically represent the sea-level reconstruction, we plot 
boxes with widths determined by the modelled 2σ age uncer-
tainties and heights determined by the transfer function-
derived indicative ranges. We use an errors-in-variables 
integrated Gaussian process (EIV-IGP) model to infer the 
mean and 95% credible interval of the rate of change over time 
(Cahill et al., 2015).

Results
Modern microfossil distributions
We analysed 25 surface samples from marsh-surface elevations 
between 0.93 to 2.16 m ODM, providing a vertical range of 1.23 m 
and an average spacing of 0.05 m. The highest sample lies approx-
imately 0.28 m above MHWST, while the lowest lies midway 
between MTL and MHWST.

Diatoms. The 25 surface samples contained a total of 142 species 
of diatoms, including 14 species that exceeded 10% in at least one 
sample (Figure 2a, Supplemental Information S1, available 
online). Total counts for all samples exceeded 300 valves. The 
PAM algorithm indicates that the diatom assemblages are opti-
mally divided into two clusters of samples (Figure 2b and c). The 
elevations of the samples in these clusters do not overlap, with 
cluster 1 containing all of the samples from above 1.6 m ODM 
and cluster 2 containing those from below this elevation. A DCA 
sample plot indicates further division of cluster 2 into two sub-
clusters, 2a and 2b (Figure 2d). Again, the elevations of the sam-
ples within these subclusters do not overlap, with a boundary 
around 1.15 m ODM.

Pinnularia subcapitata, Nitzschia terrestris, Eunotia fallax-
type and Achnanthidium minutissimum characterise cluster 1. A 
larger number of species exceed 10% in at least one sample in 
cluster 2a, with Navicula cincta and Nitzschia fonticola notably 
both exceeding 20%. Towards the lower elevations of this cluster, 
Planothidium delicatulum and Navicula phyllepta increase in 
abundance. These two species are dominant in the low marsh 
samples of cluster 2b, both exceeding 30% of the total assem-
blage. DCCA indicates that elevation explains 34% of the vari-
ance in the diatom data (Table 1).
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Table 1. Summary of the performance of the local Bracky Bridge and regional transfer functions.

Training set No. of 
samples

% variance explained 
by elevation

Length of environ-
mental gradient 
(DCCA, σ units)

Model type Component/Deshrinking Bootstrapped r2 RMSEP 
(SWLI)

Bracky Bridge  25 33.9 4.64 WA Inverse 0.94 5.3
 Classical 0.94 5.2
 WA-TD Inverse 0.94 5.6

 Classical 0.94 5.5
 WAPLS 1 0.94 5.6
 2 0.96 4.3
 3 0.96 4.1
Regional 323  2.6 4.07 WA Inverse 0.73 16.9
 Classical 0.73 18.0
 WA-TD Inverse 0.74 17.4
 Classical 0.74 17.8
 WAPLS 1 0.73 16.9
 2 0.78 15.9
 3 0.80 17.0
 LW-WAPLS 1 0.77 14.9
 2* 0.84 12.6
 3 0.85 12.2

Selected model indicated with an asterisk.
DCCA: detrended canonical correspondence analysis; WA: weighted averaging; WA-TD: weighted averaging with tolerances downweighted; WAPLS: 
weighted averaging partial least squares; RMSEP: root mean square error of prediction; SWLI: standardised water level index.
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Foraminifera. Of the 25 surface samples, 15 contained foraminifera, 
with only 11 providing dead counts in excess of 30 (Figure 2a; Sup-
plemental Information S2, available online). We encountered a total 
of 17 different species in the dead assemblage, of which only three 
exceeded 10% in any one sample (Entzia macrescens, Cibicides 
lobatulus and Haplophragmoides wilberti). Apart from the lower-
most two samples, the dead assemblages are dominated by E. mac-
rescens (70–100%), with five monospecific samples. The two 
lowest elevation samples are more diverse, with C. lobatulus domi-
nant (40–60%) alongside E. macrescens (15–30%), Elphidium wil-
liamsoni (7–9%) and 10 other rare species (0–5%).

Stained (assumed living) foraminifera occur in 14 samples, 
including an isolated individual at 1.96 m ODM, over 0.4 m higher 
than the next highest living specimen. The living assemblage 
includes 13 different species, of which only three – the same as 
those in the dead assemblage – exceed 10% of the total stained 
count in any one sample. The distribution of living foraminifera 
closely follows the dead distribution (Figure 2a).

Due to the small number of samples with sufficient total dead 
counts and the dominance of E. macrescens in most samples, we 
do not investigate clustering in the data and it is clear that the 
dataset is not suitable for the development of transfer functions to 
reconstruct palaeomarsh-surface elevations. Nevertheless, the 
modern data indicate that E. macrescens characterises vegetated 
tidal-marsh environments and this observation may be helpful for 
distinguishing such sediments.

Stratigraphy
A transect of 12 gouge cores maps the stratigraphy of the Bracky 
Bridge marsh (Figure 3). In the centre of the transect, we encoun-
tered a grey-brown peaty clay with Phragmites fragments overly-
ing an impenetrable sand, gravel or rock substrate. A mid-brown 
herbaceous peat containing Phragmites, silty-clay, and occasion-
ally sand overlies the peaty clay and is the uppermost layer in 
every core. At the northern end of the transect, the impenetrable 
substrate rises towards the surface and is overlain by ~0.3–0.5 m 
of organic sand and a thin surficial peat layer. The organic sand 
also extends as far south as core BB14 in a discrete layer approxi-
mately 0.1 m thick. Towards the southern end of the transect, 
around core BB13, sand and clay underlie ~1 m of surficial peat. 
At the base of the southernmost cores, BB10 to BB12, we recog-
nise a layer of dark-brown to black well-humified peat overlying 
the basal substrate with an abrupt transition to uppermost unit of 
salt-marsh peat recorded elsewhere across the site. Here, the 
impenetrable substrate also rises towards the surface, with the 
overlying peat units reducing in thickness to less than 0.5 m.

We recovered a 1.82 m-long core from the centre of the tran-
sect, core BB15 (Figures 1d and 3). The surface elevation of this 

coring location is 1.77 m ODM. The core consists of 0.58 m of 
grey-brown peaty clay overlain by 1.24 m of mid-brown herba-
ceous peat. The upper peat layer includes a 0.10 m-thick organic 
sand layer at a depth of 0.10–0.20 m. We also recovered basal 
samples from locations BB12 and BB16 for radiocarbon dating 
and microfossil analyses. Core BB12 reached the impenetrable 
substrate at 1.16 m below the marsh surface (0.42 m ODM) and 
core BB16 at 1.50 m (0.26 m ODM). The basal sediments are 
dark-brown humified peat and peaty clay in BB12 and BB16 
respectively.

Biostratigraphy
The 66 fossil samples from core BB15 yielded a total of 157 spe-
cies of diatoms, including 14 that exceed 10% in at least one 
sample (Figure 4; Supplemental Information S3, available 
online). Of these 14 species, only N. cincta, A. minutissimum, C. 
bacillum, C. variostriata, Nitzschia palustris and N. terrestris also 
exceed 10% in the Bracky Bridge surface samples. Below 1.3 m 
core depth, diatom assemblages are dominated by the polyhalo-
bian species Paralia sulcata (30–50%), alongside mesohalobian 
species including Navicula peregrina (4–25%) and Navicula digi-
toradiata (1–15%). From 1.30 m depth, Cosmioneis pusilla 
increases in abundance (10–35%) alongside P. sulcata (10–30%) 
and, from around 1.15 m depth, Diploneis interrupta (5–30%). 
After peaking at around 0.6 m depth, C. pusilla declines, with the 
interval between 0.5 m and 0.2 m depth seeing an increase in oli-
gohalobian Pinnularia spp., predominantly an unknown species 
(5–60%). The uppermost 0.2 m are characterised by a diverse 
range of oligohalobian species, principally C. variostriata (1–
50%) and C. bacillum (5–15%).

Basal samples from 1.14 and 1.16 m core depth in BB12 
yielded single specimens of D. interrupta, while a sample from 
1.10 m provided 64 diatom valves, with D. interrupta, P. sulcata 
and Navicula pusilla the most common species. In core BB16, a 
sample at 1.49 m provided a full count, with P. sulcata, D. inter-
rupta and N. peregrina the most common species.

Of the 10 samples analysed for foraminifera from the upper-
most 0.90 m of core BB15, only samples from 0.59, 0.68 and 
0.88 m depth contained greater than single-figure occurrences 
(Supplemental Information S4, available online). These samples 
contained up to 230 specimens of E. macrescens, the only species 
encountered in any of the fossil material. The basal samples from 
cores BB12 and BB16 were devoid of foraminifera.

Chronology
Eleven radiocarbon dates (Table 2) and 28 210Pb samples from the 
uppermost 0.3 m provide the chronology for core BB15 (Figure 4, 
Supplemental Information S5, available online). Additional 137Cs 
data lack clear peaks that can be correlated with events of known 
ages and these data are, therefore, not used in age model develop-
ment. The lack of 137Cs peaks may reflect mobility in the profile 
(Foster et al., 2006), multiple possible sources (Foucher et al., 
2021), or an insufficient sampling interval with respect to the 
sedimentation rate. The 210Pb and 14C-based rplum age-depth 
model constrains the deposition of the sediments in core BB15 to 
the last ~2500 years, with age uncertainties (95% interval) for 
depths below 0.3 m averaging 230 years. The uppermost section 
of the core is better constrained due to the 210Pb data, with age 
uncertainties decreasing from 160 years at 0.2 m (101–261 cal yr 
BP) to the known coring date at the surface. Modelled sedimenta-
tion rates average 0.07 cm yr−1.

Three further radiocarbon dates constrain the timing of the 
deposition of the lowermost sediments in cores BB12 and BB16 
(Table 2). In core BB16, plant macrofossils from 1.49 m depth 
give an age of 1299–1515 cal a BP, approximately 1000 years 
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Figure 3. Stratigraphy of the Bracky Bridge coring transect. Core 
numbers are labelled, with the core chosen for detailed analysis in 
bold. Uncalibrated radiocarbon dates (Table 2) are indicated.
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analogue technique minimum dissimilarity coefficients (MinDC), and age-depth model for core BB15. Surface elevation reconstructions are 
derived using the local Bracky Bridge transfer function (white circles, error bars not shown) and the regional transfer function (black circles, 
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Diatom assemblages from basal samples in cores BB12 and BB16 are also shown alongside corresponding surface elevation reconstructions and 
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younger than a bulk sediment sample from 1.50 m depth. The 
younger age, coinciding with the diatom sample depth and relat-
ing to a sample type that is less susceptible to contamination by 
old carbon, is preferred. A plant macrofossil sample, likely a 
Phragmites fragment, from 6 cm above the base of core BB12 
provides an age of 4825–4959 cal a BP.

Transfer function development 
and sea-level reconstruction
The dominance of one species and lack of zonation in the mod-
ern Bracky Bridge foraminiferal assemblages precludes their 
use as high-resolution sea-level indicators. The widespread dis-
tribution of E. macrescens mirrors the dominance of the sea rush 
J. maritimus and may similarly reflect low salinity conditions 
across the marsh resulting from the high annual rainfall and 
other unique characteristics of Irish salt-marshes (see Cott et al., 
2012). The absence of foraminifera in many fossil samples fur-
ther limits their utility at this site. Nevertheless, diatoms show 

excellent elevation-dependant zonation and sufficient fossil 
counts and are, therefore, highly suitable for quantitative RSL 
reconstructions.

Diatom transfer function performance
The 25 Bracky Bridge diatom samples provide the foundation 
for a local transfer function (Figure 5; Table 1). There is a 
strong relationship between observed and predicted elevations 
(r2

boot = 0.96 for the two component WAPLS model); however, 
underprediction of the elevations of the three uppermost sam-
ples results in a slight trend between observed and residual 
elevations (r2 = 0.15).

While the local training set could be used to predict the eleva-
tion at which each fossil sample was deposited, we first assess 
whether the modern training set provides a sufficient range of 
assemblages to adequately represent the fossil material. Mini-
mum dissimilarity coefficients indicate that the local training set 
fails to provide good or fair modern analogues for almost all of 
the fossil samples (Figure 4). Just two samples, both from within 
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the uppermost 6 cm of core BB15, have fair modern analogues. 
The disparity between modern and fossil assemblages indicates 
that, despite the excellent performance, the local transfer function 
model may not provide accurate palaeomarsh-surface elevation 
reconstructions.

To address the lack of modern analogues, we combine the 
Bracky Bridge training set with published diatom distributions 
from 13 sites in western Scotland (Barlow et al., 2013; Shennan 
et al., 1995; Innes et al., 1996; Zong and Horton, 1999), south 
Wales (Gehrels et al., 2001) and southwestern England (Gehrels 
et al., 2001). The 323 samples in the combined ‘regional’ training 
set cover an elevation range of 102–281 SWLI, equivalent to 
0.05–3.38 m ODM at Bracky Bridge or 273% of the local training 
set vertical range. This training set provides good analogues for 
30% of the fossil samples and fair analogues for a further 63%. 
Just five samples (7 %), all between 0.32 and 0.47 m depth, con-
tinue to be poorly represented by the modern diatom assemblages. 
The change in the percentage of good and fair analogues between 
the local and combined models is the result of two factors. 
Between the surface of core BB15 and 0.25 m depth, surface sam-
ples from Bracky Bridge continue to provide the closest modern 
analogues, but the thresholds for good and fair analogues shift 
with the move to a larger and more diverse modern training set. In 
contrast, below 0.25 m, samples from other sites, principally the 
Erme (Figure 1a), provide more similar compositions.

Regional transfer functions based on the combined 14-site 
training set show a strong relationship between observed and pre-
dicted elevations (r2

boot = 0.84 for the two component LW-WAPLS 
model). Locally weighted models provide enhanced performance, 
with stronger relationships between observed and predicted ele-
vations and smaller prediction uncertainties (Table 1; Figure 5). 
Nevertheless, there is a relationship between observed and resid-
ual elevations (r2 = 0.23), with overprediction of surface eleva-
tions below 150 SWLI and underprediction above 225 SWLI. 
Within the 150–225 SWLI range, there is no relationship between 
observed and residual SWLI values (r2 = 0.01). Caution must 
therefore be used when applying this transfer function and recon-
structions outside of the central 150–225 SWLI range should be 
further interrogated.

Relative sea-level reconstruction
Calibration of the fossil diatom assemblages provides palaeo-
marsh-surface elevation reconstructions (Figure 4). Reconstruc-
tions using the local Bracky Bridge and the preferred regional 

transfer functions are within error in the uppermost 0.25 m of core 
BB15, but diverge below this depth. This divergence is due to the 
poor representation of the dominant fossil species, P. sulcata, D. 
interrupta, N. peregrina and Cosmioneis pusilla, in the Bracky 
Bridge surface samples (Figures 2 and 4). The reconstructions 
using the regional model are all within the central 150–225 SWLI 
range, varying between 184 and 218 SWLI, reducing the likeli-
hood of systematic prediction biases.

We subtract the surface-elevation reconstructions from the field 
elevation of each sample to obtain the vertical position of palaeosea 
level and combine these with the modelled ages (see Chronology 
section) to reconstruct RSL change over time (Figure 6; Supple-
mental Information S6, available online). The reconstruction 
includes the basal and intercalated samples from core BB15 and the 
basal sample from core BB16. The humified peat at the base of core 
BB12 lacks diatom assemblages that would allow confident identi-
fication of intertidal deposition. While the sample from 1.10 m 
depth contains a small number of polyhalobian and mesohalobian 
specimens, we cannot rule out the possibility that these have been 
incorporated from the overlying salt-marsh peat into the underlying 
humified peat. As the radiocarbon sample lies at an unclear bound-
ary between the two layers, we consider it a terrestrial limiting 
point rather than an index point.

The earliest RSL constraint, a terrestrial limiting point derived 
from the basal sample from core BB12, places sea level below 
−0.5 m ODM at 4825–4959 cal yr BP (Figure 6). The basal and 
intercalated samples from core BB15 and the basal sample from 
core BB16 attest to continuously rising RSL from around −1.8 m 
ODM at 2500 cal yr BP to +0.1 m ODM at the end of the last mil-
lennium. The EIV-IGP model indicates the rate of RSL rise over 
the last 2500 years averaged 0.72 mm a−1. Modest fluctuations 
reached maxima of 0.88 mm a−1 (95% range 0.46–1.31 mm a−1) in 
1410 cal yr BP (540 CE) and 1.29 mm a−1 (0.72–1.85 mm a−1) in 
150 cal yr BP (1800 CE) and a minimum of 0.52 mm a−1 (0.05–
0.99 mm a−1) in 900 cal yr BP (1050 CE). As the core was col-
lected in 2002, the Bracky Bridge reconstruction does not include 
any 21st century data points.

Discussion
The accumulation of a continuous near 2 -m-thick sequence of salt-
marsh peat at Bracky Bridge necessitates a period of rising sea lev-
els. Our reconstruction of continual RSL rise over the last 2500 
years is consistent with this stratigraphy. Nevertheless, this recon-
struction appears incompatible with previously published sea-level 

Table 2. Radiocarbon samples from Bracky Bridge.

Core Laboratory code Core depth (cm) Material Radiocarbon age 
(years ± 1σ)

Calibrated age (years BP, 
2σ, unmodelled)

BB15 AAR-8893 23 Detrital plant fragments 153 ± 36 0–285
AAR-8894 33 Detrital plant fragments 611 ± 35 545–652
AAR-8023 48 Detrital plant fragments 874 ± 38 688–905
AAR-8024 80 Detrital plant fragments 1517 ± 44 1309–1516
AAR-8025 84 Detrital plant fragments 1296 ± 49 1076–1300
AAR-8026 99 Detrital plant fragments 1660 ± 55 1405–1698
AAR-8027 139 Woody horizontal rootlet 1868 ± 41 1643–1884
AAR-8028 153 Two pieces of detrital woody 

(bark) material
2265 ± 30 2156–2344

AAR-8029 161 Yellow rootlet 2015 ± 75 1743–2283
AAR-6865 175 Plant fragment 2435 ± 45 2353–2703
AAR-6866 176 Plant fragment 995 ± 45 786–972

BB16 AAR-8061 149 Detrital plant fragments 1495 ± 50 1299–1515
AAR-8062 150 Bulk sediment 2525 ± 55 2374–2752

BB12 AAR-8063 110 Detrital Phragmites (?) 4290 ± 30 4825–4959

Ages are reported as conventional 14C ages and calibrated to years before 1950 CE (BP) using the IntCal20 calibration curve (Reimer et al., 2020).
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index points and proposed sea-level histories for the Donegal coast-
line that include a sea-level highstand and subsequent fall. In this 
section we attempt to reconcile this apparent contradiction through 
reinterpreting older sea-level data from the region and also consider 
possible sources of uncertainty in the Bracky Bridge record. Finally, 
we use the new RSL reconstruction as an empirical test for pub-
lished GIA models.

Comparison with existing RSL data
Figure 6a displays the Bracky Bridge RSL reconstruction along-
side sea-level data from the West Donegal region of the UK and 
Ireland sea-level database (Shennan et al., 2018). We assume that 
no correction is required to compare datasets tied to ODM (this 
study) and local mean sea level (Shennan et al., 2018). Shennan 
et al. (2018) interpret eight dates from Shaw (1985) and Shaw 
and Carter (1994) as index points, providing a sea-level history 
characterised by sea level reaching its present elevation around 
4000 cal yr BP. Nevertheless, we note that none of these samples 

is accompanied by unequivocal evidence of intertidal deposition 
(e.g. intertidal microfossils such as foraminifera or diatoms in the 
dated units) and the samples could be alternatively and more 
conservatively interpreted as terrestrial limiting points, as we 
have in Figure 6a. While three samples from Ballyness and Clon-
mass do contain some pollen from salt-marsh plants (Shaw and 
Carter, 1994), indicating close proximity to salt-marsh environ-
ments, wind dispersal of key taxa such as Plantago maritima 
means a supratidal depositional elevation cannot be ruled out. 
Twelve further terrestrial limiting points from the West Donegal 
region relate to freshwater peats (Gaulin, 1983; Pearson, 1979; 
Shaw, 1985; Shaw and Carter, 1994; Smith and Pilcher, 1973; 
Telford, 1978).

Together, the 67 reconstructed positions of sea-level from 
Bracky Bridge and the 21 terrestrial limiting points (including the 
sample from core BB12), attest to sea levels rising to present, 
with no evidence for a Mid-Holocene highstand either close to or 
above present levels. Our reconstruction cannot rule out the pos-
sibility of a highstand; the distribution of limiting points could 
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allow for sea level reaching present levels before 5000 cal yr BP. 
Nevertheless, the lack of index points before 2500 cal yr BP, com-
bined with the limiting points constraining RSL to below −1 m 
ODM shortly after 5000 cal yr BP, and the subsequent rise from 
around −1.8 m ODM to present render a highstand of this eleva-
tion improbable and without a plausible driving mechanism.

The time periods covered by existing datasets and the main part 
of the reconstruction presented here are largely non-overlapping, 
with little previously published data from after 2500 cal yr BP. 
Two radiocarbon dates from Naran and Helgoland, approximately 
10 km north of Bracky Bridge, do lie within this period (Shaw, 
1985; Shaw and Carter, 1994). While the index points derived 
from these dates by Shennan et al. (2018) suggest higher sea levels 
than at Bracky Bridge, this inconsistency is resolved through our 
reinterpretation of the dated herbaceous peat layers as potentially 
freshwater rather than intertidal due to the lack of identified in situ 
salt-marsh microfossils in the samples (Figure 6a).

Compaction and tidal range as sources of 
uncertainty
Sediment compaction may result in post-depositional lowering 
of sea-level data (Brain, 2015; Brain et al., 2012). While the 
majority of the Bracky Bridge reconstruction is based on interca-
lated samples, which are more likely to be influenced by com-
paction, comparison of basal and intercalated samples suggests 
this process is unlikely to exert a major influence. Indeed, the 
basal sample from core BB16 suggests a sea-level position 
slightly lower than the contemporaneous intercalated samples 
from core BB15 (Figure 6b). Whilst not accounting for the mag-
nitude of the reconstructed sea-level rise over the last 2500 years, 
differential compaction could, nevertheless, account for fluctua-
tions in the modelled rates.

Changes in tidal range over time constitute another source of 
uncertainty in RSL reconstructions (Gehrels et al., 1995; Shennan 
and Horton, 2002). As our reconstruction relies on knowledge of 
the height of MHWST above MTL, an unrecognised increase in 
this range over time could be misinterpreted as a sea-level rise, 
even with no change in the mean level. Nevertheless, modelling 
studies suggest spring tidal ranges have remained consistent over 
the Late-Holocene in northwest Ireland (Neill et al., 2010), indi-
cating that the Bracky Bridge reconstruction is unlikely to be 
strongly influenced by tidal-range changes.

Comparison with GIA models
The relative sea-level history from West Donegal presented here 
– in particular the lack of a Mid-Holocene highstand – provides 
an important empirical test for current and future GIA models. In 
Figure 6a, we compare the Bracky Bridge reconstruction and 
other published sea-level data with the change in RSL predicted 
by five published GIA models. As these models do not incorpo-
rate 20th and 21st century sea-level rise, we align the model pre-
dictions with the Bracky Bridge reconstruction for 1900 CE, 
~−0.05 m OD. Two models (prefaced ‘Bradley’ in Figure 6a) with 
the same BIIS history, based on geomorphic extent data, but with 
different Earth rheologies, predict RSL reached 0.8–1.4 m above 
present between 6000 and 4000 cal yr BP (Bradley et al., 2011, 
2016; Shennan et al., 2018). These models fail to plot below the 
terrestrial limiting points in the Mid-Holocene and predict a fall 
rather than a rise in the Late-Holocene. Predictions from ICE-
6G(VM5a) (Peltier et al., 2015) indicate a higher and earlier high-
stand, reaching 3.75 m at 6500 cal yr BP, and an overall pattern 
that is again inconsistent with RSL constraints from West Done-
gal throughout the Holocene. Based on a numerical ice-flow 
model without the incorporation of geomorphic extent data, two 
models with varying ice thickness and extent, ‘Kuchar’ and 
‘Kuchar_max’ in Figure 6a, provide contrasting predictions, with 
RSL rising monotonically from 11,000 cal yr BP to present 
(Kuchar et al., 2012). While none of the models fully predicts the 
timing and magnitude of the Late-Holocene relative sea-level rise 
reconstructed from Bracky Bridge, the Kuchar models most 
closely reflect the lack of an observed highstand and the continual 
rise to present.

Whilst sharing the same global ice-melt history, the glacio-
logical model underpinning the Kuchar model predictions (Hub-
bard et al., 2009) suggests a thicker but less laterally extensive ice 
sheet than implied by the geomorphic extent data that are the 
foundation for the Bradley models (Brooks et al., 2008). Corre-
spondingly greater isostatic uplift following deglaciation conse-
quently results in subsequent barystatic rises not lifting RSL 
above present during the Holocene. Edwards et al. (2017) high-
light that the Kuchar and Kuchar_max models are capable of pre-
dicting high Lateglacial sea levels in northern and western Ireland, 
while still adequately fitting Holocene sea-level data. Recently, 
extensive chronological data compiled through the BRITICE-
CHRONO project has supported a thicker and also a more exten-
sive ice sheet (Clark et al., 2022; Wilson et al., 2019). Whether the 
development of GIA models based on the BRITICE-CHRONO 
ice-sheet reconstruction improves the data-model misfit in West 
Donegal and other critical regions around the former BIIS (e.g. 
North Wales, Rushby et al., 2019) remains to be tested.

Conclusion
Holocene relative sea-level records from the coasts of northwest-
ern Ireland and, in particular, western Donegal have the potential 
to provide a sensitive and discerning test for glacial isostatic 
adjustment models. Existing sea-level data from the region are, 
nevertheless, spatially and temporally limited, with uncertainties 
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Figure 6. (a) The Bracky Bridge relative sea-level (RSL) 
reconstruction in the context of existing sea-level data (Shennan 
et al., 2018 and references therein), reinterpreted in the Discussion 
section. We plot relative sea-level predictions from five glacial 
isostatic adjustment models, two based on British-Irish Ice Sheet 
geomorphic extent data: Bradley_71p550 and Bradley_71p530 
(Bradley et al., 2011, 2016; Shennan et al., 2018) and two based 
on a numerical ice-flow model: Kuchar and Kuchar_max (Kuchar 
et al., 2012), alongside the global ICE-6G(VM5a) model (Peltier 
et al., 2015). (b) Enlargement of the Late-Holocene Bracky Bridge 
reconstruction, with rates derived from an errors-in-variables 
integrated Gaussian process model (Cahill et al., 2016).
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regarding the precise relationship between some indicators and 
contemporaneous sea levels. This paper has addressed this gap by 
providing – for the first time in Ireland – a sub-centennially 
resolved sea-level reconstruction from a continuous salt-marsh 
sediment sequence. Our reconstruction from Bracky Bridge is 
based on a quantitative microfossil proxy approach that first 
involves relating modern diatom assemblages to their preferred 
elevations with respect to tidal levels. We find that modern diatom 
assemblages from Bracky Bridge can provide transfer functions 
with excellent performance statistics, but dissimilarities between 
modern and fossil assemblages necessitate the development of a 
regional training set. A transfer function incorporating a total of 
323 samples from 14 sites in western Scotland, southern Wales, 
southwestern England, and the study site in northwestern Ireland 
also performs well and provides a more suitable range of ana-
logues for fossil samples.

The Bracky Bridge stratigraphy attests to relative sea-level 
rise over the last 2500 years and the combination of transfer func-
tion calibration and Bayesian age modelling reveals rates aver-
aged 0.72 mm a−1 over this period. A comparison of basal and 
intercalated samples indicates that this rise is unlikely to be 
related to sediment compaction. An apparent discrepancy with 
existing sea-level data from the region is resolved through a con-
servative reassessment of these discrete samples as terrestrial lim-
iting rather than sea-level index points. The continual rise in 
relative sea level over the Late-Holocene and further constraints 
provided the terrestrial limiting points are likely incompatible 
with a Mid-Holocene sea-level highstand. The Late-Holocene 
sea-level rise is consistent with existing GIA models that incorpo-
rate a thick and extensive British-Irish Ice Sheet and provides a 
ready test for future modelling efforts.
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