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Abstract: A fracture mechanics-based fatigue reliability analysis of a submarine pipeline is investi-
gated using the Bayesian approach. The proposed framework enables the estimation of the reliability
level of submarine pipelines based on limited experimental data. Bayesian updating method and
Markov Chain Monte Carlo simulation are used to estimate the posterior distribution of the parame-
ters of a fracture mechanics-based fatigue model regarding different sources of uncertainties. Failure
load cycle distribution and the reliability-based performance assessment of API 5L X56 submarine
pipelines as a case study are estimated for three different cases. In addition, the impact of different
parameters, including the stress ratio, maximum load, uncertainties of stress range and initial crack
size, corrosion-enhanced factor, and also the correlation between material parameters on the reli-
ability of the investigated submarine pipeline has been indicated through a sensitivity study. The
applied approach in this study may be used for uncertainty modelling and fatigue reliability-based
performance assessment of different types of submarine pipelines for maintenance and periodic
inspection planning.

Keywords: fatigue reliability; submarine pipeline; Bayesian approach; fracture mechanics

1. Introduction

Submarine pipelines are a key element in any offshore oil field development [1] and
they are regarded as the main structures for the transportation of oil and gas on the seabed.
These structures are exposed to a harsh seawater environment, which may lead to the
deterioration of structural properties [2]. Corrosion on the pipe surface after a long time of
servicing in the seawater environment is one of the common deterioration mechanisms in
pipelines [3].

In addition, due to the erosion and unevenness of the seabed, a gap is often formed
between some segments of the pipeline and the surface of the seabed. Periodic vibration
may occur when the frequency of the vortex generated by current flows is close to the
frequency of the free-spanning pipeline [4,5]. The long-term vibration may lead to fatigue
failure of the pipeline. Also, motions of floating platforms, thermal cycles, and start-up and
shut-down cycles have been regarded as another source of fatigue [6].

Additionally, the corrosive environment significantly affects the crack nucleation stage
and reduces fatigue strength in dry air conditions [7]. Corrosion may enhance fatigue crack
growth in the presence of cyclic loads, once cracks are initiated [8,9]. Therefore, corrosion
fatigue crack growth is one of the most frequent phenomena which leads to the cracking of
subsea pipelines resulting in a reduction of the resistance capacity and loss of asset integrity
during their service life [5]. Although submarine pipelines are usually associated with the
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use of high-quality materials and innovative technology, the failure of these structures may
result in serious environmental and economic consequences [10].

Fatigue cracking is affected by different kinds of uncertainties, including material
properties, model choice, and its parameters, measurement data such as the number of
cycles and crack length, and also simplification and idealization in analytical and numerical
evaluations [11,12]. Therefore, the fatigue process should be considered a stochastic prob-
lem taking into account different sources of variability and uncertainty [13]. Probabilistic
models related to structural deterioration are needed for planning structural maintenance
and risk-based decision for marine structures [14–17]. Reliability methods provide a frame-
work to consider the uncertainties and stochastic behaviour of the random variables on
safety assessment and service-life prediction of structures which are important steps for
risk-based maintenance and periodic inspection.

Limit state-based and data-based are the two main approaches in reliability analysis.
The former approach is based on structural reliability theory combined with degradation
models of structural resistance. In this approach, statistical information related to the basic
variables of the limit state function is required. Ultimate, serviceability, and fatigue are
major common limit states in structures. Ultimate limit state-based has been largely used
in the reliability assessment of pipelines in recent years [18–22]. Also, a few studies have
investigated the reliability level of pipelines regarding fatigue limit state. Shabani et al. [23]
estimated the fatigue failure probability of subsea pipelines due to the vortex-induced
vibration. He and Zhou [24] investigated the fatigue reliability of dented pipelines. They
applied the S-N curve to define the limit state function. Also, Pinheiro et al. [25] proposed
a new fatigue life assessment methodology for steel pipelines containing plain dents. They
defined analytical expressions to estimate stress concentration factors for different types of
dent shapes.

Another approach for estimating the reliability of structures is based on the statistical
analysis of the failure data. The accuracy of this approach depends on the quality and
quantity of the experimental data [13]. Garbatov and Guedes Soares [14] used historical
data for structural maintenance planning of corroded deck plates of tankers. They also used
the data-based approach to fatigue reliability assessment of dented pipelines by estimating
the distribution of the number of load cycles to achieve crack initiation. They assumed
Weibull distribution for the failure load cycles that fit the limited experimental data. Dong
et al. [26] investigated the fatigue reliability of single-sided girth welds in offshore pipelines
and risers based on the calibration of the crack propagation analyses to the S–N data.

S-N curve-based damage mechanics and fracture mechanics are the two main ap-
proaches to estimating the crack initiation and crack propagation of marine structures due
to cyclic loads, respectively [27]. Most of the previous research on fatigue reliability-based
assessment of pipelines concentrated on the S-N curve based on damage mechanics [14,24].
The S-N curve predicts the strength of non-cracked structures based on the crack initiation
of a critical section as a function of the number of load cycles [28]. The curve is depicted
by applying cyclic loads on smooth and non-cracked specimens [2]. However, mechanical
damages in the form of cracks and defects are inevitable in the pipeline due to the operation
activities, fabrication errors, and also corrosive seawater environment [29]. The fracture
mechanics approaches take into account the initial cracks in fatigue life assessment and can
be used in risk and reliability analysis of cracked structural components.

The main purpose of this study is to investigate the fracture mechanics-based fatigue
reliability analysis of submarine pipelines in a corrosive environment. The main challenge
in the fatigue reliability assessment of cracked pipelines is the lack of sufficient experimental
or field data since the production of experimental fatigue data to construct a distribution
is difficult and time-consuming. With such limited data, the Bayesian approach can be
suitable. This approach has been applied for reliability assessment and maintenance and
inspection planning of structures [30–33].

In this study, the Bayesian method is used to incorporate limited experimental data
into a fracture mechanics-based model of fatigue to estimate the reliability of pipelines. The
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proposed methodology to estimate the fatigue failure probability has three main steps. At
first, the probabilistic distribution of the parameters of the fatigue model is obtained using
the Bayesian updating approach regarding associated uncertainties. Then, the distribution
of load cycles at the critical size is estimated based on the updated model and defined
limit state function. Markov Chain Monte Carlo (MCMC) simulation is used for draws the
samples of the distribution. Finally, having a large number of generated failure data, the
fatigue failure probability of pipelines can be calculated using the data-based reliability
approach. The approach applied in this study is based on the limited experimental data
related to the corrosion fatigue crack growth of serviced API 5L X56 submarine pipelines.

This study is organized as follows: In Section 2, a fatigue crack growth model based on
Paris’ law is introduced. Available experimental data for API 5L X56 submarine pipelines
is presented in Section 3. In Section 4, probabilistic modelling of fatigue crack growth
is developed based on the Bayesian approach for submarine pipeline, and the updated
distribution of model parameters is obtained based on the experimental data and physic-
based fatigue model. Finally, the reliability level of a submarine pipeline is evaluated,
and the effect of different parameters on reliability analysis is investigated through a
sensitivity study.

2. Fatigue Crack Growth Model

In general, the fatigue crack growth process includes three regions: Region I, which
represents the early development of a fatigue crack with a small value of the crack growth
rate, region II which represents the intermediate crack propagation with stable crack growth
and region III, with a rapid fatigue crack growth. In the intermediate stage, the crack growth
rate can be expressed based on the Paris law as follow [34]:

da
dN

= C∆Km (1)

where a is the crack length, N is the number of load cycles, C and m are material constants.
The stress range intensity factor, ∆K is proportional to stress range ∆σ, geometry function
Y(a), and the square root of the crack length as follows:

∆K = Y(a)∆σ
√

πa (2)

By integration of Equation (1), the number of cycles N which leads to the crack length
aN can be obtained as:

N =
∫ aN

a0

da
C
(
Y(a)∆σ

√
πa
)m (3)

In the fatigue analysis of marine structures, the stress range is usually assumed to
follow the Weibull distribution [35,36]. Regarding the Weibull distribution for the stress
range and geometry factor as a power function [15,37], Y(a) = AaB, an analytical solution
for Equation (3) can be obtained as:

aN =
{

NCcrC
[
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(m
2
+ mB

)](
Au
√

π
)mΓ

(
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m
α
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+ a1−(m
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0

} 1
1−( m

2 +mB) (4)

where u and α are scale and shape parameters of the Weibull distribution of stress range
and Γ is the Gamma function. Since the investigated pipelines are located in a corrosive
environment, the interaction between corrosion and fatigue needs to be considered in the
physics-based fatigue model. Corrosion-enhance fatigue crack growth can be modelled by
the production of a correction factor, Ccr, to the material parameters C [38], as indicated in
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the Equation (4). Assuming the failure limit state function as g(X) = acr − aN, the number of
cycles to failure can be calculated based on Equation (4) regarding acr = aN.

N =
a1−(m

2 +mB)
cr − a1−(m

2 +mB)
0

CcrC
[
1−

(m
2 + mB

)](
Au
√

π
)mΓ

(
1 + m

α

) (5)

However, the statistical information of the basic random variables vector is required
to obtain the probabilistic distribution function of load cycles to failure. Regarding fracture
mechanic-based fatigue reliability analysis of submarine pipelines, such information is
not available. Instead, the limited experimental data related to the fatigue crack growth
of pipelines (a-N curve) are available in the literature. In the first step of this study, the
Bayesian approach has been applied to obtain the probabilistic model of fatigue crack
growth parameters, which is explained in Section 4.

3. Experimental Data

The experimental data used in this paper is related to corrosion fatigue tests of API 5L
X56 pipe-in-pipe pipelines serviced for 15 years, which is reported in [5]. Seven standard
compact tensile (CT) specimens were extracted from the outer pipe of the submarine pipe-
in-pipe pipeline with dimensions of 219 × 12.2 mm. The designed CT specimens were
in the hoop direction of the pipe and the thickness and width of them are 8 and 40 mm
respectively. To simulate a corrosive seawater environment, a seawater circulation system
was designed. In Figure 1, the corrosion fatigue test setup is shown. More details of the
setup of the corrosion fatigue test can be found in the reference [5].
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Figure 1. Corrosion fatigue test setup [5].

In pipe-in-pipe systems, the inner pipe is exposed to internal pressure and the outer
pipe is designed to resist external pressure. Because of the minor amplitude of the internal
pressure, fatigue failure of the inner pipe rarely occurred. However, the outer pipe is
exposed to longitudinal tension caused by the ocean current in the free-spanning sections.
Therefore fatigue failure is more probable on the outer surface of the outer pipe due to
ocean current lateral pressure [5].

Fatigue tests were carried out by applying a sinusoidal tensile stress with constant
amplitude. The fatigue crack growth of the CT specimens was monitored based on the
back-face strain (BFS) method. The crack length-load cycles data and also the relationship
between fatigue crack growth rate and the stress intensity factor in the Paris law function
were calculated. In this study, the experimental data related to the three cases (specimens
S1, S2 and S3) are used to obtain probabilistic modelling of the fatigue crack growth and
finally reliability analysis of the API 5L X56 submarine pipeline. In Table 1 and Figure 2 the
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details of the fatigue test and crack length-load cycles (a-N) curve for the investigated cases
are shown.

Table 1. Parameters and results of fatigue crack growth test. Data adopted from [5].

Test ID R f (Hz) Pmax (KN) a0 (mm) af (mm)

S1 0.1 0.5 11 12.51 24.77
S2 0.1 0.5 9 15.38 25.98
S3 0.4 0.5 11 12.64 26.10
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It should be mentioned that the crack growth rate—stress intensity factor curve for
investigated cases can be found in [5]. Based on the experimental fatigue crack growth
results and using Equation (2) the geometry functions of the cracks in specimens can be
calculated. Figure 3 presents the scatter of geometry function Y(a) and fitted power function
Y(a) = AaB for three investigated cases using the least square method. R is the least square
regression factor.
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4. Probabilistic Modelling of Fatigue Crack Growth

Consider M as a chosen model, which is a function of the vector modelling parameter
θ, and D as a quantity of interest to be assessed. The probabilistic description of D can be
calculated as [39,40]:

D = M(θ, z) + ε (6)

In Equation (6), ε is the combination of measurement and model parameter uncer-
tainties, and z is the independent model variables where those values are fixed during
the analysis. Given the probability distribution function of model parameters (i.e., stress
range, material parameters m, C and Ccr and geometry function A and B in Equation (4)),
the probabilistic result of model output (i.e., crack length at each number of load cycles
(N, aN) in Equation (4)) can be calculated.

However, the real challenge arises when the statistical parameters of the input variables
are not available. In this case, to obtain the probabilistic response of a physic-based model
such as Equation (4), the probability distribution function of input variables describing
the material, geometric, and loads need to be updated based on a given set of observation
D [39]. In this study, the experimental results of the pipeline crack growth in a corrosive
environment are regarded as the measured data.

The Bayesian approach provides a framework to evaluate the posterior distribution
function of model parameters based on prior information and observed experimental
data. The main advantage of the Bayesian updating approach lies in its ability to combine
different sources of uncertainty based on Bayes’ theorem:

P(θ|D ) ∝ P(D|θ )P(θ) (7)

where P(θ|D) represents the posterior distribution of the model parameters after being up-
dated. P(θ) is the probability distribution function of model parameters θ before updating.
The prior distribution may be estimated based on various prior information such as expert
knowledge, experimental data, and empirical judgment. Estimating the prior distribution
depends on the amount of available information [41]. In the practical engineering problem,
the normal distribution can be employed as a prior distribution when the mean value of
parameters is known, [39]. In addition, uniform prior is assumed when there is no infor-
mation about the parameters. P(D|θ) represents the likelihood function of the occurrence
of the measurement data D given model parameters θ. The likelihood function indicates
the agreement between the response of the model and the target measured values. In this
study, the normal distribution, which is a common choice of the likelihood function, is
regarded as [42]:

P(D|θ ) = 1
σj
√

2π
exp

[
− 1

2σ2
j

(
Dj −Mj(θ)− ε j

)2
]

, j = 1, 2, . . . , kdata (8)

where k is the number of measured data (experimental crack length for different numbers
of cycles), Dj is the jth measured crack length and Mj(θ) is the jth computed crack length
based on the chosen model with the parameters θ. εj represents the error between the
model output and experimental results of the crack length and
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Equation (10) implies that the candidate samples are accepted if they have a higher 
probability compared to the current samples. In practical problems, this criterion can be 
achieved by comparing the acceptance probability r with generating a random number s 
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if r(θi, θi+1) ≥ s, otherwise it is rejected. 

The main challenges of MCMC are related to the initial samples since they are in 
general, not distributed according to the stationary distribution. Therefore, the initial 
samples may be located far away from the posterior distribution and move very slowly to 
the high-probability regions [42]. In such a case, many samples need to be generated to 
converge the posterior distribution. To avoid the impact of the inaccurate initial samples, 
a portion of initial samples nburn-in can be discarded. 
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Equation (10) implies that the candidate samples are accepted if they have a higher 
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Equation (9) indicates the proportional relation between the posterior distribution
with the prior distribution and the likelihood function. A normalizing constant can be
multiplied to the right side of Equation (7) to make the posterior distribution integration
1. The posterior distribution in Equation (8) represents the updated distribution of model
parameters in the presence of some observed data.

In general, the posterior distribution is a product of complex functions and it is not
possible to generate samples directly from it [12,44,45]. In such a case, sampling-based
methods such as advanced Monte Carlo sampling methods can be used [12]. In this paper
MCMC simulation, specifically the Metropolis-Hasting (MH) algorithm [46], is applied
to generate samples based on the posterior distribution of interest. MH algorithm can
generate samples from any probability distribution with a given posterior function such
as Equation (9). The MH sampler is a random walk algorithm where the next candidate
sample θi+1 is generated only based on the current sample θi. Each candidate sample is
generated based on the so-called proposal distribution q(θi+1, θi), which is a symmetrical
function, that is q(θi+1, θi)= q(θi, θi+1). The generated candidate samples are accepted or
rejected based on an acceptance probability which can be defined as follows:

r(θi, θi+1) = min

[
1,

P
(
θi+1|D

)
P
(
θi|D

) ] (10)

Equation (10) implies that the candidate samples are accepted if they have a higher
probability compared to the current samples. In practical problems, this criterion can be
achieved by comparing the acceptance probability r with generating a random number s
from a uniform distribution between 0 and 1, s~U [0,1]. The proposed sample is accepted if
r(θi, θi+1) ≥ s, otherwise it is rejected.

The main challenges of MCMC are related to the initial samples since they are in
general, not distributed according to the stationary distribution. Therefore, the initial
samples may be located far away from the posterior distribution and move very slowly to
the high-probability regions [42]. In such a case, many samples need to be generated to
converge the posterior distribution. To avoid the impact of the inaccurate initial samples, a
portion of initial samples nburn-in can be discarded.

For the investigated pipeline, the material parameters m and C, the corrosion-enhancement
parameter Ccr and the error between model output and observed data ε are considered
random variables and their PDF need to be updated. Gao et al. [2] proposed the material
parameters of m = 2.66 and lnC = −24.15 for the submarine pipelines of API X56 steel
materials. Also, some studies proposed the Ccr of 3 for steel materials under free corrosion
conditions [38,47]. In this study, the previous literature results combined with engineering
judgment are used to estimate the prior distribution of model parameters. The normal
distribution with the mean values of 2.66, −24.15, and 3 and the standard deviation of
0.25, 0.5, and 0.2 are considered for the prior distribution of m, lnC, and Ccr. It should
be mentioned that for case S3, which has a larger value of R, lnC = −22.15 is considered.
In addition, the likelihood function is modelled as a normal distribution with a standard
deviation of
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Equation (10) implies that the candidate samples are accepted if they have a higher 
probability compared to the current samples. In practical problems, this criterion can be 
achieved by comparing the acceptance probability r with generating a random number s 
from a uniform distribution between 0 and 1, s~U [0,1]. The proposed sample is accepted 
if r(θi, θi+1) ≥ s, otherwise it is rejected. 

The main challenges of MCMC are related to the initial samples since they are in 
general, not distributed according to the stationary distribution. Therefore, the initial 
samples may be located far away from the posterior distribution and move very slowly to 
the high-probability regions [42]. In such a case, many samples need to be generated to 
converge the posterior distribution. To avoid the impact of the inaccurate initial samples, 
a portion of initial samples nburn-in can be discarded. 

For the investigated pipeline, the material parameters m and C, the corrosion-
enhancement parameter Ccr and the error between model output and observed data ε are 
considered random variables and their PDF need to be updated. Gao et al. [2] proposed 
the material parameters of m = 2.66 and lnC = −24.15 for the submarine pipelines of API 
X56 steel materials. Also, some studies proposed the Ccr of 3 for steel materials under free 

, and its parameters is obtained from the updating process. To avoid the
wrong choice of assumed prior distribution, the uniform distribution is also examined and
the fatigue crack growth results are compared with the obtained results from the prior
normal distribution in Appendix B.

A normal distribution with a mean value of 0.5 mm and a standard deviation of
0.1 mm is regarded for the prior distribution of
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Equation (10) implies that the candidate samples are accepted if they have a higher 
probability compared to the current samples. In practical problems, this criterion can be 
achieved by comparing the acceptance probability r with generating a random number s 
from a uniform distribution between 0 and 1, s~U [0,1]. The proposed sample is accepted 
if r(θi, θi+1) ≥ s, otherwise it is rejected. 

The main challenges of MCMC are related to the initial samples since they are in 
general, not distributed according to the stationary distribution. Therefore, the initial 
samples may be located far away from the posterior distribution and move very slowly to 
the high-probability regions [42]. In such a case, many samples need to be generated to 
converge the posterior distribution. To avoid the impact of the inaccurate initial samples, 
a portion of initial samples nburn-in can be discarded. 

For the investigated pipeline, the material parameters m and C, the corrosion-
enhancement parameter Ccr and the error between model output and observed data ε are 
considered random variables and their PDF need to be updated. Gao et al. [2] proposed 
the material parameters of m = 2.66 and lnC = −24.15 for the submarine pipelines of API 
X56 steel materials. Also, some studies proposed the Ccr of 3 for steel materials under free 

. Half of the experimental data of each
specimen (experimental data before 8000 cycles for S1 and S2 and also before 11,000 cycles
for S3) have been used to update model parameters. The results of the posterior distribution
of model parameters and MCMC chains are presented in Figure 4 and Table 2. It can be
observed that the uncertainty of material parameters m and lnC are reduced in comparison
with the prior distribution for all three investigated cases. However, the mean and standard
deviation values of the corrosion-enhance parameter have changed slightly.
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Figure 4. (a–c) updated distribution of model parameters m, C and Ccr, respectively. (d) chain
iteration resulting from MCMC simulation for case S2.

Table 2. Mean and standard deviation of the updated distribution of model parameters.

M lnC Ccr

Mean St.Dev. Mean St.Dev. Mean St.Dev.

S1 2.37 0.119 −24.33 0.43 3 0.192
S2 2.33 0.119 −24.44 0.43 2.98 0.191
S3 2.18 0.136 −22.77 0.42 2.95 0.184

The probability distribution function of crack length after updating model parameters
based on experimental data can be obtained using the fatigue model of Equation (4). The
probability of crack length can be expressed as follows:

P(aN) ∝
∫

Ω(θ)

P(aN |θ, D )P(θ|D ) (11)

where P(aN|θ,D) is the probability of crack length for given model parameters and P(θ,D)
is the posterior distribution of the parameters. 200,000 samples are generated using MCMC
simulation to update model parameters and estimate the crack growth curve. The crack
length growth of the three investigated cases is presented in Figure 5. Here, the probabilistic
results of fatigue crack growth are estimated using a 95% confidence interval and compared
with the experimental results. Confidence interval extraction in the crack growth curve
is explained in detail in the reference [43]. It can be observed that the estimated crack
growth is in acceptable agreement with the experimental results. Although the mean
values of the probabilistic model are different from the experimental results in some of the
load cycles (particularly in the case of S1), the 95% confidence interval covers all of the
experimental data.
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5. Reliability Analysis

This section presents the reliability analysis of the investigated pipelines based on
the uncertainty modelling of the basic variables which are indicated by the pdf of the
posterior distribution of model parameters. The reliability function can be measured by the
probability that the crack growth length aN does not exceed the critical crack size for an
arbitrary load cycle within the considered interval, that is:
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L(N) = P(an < acr) n = 1, 2, . . . , N (12)

The reliability can also be expressed with the help of the hazard function [48]. The
“hazard function” h(N) for discrete load cycles is defined as the probability of structural
failure at load cycle N, given that the structure has not failed under a previous loading.
Regarding Nf as the load cycles to failure, the hazard function can be expressed as [49]:

h(N) = P
[

N f = N
∣∣∣N f >N − 1

]
=

fN f (N)

1− FN f (N − 1)
(13)

where fNf(N) and FNf(N) are the probability distribution function (PDF) and cumulative
distribution function (CDF) of the load cycles to failure, respectively. The reliability analysis
can be expressed based on the hazard function as follows [50]:

L(N) = exp

− N∫
0

h(n)dn

 (14)

Due to a large number of load cycles in fatigue FNf(N) = FNf(N − 1). Therefore,
Equation (14) leads to well-known relation of L(N) = 1 − FNf(N). Given the probability
distribution of the failure, the structural reliability can be estimated.

The critical crack length for each specimen is considered equal to the values of af in
Table 1. af is the final crack length when the back-face strain gauge fails or the fatigue
crack growth rate exceeds 0.01 mm/cycles during the fatigue test process [5]. This criterion
corresponds to the end of the stable region of crack growth (region II). In this paper, the
values of af are considered as the critical values of crack length and the distribution of
the number of cycles that lead to aN = acr are calculated based on the limit state function
obtained from Equation (5) regarding the PDF of updated model parameters as basic
variables. The statistical parameters of the distribution of the number of cycles to failure
are indicated in Table 3. The probabilistic results are compared with the experimental data
and deterministic results obtained from the finite element method (FEM), presented in [5].
It can be observed that the probabilistic results of failure load cycles provide an acceptable
estimation of fatigue life. In addition, the PDF of failure load cycles are presented in
Figure 6. It should be mentioned that Weibull distribution often has been used to model the
failure data [14,51]. However, it is observed that the estimated PDF of failure load cycles in
three investigated cases follows lognormal distribution instead of a Weibull distribution.
This can be due to the disregarding of the stress range uncertainty, which usually follows
the Weibull distribution.

Table 3. Statistical parameters of the estimated failure load cycles.

Specimens S1 S2 S3

mean 13,908 16,264 25,279
St.Dev. 753 623 1320

Exp. 15,128 15,830 26,313
FEM 13,285 15,287 22,629
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The reliability analysis of the investigated cases is indicated in Figure 7. It can be
observed that the stress ratio R has a significant effect on the reliability level of structures.
Increasing the stress ratio from R = 0.1 in the case of S1 to R = 0.4 in the case of S3 leads to
a remarkable increase in the reliability function. Also, the reliability function is affected
by maximum loads Pmax. The reliability function of S2 with Pmax = 9 Kn is higher than the
reliability function of S1 with Pmax = 11 Kn, even if S2 has a larger initial crack length. In
addition, Table 4 indicates the performance assessment of the investigated cases based on
the reliability index, which is calculated as:

β(N) = −Φ−1(1− L(N)) (15)

where Φ is the standard normal function. In Table 4, β < 2, 2 ≤ β ≤ 4 and β > 4 are
regarded as poor performance (red), good performance (yellow) and excellent performance
(green) of pipelines, respectively [14], and the associated number of load cycles to each
performance levels are indicated.
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Table 4. Reliability-based performance assessment.

Reliability Index S1 S2 S3

β < 2 N > 12,475 N > 15,120 N > 22,755

2 12,475 15,120 22,755

4 11,225 14,025 20,480

β > 4 N < 11,225 N < 14,025 N < 20,480

It should be noted that the estimated reliability level of the investigated cases is
based on the assumption of deterministic stress range and initial crack size. The impact
of uncertainties of this parameter is investigated through the reliability assessment of a
full-scale API 5L X56 submarine pipeline with a diameter of 219 mm and a thickness of
14 mm. The maximum applied load is 235 Kn and the stress ratio R and load frequency are
0.1 and 0.5, respectively.

The material parameters m and lnC are only affected by the fatigue test environment
and material [2]. Therefore, the updated probabilistic modelling of parameters in case
S2 can be considered in this example. For the sensitivity studies, different values of
uncertainties are considered for stress range and initial crack size as described in Table 5.
Also, the corrosion-enhancement factor may change from environment to environment.
Therefore, different mean values of this parameter are regarded to investigate its impact on
the reliability assessment of submarine pipelines. Here the critical value of crack depth is
defined as 0.8 of the pipeline wall thickness. It should be mentioned that the finite element
results for the stress intensity factor of the investigated submarine pipeline can be found in
Gao et.al [2]. The geometry function parameters are calculated based on the finite element
results for the stress intensity factor, as explained in Appendix A.

Table 5. Input parameters for sensitivity studies.

Parameter Mean Coefficient of
Variation Distribution

m 2.33 0.051 Normal
lnC −24.44 0.018 Normal
Ccr 2, 3 and 4 0.1 Normal
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Equation (9) indicates the proportional relation between the posterior distribution 
with the prior distribution and the likelihood function. A normalizing constant can be 
multiplied to the right side of Equation (7) to make the posterior distribution integration 
1. The posterior distribution in Equation (8) represents the updated distribution of model 
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possible to generate samples directly from it [12,44,45]. In such a case, sampling-based 
methods such as advanced Monte Carlo sampling methods can be used [12]. In this paper 
MCMC simulation, specifically the Metropolis-Hasting (MH) algorithm [46], is applied to 
generate samples based on the posterior distribution of interest. MH algorithm can 
generate samples from any probability distribution with a given posterior function such 
as Equation (9). The MH sampler is a random walk algorithm where the next candidate 
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Equation (10) implies that the candidate samples are accepted if they have a higher 
probability compared to the current samples. In practical problems, this criterion can be 
achieved by comparing the acceptance probability r with generating a random number s 
from a uniform distribution between 0 and 1, s~U [0,1]. The proposed sample is accepted 
if r(θi, θi+1) ≥ s, otherwise it is rejected. 

The main challenges of MCMC are related to the initial samples since they are in 
general, not distributed according to the stationary distribution. Therefore, the initial 
samples may be located far away from the posterior distribution and move very slowly to 
the high-probability regions [42]. In such a case, many samples need to be generated to 
converge the posterior distribution. To avoid the impact of the inaccurate initial samples, 
a portion of initial samples nburn-in can be discarded. 

For the investigated pipeline, the material parameters m and C, the corrosion-
enhancement parameter Ccr and the error between model output and observed data ε are 
considered random variables and their PDF need to be updated. Gao et al. [2] proposed 
the material parameters of m = 2.66 and lnC = −24.15 for the submarine pipelines of API 
X56 steel materials. Also, some studies proposed the Ccr of 3 for steel materials under free 

∆ (Mpa) 23.5 0.1, 0.3 and 0.5 Weibull
a0 (mm) 1, 2 and 3 1 Exponential
acr (mm) 11.2 - Deterministic

A 4.476 - Deterministic
B −0.79 - Deterministic

Figure 8 presents the impact of different parameters on the reliability results of the
investigated pipeline. The effect of stress range uncertainty is depicted in Figure 8a,
assuming the mean value of a0 and Ccr is 1 mm and 3, respectively. As expected, the
increasing uncertainty in the stress range leads to lower values of reliability indices. The
slope of the β-N curve increases with the increase of stress range coefficient of variation at
the early stage of the fatigue process (lower values of load cycles). However, for the larger
number of load cycles, the slope of the β-N curve becomes flatter for different values of
coefficient of variation.
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enhanced parameter on reliability assessment of investigated pipeline.

Figure 8b shows the impact of initial crack size on the reliability level of the investi-
gated pipeline for Ccr = 3 and COV∆σ = 0.3. It can be observed that increasing of initial
crack size significantly decreases the reliability level, particularly at the early stage of the
fatigue process. For the higher number of load cycles, the difference between reliability
indices becomes lower for different values of initial crack size. The impact of the corrosion-
enhancement factor on reliability assessment is depicted in Figure 8c for a0 = 1 mm and
COV∆σ = 0.3. It appears that the corrosion enhancement parameter mostly affects the
reliability level in a higher number of load cycles.

Another important parameter that may affect the reliability assessment of submarine
pipelines is the correlation between material parameters m and lnC. Some of the previous
studies have indicated the relation between material parameters [52,53]. Figure 9 presents
the interrelation between the material parameters m and lnC for investigated case S2. It
can be observed a strong linear relationship with a negative correlation coefficient of 0.985
between the material parameters of the API 5L X56 submarine pipeline.
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To investigate the effect of correlation between material parameters on reliability
assessment, a multivariate normal distribution has been used to generate correlated random
numbers. The probability density function of the h-dimensional multivariate normal
distribution can be expressed as:

f (x, µ, Σ) = (2π)
−h
2 |Σ|

−1
2 exp

(
−1
2

(x− µ)TΣ−1(x− µ)

)
(16)

where x and µ are vectors of random variables and their mean values respectively. Σ is
a h-by-h covariance matrix which is a function of the correlation coefficient and standard
deviation of random variables. Since two variables (m, lnC) with a normal distribution
are considered correlated variables, Equation (16) with h = 2 is used to generate correlated
random numbers for material parameters. As an alternative method for sampling from
correlated random variables, the Nataf transformation method, which assumes a normal
Copula function for the joint distribution of random variables, can be also applicable [48].

Figure 10 indicates the impact of different values of the correlation coefficient between
material parameters on the reliability assessment of investigated pipeline. It can be observed
that increasing negative correlation coefficients leads to higher values of reliability indices.
The lowest reliability curve is related to the uncorrelated situation and the highest curve
is to a fully negatively correlated situation. This implies that disregarding the negative
correlation between material parameters leads to a conservative assessment of the fatigue
safety level of submarine pipelines.
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6. Conclusions

In this study, a fracture mechanics-based fatigue reliability analysis of a submarine
pipeline in a corrosive environment has been investigated. The main challenge in the
fatigue reliability assessment of cracked pipelines is the lack of sufficient experimental or
field data. Therefore, the Bayesian updating approach has been used to obtain the updated
probability distribution function of the fatigue model parameters in the presence of some
available experimental data related to API 5L X56 submarine pipelines. The uncertainties
of material parameters m, lnC, and corrosion-enhanced factor Ccr have been estimated for
the investigated pipeline using MCMC simulation. The predicted fatigue crack growth
results have been compared to available experimental and deterministic finite element
results to show the ability of the proposed probabilistic model for a submarine pipeline.
The probability distribution of failure load cycles and the reliability level of API 5L X56
submarine pipelines for three different cases have been estimated. In addition, the effect of
different parameters, including the stress ratio, maximum load, uncertainties of stress range
and initial crack size, corrosion-enhance factor, and also the correlation between material
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parameters on the structural reliability level of submarine pipelines have been investigated.
The results indicate the high sensitivity of the reliability level to the stress ratio, maximum
applied load, initial crack size, particularly in the early stage of fatigue crack growth, the
uncertainty of stress range, and also the mean values of the corrosion-enhanced factor for
a higher number of load cycles. In addition, it was found that the increase of negative
correlation between material parameters results in higher values for the reliability index of
submarine pipelines.
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Appendix A. Geometry Function for the Investigated Pipeline

Given the stress range intensity factor ∆K, the geometry function can be calculated as:

Y(a) =
∆K

∆σ
√

πa
(A1)

In Table A1, column 2 is the obtained results of the stress range intensity factor obtained
from the finite element method based on reference [2]. The geometry function is calculated
and depicted in Figure A1. A power function is fitted to the data and parameters A and
B are obtained. The error in the estimated geometry function occurred mostly because of
limited data.

Table A1. Obtained geometry function for the investigated pipeline based on stress range intensity
factor calculated from FEM results adopted from [2].

a (m) ∆K (Mpa.m0.5) Y (a)

0.0055 20.848 6.761289
0.0060 21.354 6.630558
0.0070 23.006 6.613610
0.0080 24.715 6.646027
0.0090 25.776 6.534927
0.0100 27.180 6.522350
0.0110 27.714 6.355494
0.0120 28.302 6.214025
0.0130 29.561 6.235825
0.0132 30.693 6.425380
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Appendix B. Geometry Function for the Investigated Pipeline

The results of the predicted fatigue crack growth regarding uniform and normal prior
distribution are presented in Figure A2. the range of the parameters is considered between
µ2σ and µ + 2σ for uniform distribution. µ and
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Equation (10) implies that the candidate samples are accepted if they have a higher 
probability compared to the current samples. In practical problems, this criterion can be 
achieved by comparing the acceptance probability r with generating a random number s 
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if r(θi, θi+1) ≥ s, otherwise it is rejected. 
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are mean values and standard deviation
of associated normal distribution, respectively. It can be observed that the predicted fatigue
crack growth regarding normal prior distribution for cases S1 and S3 are closer to the
experimental results compared to the uniform prior distribution. However, normal and
uniform prior distribution lead to the approximately same results for fatigue crack growth
of case S2. Therefore, the obtained results from normal prior distribution are slightly better
than uniform prior distribution in investigated case study.
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