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Abstract
1. Camera traps have quickly transformed the way in which many ecologists

study the distribution of wildlife species, their activity patterns and interactions
among members of the same ecological community. Although they provide a
cost-effective method for monitoring multiple species over large spatial and
temporal scales, the time required to process the data can limit the efficiency
of camera-trap surveys. Thus, there has been considerable attention given to
the use of artificial intelligence (Al), specifically deep learning, to help process
camera-trap data. Using deep learning for these applications involves training
algorithms, such as convolutional neural networks (CNNs), to use particular fea-
tures in the camera-trap images to automatically detect objects (e.g. animals,

humans, vehicles) and to classify species.

. To help overcome the technical challenges associated with training CNNs, sev-

eral research communities have recently developed platforms that incorporate
deep learning in easy-to-use interfaces. We review key characteristics of four
Al platforms—Conservation Al, MegaDetector, MLWIC2: Machine Learning for
Wildlife Image Classification and Wildlife Insights—and two auxiliary platforms—
Camelot and Timelapse—that incorporate Al output for processing camera-trap
data. We compare their software and programming requirements, Al features,
data management tools and output format. We also provide R code and data

from our own work to demonstrate how users can evaluate model performance.

. We found that species classifications from Conservation Al, MLWIC2 and

Wildlife Insights generally had low to moderate recall. Yet, the precision for
some species and higher taxonomic groups was high, and MegaDetector and
MLWIC2 had high precision and recall when classifying images as either ‘blank’
or ‘animal’. These results suggest that most users will need to review Al predic-
tions, but that Al platforms can improve efficiency of camera-trap-data process-
ing by allowing users to filter their dataset into subsets (e.g. of certain taxonomic

groups or blanks) that can be verified using bulk actions.
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1 | INTRODUCTION

Camera traps are frequently used in ecological research to study
animal behaviour and to estimate density, relative abundance or oc-
cupancy in single- and multiple-species studies (Burton et al., 2015).
Camera traps can generate tremendous amounts of image data, and
thus, much attention has been given recently to developing artificial
intelligence (Al) approaches for processing images using deep learn-
ing algorithms. These algorithms can perform image classification
and object detection after being trained using a pre-labelled dataset
that uniquely identifies each species (or category) of interest. Al has
been widely used for removing empty images (i.e. images without
animals, also referred to blanks; Beery et al., 2018), species iden-
tification (Carl et al., 2020; Gomez Villa et al., 2017; Norouzzadeh
et al., 2018; Schneider et al., 2018; Tabak et al., 2018; Whytock
et al., 2021), counting of individuals when there is a single species
in an image (Norouzzadeh et al., 2018) and individual recognition of
animals present in the training dataset (Bogucki et al., 2018; Chen
et al., 2020; Schneider, Taylor, et al., 2020). Others have reviewed
and compared the performance of different state-of-the-art clas-
sification methods and deep learning architectures for identifying
species in camera-trap images (Norouzzadeh et al., 2018; Schneider
et al.,, 2018) and videos (Chen et al., 2019).

Although Al makes it possible to process millions of images in
short time periods (e.g. 1 million images in 24 h), large and diverse
amounts of pre-processed data may be required to train models. In
addition, the performance of Al approaches may suffer when models
are developed using unbalanced training datasets (e.g. with highly
variable numbers of images of each species; Gomez Villa et al., 2017),
small and geographically limited datasets but then applying the
model more broadly (Beery et al., 2018; Schneider, Greenberg,
et al., 2020; Tabak et al., 2018), or when applying the model to low-
resolution images (although see Gomez et al., 2016 for strategies to
improve recognition of poor-quality images using deep learning). In
addition, model creation and refinement require technical and pro-
gramming expertise beyond the limits of many ecologists (Christin
et al., 2019; Tabak et al., 2020). For example, specialized techniques
may be needed to increase the number of images of rare species
in the training dataset. Augmentation of the training data can be
performed by simulating animals on empty images and modifying
features such as animal pose, illumination and orientation (Beery
et al.,, 2020). Other alternatives of training augmentation include the

4. By reviewing features of popular Al-powered platforms and sharing an open-
source GitBook that illustrates how to manage Al output to evaluate model

performance, we hope to facilitate ecologists' use of Al to process camera-trap

artificial intelligence, camera traps, computer vision, data processing, deep learning, image
classification, remote sensing, review

re-sampling of images based on a stochastic method that includes
rare classes more frequently (Schneider, Greenberg, et al., 2020). It
can also be useful to identify particular species or sites where mod-
els perform poorly, and then use data from those species or sites to
further train available models (Tabak et al., 2020).

To reach a wider audience of camera-trap users, several ini-
tiatives have recently been launched with the goal of training Al
models with broad and diverse image datasets and creating plat-
forms that facilitate the use of Al via simple user interfaces and
software. Examples of these initiatives include Camelot (Hendry &
Mann, 2018), Conservation Al (Chalmers et al., 2019), MegaDetector
(Beery et al., 2019), MLWIC2: Machine Learning for Wildlife Image
Classification (Tabak et al., 2020), Timelapse (Greenberg et al., 2019)
and Wildlife Insights (Ahumada et al., 2020). These platforms differ
in several aspects including their ease of use, required computer and
programming skills, data management tools and whether they focus
only on coarse categorization of images or include the ability to clas-
sify species. Thus, platforms may be more or less suitable, depending
on the user's needs and abilities.

In addition to providing access to trained Al models, Al-powered
platforms can enable users to integrate Al output with standard
camera-trap-processing workflows. For example, users might want
to record additional image information not targeted by the Al model,
including specific animal features (e.g. age, sex, stripe or spot pat-
terns). Uniquely identifying characteristics, for instance, may allow
estimation of species density or abundance using spatial capture-
recapture methods (Augustine et al., 2018; Efford & Fewster, 2013;
Royle et al., 2013). Other specific animal features, such as animal
health characteristics, group sizes or animal behaviour might also be
of interest, as well as environmental conditions or signs of human
activity within the camera's field of view (Greenberg et al., 2019;
Norouzzadeh et al., 2018).

Greenberg (2020) discussed important aspects that need to be
considered before using Al for automated image recognition, includ-
ing knowing characteristics of the training dataset (e.g. species in-
cluded, number of images per species and geographical locations of
the image data). In addition, he emphasized the need to use human
verification to account for errors in Al output and provided a se-
ries of recommendations for processing camera-trap data using Al.
Specifically, he recommended that users filter images with high con-
fidence values associated with their Al predictions, and then review
these images using bulk actions (e.g. selecting multiple species and
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accepting Al labels or correcting wrong labels provided by Al). It is
important to note, however, that although higher confidence values
are generally associated with more accurate predictions, confidence
values do not provide an accurate measure of predictive uncertainty,
and high confidence values do not guarantee correct Al classifica-
tions (Guo et al., 2017).

We build on this prior work by providing an overview of some
of the Al-powered platforms currently available to the public, dis-
cuss how Al output can be integrated to process camera- trap data,
and provide a detailed walkthrough of using and evaluating each
platform in an associated online Gitbook (Vélez & Fieberg, 2022).
In Section 2, we compare fully-automated and semi-automated
image processing workflows. In Section 3, we review the features
of different Al-powered platforms for data upload, image identifi-
cation, model training and post-processing of classified images. We
consider platforms with diverse characteristics to illustrate a wide
range of options and based on our perception of their stability and
developer responsiveness. In Section 4, we evaluate the perfor-
mance of Al platforms for animal detection and species classifica-
tion using four out-of-sample datasets representing environments in
Africa, Asia, North America and South America. Finally, we discuss
the implications of our findings for users looking to incorporate an
Al platform into a workflow for processing camera-trap data. We
provide a more detailed overview of each Al platform and code for
evaluating Al performance through an open-source GitBook (Vélez
& Fieberg, 2022).

2 | WORKFLOWS: FULLY-AUTOMATED VS.
SEMI-AUTOMATED RECOGNITION

Fully automated recognition refers to pipelines in which computer
vision is used for detecting and identifying species or features in im-
ages without human review. A fully automated workflow is particu-
larly useful for projects that require near-real-time detection (e.g. for
preventing human-wildlife conflict), long-term projects with limited
human capacity for image processing, projects with multiple deploy-
ments in the same geographical region, and projects that do not re-
quire further data annotation by humans to record information not
captured by the Al model.

A fully automated recognition workflow requires a trained model
capable of identifying all classes of interest and providing highly
accurate classifications. Users that desire a fully automated work-
flow will likely need to leverage data collected from their specific
area, which may require training their own models, or using similar
area-specific models trained by others. This will ensure the model
includes the species of interest and that classifications are accurate.
Accuracy is often degraded when previously trained models are
applied to new camera locations as background scenes can differ
(Schneider, Greenberg, et al., 2020). However, accuracy for new
camera locations can be further increased by retraining models
using images from those new camera locations. Users should also be
aware that model performance may vary by species, and the impact

of mis-classifications will depend on the underlying objectives,
analysis approach and target of estimation (Schneider, Greenberg,
et al., 2020; Whytock et al., 2021).

Although a fully automated workflow sounds appealing, some
models might not reach an accuracy level that fulfils a user's needs.
Instead, a semi-automated workflow can be implemented by inte-
grating computer vision with human vision to facilitate image pro-
cessing. Semi-automated workflows may facilitate image review by
using Al output to filter and group images by categories that can
be easily inspected (Greenberg, 2020). For example, empty images
or images containing particular species with high confidence values
associated with their predictions (i.e. images with a high probability
of being correctly labelled by the model) can be filtered and quickly
reviewed and verified using batch image selection. Some platforms
allow the user to interactively change the confidence threshold (i.e.
the confidence limit used to accept Al predictions) when selecting
and filtering data (Greenberg et al., 2019). Inspecting model per-
formance across a range of confidence thresholds is advisable to
determine an appropriate threshold for batch processing. Another
common feature provided by some platforms is the display of
bounding boxes around detected animals, which can be particularly

useful for locating small mammals and birds.

3 | WHICH PLATFORM SHOULD | USE?

An initial determining factor in selecting an appropriate platform is
whether users have data that can be made public. Some platforms,
such as MegaDetector and MLWIC2, were developed to maintain
private workflows, while others, such as Wildlife Insights, are ori-
ented towards open data and public data repositories. In addition,
platforms differ in their ease of use, and a user's operating system
and internet access may also play a role in determining an appropri-
ate platform. Another important consideration is whether users only
need to discriminate between blanks and images with an animal or
whether they need accurate species classifications. Because it can
be difficult to achieve high accuracy rates when existing models
are applied to novel data and environments (Schneider, Greenberg,
et al., 2020), users will typically want to select a platform that allows
them to easily review images (using bulk selection/verification of im-
ages and image sorting/filtering) along with Al output so they can
correct mis-classified images.

In addition to Al performance, users should consider differ-
ent steps in a standard camera-trap data-processing workflow
when choosing a platform. These include (1) data organization
and management, (2) image annotation (e.g. species/individual
classification, or tagging of additional information), (3) image data
extraction (i.e. extraction of image metadata, image labels and
other annotations), (4) data exploration (i.e. summary statistics,
data analyses) and data export (i.e. output files for subsequent
analyses) (Greenberg et al., 2019; McShea et al., 2016; Niedballa
et al., 2016; Young et al., 2018). We compare Al-powered plat-
forms that perform species classifications (Conservation Al,
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MLWIC2: Machine Learning for Wildlife Image Classification and
Wildlife Insights), and animal detection (MegaDetector, MLWIC2:
Machine Learning for Wildlife Image Classification), as well as
auxiliary platforms that integrate MegaDetector output for image
processing (Camelot and Timelapse). To compare platforms, we
consider an extensive set of criteria that includes features found
in standard camera-trap processing workflows and related to the
Al modules (Tables 1 and 2).

3.1 | Wildlife Insights

Wildlife Insights is an initiative developed by a partnership between
Conservation International, Wildlife Conservation Society, World
Wildlife Fund, Zoological Society of London, the Smithsonian
Institution, North Carolina Museum of Natural Sciences, Yale
University and Google (Ahumada et al., 2020). Wildlife Insights
serves as a data library and data-sharing platform in the cloud.
Users can upload labelled or unlabelled images through a Web-
based upload tool, an application programming interface or a
desktop client. To promote data sharing and research collabora-
tion addressing ecological questions at regional or global scales
(e.g. assessment of species declines in response to climate change),
Wildlife Insights requires verified users to share their data under
a Creative Commons licence (CCO, CC BY 4.0, or CC BY-NC 4.0)
after a maximum embargo period of 48 months. Other users can
download data from the image repository using filters provided by
the interface (e.g. to select for particular species, regions, dates).
Public downloads will not contain exact coordinates of records
of threatened terrestrial vertebrates (Critically Endangered (CR),
Endangered (EN) or Vulnerable (VU) based on the IUCN Red List),
to prevent exposure of geographical location of species that might
be at risk (https://www.wildlifeinsights.org/sensitive-species, ac-
cessed on 27/06/2022). Wildlife Insights also provides tools for
using Al to detect blank images and to identify over 993 different
animal species from around the world (https://www.wildlifeinsights.
org/about-wildlife-insights-ai, accessed on 27/06/2022). Wildlife
Insights uses a model trained using EfficientNet Convolutional
Neural Networks for image classification with labelled camera-trap
images collected by Wildlife Insights partners at sites worldwide.
Wildlife Insights also provides bounding boxes in the interface,
which is powered by a custom object-detection model. While up-
loading images to Wildlife Insights, they will be processed using Al,
and then the user can download the resulting species classifications
and metadata (e.g. time and date), which is automatically extracted
by the system (Ahumada et al., 2020). Users can organize images
hierarchically (e.g. by projects, sub-projects and deployments), and
therefore Wildlife Insights can serve as a project management tool.
Wildlife Insights includes an interface to facilitate image process-
ing and verification of model classifications and to allow users to
annotate images with additional information not targeted by Al.
Images can be processed in bursts (i.e. by grouping images within
a time frame), and the cloud-based infrastructure makes it easy for

multiple collaborators to process images simultaneously. Wildlife
Insights also includes an analysis module that provides various data
summaries including species records, sites surveyed and sampling
periods.

Pros: Data organization/management system, features for image
review/annotation and multi-user environments; serves as an image
repository and provides advanced reporting and analytical capa-
bilities; tools for validating Al predictions within the platform; no
programming expertise is required to run Al models; Al models for
species classification were trained on a global scale.

Cons: Mandatory data sharing after an embargo period; cloud-
based, which makes it susceptible to connection instability and ser-
vice outages; does not include tools for model training by individual

users.

3.2 | MegaDetector

MegaDetector is a model trained using global data to detect
blanks, animals, people and vehicles from camera-trap images
(Beery et al., 2019). The MDv5 model is based on the YOLOvV5
architecture and is hosted in the Microsoft/CameraTraps GitHub
repository, where it can be downloaded by users that want to run
the model on their own (Beery et al., 2019). The MDv5 version in-
creased the running speed compared to the previous version (3-4x
faster than MDv4.1), and can process around 40,000 images per
day when using a standard computer and around 800,000 images
when using a Graphics Processing Unit (which performs efficient
computations by doing them in parallel). To run MegaDetector,
users will need to be comfortable running computer code at the
command line. Alternatively, users can contact MegaDetector de-
velopers who will then run the model for them once their data are
transferred. Although data will need to be visible to developers
during processing in this scenario, they will not be shared or re-
leased publicly.

MegaDetector provides a JSON file as output, which indicates
the locations of detected objects in each image and associated con-
fidence values for each detection. Users can run a Python script
to sort, move and organize images according to the MegaDetector
predictions. When performing this task, users can choose a specific
confidence threshold for determining which classifications should
be accepted versus considered blank (e.g. using a 0.25 confidence
threshold would classify images with confidence values less than
0.25 as ‘Blank’). MegaDetector can also facilitate an extra post-
processing step to reduce false positives (e.g. due to vegetation or
background features that MegaDetector identifies as an animal),
thereby increasing model accuracy. This step, implemented using
a Python script (see Microsoft/CameraTraps/api/batch/postpro-
cessing/), involves identifying detections that have exactly the
same bounding box across many images. Users can further pro-
cess MegaDetector output using other platforms, such as Camelot,
Timelapse and Zooniverse, as part of a semi-automated workflow to
classify species.
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TABLE 2 Overview of the requirements, tools for data management, and data exploration associated with auxiliary platforms, Camelot
and Timelapse, that integrate artificial intelligence (Al) output from MegaDetector for further camera-trap data processing

Workflow

criteria Features

Overview Description

Developers

Requirements Cost

Public data or shared with
third party during
analysis

Internet access required

Prerequisites/software

Operating system/
hardware supported

Data format

Memory/storage capacity

Data upload/import options

Al module How to use Al

Interface for Al output
validation

Data Data input schema
management

Data management system
(e.g. data organization
by projects,
deployments, locations)

Camelot

Software for management and processing of
camera-trap images. Camelot incorporates
Al output from the MegaDetector model to
facilitate camera-trap image processing

Camelot Team in consultation with Fauna & Flora
International

Free

No

For integrating MegaDetector output into Camelot
and for multi-user environments

Java Runtime, Web browser (Chrome, Firefox,
Edge), Camelot software

Specific releases for Windows, macOS, Linux and
a Java .jar release that can be used with any
operating system

JPG, PNG

Minimum physical memory requirements of
2084 MB and 4096 MB for datasets of
approximately 50,000 and 100,000 images

Images imported to Camelot by browsing files on
a local computer. Manual or CSV bulk import
of camera deployment information, including
geographical coordinates associated with each
camera and the dates it was in operation

Users must activate the ‘wildlife detection’ in
Camelot to run MegaDetector. Users must
provide an initial confidence threshold for
assigning predictions made by computer
vision. Al output can be used to filter images
containing wildlife or people

To review and annotate images, users can filter by
confidence threshold, survey or trap

Users can specify a data-entry protocol and have
complete control of any additional fields that
they would like to record besides species
classification

Data can be organized by datasets, organization,
surveys, sites, cameras. Images will be
presented in the Camelot interface that serves
as a dashboard to visualize and annotate
images, selecting one or multiple images at a
time

Timelapse

Software for management and
processing of camera-trap images
and videos. Timelapse incorporates
Al output from the MegaDetector
model to facilitate camera-trap
image processing

Saul Greenberg at University of Calgary

Free

No

Timelapse can be used offline once
the software is downloaded and
MegaDetector output is obtained

Timelapse software

Windows, Windows emulators and
Windows virtual machines

Images: JPG; Videos: AVI, MP4, ASF

Unlimited. Based on local memory/
storage capacity

Images imported to Timelapse
by browsing files on a local
computer. Camera deployment
information, including sites and
dates of deployment is retrieved
by Timelapse according to folder
structure

Users must obtain the JSON file
produced by MegaDetector and
activate the ‘automatic image
recognition’ option in Timelapse. Al
output can be used to filter blanks,
and images containing wildlife or
people

To review and annotate images, users
can filter by confidence threshold,
survey or trap

Users can specify a data-entry protocol
and have complete control of any
additional fields that they would
like to record besides species
classification

Data can be organized by datasets,
surveys, sites and cameras. Images
will be presented in the Timelapse
interface that serves as a dashboard
to visualize and annotate images,
selecting one or multiple images at
a time
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TABLE 2 (Continued)

Workflow

criteria Features

Image Features for image editing
processing (e.g. zooming, brightness

tools and contrast) and
image/metadata review

Multi-user environments

Bulk actions for image
identification (i.e.
actions performed to
multiple images at a
time)

Data filtering for image
classification

Automatic metadata import
(e.g. date image was

taken)
Image data Extraction of image labels
extraction (assigned by human

vision and Al) and image
annotations

Data exploration  Data summaries

Assessment of independent
records

Data analysis

Data export Output format and output

download

Documentation Link

References

Camelot

Image editing (brightness and contrast), and image
metadata inspection

The project owner can give remote access to
collaborators by sharing the ‘Known URLs' of
the project

Yes

By survey, camera trap station, species name and
other search criteria provided by the user (e.g.
genus, common name)

Yes

Image labels (by human vision and Al) and image
annotations

Summaries of species records, sites surveyed and
sampling periods

Users can thin data using a specified temporal
independence threshold and additional default
rules in Camelot

Provides a summary of the percentage of nocturnal
images and a Relative Abundance Index.
Generates summary tables that can be read
into r using the camTrRAPR package, or detection
matrices required to fit occupancy models in
Program PRESENCE

CSV file with rows for every image, folder names
(image path), metadata, default fields (species
name, count, sex, life stage) and other fields
specified by the user. The CSV output can be
directly generated in Camelot

Camelot

Hendry and Mann (2018)

Timelapse

Image editing (brightness, contrast and
sharpness), and image metadata
inspection

Images can be split by regions, sites, etc.,
and different MegaDetector results
files can then be generated for each
group of images. The images and
the MegaDetector results files need
to be transferred to collaborators
and stored locally where Timelapse
will run. Alternatively, multi-user
environments can be created using
a virtual machine running Windows
and Timelapse

Yes

By survey, camera trap station, species
name and other search criteria
provided by the user (e.g. date/time,
image quality, count)

Yes

Image labels (by human vision and Al)
and image annotations

No

CSV file with rows for every image,
relative path, folder names,
metadata, species name and other
fields specified by the user. The CSV
output can be directly generated in
Timelapse

Timelapse

Greenberg et al. (2019)

Pros: Easily integrates with other platforms (Camelot, Timelapse, programming expertise; Al models for detection of animals, humans

Zooniverse), which provide functionality for data organization/ and vehicles are trained on a global scale; data sharing not required;
management, image review/annotation, multi-user environments not dependent on internet connection, can run locally.
and tools for validating Al predictions; provides different op- Cons: No data repository available; does not normally provide

tions for running the model depending on a user's computer and species classifications or tools for model training by individual users.
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3.2.1 | Timelapse

Timelapse is a software program for image processing that can be
run offline, and in all versions of Microsoft Windows or other oper-
ating systems running Windows emulators. Timelapse incorporates
Al results provided by MegaDetector to accelerate further data
processing. Timelapse includes a Template Editor to allow the user
to have complete control of any additional fields that they would
like to record (e.g. vegetation characteristics associated with images
or specific animal features). The Template Editor allows the user
to specify a data-entry protocol, including the option of specify-
ing data labels with default values and data-input controls that can
prevent errors when multiple people are involved in processing the
images (Greenberg et al., 2019). To divide work between collabo-
rators, images can be split by regions, locations, etc., and different
MegaDetector results files can then be generated for each group of
images. The images and the MegaDetector results files can either
be accessed directly via network drives or transferred to collabora-
tors (e.g. using hard drives or file transfer utilities) and stored lo-
cally where Timelapse will run. Once images and the MegaDetector
results are imported to Timelapse, users can start data processing
and make use of the Al results to accelerate image revision. For ex-
ample, users will be able to display all the images predicted as blanks
by computer vision with high confidence, allowing these images
to be easily selected and marked as blanks, and if desired, quickly
reviewed for false negatives. Timelapse also provides an optional
menu setting to classify images as nocturnal.

Pros: Data organization/management system, features for image
review/annotation, multi-user environments, and tools for validat-
ing Al predictions; can incorporate MegaDetector output in data
processing workflows; software stability; no internet connection or
data sharing required.

Cons: No image repository or advanced reporting and analytical
capabilities available; for multi-user environments, images need to
be split and stored locally by each collaborator; only runs with the
Windows operating system, Windows emulators, and Windows vir-

tual machines.

3.2.2 | Camelot

Camelot was also developed for data management and processing
purposes. It provides specific releases for Windows, macOS and
Linux operating systems, and a Java .jar release can be used with any
operating system. Users have to input camera deployment informa-
tion, including a name and geographical coordinates associated with
each camera and the dates it was in operation, either by providing
the information via a Graphical User Interface or as a bulk CSV data
import. Images can be imported to the software by browsing files
on a local computer and will be presented in a Library that serves
as a dashboard where the user can visualize images, select one or
multiple images at a time, edit their brightness and contrast, and in-
spect metadata associated with each image. Users have complete

flexibility when specifying data fields to be recorded when process-
ing data.

Output from MegaDetector can be incorporated into Camelot
to facilitate a semi-automated workflow, where users can filter im-
ages containing wildlife or people. This option requires a Camelot
account and a good internet connection as it is an online service.
After registering and uploading images to the cloud, users must ac-
tivate the ‘wildlife detection’ option in the ‘administration interface’,
and Camelot will automatically run MegaDetector on these images.
When activating image recognition using MegaDetector, users must
provide an initial confidence threshold for assigning predictions
made by computer vision, but this threshold can be changed at any
time.

Camelot includes an analytical module that provides a summary
of the percentage of nocturnal images and a Relative Abundance
Index. It also generates summary tables that can be read into R
using the camTrRAPR package for managing, visualizing and tabulat-
ing camera-trap data (Niedballa et al., 2016). Camelot can also out-
put detection matrices that can be used to fit occupancy models in
Program PRESENCE (Hines, 2006; MacKenzie et al., 2002), and it
allows users to thin data using a specified temporal independence
threshold (lannarilli et al., 2019). Camelot's web interface allows
multiple users to work on the same project; the project owner can
give remote access to collaborators by sharing the ‘Known URLs’
displayed in the application. Camelot uses a Java virtual Machine to
run and has minimum physical memory requirements of 2084 and
4096 MB for datasets of approximately 50,000 and 100,000 im-
ages. More details of memory limitations and options for working
with large datasets can be found in the software documentation at
https://camelot-project.readthedocs.io/en/latest/.

Pros: Data organization/management system, features for image
review/annotation, multi-user environments, and tools for validating
Al predictions; can incorporate MegaDetector output in data pro-
cessing workflows; advanced reporting and analytical capabilities;
internet connection is not required except when running Al models
and when working with multiple collaborators; data sharing not re-
quired; works with most computer operating systems.

Cons: No image repository available; tasks (e.g. image upload,
searching images and summarizing output) can slow down as the
dataset increases in size; users might need to manually configure
Java for more efficient memory allocation when running Camelot.

3.3 | MLWIC2: Machine learning for wildlife image
classification

MLwic2 is an R package developed for detecting and classifying spe-
cies from North America (‘species_model’), although is also useful
for identifying blank images (‘empty_animal’ model) from different
geographical regions (Tabak et al., 2020). MLWIC2 allows the user to
run its Al models locally and to have an independent workflow with-
out the need of image submission. Users need to install Anaconda
Navigator, Python (3.5, 3.6 or 3.7), Rtools (for Windows computers)
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and version 1.14 of TensorFlow (Abadi et al., 2015) (see GitHub re-
pository, https://github.com/mikeyEcology/MLWIC2). Users must
know the r language and be familiar with file path specifications.
MLWIC2 will provide an output file containing image filenames and
the top five predictions for each image along with their associated
confidence values. In addition, the r package provides functionality
to train your own model using a subset of labelled images, which
could be useful for improving Al performance. We illustrate the pro-
cess used to train a model in the GitBook (Vélez & Fieberg, 2022)
using a small set of images since training a model can be computa-
tionally intensive.

Pros: Provides a module for training your own model; has a
Shiny App for interactively using its Al model, and training your own
model; data sharing not required; not dependent on internet con-
nection, can run locally.

Cons: Does not include tools for data organization/management,
image review/annotation or multi-user environments; no image re-
pository or advanced reporting and analytical capabilities available;
requires more advanced computational skills and local computing
power; the ‘species_model’ is geographically limited to species from

North America.

3.4 | Conservation Al

Conservation Al is a cloud-based platform developed at the Liverpool
John Moores University (UK) to help conservation projects use Al to
process acoustic recordings, drone images, and camera-trap images
and videos. It currently has trained models for identifying humans,
man-made objects (e.g. cars and fires), and species from the United
Kingdom, South Africa, North America and Tanzania. It provides ser-
vices for image detection and classification in near-real time from
linked devices capable of transferring images using a Simple Mail
Transfer Protocol (SMTP). Any camera can be used for real-time de-
tection as long as it supports SMTP and you have internet coverage
in your study area. Alternatively, images can be directly uploaded to
the platform using a batch upload of up to 1,000 images at a time.
Once uploaded, images are classified using the available Al models,
which can process approximately 10,000 images per hour. After run-
ning a particular model, images will be available in the platform with
their corresponding Al prediction.

In addition to the currently available models, Conservation Al
also provides a platform for image tagging and model training for
specific datasets. Users can upload images directly into the tagging
site or share them with the developers (e.g. via Google Drive) who
will then upload batches of 500 images for you. For tagging, users
will draw bounding boxes around animals in the images and label
them with the species' name; this process will create the training
dataset. Users will need to tag a minimum of 1,000 images per spe-
cies, and the available models will be updated using transfer learn-
ing based on the new tags. The tagging section contains a species
list with tags from different projects registered in the platform,
and users can request to train models using any of the tagged data

available in the platform. Conservation Al provides all of its func-
tionality in the cloud, so a good internet connection is needed. This
platform will output species identifications (for predictions above a
0.5 confidence threshold) along with associated confidence values
for each record.

Pros: No programming expertise is required to run Al models;
real-time detection capabilities; provides a module for training your
own model and a multi-user environment for compiling the training
dataset.

Cons: Does not include tools for data organization/manage-
ment or image review/annotation; no data repository or advanced
reporting and analytical capabilities available; users are dependent
on developers' availability when training models; image upload is
performed in small batches; trained models are geographically lim-
ited to species from United Kingdom, South Africa, North America
and Tanzania; images uploaded to the platform will be accessible to
Conservation Al registered users; cloud-based, which makes it sus-
ceptible to connection instability and service outages.

4 | MODEL EVALUATION

We evaluated the performance of Al platforms for animal detection
(MegaDetector and the ‘empty_animal’ model of MLWIC2) and spe-
cies classification (Conservation Al, ‘species_model’ from MLWIC2
and Wildlife Insights). We conducted out-of-sample validation by
applying models to datasets not used in model training. These data-
sets included the Snapshot Kgalagadi and SWG Camera Traps 2018-
2020 (SWG, 2021) datasets, both stored at the Labelled Information
Library of Alexandria: Biology and Conservation (LILA-BC), and the
Montana dataset collected by the Smithsonian's National Zoo and
Conservation Biology Institute through an agreement with American
Prairie (https://www.americanprairie.org/; no permit number). We
also used our own data, collected in the Colombian Orinoquia (re-
search permits issued to Universidad de los Andes, ANLA Resolution
1177, 2014; Cormacarena Resolution PM-GA. 3.20.2737) and ar-
chived in LILA-BC. Further details regarding the datasets can be
found in Table 3, and for the LILA-BC datasets, in their correspond-
ing repositories (https://lila.science/datasets).

Expert (i.e. human vision) labels were compared to classifica-
tions by the Al models associated with Wildlife Insights (predic-
tions downloaded in July 2022), MegaDetector (MDv4.1), MLWIC2
(version 1.0) and Conservation Al (predictions downloaded in July
2022) to determine how these models perform when applied to
data that were not included in their training datasets. The evalua-
tion datasets contained very few images of humans or vehicles, and
the images of humans were primarily associated with camera setup/
take down. Therefore, we removed records containing ‘human’ or
‘vehicle’ classes. Workflows describing the use of the platforms,
managing their output and comparing predictions with labels from
classified images using R software v. 4.1.3 (R Core Team, 2021) are il-
lustrated in an open-source GitBook (Vélez & Fieberg, 2022). Model
performance was evaluated using functions in the caretT package
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TABLE 3 Datasets used to evaluate artificial intelligence (Al) performance, with corresponding geographic region and number of images.
Analysis level indicates whether classifications were assigned by experts at the image or sequence level. Species and animal classifier
columns list the models assessed with each dataset. The Montana dataset was not run with MegaDetector or MLWIC2 'empty_animal’
model as the dataset only contained images with animals and empty images were previously removed. Conservation Al was only run with
snapshot Kgalagadi and the Montana dataset, as there were no other models available to classify species from Asia or South America

No. Analysis
Dataset Region images level Species classifier Animal classifier ~ Source
Montana North 5122 Image Wildlife Insights, - https://www.americanprairie.org/
America MLWIC2,
Conservation Al
Orinoquia South 112,247 Image Wildlife Insights, MegaDetector, https://lila.science/Orinoquia-
Camera Traps America MLWIC2 MLWIC2 camera-traps/
Snapshot Africa 10,222 Sequence Wildlife Insights, MegaDetector, https://lila.science/datasets/snaps
Kgalagadi MLWIC2, MLWIC2 hot-kgalagadi
Conservation Al
SWG Camera Asia 31,996 Sequence Wildlife Insights, MegaDetector, https://lila.science/datasets/swg-
Traps MLWIC2 MLWIC2 camera-traps
2018-2020

TABLE 4 Metrics used to assess artificial intelligence (Al) model performance. True positives (TP): Number of observations where the
species was correctly identified as being present in an image; true negatives (TN): Number of observations where the species was correctly
identified as being absent in an image; false positives (FP): Number of observations where the species was absent, but the Al classified the
species as being present; false negatives (FN): Number of observations where the species was present, but the Al classified the species as

being absent

Metrics Equation

Accuracy (TP+TN)/(TP+FP+TN+FN)
Precision TP/(TP+FP)

Recall TP/(TP+FN)

F1 Score 2 x precision x recall/(precision +recall)

(Kuhn, 2021) in R to estimate a confusion matrix for the observed
and predicted classes as well as model precision, recall and F1 score
(Table 4; Sokolova & Lapalme, 2009). We evaluated model perfor-
mance at the taxonomic levels of species, genus, family, order and
class. Model performance was estimated either at the image or the
sequence level, depending on how the images were classified by
experts (Table 3). We considered a range of confidence thresholds

(0.1-0.99) when comparing models.

5 | RESULTS

The performance of MegaDetector and the MLWIC2 ‘empty_ani-
mal’ model was dependent on the dataset, with the Orinoquia
Camera Traps dataset having the highest F1 score (0.96 and 0.89
for MegaDetector and MLWIC2, respectively) and the Snapshot
Kgalagadi dataset having the lowest F1 score (0.87 and 0.53 for
MegaDetector and MLWIC2, respectively) when evaluated using
a confidence threshold of 0.65 (Table 5). Precision and recall also
varied by dataset and were generally lower for MLWIC2 than
MegaDetector along a range of confidence thresholds between

Interpretation

Proportion of correct predictions in a dataset

Probability the species is correctly classified as present given that the Al
system classified it as present

Probability the species is correctly classified as present given that the
species truly is present

Weighted average of precision and recall

0.1 and 0.99 (Figure 1); precision was particularly poor when ap-
plying MLWIC2 to the Kgalagadi dataset (Table 5). Recall was low-
est for the SWG Camera Traps 2018-2020 dataset and highest for
the Orinoquia Camera Traps dataset for both MegaDetector and
MLWIC2 throughout the range of confidence thresholds evaluated
(Figure 1).

We found few matches (i.e. labels shared) between the human
and computer vision output for species classifiers (Conservation Al
MLWIC2 and Wildlife Insights), though additional matches could
be identified at higher taxonomic levels, such as the family level
(Figures 2 and 3; Table S1). Precision-recall curves for the differ-
ent datasets showed that predictions for species classifications
and higher taxonomic levels sometimes had high precision (>0.90).
However, species classifications for nearly all of the datasets had
low to moderate recall values (<0.70), suggesting that many of the
individuals present in the images where missed (Figures 2 and 3).

Classifying images at higher taxonomic levels (e.g. at the genus,
family, order or class level) typically increased the F1 score for the
categories evaluated (reported, below, using a confidence threshold
of 0.65). For Conservation Al, the highest F1 scores were obtained at
the class level (91% and 95% for the Mammalia class in the Snapshot
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Kgalagadi and Montana datasets, respectively) and at the order
level (F1 score of 91% for the Artiodactyla order in the Snapshot
Kgalagadi set) (Table S1). In addition to highly accurate predictions
for the Struthio camelus species (F1 score of 99% in the Snapshot
Kgalagadi set), Wildlife Insights also had relatively high F1 scores
at the class (79% for Mammalia in the Orinoquia Camera Traps set),
order (79% for Otidiformes in the Snapshot Kgalagadi set) and family
(79% for Otididae in the Snapshot Kgalagadi set, 83% for Cuniculidae
in the Orinoquia Camera Traps set) levels (Table S1). The highest F1
score for MLWIC2 was for the Mammalia class (77%).

6 | DISCUSSION

We found that common challenges associated with image recognition
using Al, such as low accuracy when classifying species at new loca-
tions (Schneider, Greenberg, et al., 2020; Tabak et al., 2020), and vari-
able model performance for different species (Whytock et al., 2021),
were persistent even when using models trained with broad and di-

verse image datasets. Despite these challenges, Al-powered platforms

TABLE 5 Model performance metrics for the detection of
animals in images using MegaDetector and the MLWIC2 'empty_
animal' model when applied to the Snapshot Kgalagadi (KGA),
Orinoquia camera traps (ORI) and SWG camera traps 2018-2020
(SWG) datasets. In each case, we used a confidence threshold of
0.65 when determining the classifications

Animal

Dataset classifier Precision Recall F1
KGA MegaDetector 0.82 0.93 0.87
KGA MLWIC2 0.38 0.85 0.53
ORI MegaDetector 0.98 0.93 0.96
ORI MLWIC2 0.81 0.99 0.89
SWG MegaDetector 0.99 0.78 0.87
SWG MLWIC2 0.93 0.74 0.83

(a)
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0.8 Set
c
o —e— MD_KGA
]
3 —— MD_ORI
o

0.6 —— MD_SWG

0.4

0.6 0.8 1.0

Recall

(b)

Precision

that integrate Al output can help ecologists establish more efficient
workflows for processing camera-trap images by providing tools for
data management, image annotation, metadata extraction and data
export (Greenberg, 2020). When evaluating Al platforms, users should
consider model performance, platform requirements and built-in func-
tionality (Table 1), as well as broader project needs. Al predictions can
facilitate image processing by providing bounding boxes that help
with animal localization, and accurate classifications, especially for
broader categories such as the ‘animal’ category or higher taxonomic
levels, could potentially be used to speed up processing by applying
batch operations. For example, Fennell et al. (2022) found that using
MegaDetector increased processing efficiency by 500% when com-
pared to a fully manual workflow.

Predictions at higher taxonomic levels are an important contri-
bution of Al platforms that can be leveraged by users to facilitate
image processing in semi-automated workflows; these predictions
could be used to subset and organize data for subsequent image re-
view by humans, similar to subsetting images with an animal pres-
ent using MegaDetector output or the ‘empty_animal’ model from
MLWIC2. Using higher taxonomic levels could be particularly useful
when the species of interest are not included in a species classifier,
but the model is still capable of providing high accuracy at the fam-
ily, order or class level (Tabak et al., 2022). For Conservation Al, the
MLWIC2 ‘species_model’ and Wildlife Insights, the highest F1 scores
were found at the family, order and class level, likely due to the diffi-
culty of discerning among closely related species with similar color-
ation or shape (Whytock et al., 2021).

When implementing a semi-automated workflow, it is important
to consider that users can increase recall by selecting a lower con-
fidence threshold for obtaining model predictions; decreasing the
confidence threshold will reduce the proportion of animals (or spe-
cies) missed by Al but at the expense of reducing precision (i.e. more
false positives), which may require additional human involvement in
image analysis. Projects incorporating Al in their workflows would
benefit from examining a range of confidence thresholds similar

1.0

HM“\

Set
—e— MLWIC2_KGA
—e— MLWIC2_ORI

—— MLWIC2_SWG

0.4

0.6 0.8 1.0
Recall

FIGURE 1 Precision and recall values for confidence thresholds (0.1-0.99 range) used to detect animals in images using MegaDetector (a)
and MLWIC2 (b) when applied to the Snapshot Kgalagadi (KGA), Orinoquia Camera Traps (ORI) and SWG Camera Traps 2018-2020 (SWG)

datasets. Larger points represent higher confidence thresholds.
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FIGURE 2 Precision and recall values for confidence thresholds (0.1-0.99 range) used to predict species, genus and family using Wildlife
Insights. Larger points represent higher confidence thresholds. (a-c): Snapshot Kgalagadi, (d-f): Montana, (g-i): Orinoquia camera traps, (j-I):
SWG camera traps 2018-2020. Ardeotis kori = A. kori, Canis latrans = C. latrans, Cercopithecidae = Cercopith., Dasyproctidae = Dasyproct.,
Equus caballus = E. caballus, Myrmecophagidae = Myrmecoph., Odocoileus hemionus = O. hemionus, Pecari tajacu = P. Tajacu, Puma

concolor = P. concolor, Struthio camelus = S. camelus, Sus scrofa = S. scrofa.

to Figures 2 and 3 to determine how they impact precision and re-
call. For cases where recall values are low, experts would normally

still want to review images to find the animals missed by computer

vision. Users interested in developing a fully automated workflow
for species classification will likely need to train their own models
or retrain an existing model to improve model performance, for
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FIGURE 3 Precision and recall values for a range of confidence thresholds (0.1-0.99 for MLWIC2 ‘species_model’ and 0.5-0.99 for
Conservation Al) used to predict species, genus and family in the Montana set. Larger points represent higher confidence thresholds. (a-c):
Model performance for MLWIC2, (d-f): Model performance for Conservation Al. Antilocapridae = Antilocap., Antilocapra americana = A.
americana, Canis latrans = C. latrans, Cynomys ludovicianus = C. ludovicianus, Odocoileus hemionus = O. hemionus, Odocoileus virginianus = O.
virginianus. Note, the minimum confidence threshold reported by Conservation Al is 0.5.

example, using the mwwic2 package in R or Conservation Al's infra-
structure. However, achieving high accuracy rates will still require
access to a broad and reliable training dataset.

The development of Al models for species identification is an area
of active research, and the platforms we have reviewed are under-
going continuous model development. Al models continue to be up-
dated with new data and should lead to better model performance
over time. For example, the newer version of MegaDetector (MDv5)
increased processing speed, and incorporated additional training
data to improve detection of the ‘vehicle’ class, artificial objects (e.g.
bait stations), and particular taxa (rodents, reptiles and small birds).
In addition to model updates, Al platforms continue to improve their
features for storing and managing data, and for integrating Al output
in data-processing workflows. These improvements will facilitate the
review of Al classifications by users, allowing them to correct incor-
rect classifications, to add species labels to non-blank images and to
capture other relevant information in the images (Greenberg, 2020;
Whytock et al., 2021). To date, there has been little work to develop
Al models that can identify individual characteristics (e.g. an animal's
sex or age class) or behaviours (e.g. whether animals are feeding, mov-
ing or resting). We expect deep learning will also play a significant role
in predicting these characteristics and behaviours once more data
have been collected and made available for training new models.
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