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Abstract
1.	 Camera traps have quickly transformed the way in which many ecologists 

study the distribution of wildlife species, their activity patterns and interactions 
among members of the same ecological community. Although they provide a 
cost-effective method for monitoring multiple species over large spatial and 
temporal scales, the time required to process the data can limit the efficiency 
of camera-trap surveys. Thus, there has been considerable attention given to 
the use of artificial intelligence (AI), specifically deep learning, to help process 
camera-trap data. Using deep learning for these applications involves training 
algorithms, such as convolutional neural networks (CNNs), to use particular fea-
tures in the camera-trap images to automatically detect objects (e.g. animals, 
humans, vehicles) and to classify species.

2.	 To help overcome the technical challenges associated with training CNNs, sev-
eral research communities have recently developed platforms that incorporate 
deep learning in easy-to-use interfaces. We review key characteristics of four 
AI platforms—Conservation AI, MegaDetector, MLWIC2: Machine Learning for 
Wildlife Image Classification and Wildlife Insights—and two auxiliary platforms—
Camelot and Timelapse—that incorporate AI output for processing camera-trap 
data. We compare their software and programming requirements, AI features, 
data management tools and output format. We also provide R code and data 
from our own work to demonstrate how users can evaluate model performance.

3.	 We found that species classifications from Conservation AI, MLWIC2 and 
Wildlife Insights generally had low to moderate recall. Yet, the precision for 
some species and higher taxonomic groups was high, and MegaDetector and 
MLWIC2 had high precision and recall when classifying images as either ‘blank’ 
or ‘animal’. These results suggest that most users will need to review AI predic-
tions, but that AI platforms can improve efficiency of camera-trap-data process-
ing by allowing users to filter their dataset into subsets (e.g. of certain taxonomic 
groups or blanks) that can be verified using bulk actions.
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1  |  INTRODUC TION

Camera traps are frequently used in ecological research to study 
animal behaviour and to estimate density, relative abundance or oc-
cupancy in single- and multiple-species studies (Burton et al., 2015). 
Camera traps can generate tremendous amounts of image data, and 
thus, much attention has been given recently to developing artificial 
intelligence (AI) approaches for processing images using deep learn-
ing algorithms. These algorithms can perform image classification 
and object detection after being trained using a pre-labelled dataset 
that uniquely identifies each species (or category) of interest. AI has 
been widely used for removing empty images (i.e. images without 
animals, also referred to blanks; Beery et al.,  2018), species iden-
tification (Carl et al., 2020; Gomez Villa et al., 2017; Norouzzadeh 
et al.,  2018; Schneider et al.,  2018; Tabak et al.,  2018; Whytock 
et al., 2021), counting of individuals when there is a single species 
in an image (Norouzzadeh et al., 2018) and individual recognition of 
animals present in the training dataset (Bogucki et al., 2018; Chen 
et al., 2020; Schneider, Taylor, et al., 2020). Others have reviewed 
and compared the performance of different state-of-the-art clas-
sification methods and deep learning architectures for identifying 
species in camera-trap images (Norouzzadeh et al., 2018; Schneider 
et al., 2018) and videos (Chen et al., 2019).

Although AI makes it possible to process millions of images in 
short time periods (e.g. 1 million images in 24 h), large and diverse 
amounts of pre-processed data may be required to train models. In 
addition, the performance of AI approaches may suffer when models 
are developed using unbalanced training datasets (e.g. with highly 
variable numbers of images of each species; Gomez Villa et al., 2017), 
small and geographically limited datasets but then applying the 
model more broadly (Beery et al.,  2018; Schneider, Greenberg, 
et al., 2020; Tabak et al., 2018), or when applying the model to low-
resolution images (although see Gomez et al., 2016 for strategies to 
improve recognition of poor-quality images using deep learning). In 
addition, model creation and refinement require technical and pro-
gramming expertise beyond the limits of many ecologists (Christin 
et al., 2019; Tabak et al., 2020). For example, specialized techniques 
may be needed to increase the number of images of rare species 
in the training dataset. Augmentation of the training data can be 
performed by simulating animals on empty images and modifying 
features such as animal pose, illumination and orientation (Beery 
et al., 2020). Other alternatives of training augmentation include the 

re-sampling of images based on a stochastic method that includes 
rare classes more frequently (Schneider, Greenberg, et al., 2020). It 
can also be useful to identify particular species or sites where mod-
els perform poorly, and then use data from those species or sites to 
further train available models (Tabak et al., 2020).

To reach a wider audience of camera-trap users, several ini-
tiatives have recently been launched with the goal of training AI 
models with broad and diverse image datasets and creating plat-
forms that facilitate the use of AI via simple user interfaces and 
software. Examples of these initiatives include Camelot (Hendry & 
Mann, 2018), Conservation AI (Chalmers et al., 2019), MegaDetector 
(Beery et al., 2019), MLWIC2: Machine Learning for Wildlife Image 
Classification (Tabak et al., 2020), Timelapse (Greenberg et al., 2019) 
and Wildlife Insights (Ahumada et al., 2020). These platforms differ 
in several aspects including their ease of use, required computer and 
programming skills, data management tools and whether they focus 
only on coarse categorization of images or include the ability to clas-
sify species. Thus, platforms may be more or less suitable, depending 
on the user's needs and abilities.

In addition to providing access to trained AI models, AI-powered 
platforms can enable users to integrate AI output with standard 
camera-trap-processing workflows. For example, users might want 
to record additional image information not targeted by the AI model, 
including specific animal features (e.g. age, sex, stripe or spot pat-
terns). Uniquely identifying characteristics, for instance, may allow 
estimation of species density or abundance using spatial capture–
recapture methods (Augustine et al., 2018; Efford & Fewster, 2013; 
Royle et al.,  2013). Other specific animal features, such as animal 
health characteristics, group sizes or animal behaviour might also be 
of interest, as well as environmental conditions or signs of human 
activity within the camera's field of view (Greenberg et al.,  2019; 
Norouzzadeh et al., 2018).

Greenberg (2020) discussed important aspects that need to be 
considered before using AI for automated image recognition, includ-
ing knowing characteristics of the training dataset (e.g. species in-
cluded, number of images per species and geographical locations of 
the image data). In addition, he emphasized the need to use human 
verification to account for errors in AI output and provided a se-
ries of recommendations for processing camera-trap data using AI. 
Specifically, he recommended that users filter images with high con-
fidence values associated with their AI predictions, and then review 
these images using bulk actions (e.g. selecting multiple species and 

4.	 By reviewing features of popular AI-powered platforms and sharing an open-
source GitBook that illustrates how to manage AI output to evaluate model 
performance, we hope to facilitate ecologists' use of AI to process camera-trap 
data.

K E Y W O R D S
artificial intelligence, camera traps, computer vision, data processing, deep learning, image 
classification, remote sensing, review
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accepting AI labels or correcting wrong labels provided by AI). It is 
important to note, however, that although higher confidence values 
are generally associated with more accurate predictions, confidence 
values do not provide an accurate measure of predictive uncertainty, 
and high confidence values do not guarantee correct AI classifica-
tions (Guo et al., 2017).

We build on this prior work by providing an overview of some 
of the AI-powered platforms currently available to the public, dis-
cuss how AI output can be integrated to process camera- trap data, 
and provide a detailed walkthrough of using and evaluating each 
platform in an associated online Gitbook (Vélez & Fieberg,  2022). 
In Section  2, we compare fully-automated and semi-automated 
image processing workflows. In Section 3, we review the features 
of different AI-powered platforms for data upload, image identifi-
cation, model training and post-processing of classified images. We 
consider platforms with diverse characteristics to illustrate a wide 
range of options and based on our perception of their stability and 
developer responsiveness. In Section  4, we evaluate the perfor-
mance of AI platforms for animal detection and species classifica-
tion using four out-of-sample datasets representing environments in 
Africa, Asia, North America and South America. Finally, we discuss 
the implications of our findings for users looking to incorporate an 
AI platform into a workflow for processing camera-trap data. We 
provide a more detailed overview of each AI platform and code for 
evaluating AI performance through an open-source GitBook (Vélez 
& Fieberg, 2022).

2  |  WORKFLOWS: FULLY-AUTOMATED VS. 
SEMI-AUTOMATED RECOGNITION

Fully automated recognition refers to pipelines in which computer 
vision is used for detecting and identifying species or features in im-
ages without human review. A fully automated workflow is particu-
larly useful for projects that require near-real-time detection (e.g. for 
preventing human–wildlife conflict), long-term projects with limited 
human capacity for image processing, projects with multiple deploy-
ments in the same geographical region, and projects that do not re-
quire further data annotation by humans to record information not 
captured by the AI model.

A fully automated recognition workflow requires a trained model 
capable of identifying all classes of interest and providing highly 
accurate classifications. Users that desire a fully automated work-
flow will likely need to leverage data collected from their specific 
area, which may require training their own models, or using similar 
area-specific models trained by others. This will ensure the model 
includes the species of interest and that classifications are accurate. 
Accuracy is often degraded when previously trained models are 
applied to new camera locations as background scenes can differ 
(Schneider, Greenberg, et al.,  2020). However, accuracy for new 
camera locations can be further increased by retraining models 
using images from those new camera locations. Users should also be 
aware that model performance may vary by species, and the impact 

of mis-classifications will depend on the underlying objectives, 
analysis approach and target of estimation (Schneider, Greenberg, 
et al., 2020; Whytock et al., 2021).

Although a fully automated workflow sounds appealing, some 
models might not reach an accuracy level that fulfils a user's needs. 
Instead, a semi-automated workflow can be implemented by inte-
grating computer vision with human vision to facilitate image pro-
cessing. Semi-automated workflows may facilitate image review by 
using AI output to filter and group images by categories that can 
be easily inspected (Greenberg, 2020). For example, empty images 
or images containing particular species with high confidence values 
associated with their predictions (i.e. images with a high probability 
of being correctly labelled by the model) can be filtered and quickly 
reviewed and verified using batch image selection. Some platforms 
allow the user to interactively change the confidence threshold (i.e. 
the confidence limit used to accept AI predictions) when selecting 
and filtering data (Greenberg et al.,  2019). Inspecting model per-
formance across a range of confidence thresholds is advisable to 
determine an appropriate threshold for batch processing. Another 
common feature provided by some platforms is the display of 
bounding boxes around detected animals, which can be particularly 
useful for locating small mammals and birds.

3  |  WHICH PL ATFORM SHOULD I  USE?

An initial determining factor in selecting an appropriate platform is 
whether users have data that can be made public. Some platforms, 
such as MegaDetector and MLWIC2, were developed to maintain 
private workflows, while others, such as Wildlife Insights, are ori-
ented towards open data and public data repositories. In addition, 
platforms differ in their ease of use, and a user's operating system 
and internet access may also play a role in determining an appropri-
ate platform. Another important consideration is whether users only 
need to discriminate between blanks and images with an animal or 
whether they need accurate species classifications. Because it can 
be difficult to achieve high accuracy rates when existing models 
are applied to novel data and environments (Schneider, Greenberg, 
et al., 2020), users will typically want to select a platform that allows 
them to easily review images (using bulk selection/verification of im-
ages and image sorting/filtering) along with AI output so they can 
correct mis-classified images.

In addition to AI performance, users should consider differ-
ent steps in a standard camera-trap data-processing workflow 
when choosing a platform. These include (1) data organization 
and management, (2) image annotation (e.g. species/individual 
classification, or tagging of additional information), (3) image data 
extraction (i.e. extraction of image metadata, image labels and 
other annotations), (4) data exploration (i.e. summary statistics, 
data analyses) and data export (i.e. output files for subsequent 
analyses) (Greenberg et al., 2019; McShea et al., 2016; Niedballa 
et al.,  2016; Young et al.,  2018). We compare AI-powered plat-
forms that perform species classifications (Conservation AI, 
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MLWIC2: Machine Learning for Wildlife Image Classification and 
Wildlife Insights), and animal detection (MegaDetector, MLWIC2: 
Machine Learning for Wildlife Image Classification), as well as 
auxiliary platforms that integrate MegaDetector output for image 
processing (Camelot and Timelapse). To compare platforms, we 
consider an extensive set of criteria that includes features found 
in standard camera-trap processing workflows and related to the 
AI modules (Tables 1 and 2).

3.1  |  Wildlife Insights

Wildlife Insights is an initiative developed by a partnership between 
Conservation International, Wildlife Conservation Society, World 
Wildlife Fund, Zoological Society of London, the Smithsonian 
Institution, North Carolina Museum of Natural Sciences, Yale 
University and Google (Ahumada et al.,  2020). Wildlife Insights 
serves as a data library and data-sharing platform in the cloud. 
Users can upload labelled or unlabelled images through a Web-
based upload tool, an application programming interface or a 
desktop client. To promote data sharing and research collabora-
tion addressing ecological questions at regional or global scales 
(e.g. assessment of species declines in response to climate change), 
Wildlife Insights requires verified users to share their data under 
a Creative Commons licence (CC0, CC BY 4.0, or CC BY-NC 4.0) 
after a maximum embargo period of 48 months. Other users can 
download data from the image repository using filters provided by 
the interface (e.g. to select for particular species, regions, dates). 
Public downloads will not contain exact coordinates of records 
of threatened terrestrial vertebrates (Critically Endangered (CR), 
Endangered (EN) or Vulnerable (VU) based on the IUCN Red List), 
to prevent exposure of geographical location of species that might 
be at risk (https://www.wildl​ifein​sights.org/sensi​tive-species, ac-
cessed on 27/06/2022). Wildlife Insights also provides tools for 
using AI to detect blank images and to identify over 993 different 
animal species from around the world (https://www.wildl​ifein​sights.
org/about​-wildl​ife-insig​hts-ai, accessed on 27/06/2022). Wildlife 
Insights uses a model trained using EfficientNet Convolutional 
Neural Networks for image classification with labelled camera-trap 
images collected by Wildlife Insights partners at sites worldwide. 
Wildlife Insights also provides bounding boxes in the interface, 
which is powered by a custom object-detection model. While up-
loading images to Wildlife Insights, they will be processed using AI, 
and then the user can download the resulting species classifications 
and metadata (e.g. time and date), which is automatically extracted 
by the system (Ahumada et al., 2020). Users can organize images 
hierarchically (e.g. by projects, sub-projects and deployments), and 
therefore Wildlife Insights can serve as a project management tool. 
Wildlife Insights includes an interface to facilitate image process-
ing and verification of model classifications and to allow users to 
annotate images with additional information not targeted by AI. 
Images can be processed in bursts (i.e. by grouping images within 
a time frame), and the cloud-based infrastructure makes it easy for 

multiple collaborators to process images simultaneously. Wildlife 
Insights also includes an analysis module that provides various data 
summaries including species records, sites surveyed and sampling 
periods.

Pros: Data organization/management system, features for image 
review/annotation and multi-user environments; serves as an image 
repository and provides advanced reporting and analytical capa-
bilities; tools for validating AI predictions within the platform; no 
programming expertise is required to run AI models; AI models for 
species classification were trained on a global scale.

Cons: Mandatory data sharing after an embargo period; cloud-
based, which makes it susceptible to connection instability and ser-
vice outages; does not include tools for model training by individual 
users.

3.2  |  MegaDetector

MegaDetector is a model trained using global data to detect 
blanks, animals, people and vehicles from camera-trap images 
(Beery et al.,  2019). The MDv5 model is based on the YOLOv5 
architecture and is hosted in the Microsoft/CameraTraps GitHub 
repository, where it can be downloaded by users that want to run 
the model on their own (Beery et al., 2019). The MDv5 version in-
creased the running speed compared to the previous version (3–4× 
faster than MDv4.1), and can process around 40,000 images per 
day when using a standard computer and around 800,000 images 
when using a Graphics Processing Unit (which performs efficient 
computations by doing them in parallel). To run MegaDetector, 
users will need to be comfortable running computer code at the 
command line. Alternatively, users can contact MegaDetector de-
velopers who will then run the model for them once their data are 
transferred. Although data will need to be visible to developers 
during processing in this scenario, they will not be shared or re-
leased publicly.

MegaDetector provides a JSON file as output, which indicates 
the locations of detected objects in each image and associated con-
fidence values for each detection. Users can run a Python script 
to sort, move and organize images according to the MegaDetector 
predictions. When performing this task, users can choose a specific 
confidence threshold for determining which classifications should 
be accepted versus considered blank (e.g. using a 0.25 confidence 
threshold would classify images with confidence values less than 
0.25 as ‘Blank’). MegaDetector can also facilitate an extra post-
processing step to reduce false positives (e.g. due to vegetation or 
background features that MegaDetector identifies as an animal), 
thereby increasing model accuracy. This step, implemented using 
a Python script (see Microsoft/CameraTraps/api/batch/postpro-
cessing/), involves identifying detections that have exactly the 
same bounding box across many images. Users can further pro-
cess MegaDetector output using other platforms, such as Camelot, 
Timelapse and Zooniverse, as part of a semi-automated workflow to 
classify species.
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TA B L E  2  Overview of the r​​​​equ​ire​men​ts, tools for data ​man​age​ment, and data ​exp​lor​ation ​ass​oci​ated wi​th ​aux​i​lia​ry ​platforms, Camelot 
and Timelapse, that int​egr​ate​ artificial intellige​nce​ (A​I) output from M​ega​Det​ector for​ fu​rth​er camera-trap data processing

Workflow 
criteria Features Camelot Timelapse

Overview Description Software for management and processing of 
camera-trap images. Camelot incorporates 
AI output from the MegaDetector model to 
facilitate camera-trap image processing

Software for management and 
processing of camera-trap images 
and videos. Timelapse incorporates 
AI output from the MegaDetector 
model to facilitate camera-trap 
image processing

Developers Camelot Team in consultation with Fauna & Flora 
International

Saul Greenberg at University of Calgary

Requirements Cost Free Free

Public data or shared with 
third party during 
analysis

No No

Internet access required For integrating MegaDetector output into Camelot 
and for multi-user environments

Timelapse can be used offline once 
the software is downloaded and 
MegaDetector output is obtained

Prerequisites/software Java Runtime, Web browser (Chrome, Firefox, 
Edge), Camelot software

Timelapse software

Operating system/
hardware supported

Specific releases for Windows, macOS, Linux and 
a Java .jar release that can be used with any 
operating system

Windows, Windows emulators and 
Windows virtual machines

Data format JPG, PNG Images: JPG; Videos: AVI, MP4, ASF

Memory/storage capacity Minimum physical memory requirements of 
2084 MB and 4096 MB for datasets of 
approximately 50,000 and 100,000 images

Unlimited. Based on local memory/
storage capacity

Data upload/import options Images imported to Camelot by browsing files on 
a local computer. Manual or CSV bulk import 
of camera deployment information, including 
geographical coordinates associated with each 
camera and the dates it was in operation

Images imported to Timelapse 
by browsing files on a local 
computer. Camera deployment 
information, including sites and 
dates of deployment is retrieved 
by Timelapse according to folder 
structure

AI module How to use AI Users must activate the ‘wildlife detection’ in 
Camelot to run MegaDetector. Users must 
provide an initial confidence threshold for 
assigning predictions made by computer 
vision. AI output can be used to filter images 
containing wildlife or people

Users must obtain the JSON file 
produced by MegaDetector and 
activate the ‘automatic image 
recognition’ option in Timelapse. AI 
output can be used to filter blanks, 
and images containing wildlife or 
people

Interface for AI output 
validation

To review and annotate images, users can filter by 
confidence threshold, survey or trap

To review and annotate images, users 
can filter by confidence threshold, 
survey or trap

Data 
management

Data input schema Users can specify a data-entry protocol and have 
complete control of any additional fields that 
they would like to record besides species 
classification

Users can specify a data-entry protocol 
and have complete control of any 
additional fields that they would 
like to record besides species 
classification

Data management system 
(e.g. data organization 
by projects, 
deployments, locations)

Data can be organized by datasets, organization, 
surveys, sites, cameras. Images will be 
presented in the Camelot interface that serves 
as a dashboard to visualize and annotate 
images, selecting one or multiple images at a 
time

Data can be organized by datasets, 
surveys, sites and cameras. Images 
will be presented in the Timelapse 
interface that serves as a dashboard 
to visualize and annotate images, 
selecting one or multiple images at 
a time
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Pros: Easily integrates with other platforms (Camelot, Timelapse, 
Zooniverse), which provide functionality for data organization/
management, image review/annotation, multi-user environments 
and tools for validating AI predictions; provides different op-
tions for running the model depending on a user's computer and 

programming expertise; AI models for detection of animals, humans 
and vehicles are trained on a global scale; data sharing not required; 
not dependent on internet connection, can run locally.

Cons: No data repository available; does not normally provide 
species classifications or tools for model training by individual users.

Workflow 
criteria Features Camelot Timelapse

Image 
processing 
tools

Features for image editing 
(e.g. zooming, brightness 
and contrast) and 
image/metadata review

Image editing (brightness and contrast), and image 
metadata inspection

Image editing (brightness, contrast and 
sharpness), and image metadata 
inspection

Multi-user environments The project owner can give remote access to 
collaborators by sharing the ‘Known URLs’ of 
the project

Images can be split by regions, sites, etc., 
and different MegaDetector results 
files can then be generated for each 
group of images. The images and 
the MegaDetector results files need 
to be transferred to collaborators 
and stored locally where Timelapse 
will run. Alternatively, multi-user 
environments can be created using 
a virtual machine running Windows 
and Timelapse

Bulk actions for image 
identification (i.e. 
actions performed to 
multiple images at a 
time)

Yes Yes

Data filtering for image 
classification

By survey, camera trap station, species name and 
other search criteria provided by the user (e.g. 
genus, common name)

By survey, camera trap station, species 
name and other search criteria 
provided by the user (e.g. date/time, 
image quality, count)

Automatic metadata import 
(e.g. date image was 
taken)

Yes Yes

Image data 
extraction

Extraction of image labels 
(assigned by human 
vision and AI) and image 
annotations

Image labels (by human vision and AI) and image 
annotations

Image labels (by human vision and AI) 
and image annotations

Data exploration Data summaries Summaries of species records, sites surveyed and 
sampling periods

—

Assessment of independent 
records

Users can thin data using a specified temporal 
independence threshold and additional default 
rules in Camelot

No

Data analysis Provides a summary of the percentage of nocturnal 
images and a Relative Abundance Index. 
Generates summary tables that can be read 
into r using the camtrapR package, or detection 
matrices required to fit occupancy models in 
Program PRESENCE

—

Data export Output format and output 
download

CSV file with rows for every image, folder names 
(image path), metadata, default fields (species 
name, count, sex, life stage) and other fields 
specified by the user. The CSV output can be 
directly generated in Camelot

CSV file with rows for every image, 
relative path, folder names, 
metadata, species name and other 
fields specified by the user. The CSV 
output can be directly generated in 
Timelapse

Documentation Link Camelot Timelapse

References Hendry and Mann (2018) Greenberg et al. (2019)
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3.2.1  |  Timelapse

Timelapse is a software program for image processing that can be 
run offline, and in all versions of Microsoft Windows or other oper-
ating systems running Windows emulators. Timelapse incorporates 
AI results provided by MegaDetector to accelerate further data 
processing. Timelapse includes a Template Editor to allow the user 
to have complete control of any additional fields that they would 
like to record (e.g. vegetation characteristics associated with images 
or specific animal features). The Template Editor allows the user 
to specify a data-entry protocol, including the option of specify-
ing data labels with default values and data-input controls that can 
prevent errors when multiple people are involved in processing the 
images (Greenberg et al.,  2019). To divide work between collabo-
rators, images can be split by regions, locations, etc., and different 
MegaDetector results files can then be generated for each group of 
images. The images and the MegaDetector results files can either 
be accessed directly via network drives or transferred to collabora-
tors (e.g. using hard drives or file transfer utilities) and stored lo-
cally where Timelapse will run. Once images and the MegaDetector 
results are imported to Timelapse, users can start data processing 
and make use of the AI results to accelerate image revision. For ex-
ample, users will be able to display all the images predicted as blanks 
by computer vision with high confidence, allowing these images 
to be easily selected and marked as blanks, and if desired, quickly 
reviewed for false negatives. Timelapse also provides an optional 
menu setting to classify images as nocturnal.

Pros: Data organization/management system, features for image 
review/annotation, multi-user environments, and tools for validat-
ing AI predictions; can incorporate MegaDetector output in data 
processing workflows; software stability; no internet connection or 
data sharing required.

Cons: No image repository or advanced reporting and analytical 
capabilities available; for multi-user environments, images need to 
be split and stored locally by each collaborator; only runs with the 
Windows operating system, Windows emulators, and Windows vir-
tual machines.

3.2.2  |  Camelot

Camelot was also developed for data management and processing 
purposes. It provides specific releases for Windows, macOS and 
Linux operating systems, and a Java .jar release can be used with any 
operating system. Users have to input camera deployment informa-
tion, including a name and geographical coordinates associated with 
each camera and the dates it was in operation, either by providing 
the information via a Graphical User Interface or as a bulk CSV data 
import. Images can be imported to the software by browsing files 
on a local computer and will be presented in a Library that serves 
as a dashboard where the user can visualize images, select one or 
multiple images at a time, edit their brightness and contrast, and in-
spect metadata associated with each image. Users have complete 

flexibility when specifying data fields to be recorded when process-
ing data.

Output from MegaDetector can be incorporated into Camelot 
to facilitate a semi-automated workflow, where users can filter im-
ages containing wildlife or people. This option requires a Camelot 
account and a good internet connection as it is an online service. 
After registering and uploading images to the cloud, users must ac-
tivate the ‘wildlife detection’ option in the ‘administration interface’, 
and Camelot will automatically run MegaDetector on these images. 
When activating image recognition using MegaDetector, users must 
provide an initial confidence threshold for assigning predictions 
made by computer vision, but this threshold can be changed at any 
time.

Camelot includes an analytical module that provides a summary 
of the percentage of nocturnal images and a Relative Abundance 
Index. It also generates summary tables that can be read into R 
using the camtrapR package for managing, visualizing and tabulat-
ing camera-trap data (Niedballa et al., 2016). Camelot can also out-
put detection matrices that can be used to fit occupancy models in 
Program PRESENCE (Hines,  2006; MacKenzie et al.,  2002), and it 
allows users to thin data using a specified temporal independence 
threshold (Iannarilli et al.,  2019). Camelot's web interface allows 
multiple users to work on the same project; the project owner can 
give remote access to collaborators by sharing the ‘Known URLs’ 
displayed in the application. Camelot uses a Java virtual Machine to 
run and has minimum physical memory requirements of 2084 and 
4096 MB for datasets of approximately 50,000 and 100,000 im-
ages. More details of memory limitations and options for working 
with large datasets can be found in the software documentation at 
https://camel​ot-proje​ct.readt​hedocs.io/en/lates​t/.

Pros: Data organization/management system, features for image 
review/annotation, multi-user environments, and tools for validating 
AI predictions; can incorporate MegaDetector output in data pro-
cessing workflows; advanced reporting and analytical capabilities; 
internet connection is not required except when running AI models 
and when working with multiple collaborators; data sharing not re-
quired; works with most computer operating systems.

Cons: No image repository available; tasks (e.g. image upload, 
searching images and summarizing output) can slow down as the 
dataset increases in size; users might need to manually configure 
Java for more efficient memory allocation when running Camelot.

3.3  |  MLWIC2: Machine learning for wildlife image 
classification

mlwic2 is an r package developed for detecting and classifying spe-
cies from North America (‘species_model’), although is also useful 
for identifying blank images (‘empty_animal’ model) from different 
geographical regions (Tabak et al., 2020). MLWIC2 allows the user to 
run its AI models locally and to have an independent workflow with-
out the need of image submission. Users need to install Anaconda 
Navigator, Python (3.5, 3.6 or 3.7), Rtools (for Windows computers) 
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and version 1.14 of TensorFlow (Abadi et al., 2015) (see GitHub re-
pository, https://github.com/mikey​Ecolo​gy/MLWIC2). Users must 
know the r language and be familiar with file path specifications. 
MLWIC2 will provide an output file containing image filenames and 
the top five predictions for each image along with their associated 
confidence values. In addition, the r package provides functionality 
to train your own model using a subset of labelled images, which 
could be useful for improving AI performance. We illustrate the pro-
cess used to train a model in the GitBook (Vélez & Fieberg, 2022) 
using a small set of images since training a model can be computa-
tionally intensive.

Pros: Provides a module for training your own model; has a 
Shiny App for interactively using its AI model, and training your own 
model; data sharing not required; not dependent on internet con-
nection, can run locally.

Cons: Does not include tools for data organization/management, 
image review/annotation or multi-user environments; no image re-
pository or advanced reporting and analytical capabilities available; 
requires more advanced computational skills and local computing 
power; the ‘species_model’ is geographically limited to species from 
North America.

3.4  |  Conservation AI

Conservation AI is a cloud-based platform developed at the Liverpool 
John Moores University (UK) to help conservation projects use AI to 
process acoustic recordings, drone images, and camera-trap images 
and videos. It currently has trained models for identifying humans, 
man-made objects (e.g. cars and fires), and species from the United 
Kingdom, South Africa, North America and Tanzania. It provides ser-
vices for image detection and classification in near-real time from 
linked devices capable of transferring images using a Simple Mail 
Transfer Protocol (SMTP). Any camera can be used for real-time de-
tection as long as it supports SMTP and you have internet coverage 
in your study area. Alternatively, images can be directly uploaded to 
the platform using a batch upload of up to 1,000 images at a time. 
Once uploaded, images are classified using the available AI models, 
which can process approximately 10,000 images per hour. After run-
ning a particular model, images will be available in the platform with 
their corresponding AI prediction.

In addition to the currently available models, Conservation AI 
also provides a platform for image tagging and model training for 
specific datasets. Users can upload images directly into the tagging 
site or share them with the developers (e.g. via Google Drive) who 
will then upload batches of 500 images for you. For tagging, users 
will draw bounding boxes around animals in the images and label 
them with the species' name; this process will create the training 
dataset. Users will need to tag a minimum of 1,000 images per spe-
cies, and the available models will be updated using transfer learn-
ing based on the new tags. The tagging section contains a species 
list with tags from different projects registered in the platform, 
and users can request to train models using any of the tagged data 

available in the platform. Conservation AI provides all of its func-
tionality in the cloud, so a good internet connection is needed. This 
platform will output species identifications (for predictions above a 
0.5 confidence threshold) along with associated confidence values 
for each record.

Pros: No programming expertise is required to run AI models; 
real-time detection capabilities; provides a module for training your 
own model and a multi-user environment for compiling the training 
dataset.

Cons: Does not include tools for data organization/manage-
ment or image review/annotation; no data repository or advanced 
reporting and analytical capabilities available; users are dependent 
on developers' availability when training models; image upload is 
performed in small batches; trained models are geographically lim-
ited to species from United Kingdom, South Africa, North America 
and Tanzania; images uploaded to the platform will be accessible to 
Conservation AI registered users; cloud-based, which makes it sus-
ceptible to connection instability and service outages.

4  |  MODEL E VALUATION

We evaluated the performance of AI platforms for animal detection 
(MegaDetector and the ‘empty_animal’ model of MLWIC2) and spe-
cies classification (Conservation AI, ‘species_model’ from MLWIC2 
and Wildlife Insights). We conducted out-of-sample validation by 
applying models to datasets not used in model training. These data-
sets included the Snapshot Kgalagadi and SWG Camera Traps 2018–
2020 (SWG, 2021) datasets, both stored at the Labelled Information 
Library of Alexandria: Biology and Conservation (LILA-BC), and the 
Montana dataset collected by the Smithsonian's National Zoo and 
Conservation Biology Institute through an agreement with American 
Prairie (https://www.ameri​canpr​airie.org/; no permit number). We 
also used our own data, collected in the Colombian Orinoquía (re-
search permits issued to Universidad de los Andes, ANLA Resolution 
1177, 2014; Cormacarena Resolution PM-GA. 3.20.2737) and ar-
chived in LILA-BC. Further details regarding the datasets can be 
found in Table 3, and for the LILA-BC datasets, in their correspond-
ing repositories (https://lila.scien​ce/datasets).

Expert (i.e. human vision) labels were compared to classifica-
tions by the AI models associated with Wildlife Insights (predic-
tions downloaded in July 2022), MegaDetector (MDv4.1), MLWIC2 
(version 1.0) and Conservation AI (predictions downloaded in July 
2022) to determine how these models perform when applied to 
data that were not included in their training datasets. The evalua-
tion datasets contained very few images of humans or vehicles, and 
the images of humans were primarily associated with camera setup/
take down. Therefore, we removed records containing ‘human’ or 
‘vehicle’ classes. Workflows describing the use of the platforms, 
managing their output and comparing predictions with labels from 
classified images using R software v. 4.1.3 (R Core Team, 2021) are il-
lustrated in an open-source GitBook (Vélez & Fieberg, 2022). Model 
performance was evaluated using functions in the caret package 
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(Kuhn, 2021) in R to estimate a confusion matrix for the observed 
and predicted classes as well as model precision, recall and F1 score 
(Table 4; Sokolova & Lapalme, 2009). We evaluated model perfor-
mance at the taxonomic levels of species, genus, family, order and 
class. Model performance was estimated either at the image or the 
sequence level, depending on how the images were classified by 
experts (Table 3). We considered a range of confidence thresholds 
(0.1–0.99) when comparing models.

5  |  RESULTS

The performance of MegaDetector and the MLWIC2 ‘empty_ani-
mal’ model was dependent on the dataset, with the Orinoquía 
Camera Traps dataset having the highest F1 score (0.96 and 0.89 
for MegaDetector and MLWIC2, respectively) and the Snapshot 
Kgalagadi dataset having the lowest F1 score (0.87 and 0.53 for 
MegaDetector and MLWIC2, respectively) when evaluated using 
a confidence threshold of 0.65 (Table  5). Precision and recall also 
varied by dataset and were generally lower for MLWIC2 than 
MegaDetector along a range of confidence thresholds between 

0.1 and 0.99 (Figure  1); precision was particularly poor when ap-
plying MLWIC2 to the Kgalagadi dataset (Table 5). Recall was low-
est for the SWG Camera Traps 2018-2020 dataset and highest for 
the Orinoquía Camera Traps dataset for both MegaDetector and 
MLWIC2 throughout the range of confidence thresholds evaluated 
(Figure 1).

We found few matches (i.e. labels shared) between the human 
and computer vision output for species classifiers (Conservation AI, 
MLWIC2 and Wildlife Insights), though additional matches could 
be identified at higher taxonomic levels, such as the family level 
(Figures  2 and 3; Table  S1). Precision–recall curves for the differ-
ent datasets showed that predictions for species classifications 
and higher taxonomic levels sometimes had high precision (>0.90). 
However, species classifications for nearly all of the datasets had 
low to moderate recall values (<0.70), suggesting that many of the 
individuals present in the images where missed (Figures 2 and 3).

Classifying images at higher taxonomic levels (e.g. at the genus, 
family, order or class level) typically increased the F1 score for the 
categories evaluated (reported, below, using a confidence threshold 
of 0.65). For Conservation AI, the highest F1 scores were obtained at 
the class level (91% and 95% for the Mammalia class in the Snapshot 

TA B L E  4  Metrics used to assess artificial intelligence (AI) model performance. True positives (TP): Number of observations where the 
species was correctly identified as being present in an image; true negatives (TN): Number of observations where the species was correctly 
identified as being absent in an image; false positives (FP): Number of observations where the species was absent, but the AI classified the 
species as being present; false negatives (FN): Number of observations where the species was present, but the AI classified the species as 
being absent

Metrics Equation Interpretation

Accuracy (TP + TN)/(TP + FP + TN + FN) Proportion of correct predictions in a dataset

Precision TP/(TP + FP) Probability the species is correctly classified as present given that the AI 
system classified it as present

Recall TP/(TP + FN) Probability the species is correctly classified as present given that the 
species truly is present

F1 Score 2 × precision × recall/(precision + recall) Weighted average of precision and recall

TA B L E  3  Datasets used to evaluate artificial intelligence (AI) performance, with corresponding geographic region and number of images. 
Analysis level indicates whether classifications were assigned by experts at the image or sequence level. Species and animal classifier 
columns list the models assessed with each dataset. The Montana dataset was not run with MegaDetector or MLWIC2 'empty_animal' 
model as the dataset only contained images with animals and empty images were previously removed. Conservation AI was only run with 
snapshot Kgalagadi and the Montana dataset, as there were no other models available to classify species from Asia or South America

Dataset Region
No. 
images

Analysis 
level Species classifier Animal classifier Source

Montana North 
America

5,122 Image Wildlife Insights, 
MLWIC2, 
Conservation AI

— https://www.ameri​canpr​airie.org/

Orinoquía 
Camera Traps

South 
America

112,247 Image Wildlife Insights, 
MLWIC2

MegaDetector, 
MLWIC2

https://lila.scien​ce/Orino​quia-
camer​a-traps/

Snapshot 
Kgalagadi

Africa 10,222 Sequence Wildlife Insights, 
MLWIC2, 
Conservation AI

MegaDetector, 
MLWIC2

https://lila.scien​ce/datas​ets/snaps​
hot-kgala​gadi

SWG Camera 
Traps 
2018–2020

Asia 31,996 Sequence Wildlife Insights, 
MLWIC2

MegaDetector, 
MLWIC2

https://lila.scien​ce/datas​ets/swg-
camer​a-traps
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Kgalagadi and Montana datasets, respectively) and at the order 
level (F1 score of 91% for the Artiodactyla order in the Snapshot 
Kgalagadi set) (Table S1). In addition to highly accurate predictions 
for the Struthio camelus species (F1 score of 99% in the Snapshot 
Kgalagadi set), Wildlife Insights also had relatively high F1 scores 
at the class (79% for Mammalia in the Orinoquía Camera Traps set), 
order (79% for Otidiformes in the Snapshot Kgalagadi set) and family 
(79% for Otididae in the Snapshot Kgalagadi set, 83% for Cuniculidae 
in the Orinoquía Camera Traps set) levels (Table S1). The highest F1 
score for MLWIC2 was for the Mammalia class (77%).

6  |  DISCUSSION

We found that common challenges associated with image recognition 
using AI, such as low accuracy when classifying species at new loca-
tions (Schneider, Greenberg, et al., 2020; Tabak et al., 2020), and vari-
able model performance for different species (Whytock et al., 2021), 
were persistent even when using models trained with broad and di-
verse image datasets. Despite these challenges, AI-powered platforms 

that integrate AI output can help ecologists establish more efficient 
workflows for processing camera-trap images by providing tools for 
data management, image annotation, metadata extraction and data 
export (Greenberg, 2020). When evaluating AI platforms, users should 
consider model performance, platform requirements and built-in func-
tionality (Table 1), as well as broader project needs. AI predictions can 
facilitate image processing by providing bounding boxes that help 
with animal localization, and accurate classifications, especially for 
broader categories such as the ‘animal’ category or higher taxonomic 
levels, could potentially be used to speed up processing by applying 
batch operations. For example, Fennell et al. (2022) found that using 
MegaDetector increased processing efficiency by 500% when com-
pared to a fully manual workflow.

Predictions at higher taxonomic levels are an important contri-
bution of AI platforms that can be leveraged by users to facilitate 
image processing in semi-automated workflows; these predictions 
could be used to subset and organize data for subsequent image re-
view by humans, similar to subsetting images with an animal pres-
ent using MegaDetector output or the ‘empty_animal’ model from 
MLWIC2. Using higher taxonomic levels could be particularly useful 
when the species of interest are not included in a species classifier, 
but the model is still capable of providing high accuracy at the fam-
ily, order or class level (Tabak et al., 2022). For Conservation AI, the 
MLWIC2 ‘species_model’ and Wildlife Insights, the highest F1 scores 
were found at the family, order and class level, likely due to the diffi-
culty of discerning among closely related species with similar color-
ation or shape (Whytock et al., 2021).

When implementing a semi-automated workflow, it is important 
to consider that users can increase recall by selecting a lower con-
fidence threshold for obtaining model predictions; decreasing the 
confidence threshold will reduce the proportion of animals (or spe-
cies) missed by AI but at the expense of reducing precision (i.e. more 
false positives), which may require additional human involvement in 
image analysis. Projects incorporating AI in their workflows would 
benefit from examining a range of confidence thresholds similar 

F I G U R E  1  Precision and recall values for confidence thresholds (0.1–0.99 range) used to detect animals in images using MegaDetector (a) 
and MLWIC2 (b) when applied to the Snapshot Kgalagadi (KGA), Orinoquía Camera Traps (ORI) and SWG Camera Traps 2018–2020 (SWG) 
datasets. Larger points represent higher confidence thresholds.
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TA B L E  5  Model performance metrics for the detection of 
animals in images using MegaDetector and the MLWIC2 'empty_
animal' model when applied to the Snapshot Kgalagadi (KGA), 
Orinoquía camera traps (ORI) and SWG camera traps 2018–2020 
(SWG) datasets. In each case, we used a confidence threshold of 
0.65 when determining the classifications

Dataset
Animal 
classifier Precision Recall F1

KGA MegaDetector 0.82 0.93 0.87

KGA MLWIC2 0.38 0.85 0.53

ORI MegaDetector 0.98 0.93 0.96

ORI MLWIC2 0.81 0.99 0.89

SWG MegaDetector 0.99 0.78 0.87

SWG MLWIC2 0.93 0.74 0.83
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to Figures 2 and 3 to determine how they impact precision and re-
call. For cases where recall values are low, experts would normally 
still want to review images to find the animals missed by computer 

vision. Users interested in developing a fully automated workflow 
for species classification will likely need to train their own models 
or retrain an existing model to improve model performance, for 

F I G U R E  2  Precision and recall values for confidence thresholds (0.1–0.99 range) used to predict species, genus and family using Wildlife 
Insights. Larger points represent higher confidence thresholds. (a–c): Snapshot Kgalagadi, (d–f): Montana, (g–i): Orinoquía camera traps, (j–l): 
SWG camera traps 2018–2020. Ardeotis kori = A. kori, Canis latrans = C. latrans, Cercopithecidae = Cercopith., Dasyproctidae = Dasyproct., 
Equus caballus = E. caballus, Myrmecophagidae = Myrmecoph., Odocoileus hemionus = O. hemionus, Pecari tajacu = P. Tajacu, Puma 
concolor = P. concolor, Struthio camelus = S. camelus, Sus scrofa = S. scrofa.

0.0

0.3

0.6

0.9

0.0 0.3 0.6 0.9

Species
A. kori
S. camelus

(a)

0.0

0.3

0.6

0.9

0.0 0.3 0.6 0.9

Genus
Ardeotis
Canis
Struthio

(b)

0.0

0.3

0.6

0.9

0.0 0.3 0.6 0.9

Family
Bovidae
Canidae
Otididae
Struthionidae

(c)

0.0

0.3

0.6

0.9

0.0 0.3 0.6 0.9

Species
C. latrans
O. hemionus

(d)

0.0

0.3

0.6

0.9

0.0 0.3 0.6 0.9

Genus
Canis
Odocoileus

(e)

0.0

0.3

0.6

0.9

0.0 0.3 0.6 0.9

Family
Bovidae
Canidae
Cervidae

(f)

0.0

0.3

0.6

0.9

0.0 0.3 0.6 0.9

Species
E. caballus
P. concolor
P. tajacu

(g)

0.0

0.3

0.6

0.9

0.0 0.3 0.6 0.9

Genus
Bos
Dasyprocta
Dasypus
Equus
Leopardus
Mazama
Nasua
Odocoileus
Pecari
Penelope
Puma
Sciurus
Tapirus

(h)

0.0

0.3

0.6

0.9

0.0 0.3 0.6 0.9

Family
Bovidae
Canidae
Cervidae
Cracidae
Cuniculidae
Dasypodidae
Dasyproct.
Didelphidae
Equidae
Felidae
Mustelidae
Myrmecoph.
Procyonidae
Sciuridae
Tapiridae
Tayassuidae

(i)

0.0

0.3

0.6

0.9

0.0 0.3 0.6 0.9

Species
S. scrofa

(j)

0.0

0.3

0.6

0.9

0.0 0.3 0.6 0.9

Genus
Macaca
Sus

(k)

0.0

0.3

0.6

0.9

0.0 0.3 0.6 0.9

Family
Bovidae
Cercopith.
Cervidae
Phasianidae
Sciuridae
Suidae
Viverridae

(l)

Recall

Pr
ec

is
io

n

 2041210x, 2023, 2, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14044 by T
est, W

iley O
nline L

ibrary on [16/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  475Methods in Ecology and Evolu
onVÉLEZ et al.

example, using the mlwic2 package in r or Conservation AI's infra-
structure. However, achieving high accuracy rates will still require 
access to a broad and reliable training dataset.

The development of AI models for species identification is an area 
of active research, and the platforms we have reviewed are under-
going continuous model development. AI models continue to be up-
dated with new data and should lead to better model performance 
over time. For example, the newer version of MegaDetector (MDv5) 
increased processing speed, and incorporated additional training 
data to improve detection of the ‘vehicle’ class, artificial objects (e.g. 
bait stations), and particular taxa (rodents, reptiles and small birds). 
In addition to model updates, AI platforms continue to improve their 
features for storing and managing data, and for integrating AI output 
in data-processing workflows. These improvements will facilitate the 
review of AI classifications by users, allowing them to correct incor-
rect classifications, to add species labels to non-blank images and to 
capture other relevant information in the images (Greenberg, 2020; 
Whytock et al., 2021). To date, there has been little work to develop 
AI models that can identify individual characteristics (e.g. an animal's 
sex or age class) or behaviours (e.g. whether animals are feeding, mov-
ing or resting). We expect deep learning will also play a significant role 
in predicting these characteristics and behaviours once more data 
have been collected and made available for training new models.
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