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Abstract The ecological implications of biotic interac-
tions, such as predator-prey relationships, are often con-
text-dependent. Comparative functional responses anal-
ysis can be used under different abiotic contexts to
improve understanding and prediction of the ecological
impact of invasive species. Pterois volitans (Lionfish)
[Linnaeus 1758] is an established invasive species in the
Caribbean and Gulf of Mexico, with a more recent
invasion into the Mediterranean. Lionfish are generalist
predators that impact a wide range of commercial and
non-commercial species. Functional response analysis
was employed to quantify interaction strength between
lionfish and a generic prey species, the shrimp
(Paleomonetes varians) [Leach 1814], under the con-
texts of differing temperature, habitat complexity and
light wavelength. Lionfish have prey population
destabilising Type II functional responses under all con-
texts examined. Significantly more prey were consumed
at 26 °C than at 22 °C. Habitat complexity did not
significantly alter the functional response parameters.
Significantly more prey were consumed under white
light and blue light than under red light. Attack rate
was significantly higher under white light than under

blue or red light. Light wavelength did not significantly
change handling times. The impacts on prey populations
through feeding rates may increase with concomitant
temperature increase. As attack rates are very high at
low habitat complexity this may elucidate the cause of
high impact upon degraded reef ecosystems with low-
density prey populations, although there was little pro-
tection conferred through habitat complexity. Only red
light (i.e. dark) afforded any reduction in predation
pressure. Management initiatives should account for
these environmental factors when planning mitigation
and prevention strategies.

Keywords Lionfish . Invasive species . Functional
response . Feeding ecology

Introduction

Invasive species are a global cause for concern due to
their detrimental impacts on both the economy and
biodiversity (Mack et al. 2000; Pimentel et al. 2004;
Simberloff 2011; Dick et al. 2013; Simberloff et al.
2013; Dick et al. 2014). Therefore, there is currently
an emphasis on developing predictive methodologies
that allow robust forecasting of invasion impacts (Dick
et al. 2013; Simberloff et al. 2013; Caffrey et al. 2014;
Dick et al. 2014). Many hypotheses and impact predic-
tion methodologies are not pre-emptive and do not take
abiotic and biotic context dependency into account
(Pimm 1989; Ricciardi 2003; Kulhanek et al. 2011).
This is problematic as invasions often take place across
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a range of contexts which interact to determine behav-
iour and therefore invasiveness and impact (Laverty
et al. 2015; Paterson et al. 2015).

Recent efforts have been made to develop an impact
prediction metric which can be used across contexts and
takes into account the non-linear predatory response of
invaders to native prey density (Alexander et al. 2012;
Dick et al. 2013; Iacarella et al. 2015). This is the use of
Bfunctional responses^, that is, the number of prey con-
sumed per predator per unit of time in relation to the
density of the prey (Dick et al. 2014). Solomon (1949)
and Holling (1959) proposed three broad functional
response types. A Type I functional response describes
a linear increase in consumption of prey with prey
density, whereupon handling time is negligible, howev-
er, this is regarded as specific to filter feeders (MacNeil
et al. 1997; Jeschke et al. 2004). Type II functional
responses are characterized by a decelerating intake rate
where the consumer is limited by behavioural and/or
physiological processes, with such responses potentially
leading to prey extirpation due to high proportional
predation at low prey densities. Type III functional
responses are sigmoidal with low proportional intake
rates at low prey densities (Holling 1959) and thus lead
to low prey density refugia and can hence potentially
stabilise prey populations. In determining the functional
response type, parameter values are estimated for attack
rate (a), and handling time (h), from which maximum
feeding rate (1/hT) can be estimated. By doing so, some
mechanisms behind predatory impact are elucidated
upon which, in turn enhances the understanding how
different conditions affect predatory success. This meth-
odology has been successful in invader impact predic-
tion across numerous trophic groups and taxa and, fur-
thermore, current research shows its merit in predicting
impact under different abiotic and biotic contexts
(Laverty et al. 2014; Alexander et al. 2015). This novel
use of functional response analysis gives a unified quan-
tification of predatory impact under multiple abiotic and
biotic contexts, thus delivering a robust impact predic-
tion technique (Dick et al. 2014; Paterson et al. 2015).

The lionfish (Pterois volitans and Pterois miles) inva-
sion in the Caribbean and Gulf of Mexico was first
reported in 1985, and more recently the presence of
Pterois mi les has been documented in the
Mediterranean (Turan et al. 2014; Oray et al. 2015;
Kletou et al. 2016). The success of this invasive marine
teleost has prompted many studies on its behaviour and
effects of the invasion (Kimball et al. 2004; Schofield

2010; Albins and Hixon 2011; Biggs and Olden 2011;
Côté et al. 2014; Anton et al. 2016). These studies have
highlighted the generalist nature of lionfish predatory
feeding, indiscriminate habitat selection and diversion
from their crepuscular feeding strategies (Cöté and
Maljković 2010). The Caribbean and Gulf of Mexico
and the Mediterranean are vulnerable systems, at risk
due to anthropogenic and climate change factors
(Jackson et al. 2001; Pandolfi et al. 2003), therefore the
lionfish invasion poses considerable threat, not only to
the biodiversity of the area but to the local fishing indus-
tries (Albins and Hixon 2011). It is thus important to
investigate how resource consumption of lionfish varies
within the context of current and future abiotic parame-
ters (Englund et al. 2011; Dick et al. 2014).While there is
a degree of ontogenetic prey switching; from crustaceans
to fish (Morris and Akins 2009), quantification of juve-
nile lionfish predation rate and diet analysis is less fre-
quently completed in sitú, compared to studies on adults
(Cöté and Maljković 2010; Albins 2013; Benkwitt et al.
2013). This is due to small size making them hard to
observe and gut analysis increasingly difficult due to prey
size, crypsis, and difficulty in robustly surveying prey
species. Juveniles have been shown to exert significant
negative effect on native species abundance (Albins
2013). Further, there is emphasis on the importance of
focusing on the removal of juvenile lionfish as this life
stage is under represented in diver removal and has low
vulnerability to predation (Barbour et al. 2011; Morris
et al. 2011). Therefore, juvenile lionfish should be con-
sidered important and understudied within the context of
their effect upon prey populations.

Climate change effects include rise in temperature,
which may facilitate range changes through thermal accli-
mation. Temperature also regulates physiology, thus in-
creasing metabolic costs (King 2005; Pörtner and Knust
2007; Gilbert et al. 2014). Furthermore, temperature in-
crease causes degradation of coral reef complexity
(Alvarez-Filip et al. 2009). Habitat complexity and pres-
ence of refuge is a mediator of predation strength and
therefore a driver of community structure (McCoy and
Bell 1991; Hatcher 1997; Warfe et al. 2008; Graham
2014; Rogers et al. 2014). Lionfish abundance is not
correlated to rugosity (Anton et al. 2014; Bejarano et al.
2015), however, different environments may be exploited
at different strengths and might affect predatory interac-
tions (Alexander et al. 2015). Reef habitats with high
structural complexity confer a large diversity of light mi-
crohabitats (Brakel 1979; Sheppard 1981; Dinesen 1983).
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High complexity habitats also provide shading from light
which in turn reduces temperature and UVA/UVB expo-
sure (Kelly and Bothwell 2002; Cocheret de la Morinière
et al. 2004). Light regimes are a key modulator of activity
and life events of teleost fish (Downing and Litvak 2001;
Cocheret de la Morinière et al. 2004). Understanding how
predatory behaviour changes with light regimes can indi-
cate vulnerable prey species and give evidence towards
potential conservation strategies (Koski et al. 2003;
Fitzpatrick et al. 2013; Ranåker et al. 2014).
Furthermore, it will allow an insight into understanding
the impact of invasive predators at night and on mesope-
lagic reefs (Bassett and Montgomery 2011). Temperature,
structural complexity, and light regimes are intricately
linked in coral reef ecosystem dynamics. Reef ecosystems
are consequently stressed by perturbations in these factors
due to climatic change and alien invasions.

This study therefore aims to apply functional re-
sponse analysis to determine the magnitude and form
of the functional response of juvenile lionfish (Pterois
volitans) on crustacean prey and whether it changes with
variations in temperature regime, habitat complexity,
and light regimes.

Methods

Trials were conducted in the Queen’s University Belfast
Marine Laboratory in Portaferry, UK in January–
March 2014 and January–March 2015. Lionfish (6–
10 cm total length) were purchased in two batches
(n = 7, n = 6), from Grosvenor Tropicals, Belfast.
Specimens were kept in a large tropical marine aquari-
um holding tank (vol = 227 l) at 24 °C and maintained
feeding daily ad libitum on frozen anchovy. Individuals
were acclimated to the holding tank for two weeks
before starting trials, which typically lasted for two
months. There was no significant growth during this
period. Experimental tanks were 34 l (45x30x30) tanks
which were constantly aerated using a pump and air
stone and maintained at 24 °C. Sand was used as sub-
strate to mimic natural conditions. Live Paleomonetes
varians (Leach 1814) (Grass shrimp) were chosen as
trial prey and supplied from Seahorse aquariums. This
species was selected to represent a generic prey species
and since juvenile lionfish predate largely on inverte-
brates rather than fish (Cure et al. 2012) and due to the
successful use of Paleomonetes spp. (Cerino et al.
2013). Temperature treatments lasted for 24 h. Habitat

and light treatments lasted for 4 h. Unfortunately facto-
rial trials were not feasible at this time due to limited
predator and prey supply stock.

The R package ‘frair’ (Pritchard 2014) was used to
model the functional response type using logistic regres-
sion to determine the shape of the predator-prey interac-
tions (proportion of prey consumed versus prey density).
That is, if the proportion of prey consumed decreases
with increasing prey density then the logistic regression
will produce a significantly negative result and thus the
functional response type can be classed as Type II, if the
logistic regression produces a significantly positive result
the response will be classed as Type III (Juliano 2001).
Functional responses were modeled using maximum
likelihood estimation (MLE; Bolker 2010) and Rogers’
(1972) Random Predator Equation, due to the prey not
being replaced as they were consumed:

Ne ¼ No

�
1−exp a Neh−Tð Þð Þ ð1Þ

where Ne is the number of prey eaten, N0 is the initial
density of prey, a is the attack rate, h is the handling time
and T is the total time available. The Lambert W func-
tion was implemented to fit the model to the data
(Bolker 2008). The data were non-parametrically
bootstrapped (n = 2000) to construct 95% confidence
intervals around the mean functional response curve for
each treatment. Differences in attack and handling pa-
rameters were assessed within treatments using the dif-
ference method outlined in Juliano (2001), with
Bonferroni corrections when comparing between three
values. Quantity of prey consumed is not included in
this analysis due to prey numbers being limited by
depleting prey density. All analysis was carried out in
R v.3.2.2 (R Development Core Team 2015).

Temperature trials were run at 22 °C and 26 °C to
simulate the range of temperatures in which lionfish are
commonly found (Kimball et al. 2004; Schofield 2009).
Predators and prey were acclimated to these tempera-
tures for 24 h before trial, acclimation timewas longer in
this instance to reduce stress due to rapid heat change.
Densities of prey presented were 1, 3, 6, 10 (n = 3 per
treatment). Habitat complexity trials were carried out
with brown plastic pipes (15 × 10 cm), which were
chosen to mimic lionfish habitat of rocky ledges (e.g.,
lionfish could rest hanging upside down inside of the
pipes), but to also provide shelter for the prey. The
arenas either presented as low complexity (no pipes)
or high complexity (two pipes). Fish were left to
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acclimate in the experimental trials for one hour before
prey were introduced. Densities of prey presented were
1, 2, 3, 5, 7, 10 (n = 3 per treatment). Light trials were
performed with three different light experimental treat-
ments simulated using light emitting diodes (LEDs).
The first light treatment simulated daylight in the tank
using white LED lights (WL; using 42 bulbs in total),
producing 4.5Wwith a wavelength ranging from 550 to
560 nm, (Blanco-Vives et al. 2012; Fitzpatrick et al.
2013). The second light condition was to simulate cre-
puscular periods using blue LED lights (BL) (38 blue
LED light bulbs in total along with four white LED
lights) to produce the same 4.5 W with a wavelength
ranging from 450 to 465 nm (Vera et al. 2010). Red light
(RL) was used to simulate complete darkness (Trippel
and Neil 2003), by using a 40 W red spot light reflector
bulb with a wavelength ranging from 620 to 630 nm.
Fish were left to acclimate in the experimental trials for
one hour before prey were introduced. Densities of prey
presented were 1, 2, 4, 6, 8, 10, 15, 20, 25 (n = 4 per
treatment).

Controls were carried out in experimental tanks con-
taining shrimp at each prey density in each treatment,
but in the absence of predatory lionfish (n = 3 per
treatment). Each fish was re-used multiple times, but
experienced the density of prey only once to avoid
pseudo-replication and the prey density and individual
fish were chosen randomly. Fish were given at least five
days between useage and were starved for three days
prior to experimental procedure to standardize hunger
levels.

Results

Prey survival in control groups was >99% in all repli-
cates, therefore any deaths in experimental groups were
attributed to predation by lionfish.

Temperature effects

Logistic regression had a significantly negative first
order term for 22 °C and for 26 °C, indicating Type II
functional responses at both temperatures (Table 1, Fig.
1). The Type II functional response was significantly
higher at 26 °C than at 22 °C (Table 1, Fig. 1). There was
no significant difference in attack (z = 0.10, p = 0.91)
and handling parameters (z = 1.81, p = 0.07) between
22 °C and 26 °C.

Habitat effects

Logistic regression had a significantly negative first
order term for high and low habitat, indicating Type II
functional responses for high and low habitat complex-
ity, and the Type II functional responses did not differ
significantly between habitat complexity treatments
(Table 1, Fig. 2). There was no significant difference
between attack (z = 0.59, p = 0.55) and handling
(z = 0.61, p = 0.53) parameters between high and low
habitat complexity treatments.

Light effects

Logistic regression first order terms were significantly
negative for all light treatments, indicating Type II func-
tional responses (Table 1, Fig. 3). Type II functional
responses under white and blue lights were not signifi-
cantly different but the functional response under red
light was significantly lower (Fig. 3). Blue light had the
highest attack rate and red light the lowest attack rate
(Table 1). Attack rates were significantly higher at white
light than blue light (z = 118,469.34, p < 0.001) and red
light (z = 2.46, p < 0.05). There was no significant
difference in attack rates between blue light and red light
(z = 1.26, p = 0.61). There were no significant differ-
ences in handling times between white and blue lights
(z = 2.03, p = 0.12), white and red lights (z = 1.96,
p = 0.14), or between blue and red lights (z = 1.34,
p = 0.53).

Discussion

Juvenile lionfish consistently exhibited Type II func-
tional responses across all three contexts in this study.
This high proportional depletion of resources at low
resource density is typical of highly damaging invasive
predators (Dick et al. 2013; Dick et al. 2014; Alexander
et al. 2014; Alexander et al. 2015). Our results provide a
maximum feeding rate for juvenile lionfish under these
abiotic contexts, giving a more realistic picture of
predator-prey ecological interactions and their strengths.
Juvenile lionfish are an understudied life stage in terms
of individual impact upon prey populations. The con-
clusions from this data are limited to juveniles under
experimental conditions, however, due to high lionfish
fecunidity (Gardner et al. 2015) and low efficacy of
juvenile removal by divers (Barbour et al. 2011;
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Morris et al. 2011) they should be considered a perva-
sive threat to crustacean prey populations.

The attack rates between high and low temperature
were similar, which suggests that handling time is the
cause for increased impact under high temperatures as the
lower the handling time, the higher themaximum feeding
rate. This is corroborated by meta-analysis investigating
temperature dependencies and scaling on the functional
response, whereupon a hump shaped relationship is typ-
ical (Englund et al. 2011; Rall et al. 2012). Therefore,
indicating that a variation in temperature affects physio-
logical processes rather than behaviour (Gilbert et al.
2014). Elucidation of these novel per capita effects are
important to determine, as context dependent impact

assessments are lacking (Iacarella et al. 2015), and espe-
cially considering forecasting suggests that warming
above the thermal optima for a species will decrease
interaction strength at per capita and population level
(Rall et al. 2012). Studies have determined lionfish
chronic lethal minimum temperature of 10 °C and that
mean winter temperatures of 14 °C and above are pre-
dictors of lionfish distribution and density (Kimball et al.
2004). Cerino et al. (2013) found that the thermal optima
for lionfish feeding was 29.8 °C, and assessed previous
estimations of consumption (Cöté and Maljković 2010)
to be extremely high (>78% maximum consumption).
The present study corroborates and expounds upon the
high predation rates found in Cöté andMaljković (2010).

Table 1 First order terms and associated p values, Functional Response Type, attack (a) and handling (h) parameter values and p values and
maximum feeding estimates for all treatments

Treatment First order term, p Functional
response Type

Attack rate
(a), p

Handling time
(h), p

Maximum feeding
estimate (hr−1)
(1/hT)

22 °C −0.180, 0.06 II 5.29, 0.47 0.28, <0.001 3.6

26 °C −0.223, <0.05 II 4.50, 0.07 0.12, <0.01 8.3

Low complexity −0.308, <0.001 II 14.36, 0.50 0.34, <0.01 2.9

High complexity −0.159, <0.05 II 1.27, 0.11 0.26, <0.01 3.8

White light −0.153, <0.001 II 6.62, <0.001 0.14, <0.001 7.1

Blue light −0.147, <0.001 II 41.00, <0.001 0.18, <0.001 5.6

Red light −0.147, <0.001 II 1.99, <0.05 0.23, <0.001 4.3
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However, further temperature trials would be needed to
highlight lionfish thermal optima (Iacarella et al. 2015),
with relevance to functional response, i.e. proportional
consumption of prey, at predicted warming temperatures
in the invaded range to be able to assess potential changes
in predatory behaviours with relation to rare and abun-
dant prey populations.

Habitat complexity appears to mediate the impact of
damaging alien species in a myriad of ways, as exhibited

in previous studies (Barrios-O’Neill et al. 2014;
Alexander et al. 2015). In our study, while both complex-
ities revealed a Type II response; low complexity had a
non-significantly higher attack rate, while high complex-
ity had a non-significantly lower handling time. This can
be attributed to habitats with a high degree of structural
integrity limiting a predator’s efficiency by interfering
with detection of prey and the ability of the predator to
catch the prey (Greene 1986; James and Heck 1994;
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Alexander et al. 2015; Barrios-O’Neill et al. 2015). This
occurs through a variety of mechanisms; the formation of
a physical barrier causes disruptive implications for visual
(Manatunge et al. 2000; Warfe and Barmuta 2004) and
olfactory signals (Ferner et al. 2009), furthermore physical
structure can provide complete or partial refuge for prey
from predators (Finke and Denno 2006; Horinouchi
2007). In addition, a predator’s ability to maneuver within
a structure is often impaired (Winfield 1986;
Bartholomew et al. 2000; Barrios-O’Neill et al. 2015).
Therein, it is a general assumption that the foraging effi-
ciency of predators ought to decrease with increasing
habitat complexity (Radomski and Goeman 2001;
Alexander et al. 2015), thus effectively dampening the
strength of the functional response. This said, habitat
complexity could work to facilitate predation (Marinelli
and Coull 1987). This can occur through within refuge
competition between prey (Orrock et al. 2013) and utili-
zation of structure by predator; such as lionfish using
overhanging structures for ambush predation (Biggs and
Olden 2011). This may explain the shorter handling time
and therefore, higher maximum feeding rate, in the higher
complexity habitat despite having a lower attack rate.
Habitat is thus thought of as an important mediator in
predator/prey interactions (Alexander et al. 2012). While
the experimental set up used in the present study could be
considered limited it gives an insight into the complex
ways in which habitat mediates behaviour. Further inves-
tigation of the effect of habitat complexity on predation by
using fractal dimensions and predator free space (Barrios-
O’Neill et al. 2015) may provide further insight into the
effects of structure in lionfish predation.

Light regimes are a strong modulator of animal be-
haviour (Schwalbe and Webb 2015). Reef fish often
have strong circadian rhythms, which manifest as pe-
riods of crepuscular feeding (Helfman 1986; Domeier
and Colin 1997). In the white light (daylight proxy) the
fish exhibited the highest attack and lowest handling
times, which translated in the highest consumption rates.
The blue light proxy for crepuscular periods exhibited a
steeper initial functional response incline than the other
light treatments. The handling time was lowest under
blue light, which supports the notion of persistent cre-
puscular feeding due to a decrease in predator avoidance
although, none of the handling times in the light treat-
ments differed significantly. These results differ from
the predation rates calculated by Cöté and Maljković
(2010), which determined that lionfish predation is more
successful under overcast conditions. However, this

study did not assess predation under crepuscular light
conditions. There are contrasting reports on the feeding
behaviour of lionfish, some suggesting all day feeding
(Morris and Akins 2009; Cöté and Maljković 2010,
while other evidence reports that crepuscular feeding is
conserved in the invaded range (Jud and Layman 2012;
Cure et al. 2012). Our results indicate that feeding will
occur throughout a range of light wavelengths, albeit at
significantly lower levels during dark periods. The be-
haviour relates to a trade off between predator visual
acuity and predator avoidance by prey in low light levels
(Cure et al. 2012). Individual movement and hunting
behaviour was less under red light (personal observa-
tion), this reduces attack rate and increases the behav-
iours and processes associated with handling time. This
has been noted in other species (Koski and Johnson
2002), as a reduction in swimming reduces energy costs
thus allowing more to be put into growth and reproduc-
tive effort (Appelbaum and Kamler 2000); this works in
the benefit of lionfish as it is a slow swimming, ambush
predator (Albins and Lyons 2012). The comparative
functional response was significantly lower in red light
than under the white and blue light regimes; this sug-
gests that the impact of the invasive lionfish will be
lower in deep, dark water (Nuttall et al. 2014), especially
when combined with the finding that the impact of the
invasive lionfish is reduced in dark periods and in colder
water. Our results highlight the importance of visual
hunting strategies for predation success in juvenile lion-
fish. Further studies should pinpoint the light wave-
lengths at mesophotic reefs to understand the relevant
impact at depth, as phase shifts to algal dominated
communities have been documented on a Bahamian
mesophotic coral reef in response to the lionfish inva-
sion (Lesser and Slattery 2011), which suggests that
despite the reduced impact in comparison to under other
light regimes, there is still disproportionally higher re-
source consumption compared to native predators.

Functional response analysis has been used in this
instance as a proxy for invader impact on native re-
sources (Alexander et al. 2012; Alexander et al. 2014;
Dick et al. 2014). The form of the functional response,
in this case Type II, can be used to predict the measure of
change the lionfish population may be exerting on prey
populations (Ward et al. 2008; Jeschke et al. 2014) and
therefore coral and temperate reef ecosystems. Invasive
species exhibiting a Type II functional response have the
capacity to drive prey populations to local extinctions if
prey are unable to match predator consumption rate with
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recruitment (Sinclair et al. 1998; Twardochleb et al.
2012; Alexander et al. 2014). In this case it seems that
lionfish consistently and successfully feed at a high
percentage of their daily ration (Cerino et al. 2013),
which thus poses a considerable threat to biodiversity
and commercial fisheries. When managing damaging
invaders, after pinpointing what species are most at risk,
it is essential to identify the interplay between biotic and
abiotic factors and how the environment mediates
predator-prey interaction strengths. While the present
study is not factorial, it highlights variables that have
the capacity to mediate predation impact. The main
mechanism identified here revolves around the ability
of lionfish to locate prey rather than handling limita-
tions. However, temperature remains a pervasive driver
for invasion success by mediating handling times and
thus maximum feeding rates through physiological
mechanisms. It should be considered that handling time
is made up of a concert of both behavioural and phys-
iological processes (Holling 1968; Hassell 1978) and
can be overestimated due to the combination of process-
es within one parameter, as in this model (Dell et al.
2011; Sentis et al. 2013).

Nonetheless, due to the high exploitation of low prey
densities by lionfish at all life stages, management
should focus on the conservation of rare species by
moderation of other pressures such as fishing and hab-
itat destruction while developing further methods to
remove juvenile lionfish from reefs. Currently, preven-
tion of marine invasions is becoming increasingly futile
due to connectivity and other human mediated changes
in the abiotic environment, therefore it is important to
develop the predictive capacity of novel uses of func-
tional response analysis in cohesion with other trait
based methodologies so as to combat the invasive im-
pact of alien species (Parker et al. 1999; MacNeil et al.
2013; Dick et al. 2014).
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