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A B S T R A C T   

Sustainability indicators (SIs) are important instruments to quantify, analyse, and communicate complex sus-
tainability information, with a history of application in energy research. It is critical to identify an effective set of 
indicators which can holistically evaluate the energy systems encompassing the three facets of sustainability: 
environment, economy, and society. However, the literature has been lacking in either proportionally repre-
senting the sustainability dimensions or reflecting the stakeholders’ preferences. This paper develops a frame-
work to identify and prioritise a set of SIs, critically reviewed to ensure reflection of a wide array of factors and 
conceptions of what sustainability entails. The developed framework utilises a series of methods within three 
phases: identification, refinement, and prioritisation. Applying the proposed framework to building heating 
technologies, a set of 22 SIs consisting of 4 economic, 8 environmental, and 10 social indicators were identified. 
According to the results, the economic indicators of Operation & Maintenance Cost and Net Present Value were 
found to be the most impactful factors, while environmental SIs contribute the most to the overall sustainability 
weight. The identified indicators apply to the assessment of heating systems and policies, and the proposed 
framework could more broadly support analysis of key sustainability criteria in various fields.   

1. Introduction 

Decarbonisation of heating in the built environment has been rec-
ognised as a key priority in transitioning toward future energy and 
climate change targets (Abbasi et al., 2021). The global energy crisis and 
related risks to energy security, combined with wider cost-of-living 
challenges and rising utility bills are providing unprecedented mo-
mentum for a transition away from fossil fuel-based heating, particularly 
in Europe (IEA 2022). Heat transition, however, is tied up with a wide 
diversity of social, economic, and environmental factors that need to be 
considered before implementing transition measures and policies. These 
factors could be bridged and studied under the term of sustainability in 
an integrative and inclusive way in order to plan and deliver a sus-
tainable and equitable transition. 

First coined by Elkington (Elkington, 1997), the Triple Bottom Line 
(TBL) sustainability is a tri-dimensional concept that incorporates social, 
environmental, and economic dimensions to examine sustainability 
performance. These dimensions have a life of their own, but they are 
also closely intertwined and can trigger transformations in each other 
(Al Sarrah et al., 2020). Each dimension is measured by reference to 
sustainability indicators (SIs). SIs reflect the level of sustainability and 
provide means for monitoring and signalling the progress towards sus-
tainability (Moldan and Dahl, 2007). SIs emerge from the fact that 
sustainability is affected and depended on a long list of factors (Kylili 
et al., 2016). 

Based on the TBL notion of sustainability, environmental indicators 
measure various types of pollution and implications that result in 
environmental impacts from a local to a global scale. The environmental 
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sustainability of the energy systems is often affected by air and water 
emissions, land degradation, freshwater exploitation, depletion of non- 
renewable resources and changes in wildlife. Economic indicators 
contribute to the progress of society toward achieving its economic 
objectives. Clune and Zehnder (Clune and Zehnder, 2018) argue that 
economic objectives include wealth, employment, income, welfare and 
high productivity. Finally, social indicators usually deal with the impacts 
on human health, equity, community liveability, historic and cultural 
heritage, and aesthetics (Ajmal et al., 2018). 

Selecting an effective set of SIs, encompassing all economic, envi-
ronmental, and social aspects of the systems, is essential prior to any 
multi-criteria analysis. Both the building industry and the energy section 
have a relatively long tradition of developing and using SIs for tracking 

sustainability in the built environment and energy systems (Liu, 2014, 
Lynch and Mosbah, 2017). The existing literature, however, often pre-
sents considerable limitations such as subjectivity of the SIs, lack of 
stakeholders participation, predomination of environmental criteria, 
and dissimilarity of the indicator sets (Fernández-Sánchez and Rodrí-
guez-López, 2010). Regarding the building heating systems (BHSs) in 
particular, the lack of a comprehensive and consistent set of SIs is 
probably the major challenge on the way to monitoring whether or not a 
particular heating scenario is on the course of sustainability. 

Built upon these gaps, the current study seeks to find out: a) How to 
derive a set of critical SIs for different systems while ensuring propor-
tional representation of all facets of sustainability and reflection of the 
stakeholders’ priorities? b) Which indicators could accurately portray 

Table 1 
Indicators used for sustainability assessment or multi-criteria analysis of energy systems and interventions in buildings.  

Source Year Application (Case study location) Sustainability 
dimensions 

Indicators 

(Vasić, 2018) 2018 Space and water heating in households 
(Serbia) 

Economic Investment cost, Operating expenses, Economic development, 
Commercial maturity 

Environmental CO₂ emissions 
Social Comfort 

(Rutz et al., 2019) 2019 Renewable district heating and cooling 
systems for communities (Southeast 
European countries) 

Economic Investment, fuel costs 
Environmental CO₂ emissions, SO₂ emissions, NOx emissions, PM emissions 
Social Increase in employment, local income generation, region development 

(Hehenberger-Risse et al., 
2019) 

2019 Local heat supply systems based on 
renewable energies (Germany) 

Environmental Renewable energy, non-renewable energy, area, heat price, CO₂ 
emissions, SO₂ emissions, wastewater, regional added value, overall 
efficiency, avoided environmental impacts 

(Kuznecova et al., 2017) 2017 Household heat generation systems (-) Economic Energy costs for one household member, share of costs from income, 
share of low-income households, Gross domestic product (GDP) 

Environmental Heating consumption in household, share of RES, share of fossil fuels, CO₂ 
emissions, PM emissions 

Social Number of rooms in a house, number of rooms per inhabitant, size of 
dwelling, environmental problems, expenditure problems 

(Zhang et al., 2019) 2019 Renewable micro-generation technologies 
in households (Lithuania) 

Economic Technology cost, operating and maintenance costs, payback period 
Environmental CO₂ emissions, land use 
Social Distort the landscape, society appreciation, job generation, impact on the 

social progress, market stability, local & global market 
Technical Noise, technology maturity, technological improvement 

(Yang et al., 2018) 2018 Household-level renewable heating 
technologies (Denmark) 

Economic Energy bill, energy expenses reduction, initial investment, payback 
period, subsidy 

Environmental Greenhouse gas emission, use of renewable energy 
Technical Performance, needed reparations, reliability, easy to use 

(Ren et al., 2009) 2009 Distributed electricity generation systems 
for residential buildings (Japan) 

Economic Investment cost, running cost 
Environmental CO₂ emissions, primary energy consumption 

(Hajare and Elwakil, 
2020) 

2020 Energy conservation measures in 
residential buildings (US) 

Economic Life-cycle costs, initial cost 
Environmental Annual energy consumption 

(Passoni et al., 2021) 2021 Sustainable retrofit measures in 
residential buildings (Italy) 

Economic Renovation cost, repair cost 
Environmental Waste generation, recyclability, 
Social Duration of works, needed space, adaptability, disruptions for 

inhabitants 
(Džiugaitė-Tumėnienė 

et al., 2017) 
2017 Energy supply systems for energy-efficient 

houses (Northern European region) 
Economic Total cost of the energy supply 
Environmental Annual CO₂ emissions 
Social Comfort level 
Technical Annual primary energy, Functionality of the energy system 

(Saleem and Ulfat, 2019) 2019 Renewable electricity technologies for 
domestic sector (Pakistan) 

Economic Operative and maintenance cost, Project cost, Production capacity 
Environmental Impact on Eco system, CO₂ and SO₂ emissions 
Social Land area used, Acceptance from society, Jobs created 
Technical Equipment performance time, Output power capacity, Equipment 

efficiency 
(Russo et al., 2014) 2014 Geothermal heat pump and LPG 

greenhouse heating systems (Italy) 
Economic Energy payback time, Emissions payback time 
Environmental Depletion of abiotic resources; Depletion of fossil resources; 

Acidification; Eutrophication; Global warming potential; Reduction of 
the ozone layer in the troposphere; Formation of photochemical smog; 
Primary energy demand 

(Poppi et al., 2018) 2018 Solar heat pump systems for residential 
heating applications (-) 

Economic Payback time 
Technical Seasonal performance factor 

(Si et al., 2016) 2016 Green technologies for retrofitting to 
existing buildings (UK) 

Economic Investment cost; Playback period; Maintenance cost 
Environmental Reduction of CO₂ emissions; Reduction of water consumption; Waste 

management; Improvement of the quality of the environment 
Social Jobs; Commitment of the community; Improvement of the welfare of the 

occupants; Improvement of social reputation 
Technical Compatibility; Reliability; Efficiency; Durability; Flexibility 

(Ekholm et al., 2014) 2014 Household-level heating technologies 
(Finland) 

Environmental Acidification potential, Climate impact 
Social Health impact  
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the sustainability of BHSs and can be used to evaluate heating systems 
and strategies in the built environment? Therefore, a generic method-
ological framework is established, aimed at identifying, selecting, and 
prioritising a representative set of SIs in various fields. The framework 
accounts for a series of qualitative and quantitative data to determine 
the SIs and their importance weights thus reducing the subjectivity and 
uncertainties of the process. The framework is then elaborated and 
tested through its application to the case of BHSs. 

2. Motivation and context 

According to (Vidal et al., 2011, Wang et al., 2009, Siksnelyte--
Butkiene et al., 2021, Baker et al., 2001), the SIs utilised in multi-criteria 
analyses are required to have some qualities to reflect the sustainability 
and its roots within a system. They have to be (1) representative to 
holistically reflect the essential characteristics of the system; (2) sensi-
tive and operational in addressing the changes in the system to accu-
rately portray the differentiation between system elements and 
comparisons among them; (3) independently measurable and verifiable 
using methodologically-based and repeatable methods, as well as 
accessible and transparent data; and (4) concise and few in number to 
avoid repetition and overlapping between them and minimise the 
complexity and indeterministic nature (plurality) of the problem. 

Developing an indicator set that can fulfil the SI requirements and 
comply with the relevant literacy is essential in determining the direc-
tion and assessment of sustainability (Rajabi et al., 2022). Extensive 
literature is available regarding the identification of the SIs associated 
with the built environment and energy systems. Focusing on the overlap 
of these areas, Table 1 provides a list of some recent studies presenting 
SIs for building energy systems or building energy interventions. 

The studies depicted in Table 1, have utilised various SI sets to 
develop a decision-making tool for new projects or to assess the sus-
tainability of existing projects. However, a solid and uniform set of SIs 
which can be generally applied to BHSs is still lacking in the existing 
literature. This is due to some limitations that are discussed in the 
following, in addition to the general belief that there is no particular 
indicator set that is suitable for all applications (Grafakos et al., 2017). 

Firstly, most of the aforementioned studies have established the SIs 
based on the conditions and requirements of a specific country. There-
fore, they cannot be applied universally to different locations to track 
the sustainability of energy systems or transition plans. Additionally, 
depending on whether the technology or the whole sector is assessed, 

the selected indicators vary widely in terms of their application scale 
(Siksnelyte-Butkiene et al., 2021). The reviewed indicator sets are pri-
marily produced based on the top-down approach and are often aimed at 
global, national, or state scales. Thus, the effectiveness of these methods 
in assessing sustainability at finer spatial scales could be problematic 
(Graymore et al., 2008). 

Another important limitation is that many studies do not involve 
stakeholders in the decision-making process in a systematic and 
participatory way. They often attempt to mitigate stakeholders’ pref-
erences instead of directly including them in the decision-making pro-
cess. This is while implementing socio-technological analytical 
approaches such as social construction of technology (SCOT) is 
increasingly supported in the literature to further understand the rele-
vant social groups and stakeholders and their concerns in the develop-
ment of technologies (Elle et al., 2010). Indicator developers also have 
rarely attempted to validate the credibility of the SI selection, alterna-
tively relying on the long-term acceptance of indicators by other users 
(Grafakos et al., 2017). 

Finally, the existing literature has not equitably considered the three 
dimensions of TBL sustainability. Reviewing the articles in Table 1, what 
is often found to be underrated or not included at all is the social 
dimension of sustainability. In a broader sense, the lack of social factors 
consideration in research and practices is underpinned by several 
scholars (Pombo et al., 2016, Hashempour et al., 2020). In the building 
assessments, for instance, a recent review by Hashempour et al. 
(Hashempour et al., 2020) shows that in only 22% of the assessment 
frameworks, social aspects are considered in analysing energy retrofits 
and sustainable renovations in the buildings. Gathering 51 academic 
publications, they found that social indicators are considerably under-
developed compared to economic and environmental ones. Fig. 1 shows 
the balance of sustainability indicators in the investigated studies by 
(Hashempour et al., 2020). 

Similarly, Pombo et al. (Pombo et al., 2016) conclude that only three 
out of the 42 reviewed studies have incorporated social indicators in the 
multi-criteria assessment of sustainable renovations. Where social sus-
tainability is included, the focus has been mostly on indoor air quality, 
functionality, employment, thermal comfort, and cultural aspects 
(Nielsen et al., 2016, Antunes and Henriques, 2016). As a result, some 
other important social factors such as fuel poverty and health issues that 
are directly influenced by building energy performance are not inves-
tigated properly in studies. 

Likewise, a similar lack can be found in the energy systems’ 

Fig. 1. a) Percentage of building energy studies with single, double and triple criteria; b) Sustainability indicators in single-criteria assessments; c) Sustainability 
indicators in double-criteria assessments (Hashempour et al., 2020). 
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scholarships. Zanghelini et al. (Zanghelini et al., 2018) showed that 
social sustainability in energy systems can be often found in general 
propositions, usually integrated with the environmental or technical 
aspects. This gap is noticed by other scholars, generally stating that most 
multi-criteria analyses focus on environmental and technical aspects of 
energy systems (Grafakos et al., 2017, Kowalski et al., 2009, 
Campos-Guzmán et al., 2019). Afshari et al. (Afshari et al., 2022) noted 
that conflicting objectives and subjectivity of indicators often make 
implementing social sustainability difficult, which is one of the reasons 
why it is been understudied. The role of social factors, however, is 
increasingly paid attention to in technology assessments (Mainali and 
Silveira, 2015). 

The highlighted gaps reveal the need for revisiting the traditional 
sustainability assessments and renewing the focus on the TBL notion of 
sustainability. Therefore, as this study aims to address, it is required to 
develop an inclusive and purpose-designed set of SIs for the assessment 
of BHSs at the product level. The motivation behind this research is that 
the sustainability of the building heating sector is increasingly gaining 
attention, but the evaluation of heating technologies needs to be further 
supported by the research. The proposed selection of SIs will reflect the 
TBL sustainability aspects of BHSs with easily accessible data and 
replicable processes. It also renews the focus on social sustainability and 
stakeholders’ participation to address the existing gaps in the assessment 
of energy technologies. 

3. Material and methods 

For this research, a framework is developed to obtain the required set 

of SIs through three phases, comprised of six stages, which are illus-
trated in Fig. 2. The process begins with the identification stage in which 
a preliminary list of indicators that have been applied in building and 
energy studies are gathered. Collecting SIs from the previous research 
through the literature review is a prevalent starting point for this process 
and a foundation for the development of an effective sustainability 
assessment model (Rigo et al., 2020, Daugavietis et al., 2022). There-
fore, at this stage, a wide range of relevant SIs are obtained through a 
systematic review of the peer-reviewed literature that reflects sustain-
ability issues in energy systems and building energy interventions. 

The long list of identified indicators needs to be reviewed and clus-
tered to shape the categories required for sustainability assessment. 
Therefore, in the second stage, the collected indicators are classified to 
comply with the principles of TBL sustainability which defines sustain-
ability upon the three pillars of the economy, society, and environment. 
The SIs are recategorized into economic, social, and environmental in-
dicators based on the area of their ultimate impact. 

The abundance of the SIs, however, is problematic as it complicates 
the data collection and processing. Furthermore, the reliability and 
maturity of sustainability assessment relies on developing a concise set 
of indicators which can lay the ground for rational comparisons and 
decisions. Therefore, the refinement phase, constituted of three refine-
ment stages, is designed to dismiss the indicators that are not vital and 
alternatively select those which reflect the most important aspects of 
sustainability. 

The first stage of refinement is performed using the Pareto analysis 
method to identify the most frequently used indicators in the relevant 
literature. Using this method, the essential SIs under each dimension of 

Fig. 2. The flowchart of the methodological stages of the developed framework.  
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sustainability are determined and the trivial indicators are screened out 
from further consideration. The shortlisted indicators, however, are 
sometimes not applicable or relevant to the context or have overlaps in 
functionality that need to be cleaned up to avoid confusion. These in-
dicators are, therefore, eliminated or merged at the second stage of 
refinement, referred to as compatibility check, to ensure alignment be-
tween the SIs and the characteristics of the study context and scope. This 
is followed by the last stage of refinement based on the Staticized group 
technique to validate, revise, or improve the selected SIs using the ex-
perts’ opinions. To do so, a survey is carried out to collect reliable 
comments from certified professionals in design, planning and 
policymaking. 

The final selected SIs have different levels of importance and impact 
on the sustainability performance of the systems. The level of impor-
tance can be quantitatively expressed by the indicator’s priority weight 
in sustainability assessment or multi-criteria decision-making (MCDM) 
frameworks. Priority weights are directly taken into the calculation and 
need to be assigned rationally and carefully. Thus, the last stage of the 
framework deals with the prioritisation of the indicators according to 
the Analytic Hierarchy Process (AHP) (Saaty, 1987). Priority weights are 
obtained via polling, based on the judgments of stakeholders. Aggre-
gation of the experts’ judgments and consistency checks are critical steps 
of prioritisation which are also addressed at this stage. 

4. Results and discussion 

The methodological stages of the framework are elaborated in this 
section with their application to the case of BHSs. The collected data, 
conducted analyses, and derived results for this context are also pre-
sented as follows. 

4.1. Identification 

This stage aims to identify a preliminary list of SIs that can poten-
tially be used for this study. A long history of SIs can be tracked both in 
the building industry and energy systems. On this occasion, the process 

of searching started with a focus on the overlap of these two sections, i. 
e., the building energy technologies. However, to provide a more 
comprehensive list of SIs, the search domain was extended, covering a 
broader area of building energy interventions and distributed energy 
systems, using the keywords such as ‘sustainability indicators’, ‘multi- 
criteria decision analysis’, ‘building heating technologies’, ‘energy ren-
ovations’, and ‘renewable energy technologies’. 

The focus of this research was sustainability of energy systems at the 
product level, rather than at building level or larger spatial scales such as 
local or national level. From the initial list of articles that were found 
through extensive searching, those not addressing the sustainability of 
energy systems or building energy interventions are excluded. Finally, a 
set of 66 articles published between 2010 and 2022 are reviewed. A total 
of 156 SIs are identified from these articles as the preliminary list of 
indicators that could potentially be used for BHS studies. 

4.2. Classification 

The long list of collected SIs in the previous section needs to be re- 
categorised into the TBL sustainability dimensions which is the basis 
of this research. The TBL model has been the model for many studies, 
while in many other studies presented SIs and their classification do not 
exactly correspond to the TBL definition of sustainability (Hehenber-
ger-Risse et al., 2019, Yang et al., 2018, Chen et al., 2020). In such cases, 
indicators have to be re-categorised under one of the TBL dimensions of 
sustainability based on the area of their ultimate impact. For instance, 
indicators such as job creation and indoor air quality which are both 
categorised under social sustainability in this study, are sometimes 
considered economic and environmental indicators in other studies. 

Furthermore, the identified SIs are reviewed to avoid any repetition 
of the indicators. Because despite the broad differences in indicator sets, 
there are some commonalities such as upfront costs, carbon emissions, 
and land use are referred to by different terms in the studies (Ahmad and 
Thaheem, 2017). Therefore, the initial SIs are reviewed and those with 
the same meaning and functionality are merged to ensure no duplication 
of SIs. Upon this filtration, the initial collection of 156 indicators is 

Fig. 3. Pareto chart for environmental sustainability indicators.  
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screened down to 118 indicators, 47 of which are grouped under envi-
ronmental, 39 of which under social, and 32 of which under economic 
dimensions. Table A-1 in the appendix presents the categorisation of 
these indicators and a few references for them. 

4.3. Refinement step 1: Pareto analysis 

The first refinement step aims to identify the critical indicators that 
are frequently used by researchers using the Pareto analysis. Also called 
the 80/20 rule, the Pareto Analysis is a statistical technique of decision- 
making, primarily presented by Vilfredo Pareto (Craft and Leake, 2002). 

Fig. 4. Pareto chart for economic sustainability indicators.  

Fig. 5. Pareto chart for social sustainability indicators.  
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The Pareto principle is used in various areas, helping to identify a vital 
limited number of factors among a large number of factors that produce 
a significant overall effect. The Pareto principle states that 80% of 
consequences in many problems come from 20% of causes (Fernán-
dez-Sánchez and Rodríguez-López, 2010). Accordingly, it can be argued 
that 80% of sustainability can be achieved through 20% of the most 
important indicators (Fernández-Sánchez and Rodríguez-López, 2010). 
This principle is widely used in sustainability studies, assisting in dis-
tinguishing the “vital few” from the “trivial many” decision factors 
(Fernández-Sánchez and Rodríguez-López, 2010, Hasan et al., 2017, 
Gani et al., 2021, Gani et al., 2022, Lazar and Chithra, 2021). 

Therefore, the Pareto Analysis is utilised in this study to filter the 
critical SIs. This process can be demonstrated with the aid of a Pareto 
chart in which the frequency of SIs are presented in descending order 
and their cumulative percentage are presented on the secondary axis. 
Where the frequency graph cuts an 80% cumulative percentage, the SIs 
can be divided into the vital few indicators and the trivial many (Gani 
et al., 2021). In this study, the Pareto analysis is separately performed 
for each category of SIs, depicted in Fig.s 3-5. The vital indicators with 
less than or equal to 80% cumulative frequency are separated via the red 
line and proceeded to the next stage. 

Applying the Pareto analysis to the list of identified SIs, this list is 
narrowed down to 34 critical indicators that are frequently used by re-
searchers. In brief, from the initial 48 environmental SIs, 15 of them are 
shortlisted, making up 78.5% of the total frequency of environmental 
SIs. Regarding the economic indicators, the initial list with 32 SIs is 
screened down to 8 indicators. Also, social SIs are reduced from 39 in-
dicators to 11 critical ones after the Pareto analysis. 

4.4. Refinement step 2: Compatibility check 

The indicators obtained from the Pareto analysis have not yet been 
evaluated against the range of SI qualities which were mentioned in 
Section 2, including, representativeness, independency, and applica-
bility. Furthermore, there is a risk of overlap among the indicators that 
undermines their independence and objectivity in assessments. The 
number of selected SIs is also still quite considerable, making them 
technically and practically impossible to be implemented on real-world 
projects. It is highlighted in the literature that having a reasonable 
number of indicators is beneficial to the sustainability assessment 
(Fernández-Sánchez and Rodríguez-López, 2010, Wang et al., 2009). 
Experiments show that most individuals cannot accurately judge be-
tween more than seven, plus/minus two criteria (Bagočius et al., 2014). 

Therefore, the second round of refinement is required to filter out the 
indicators which do not meet the SI qualities, as well as merge those with 
overlap or correlation in functionality. This also further reduces the 
number of indicators, making their understanding and usage more 
consistent. This refinement step, called compatibility check in this 
research, is conducted based on the researchers’ intuition and evalua-
tion. By doing so, the following modifications are made with regard to 
the environmental indicators: 

○ NOx and SO₂ emission factors are eliminated because these com-
pounds are already included and addressed in the ‘Acidification 
potential’.  

○ The indicators of ‘Global warming potential’, ‘GHG saving’, and 
‘Climate change impact’ have a clear overlap in addressing the same 
issue of GHG emissions. Thus, the ‘GHG saving’, and the ‘Climate 
change impact’ indicators are removed to avoid repetition.  

○ Likewise, indicators of ‘Fossil fuel depletion’ and ‘Primary energy 
consumption’ overlap in capturing relevant aspects associated with 
resource depletion. ‘Fossil fuel depletion’ is thereby eliminated.  

○ The acoustic performance and noise level of the systems are studied 
under social sustainability in this research. Therefore, the indicator 
of ‘Noise pollution’ is eliminated from the environmental SIs.  

○ Fine particles are one of the biggest contributors to human health 
problems. Therefore, the PM emission factors are studied under the 
social indicator of ‘Health impacts’ and ‘PM emissions’ is removed 
from environmental SIs. 

○ The indicator of ‘Waste generation’ is also removed because, con-
cerning the case of buildings without solid fuel heating, the level of 
waste production and disposal is negligible (Lebersorger and Beigl, 
2011). 

Likewise, regarding the economic indicators:  

○ Energy cost constitutes a sizeable share of O&M costs of a heating 
system, and it is taken into account in this indicator. It is, thereby, the 
‘Energy cost’ indicator is eliminated to avoid double-counting.  

○ Net Present Value (NPV) and the Payback time are two different 
approaches to performing the life cycle cost (LCC) analysis. While the 
payback method is found to be the most used indicator, LCC based on 
NPV is more accurate and efficient as it uses cash flow instead of 
earnings (Jensen et al., 2018). Therefore, ‘Net present value’ is used 
in this study, and indicators of ‘Payback period’ and ‘Life cycle cost’ 
are removed from the list. 

And finally with respect to social indicators:  

○ The indicator of ‘Safety’ in this article represents all the injuries, 
accidents, and mortality over the life cycle of the systems. Thus, 
‘Severe accidents’ is eliminated from the SI list to avoid duplication.  

○ The indicator of ‘Social benefits’ refers to the positive impact that an 
energy system has on the social progress of the community and re-
gion and is often used for large-scale energy systems (Saraswat and 
Digalwar, 2021). The crucial social impacts associated with 
household-level energy systems are covered via separate social SIs. 
Thus, this indicator is deemed less relevant to the scope of the study 
and is removed from further consideration. 

Taking the above considerations into account, from the list of 32 SIs, 
21 remain as the modified set of indicators. The outcome of the second 
refinement step is presented in Table 2. 

Table 2 
List of critical indicators at the end of the second step of refinement.  

Objective Sustainability 
dimensions 

Sustainability indicators 

Sustainability of building 
heating systems 

Environmental Global warming potential 
Land requirement 
Primary energy 
consumption 
Water consumption 
Share of renewable 
energy 
Energy efficiency 
Acidification potential 

Economic Upfront cost 
O&M cost 
Net present value 
Availability of funds and 
subsidies 
Economic Lifetime 

Social Job creation 
Thermal comfort 
Social acceptance 
Health impacts 
Acoustic performance 
Safety 
Reliability and security 
Usability and 
functionality 
Aesthetic aspects  
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4.5. Refinement step 3: Staticized group technique 

In most of the previous studies, the selection or validation of SIs is 
undertaken exclusively by the researchers without involving the stake-
holders. However, compared to individuals’ decisions, groups’ decision- 
making provides the advantages of a broader perspective and more 
experience and knowledge, while reducing the harms of individuals’ 
cognitive restrictions and evaluation mistakes (Ossadnik et al., 2016). 
Also, including stakeholders in the initial stages of the development 
process ensures the effectiveness and applicability of the framework and 
facilitates long-term commitment and cooperation in implementing the 
results (Grafakos et al., 2017, Figueiredo et al., 2021). 

Thus, the current study engages stakeholders in the process of 
identification of SIs, assuring that experts’ perspectives are reflected in 
the assessments. This approach is similarly used in (Gani et al., 2021, 
Gani et al., 2022, Lazar and Chithra, 2021) to distinguish the critical SIs 
in different fields. This stage of the framework is thereby designed to:  

a) Validate the selected set of SIs in the previous steps  
b) Identify the potential missing indicators  
c) Find out if any amendments for clarity purposes are required 

Several participatory techniques exist to incorporate judgments from 
a group of experts. Traditionally, interviews and group-brainstorming 
techniques, which involved substantial bias and uncertainties, were 
often used to collect subjective data from experts in engineering areas 
(Hallowell and Gambatese, 2010). However, alternative methods that 
could control the bias and ensure the qualification of the respondents are 
increasingly employed to collect data in these fields. Methods such as the 
Delphi technique, Staticized groups, Dialectic procedure, and Nominal 
group technique allow researchers to maintain a greater level of control 
over bias in well-established rigorous processes with the aid of qualified 
experts (Hallowell and Gambatese, 2010, Contadini et al., 2002). 

Among these methods, the Delphi technique has been useful for 
finding the key sustainability criteria. Comprehensive reviews of Delphi 
method applications in energy research and the building industry have 
been presented by J. Wang et al. (Wang et al., 2009) and D. Jato-Espino 
et al. (Jato-Espino et al., 2014), respectively. However, the Delphi pro-
cess is not recommended in all circumstances, e.g., when there is limited 
access to participants, when achieving the consensus is not desirable, or 
when objective data are available (Hallowell and Gambatese, 2010). 
When the Delphi method is inappropriate, the Staticized groups method 
is one of the alternatives with high accuracy of results (Graefe and 

Fig. 6. Proportion of the participants based on their (a) Affiliation and their job role; (b) Academic education; (c) Professional experience.  
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Armstrong, 2011). 
The Staticized groups’ technique is identical to the Delphi method 

with the exclusion of feedback and iteration stages (Hallowell and 
Gambatese, 2010). It is described as the Delphi method with one round 
of estimates (Deniz, 2017). Therefore, there is no interaction between 
experts, avoiding the need for conformity among individuals as well as 
reducing bias in judgments. The Staticized group is preferred over the 
Delphi method by many researchers (López-Arquillos et al., 2015, 
Rey-Merchán and López-Arquillos, 2022), mainly because experts are 
not led to conform to a value which is not necessarily correct. In other 
words, this method avoids the lack of accuracy of consensus results after 
many iterations in the Delphi method (López-Arquillos et al., 2015). 
Therefore, the Staticized groups is used in this research to conduct the 
refinement step three. 

4.5.1. Qualification and selection of experts 
Research works that use group decision-making techniques tend to 

rely on the knowledge and skills of the experts, rather than depending on 
statistical methods and sources (Alqahtany, 2019). Therefore, selecting 
a group of competent experts is a fundamental step in such research and 
it is itself a matter of judgment (Zio, 1996), underlined in many research 
(Geist, 2010). To date, there are no universally-agreed instructions or 
criteria for selecting the experts (Hallowell and Gambatese, 2010). 
However, as the Staticized group method is very similar to the Delphi 
technique, the same guidelines for the selection of experts can be applied 
to both methods (Skinner et al., 2015). 

In general, an expert is defined as someone possessing a special or 
high-level education qualification, or someone with distinct skills or 
knowledge evident through their track record in professional organisa-
tions or academia (Ahmad and Wong, 2019). They also need to have the 
willingness, adequate time, and ability to participate in the process of 
the exercise (Rådestad et al., 2013). Furthermore, experts are required to 
be independent and have no conflict of interest with the study to 
minimise motivational biases (Zio, 1996). They should also represent a 
diverse spectrum of viewpoints and backgrounds to provide a realistic 
assessment of the given uncertainty (Zio, 1996). 

Therefore, to constitute a decision panel, members are not chosen 
randomly, but purposively to meet the defined criteria. Accordingly, the 
candidates in this study are selected from the following groups to ensure 
a wide range of perspectives and a high level of expertise and 
competence:  

○ Academia and research institutes: Researchers and academics with 
an advanced degree in the related fields who have published at least 
5 articles in recognised journals  

○ Industry (technical and management): Experts with at least 5 years of 
professional experience or holding a management position  

○ Professional or governmental organisations: Members of national 
committees and professional bodies with a demonstrated history of 
expertise in the field 

The Scopus database is used to explore relevant research and to find 
qualified academics and researchers who are based in the UK. For in-
dustry experts, accredited professionals by UK professional bodies such 
as CIBSE (Chartered Institution of Building Services Engineers), CIOB 
(Chartered Institute of Building), CIPHE (Chartered Institute of 
Plumbing and Heating Engineering) and the Energy Institute have been 
considered. Members of governmental bodies and professional in-
stitutions have also been contacted on the basis of their credibility, 
reputation, and authority in the respective fields. 

The number of panellists is another important factor in determining 
the quality of group decision-making (López-Arquillos and Rubio-R-
omero, 2015). According to the literature, a minimum size of eight ex-
perts for homogeneous groups (experts in the same field) and a range 
from 20 to 60 participants for heterogeneous groups (experts from 
different social or professional groups) are deemed appropriate (Ahmad 

and Wong, 2019, López-Arquillos and Rubio-Romero, 2015). Particu-
larly concerning sustainability studies, a range of 3 to 19 experts is often 
considered in the reviewed articles, e.g., (Ahmad and Wong, 2019, Hsu 
et al., 2017, Henning and Jordaan, 2016). 

For this research, 210 qualified experts from the mentioned refer-
ences were invited to participate in the survey via e-mail and a link to 
the questionnaire. The survey was open for five months, between 
September 2021 to January 2022, and it was completed by 25 experts 
which is slightly higher than the number of experts normally used in 
Delphi and Staticized groups surveys. The response rate was 11.9% 
which is acceptable for an online survey with an average response rate of 
10-15% in the literature (Xu et al., 2012). 

The analysis of the characteristics of the respondents shows that a 
variety of well-educated and experienced professionals from different 
stakeholders have participated in the survey. In terms of participants’ 
affiliation, as illustrated in Fig. 6 (a), those from academia and industry- 
technical build the biggest share of participants (36%), followed by re-
spondents from professional/governmental bodies (12%). In the ex-
perts’ panel, 64% of the members are postgraduates, having a Master’s 
degree (10 members) or a PhD (6 members) in the relevant fields. The 
composition of the participants based on their academic knowledge and 
professional history is illustrated in Figs. 6 (b) and 6 (c), respectively. 

The questionnaire also includes questions to analyse the level of 
knowledge and expertise of the panel concerning the research focus 
points, i.e., building energy systems, building energy performance, and 
their sustainability understanding. On a Likert scale, participants are 
asked to indicate their level of knowledge/experience in these themes. 
As shown in Fig. 7, experts who either agree or strongly agree that they 
have an advanced level of knowledge/experience in each field constitute 
a range of 70 to 88% of respondents, with no one strongly opposed to 
these statements. 

4.5.2. Survey design and results 
A questionnaire survey is developed in three separate parts to collect 

all required data in one round survey. In the first part, some questions 
are asked regarding the participants’ knowledge and experience which 
are discussed in Section 4.5.1. The second part of the questionnaire is 
designed to collect some qualitative data to validate or improve the set 
of SIs in terms of effectiveness, inclusivity, and conciseness. The third 
part is designed for rating the importance weight of indicators which is 

Fig. 7. Level of knowledge/experience of participants in the three focus points 
of the research. 

M.H. Abbasi et al.                                                                                                                                                                                                                              



Sustainable Cities and Society 95 (2023) 104629

10

expanded in detail in Section 4.6. 
In the second part of the survey, experts are consulted via individual 

questionnaires, consisting of open-ended questions regarding each 
category of SIs. Through these questions, experts are asked to:  

○ Validate the provided list of indicators for each sustainability 
dimension.  

○ Suggest any additional indicators for the life cycle sustainability of 
the BHSs which are not being considered.  

○ Eliminate any indicators that are deemed to be irrelevant or not 
applicable to the research area.  

○ Suggest if any modifications are needed to enhance the clarity and 
functionality of the indicators. 

Achieved from the second round of refinement, 21 shortlisted SIs 
have been put under the lens of experts to be analysed at this stage. 
Indicators which are deemed incompatible or unapplicable by at least 
two experts are excluded from the analysis. On the flip side, indicators 
suggested by at least two experts are considered to be added to the final 
list. Analysing the responses from experts, two indicators are added to 
the final list of SIs as follows:  

○ The importance of embodied carbon emissions is highlighted by 
three experts as part of a whole life building assessment which has 
come into sharper focus in recent years: 

“The embodied carbon is critical to the efficient specification of the 
equipment. But it matters naught what I think once the client has 
possession of the system.” 

Recent studies show that embodied carbon associated with energy, 
mechanical, and electrical systems accounts for a large proportion of 
the building life cycle footprint (Rodriguez et al., 2020). Therefore, it 
is concluded that embodied carbon of BHSs is important enough to 
be independently taken into account in the design and 
decision-making stages. Thus, the factor of ‘Global warming poten-
tial’ is split into two separate indicators of ‘Operational carbon 
emissions’ and ‘Embodied carbon emissions’ to be able to differen-
tiate the running and embodied footprint.  

○ Concerning social indicators, `fuel poverty` is added to the list of 
indicators as the households’ struggle to pay the bills was brought up 
by three respondents: 

“Selection of heating systems is usually a factor of who pays the bills when 
it is designed. Many options are pricy to install and operate, so not an 
option for many.” 

This finding chimes with Abbasi et al. (Abbasi et al., 2022) who 
thoroughly argued that fuel poverty is an essential consideration for 
designing effective, just, and targeted energy interventions in the 
built environment, but it is often overlooked by designers and 
decision-makers. A new predictive indicator for fuel poverty is also 
devised to facilitate the inclusion of this factor in decision-making. 
Using the Potential Fuel Poverty Index (PFPI), proposed in (Abbasi 
et al., 2022), the probability of fuel poverty that different BHSs can 
pose to households can be estimated and included in sustainability 
assessments. 

Survey analysis also resulted in the exclusion of one indicator from 
the initial list. 

○ The survey is designed to gain a fresh look at the existing under-
standing and delivery of sustainable heat transitions that may lead to 
new conclusions. Thus, experts are asked to respond based on their 
own specialist perspectives. However, two respondents raise an issue 
that they were unsure of what approach to take while completing the 
questionnaire, remarking ‘Availability of funds and subsidies’ as one 
of the confusing reasons: 

Table 3 
Final list of sustainability indicators for building heating systems.  

Main criteria: 
Sustainability 
dimensions 

Sub-criteria: 
Sustainability 
indicators 

Description Unit Impact on 
sustainability 

Environmental Operational 
carbon 
emissions 

The amount of 
GHG emissions 
during the 
operational or in- 
use phase of a 
system 

kgCO₂e/ 
y 

- 

Primary 
energy 
consumption 

Demand for 
primary energy 
which has not 
undergone any 
conversion or 
transformation 

kWh/y - 

Embodied 
carbon 
emissions 

The GHG 
emissions 
associated with 
materials, 
construction, and 
end-of-life 
processes 

kgCO₂e - 

Share of 
renewable 
energy 

Share of 
renewable 
energy resources 
in gross final 
energy 
consumption 

% +

Energy 
efficiency 

The ratio of the 
final obtained 
energy and the 
overall 
consumed energy 

% +

Water 
consumption 

Life-cycle fresh 
water 
consumption of 
the heating 
systems per unit 
of energy 
generated 

kg/kWh - 

Land 
requirement 

Direct and 
indirect land use 
associated with 
the production 
and installation 
of technologies 

m2/kW - 

Acidification 
potential 

Annual SO₂, 
NOx, HCl and 
NH3 emissions 
transformed into 
SO₂ equivalents 

kgSO₂e/ 
y 

- 

Economic O&M cost Annual costs of 
operation, 
energy expenses, 
and maintenance 
of equipment 

£/y - 

Net present 
value 

Difference 
between the 
present values of 
cash inflows and 
cash outflows 
over a life cycle 

£ +

Upfront cost The total amount 
of money 
required to 
purchase and 
install the energy 
system 

£ - 

Economic 
lifetime 

The expected 
time that the 
energy system 
will remain fully 
operational 

y +

Social Health 
impacts 

Activity damage 
cost for each 

£ - 

(continued on next page) 
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“I generally feel that the answers to these questions will depend on the 
perception taken. Are these to be responded from a policy maker point of 
view as it is stated? Or low-income households? I wasn’t sure how best to 
answer in some cases like the availability of public funds.” 

The authors agree that the existing funds and support should not 
be a matter of concern in this study as it contradicts the purpose of 
the research and its critical eye on the current policies. Therefore, 
this indicator is eliminated from the list of SIs. 

In addition, some minor amendments are made in the indicators to 
improve their presentation based on the experts’ feedback. For instance, 
the term ‘job creation’ is changed to ‘employment impact’ to expand its 
indication from the number of created jobs to include the job losses. 
Accordingly, the final list of SIs is obtained and presented in Table 3. 

Overall, 22 SIs are finalised, comprised of 18% (4/22) economic, 
36% (8/22) environmental and 45% (10/22) social indicators, which 
will be the base of the sustainability assessment of BHSs. The direction of 
impact of each indicator is also given in Table 3. A positive (+) or 
negative (− ) sign is assigned to the indicators based on their direction of 
impact on sustainability. In other words, if increasing the score of an 
indicator positively contributes to sustainability, its sign is positive (+); 
otherwise, it is negative (− ). 

4.6. Prioritisation: AHP weighting method 

Several weighting methods are suggested in the literature to be used 
in the multi-criteria analyses that are reviewed in (Jahan et al., 2016). 
These methods can generally be divided into three groups as follows 
(Wang et al., 2009, Jahan et al., 2016):  

○ Subjective methods in which priority weights are assigned based on 
the judgment of decision-makers, not on the measured data or 
analysis, i.e., AHP, SIMOS, Pair-wise comparison, TRADEOFF, Del-
phi method, SMART, SWING, Best-worst method, etc.  

○ Objective methods in which mathematical models based on the 
analysis of the initial data or measured data are used for determining 
the importance of the indicators, i.e., Entropy method, TOPSIS, Least 
mean square method, Mean Weighting, etc.  

○ Combined weighting methods that integrate the two previous groups 
to strengthen the existing methods, i.e., multiplication synthesis, 
additive synthesis, game theory, etc. 

Within the context of sustainability, subjective methods have been 
widely used since they can accurately reflect the preferences of different 
stakeholders (Ren and Toniolo, 2020). The AHP, in particular, has been 
the most popular weighting technique for energy systems analyses 
(Wang et al., 2009, Ren and Toniolo, 2020). The AHP weighting method, 
first developed by Saati (Saaty, 1987), is part of a structured 
multi-criteria analysis method that relies on pairwise comparisons to 
obtain the relative importance of decision criteria. It transforms the 
quantitative or qualitative comparison indices into numerical compari-
son matrices, through which the relative importance weight of each 
criterion can be obtained. 

This research uses the AHP method to assign priority weights for the 
selected SIs. Accordingly, the third part of the questionnaire records the 
participants’ views on the level of importance of each indicator. Once 
the required data is collected, the AHP process can be followed through 
the below steps (Taylan et al., 2020, Kamaruzzaman et al., 2018):  

1 Build a hierarchical model  
2 Prioritisation based on individual judgement matrices  
3 Aggregate individual priorities to obtain the overall weights  
4 Consistency check 

The first step structures the problem into its constituent parts by 
building a hierarchical model to identify the goal of the process, criteria, 
sub-criteria, and alternatives (Kamaruzzaman et al., 2018). The hierar-
chy refers to a special form of a system presentation, in which each 
element of the system forms classified sets according to its entities and 
connections with other elements (Song and Kang, 2016). The hierar-
chical structure of the current study is presented in Fig. 8. The consec-
utive steps of the AHP process are separately discussed in the following 
sections. 

4.6.1. Prioritisation based on individual judgements 
This step is founded on the pairwise comparisons collected from the 

survey. Experts have evaluated the SIs by comparing them to each other 
with regard to their impact on the above element in the hierarchy 
structure. Comparisons are made by pairing two SIs based on the five- 
point Likert scale, as defined in Table 4. When the number of factors 

Table 3 (continued ) 

Main criteria: 
Sustainability 
dimensions 

Sub-criteria: 
Sustainability 
indicators 

Description Unit Impact on 
sustainability 

technology over 
the lifecycle 

Fuel poverty The reduction in 
fuel costs needed 
for the household 
to not be in fuel 
poverty 

£ - 

Thermal 
comfort 

Condition of 
mind derived 
from satisfaction 
with the thermal 
environment 

% +

Safety Frequency of 
serious 
occupational 
accidents and 
fatalities over the 
life cycle 

#/GWh - 

Employment 
impact 

Direct or indirect 
jobs created or 
lost during the 
life cycle of the 
energy system 

Job/ 
GWh 

+

Reliability and 
security 

Probability of 
failures which is 
the percentage of 
the equivalent 
available hours 
to the statistical 
hours 

% - 

Usability and 
functionality 

The extent to 
which the system 
is 
understandable, 
simple in use and 
adjustable. 

% +

Social 
acceptance 

Public preference 
for the utilisation 
of energy 
technology by 
the local 
population. 

% +

Acoustic 
performance 

Occupant 
satisfaction with 
the indoor 
acoustical 
environment, 
described in 
terms of 
soundproofing 
level and noise 
level 

dB - 

Aesthetic 
aspects 

Perceived visual 
connection with 
the surrounding 
landscape 

% +
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is n, the total number of n(n − 1)/2 comparisons should be made for 
establishing the comparison matrix (Song and Kang, 2016). Fig. 9 shows 
an example of pairwise comparisons needed to find the relative impor-
tance of the three dimensions of sustainability in the overall sustain-
ability performance. 

The resulting output of this procedure is the comparison (judgment) 
matrix, expressed as ratios and built to express each decision-maker’s 
preference. Pairwise comparisons are converted into comparison 
matrices to derive the individual priority vectors. According to the AHP 
procedure (Saaty, 1987), the comparison matrix An×n, based on each 
expert’s judgment, is constructed as equation 1: 

A =
(
aij
)

n×n =

⎡

⎢
⎢
⎣

a11 a12 ⋯ a1n
a21 a22 … a2n
⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ ann

⎤

⎥
⎥
⎦ (1)  

where aij is the relative importance weight of indicator i compared to 
indicator j, based on the comparison scale for AHP preferences given in 
Table 4. In fact, aij indicates experts’ opinion on how much more 
important the ith factor is than the jth factor for achieving the AHP goal, 
meeting the following conditions: 

aij= {

aij > 0, (i, j = 1, 2,…, n)
aii = 1, (i, j = 1, 2,…, n)

aij = 1
/

aji, (i, j = 1, 2,…, n)
(2) 

Once the comparison matrix is built, the weightage of indicators then 
can be computed by prioritisation. Prioritisation refers to the process of 
deriving the weight vector wi(A) = [wi]

T
= (w1,…, wn) from the com-

parison matrix An×n. The row geometric mean method (RGMM) is one of 
the most preferred methods in the prioritisation step (Dong et al., 2010). 
Crawford and Williams (Crawford and Williams, 1985) have shown that 
wi(A) unique weight vector using the RGMM can be found as follows: 

wi(A) =

(∏n
j=1aij

)1/n

∑n
i=1

(∏n
j=1aij

)1/n (3) 

Fig. 8. Analytical hierarchy model of the research.  

Table 4 
The five-point Likert scale for AHP preferences.  

Likert scale 
rating 

Definition Explanation 

1 Equal importance Two SIs contribute equally to the objective 
2 Moderately 

important 
Judgments slightly favour one SI over the 
other 

3 Strongly 
important 

Judgments strongly favour one SI over the 
other 

4 Very strongly 
important 

One SI is strongly favoured and its dominance 
is demonstrated in practice 

5 Extremely 
important 

The evidence favour one SI over another is of 
the highest possible validity  

Fig. 9. A pairwise comparison example concerning the main dimensions of sustainability.  
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where wi ≥ 0 and the wi(A) satisfies the normalisation function as 
∑n

i=1wi = 1. 
The comparison matrix and the weight vector are generated for all 25 

respondents. Fig. 10 (a) shows an example comparison matrix that is 
arrayed by the random expert A after making 28 comparisons con-
cerning environmental indicators. The weight vector corresponding to 
this comparison matrix is presented in Fig. 10 (b), where the W(A)Env 

represents the weight factor of each environmental SI based on expert 

A’s point of view. 
The variations of the weight factors obtained from the individuals’ 

judgments are displayed via the box-whisker plot in Fig. 11. A 
comparatively lower spread of weighting was observed in the case of 
social sustainability as compared to significant variations in environ-
mental and economic factors. The Net present value stands out as the 
indicator with the highest mean and median values. However, it is dis-
cussed in the next section that using the mean or median values is not the 
best method to represent the collective value of individual judgments. 

Fig. 10. Comparison matrix (a) and the corresponding weight vector based on the judgments by Expert A regarding the environmental SIs.  

Fig. 11. Variations of the indicator weights based on the judgements of individuals.  
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Table 5 
Aggregated priority weights of the sustainability dimensions and indicators.  

Main criteria Sub-criteria 
Sustainability dimensions Local weight Global weight Rank Sustainability indicators Local weight Global weight Local rank Global rank 

Environmental 0.395 0.395 1 Operational carbon emissions 0.246 0.097 1 3 
Primary energy consumption 0.209 0.082 2 4 
Embodied carbon emissions 0.125 0.049 3 7 
Share of renewable energy 0.123 0.049 4 8 
Energy efficiency 0.104 0.041 5 10 
Water consumption 0.087 0.034 6 12 
Land requirement 0.063 0.025 7 16 
Acidification potential 0.044 0.017 8 19 

Economic 0.332 0.332 2 O&M cost 0.356 0.118 1 1 
Net present value 0.340 0.113 2 2 
Upfront cost 0.203 0.067 3 5 
Economic lifetime 0.101 0.034 4 13 

Social 0.273 0.273 3 Health impacts 0.213 0.058 1 6 
Fuel poverty 0.162 0.044 2 9 
Thermal comfort 0.130 0.036 3 11 
Safety 0.107 0.029 4 14 
Employment impact 0.100 0.027 5 15 
Reliability and security 0.081 0.022 6 17 
Usability and functionality 0.065 0.018 7 18 
Social acceptance 0.062 0.017 8 20 
Acoustic performance 0.050 0.014 9 21 
Aesthetic aspects 0.031 0.008 10 22  

Fig. 12. Overall priority weights of (a) Main dimensions of sustainability; (b) Indicators of environmental sustainability; (c) Indicators of economic sustainability; (d) 
Indicators of social sustainability. 
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4.6.2. Aggregation of individual priorities 
The AHP weighting process is followed by the aggregation 

(consensus) step, in which different individual preferences are aggre-
gated to obtain a single collective preference. The term consensus in 
decision-making was traditionally known as the unanimous agreement 
of all decision-makers (Dong et al., 2010). However, since a full agree-
ment is not always achievable in real-life problems, aggregation 
methods are utilised to combine the decision-makers opinions to reach a 
collective decision. 

The aggregation method used in this study is the Aggregation of 
Individual Priorities (AIP), also called the weight aggregation technique. 
In this method, individual weight vectors are estimated and then com-
bined to obtain the consensus weight vector (Entani and Inuiguchi, 
2015). The AIP is recommended in the specialist assessment processes 
where the decision-makers are experts with individual viewpoints, no 
supra decision-maker dominates the others, and they do not want to 
compromise their judgments (de FSM Russo and Camanho, 2015). The 
AIP is also the only method that does not require an agreement on a 
common decision model (Ossadnik et al., 2016). 

Under the AIP approach, two calculation techniques, Weighted 
Geometric Mean Method (WGMM) and Weighted Arithmetic Mean 
Method (WAMM), can be used to obtain the aggregated weights (For-
man and Peniwati, 1998). The WGMM, however, is favoured by several 
researchers (Ossadnik et al., 2016, Forman and Peniwati, 1998, Krejčí 
and Stoklasa, 2018) and, therefore, is utilised in this study. Within this 
process, let wk(Ai) = [wk] = (w1,…, wm) be the individual weight vector 
derived from the individual comparison matrix Ai, made by the 
decision-maker k, and λk = (λ1,…, λm) be the weight of the 
decision-maker k where λk ≥ 0 and 

∑m
k=1λk = 1. Then the normalised 

collective weight vector, P(Ai), using the WGMM method can be ob-
tained by (Ossadnik et al., 2016): 

PWGMM(Ai) =

(∏m
k=1(wk(Ai))

λk
)1/m

∑n
i=1

(∏m
k=1(wk(Ai))

λk
)1/m (4) 

Applying this method to each group of SIs, the collective local 
weights can be obtained, as presented in Table 5. Local weights refer to 
weights of the indicators with respect to their above element in the hi-
erarchy tree; that is, their importance regarding their parent criterion. 
Whereas global weight is the multiplication of the local weight of the SI 
by its dimension, representing the weight of the SI with respect to the 
overall goal of sustainability (Chatzimouratidis and Pilavachi, 2009). 

In this study, weights of the main criteria are separately obtained 
based on expert judgments. Weighting the main sustainability di-
mensions independently and, consequently, unequally weighted di-
mensions are employed in the literature to analyse the sensitivity of 
parameters under different scenarios, e.g. in (Si et al., 2016, Ghenai 
et al., 2020). According to Table 5 and Fig. 12 (a), the environmental 
dimension has received the highest weight, followed by the economic 
and social dimensions. This could be explained by the fact that sus-
tainability is traditionally viewed and perceived in exclusively envi-
ronmental terms (Redclift, 2000). Furthermore, the social aspect of 
sustainability is less prominent in the energy and building industry 
discourses and perhaps harder to pinpoint. 

From the environmental viewpoint, the SIs related to pollution 
generally scored higher AHP weights. The Operational carbon has been 
the most crucial indicator in this group, the weight of which reaches 
0.246. Primary energy consumption also has attracted considerable 
attention from the view of the decision-makers and accounts for almost 

21% of the overall environmental score, while the two SIs at the bottom 
of the list, land requirement and acidification potential, collectively 
contribute to less than 11% of the environmental sustainability. The 
embodied carbon emissions and share of renewable energy as the third 
and fourth environmental SIs weight about half of the first indicator. The 
contribution of these indicators to the overall environmental sustain-
ability of the BHSs is illustrated in Fig. 12 (b). 

After the environmental dimension, the economic dimension was 
next in rank. This dimension is given a reasonable weight because all 
stakeholders, regardless of their sustainability knowledge and concern, 
feel directly connected to at least one of the identified economic in-
dicators. For instance, occupants are often cautious about operational 
costs while developers care more about upfront costs. Overall, the O&M 
costs dominated the economic category probably because it has a direct 
impact on the cost of living, whereas investment costs are the most 
important economic factor for industry (Chinese et al., 2011). Among 
the four economic indicators, there was only one indicator representing 
the profit (saving compared to the basic scenario) which obtained the 
second rank in the indicators list, as per Fig. 12 (c). 

Regarding social sustainability, although this dimension received a 
lower weight, it has the highest number of indicators. This could be 
explained by the fact that heating systems have more direct connections 
with human health and wellbeing than other energy systems. Thus, 
apart from the social factors that are commonly considered in different 
sectors, such as employment and safety, heating systems have a wider 
domain of impact on end-users and societies that must be explored. This 
is confirmed by the experts who added fuel poverty to the list of SIs and 
rated it as one of the most prominent indicators. The health impacts 
factor has also been given a high score because of the prevailing health 
problems and detriments that could be caused by poor indoor heat 
conditions. The least important SIs of this category are related to sub-
jective factors such as user-friendliness and aesthetical aspects, as 
illustrated in Fig. 12 (d). 

4.6.3. Consistency Check 
The AHP method has the advantage that the consistency of judg-

ments can be verified using consistency check methods. In individual 
judgments, consistency represents the condition for rational decisions, 
since the comparison matrix could be affected by the experts’ knowl-
edge, bias, and many types of misattributions. In group decision settings, 
however, the consistency check examines the homogeneity of the group 
judgments, as well as the misattributions of individuals, ensuring the 
reliability of the outcomes. 

In group decision-makings, the aggregation process holds the 
consistent properties of the individual comparison matrices (Dong and 
Cooper, 2016). P. Grošelj and L.Z. Stirn (Grošelj and Stirn, 2012) have 
proved that if the degree of consistency for each of the initial comparison 
matrices is satisfactory, then the aggregated priorities will be consistent. 
Therefore, to check the reliability of the indicator weights, the consis-
tency ratio of all the individual comparison matrices is calculated. The 
consistency ratio (CR), established by Saaty (Saaty, 1987), can be ob-
tained using equations 5 and 6: 

CR =
CI
RI

(5)  

CI =
λmax − k

k − 1
(6)  

Where CR is the consistency ratio; CI is the consistency index; k is the 
number of criteria; and RI is the random index, whose value depends on 

Table 6 
RI of random matrices.  

Matrix order 1 2 3 4 5 6 7 8 9 10 

RI 0.00 0.00 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49  
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the matrix’s dimension and can be selected from Table 6: 
And λmax is the largest eigenvalue of the judgment matrix and is 

defined by: 

λmax =
1
n
∑n

i=1

(
∑n

j=1

aij.wj

wi

)

(7) 

The expert’s judgment and its associated comparison matrix have 
acceptable inconsistency only when CR is smaller than 10%. When the 
ratio often falls beyond the threshold, inconsistency issue arises, and the 
comparison matrix needs to be reassigned and modified by decision- 
makers. The new judgments then follow the AHP process until they 
meet the consistency check requirements. Typically, when the order of 
the comparison matrix grows, as a result of the increased number of 
pairwise judgments, the inconsistency issue appears and increases 
exponentially (Asadabadi et al., 2019). 

The conducted analyses showed inconsistencies only in four matrices 
that were excluded from the aggregation process. For the rest of the 
matrices, consistency ratios range from 0.028 to 0.097, implying the 
reliability of the conducted assessments. For example, the CR factor 
corresponding to the example comparison matrix given in Fig. 11 is 
0.092 (9.2%) which meets the consistency check requirements. The re-
sults shown in Table 5 are obtained after treating the inconsistencies. 
Fig. 13 recaps the results of the study on BHSs in a pie chart. 

5. Conclusions 

The lack of a specific and applicable set of indicators is one of the 
major barriers to measuring and tracking the sustainability performance 
of energy technologies in the built environment. Current literature has 
often used the SIs developed for national-scale assessments or building 
assessment tools, which do not always reflect the nuances of three facets 
of sustainability in smaller scale applications. Furthermore, the partic-
ipation of stakeholders is essential in identifying the key sustainability 
criteria and structuring an effective and consistent analysis framework 

which presents another important lack in the relevant studies. 
To address the aforementioned gaps with specific consideration of 

the BHSs, a framework for the identification and prioritisation of the SIs 
set is proposed. The developed framework utilises a series of quantita-
tive and qualitative methods in 6 stages to ensure the reflection of the 
stakeholders’ priorities and a balanced representation of all facets of 
sustainability. Using the developed framework, a representative set of 
SIs can be determined to quantify, analyse, and communicate complex 
sustainability information through systematic, consistent, and trans-
parent measures. This framework can be broadly applied to the routine 
determination and analysis of key sustainability factors in various fields. 

Applying the developed framework to the BHSs, a total number of 25 
experts from diverse stakeholders provided their judgments. The study 
ended up with a total of 22 SIs consisting of 4 economic, 8 environ-
mental, and 10 social indicators. The environmental dimension was 
found to be the most crucial element of sustainability (39.5% of the 
overall weight), followed by the economic dimension (33.2%). It was 
also found that social sustainability constitutes a considerable propor-
tion (27.3%) of the overall sustainability weight. Based on the obtained 
priority weights, the O&M cost, net present value, and operational 
carbon emissions were the top three critical SIs. 

Further research, however, is required to determine the quantifica-
tion method associated with each identified SI. The availability of data 
for some of the SIs, mostly in social indicators, could limit the utility of 
some of the indicators in practise. Therefore, quantification methods 
should be defined based on the accessible data so that they can be 
independently used by practitioners in different analyses. Following 
that, sustainability of different low-carbon heating alternatives such as 
heat pumps, biomass boilers, and solar thermal systems should be 
assessed to determine whether they are mature enough to serve a just 
and sustainable transition. Furthermore, this study examined the func-
tionality of the proposed framework in the context of BHSs but paves the 
way for future scholarship and public policy to holistically explore the 
SIs in different domains. 

The developed SI framework is primarily developed for household- 

Fig. 13. Final set of sustainability indicators and their global priority weight.  
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scale sustainability assessments -individual BHSs- but it can also support 
larger scale evaluations such as communal systems, local interventions, 
and national strategic policies. The results from the study of BHSs 
further suggest that it is critical for policymakers to understand how 
adopting the TBL approach could shift the prevailing perceptions of a 
sustainable system. For instance, it is found that the sustainability of 
BHSs is highly susceptible to broader sociotechnical drivers such as fuel 
poverty and thermal comfort that are often disregarded in public policy. 
In conclusion, findings suggest by integrating the experts’ inclusion and 
the holistic sustainability principles, we might better understand the 
routes to achieve more sustainable transition pathways, which can 
contribute the most to the planet, profit, and the people. 
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Appendix  

Table A-1 
Categorisation of the sustainability indicators used for sustainability assessment of building energy systems.  

Dimension Indicator References 
Economic Upfront cost (Vasić, 2018, Rostam and Abbasi, 2021, Ascione et al., 2019) 

O&M cost (Vasić, 2018, Rutz et al., 2019, Saleem and Ulfat, 2019) 
Life cycle cost (Hajare and Elwakil, 2020, Rostam and Abbasi, 2021, Wu et al., 2017) 
Payback period (Zhang et al., 2019, Yang et al., 2018, Si et al., 2016) 
Net present value (Taylan et al., 2020, Fan and Xia, 2017, Borzoni et al., 2014) 
Energy cost (Siksnelyte-Butkiene et al., 2021, Rutz et al., 2019, Chou and Ongkowijoyo, 2014) 
Availability of funds and subsidies (Taylan et al., 2020, Chapman et al., 2016, Boran, 2018) 
Economic Lifetime (Taylan et al., 2020, Ghenai et al., 2020, Atabaki and Aryanpur, 2018) 
Annualised cost (Chen et al., 2020, Atilgan and Azapagic, 2016, Fonseca et al., 2021) 
Levelised cost of energy (Yang et al., 2018, Lee and Chang, 2018) 
Affordability (Väisänen et al., 2016) 
Reduced energy cost (Yang et al., 2018) 
Global cost (Rostam and Abbasi, 2021) 
Commercial viability (Hacatoglu et al., 2015) 
Market Maturity (Vasić, 2018) 
Waste disposal cost (Traverso et al., 2012) 
Benefit–cost ratio (Rostam and Abbasi, 2021) 
Share of households in costs (Kuznecova et al., 2017) 
Financial risk (Hashemi et al., 2021) 
Internal rate of return (Hashemi et al., 2021) 
Taxes and Tariff (Taylan et al., 2020) 
Discount rate for year (Džiugaitė-Tumėnienė et al., 2017) 
Residual value of technology (Džiugaitė-Tumėnienė et al., 2017) 
Life cycle flow (Rostam and Abbasi, 2021) 
End-of-life costs (Gencturk et al., 2016) 
Costs of grid connection (Streimikiene et al., 2012) 
Peak load response (Streimikiene et al., 2012) 
Sensitivity to energy price fluctuations (Zhang et al., 2019) 
Duration of implementation (Passoni et al., 2021) 
System capacity (Saleem and Ulfat, 2019) 
Technology cost (Ahmad and Tahar, 2014) 
Research & development cost (Büyüközkan and Güleryüz, 2016) 

Environmental Global warming potential (Vasić, 2018, Fonseca et al., 2021, Aberilla et al., 2020) 
Land/space requirement (Hehenberger-Risse et al., 2019, Passoni et al., 2021, Grafakos et al., 2017) 
Primary energy consumption (Russo et al., 2014, Ascione et al., 2019, Salata et al., 2017) 
Water consumption (Fonseca et al., 2021, Gencturk et al., 2016, Aberilla et al., 2020) 
PM emissions (Rutz et al., 2019, Aberilla et al., 2020, Brand and Missaoui, 2014) 
Share of renewable energy (Kuznecova et al., 2017, Yang et al., 2018, Diemuodeke et al., 2019) 
Energy efficiency (Chapman et al., 2016, Brand and Missaoui, 2014, Katal and Fazelpour, 2018) 
Acidification potential (Russo et al., 2014, Ekholm et al., 2014, Pombo et al., 2016) 
GHG saving (Yang et al., 2018, Si et al., 2016, Ren and Toniolo, 2020) 
NOx emissions (Rutz et al., 2019, Chen et al., 2020) 
SO₂ emissions (Rutz et al., 2019, Hehenberger-Risse et al., 2019) 
Fossil fuel depletion (Russo et al., 2014, Grafakos et al., 2017) 
Waste generation (Passoni et al., 2021, Kurka, 2013) 
Noise pollution (Grafakos et al., 2017, Barros et al., 2015) 
Climate change impact (Ekholm et al., 2014, Atilgan and Azapagic, 2016) 
Ozone layer depletion potential (Aberilla et al., 2020, Pombo et al., 2016) 
Abiotic depletion potential (Ren and Toniolo, 2020, Santoyo-Castelazo and Azapagic, 2014) 
Life-cycle CO₂ emission (Chen et al., 2020) 
Hazardous waste (Onat et al., 2014) 
Use of reused materials (Yadegaridehkordi et al., 2020) 
Use of recycled materials (Yadegaridehkordi et al., 2020) 
Use of local material (Diemuodeke et al., 2019) 
Biodiversity impact (Bachmann, 2013) 
Exergy efficiency (Nzila et al., 2012) 

(continued on next page) 
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