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Abstract: AA6010 in the F temper was investigated using a Gleeble 3800 test rig across a range of
temperatures (350–550 ◦C) and strain rates (1 × 10−1 s−1 1 × 101 s−1) to identify optimal forming
conditions. Post-forming electron back-scattered diffraction analysis was conducted to identify the
mechanisms responsible for the material formability. Optimal forming conditions were observed to
be 500 ◦C and a strain rate of 1 × 10−1 s−1, with clear evidence of dynamic recrystallisation observed,
this being the dominant mechanism responsible for the increased formability. Peak yield strength of
335 MPa was achieved using a rapid aging treatment of 205 ◦C for one hour.
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1. Introduction

The current urgent need to reduce the impact of road vehicles on the environment is
being approached from two sides: firstly, electrification of vehicles by replacing the more
traditional polluting internal combustion engine (ICE); and, secondly, by improving the
efficiency of ICE vehicles [1]. To counteract the increased weight of battery packs and motors
in electric vehicles and to improve the efficiency of ICE vehicles, higher strength materials
are required which allow for downgauging when compared to lower strength materials [2,3].
The 6000-series aluminium alloys offer an attractive solution to this problem, offering an
extremely good strength to weight ratio, good processability, and, when combined with the
correct forming process, high levels of formability [4].

Aluminium can easily replace steel material in applications such as automotive clo-
sures; there are many highly aluminium intensive vehicles on the market today, examples
of early adopters of this technology being Audi with the A8 [5]. High strength aluminium’s
limited ductility at room temperature, however, requires the use of advanced forming
processes to achieve sufficient elongations to produce more complex geometries for body-
in-white structures such as B-pillars [6]. The use of elevated temperature forming processes
such as superplastic forming (SPF), quick plastic forming (QPF), and hot form quench
forming (HFQ) all take advantage of aluminium’s increased ductility at elevated tempera-
tures [7,8].

Hot forming of aluminium is now a widely employed process within the automotive
field and with improvements in forming processes is moving from niche applications
to more high-volume manufacturing. The 5000-, 6000- and 7000-series are all used in
combination with hot forming to produce deep drawn parts of complex geometries [9–11].
Various studies have demonstrated the suitability of AA6082 in combination with the HFQ
forming process to achieve deep drawn high strength parts with complex geometries [12].
Other alloys such as AA6061 and AA6111 have been shown to exhibit improved formability
when combined with warm deep drawing [13,14]. AA6013 has also been demonstrated
to be suitable within warm forming operations, and AA6010 is listed within a range of
aluminium alloys suitable for hot forming in European patent EP3359699 [15,16]. These
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alloys undergo solution heat treatment during the elevated temperature forming process;
following quenching and subsequent aging treatments it is possible to produce complex
geometries with high strength, able to replace steel structures.

The majority of published literature currently available on the subject focuses on
AA6082 and its behaviour during HFQ forming; there are currently no available data on
AA6010 under the same conditions [17–19]. This paper sets out to identify the optimum
forming parameters for HFQ forming of AA6010 using a Gleeble 3800 testing machine
and to identify a rapid post-forming heat treatment. Identifying the optimal forming
parameters for the material and demonstrating its formability across a wide range of
strain rates and temperatures will allow for better product and process design to meet
industrial specifications. Identifying these optimum parameters will enable the forming
of more complex part geometries where further weight savings can be achieved through
part and fixture reduction; it has been demonstrated previously that SPF formed parts can
reduce the overall weight of components and number of parts required in a wide range of
applications [20].

2. Materials and Methods

Within this study AA6010 alloy nominally supplied in the F temper was investigated;
the composition of the alloy as defined in the Aluminium Association Teal Sheets is given
in Table 1 [21].

Table 1. AA6010 chemical composition in wt% [18].

Element Al Si Fe Cu Mn Mg Cr Zn Ti

Wt% Balance 0.8–1.2 0.5 0.15–0.6 0.2–0.8 0.6–1.0 0.1 0.25 0.1

Dog-bone shaped specimens were machined from 4 mm flat sheet using a Datron
CNC machine (Datron Dynamics Inc., Milford, NH, USA), having a nominal gauge length
of 15 mm and gauge width of 10 mm as shown in Figure 1. Previous studies have indicated
that a shorter gauge length aids in achieving a homogenous temperature ±5 ◦C throughout
the specimen [17]. No further thermomechanical processing was carried out before testing.
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Figure 1. Sample geometry used for Gleeble thermomechanical processing, and Gleeble 3800 test
machine (Gleeble, Poestenkill, NY, USA).

Hot tensile testing was carried out in a Gleeble 3800 in a similar methodology to
previous studies on 2000- and 6000-series alloys [22,23]. K-type thermocouples were
attached to the gauge length of the sample and a preload of 0.1 kN was applied to the
sample. A typical thermal profile can be seen in Figure 2. The sample was heated to
565 ◦C at a rate of 7 ◦C/s where it was held for 5 min for solutionising; subsequently, the
sample was cooled to the deformation temperature at 10 ◦C/s and held for 10 s, and then
deformed to failure before being quenched to room temperature. A matrix of deformation
temperatures and strain rates was used, comprising deformation temperatures every 50 ◦C
between 350 and 550 ◦C, at strain rates of 0.1, 1 and 10 s−1 with 3 repeats for each condition.
Test parameters were selected to investigate the most industrially relevant conditions under
which this material would potentially be formed.
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Figure 2. Thermal profile used during testing.

To identify the material’s peak strength, it was subjected to the same thermal cycle
as would be experienced during tensile tests but without any mechanical deformation
being imparted; it then underwent an industrial aging treatment of 205 ◦C for one hour.
Following heat treatments, the specimens were then subjected to room temperature tensile
deformation to failure. The same thermal cycle as illustrated in Figure 2 but without any
imparted deformation was used to prepare specimens for strength determination.

Microstructural analysis was conducted using a JEOL 7800F FEGSEM (JEOL Ltd.,
Tokyo, Japan) and an Oxford Instruments (Abingdon, UK) Symmetry electron back-
scattered diffraction (EBSD) camera with Oxford Aztec software. An accelerating voltage of
20 keV was used across all scans, with a step size of 0.2 µm. Samples were prepared using
a mechanical polishing regime modified from standard preparation techniques [24]; a final
step of 30 min broad beam ion milling using a Hitachi IM4000 (Hitachi High-Technologies
Corporation, Tokyo, Japan) operating at 4 kV was applied to achieve a high-quality surface
finish. Post-processing of scans was conducted using Oxford Channel 5 software (Oxford
Instruments, Abingdon, UK).

3. Results
3.1. Elevated Temperature Formability

Representative flow curves of the material tested across all temperatures and strain
rates are illustrated in Figure 3, alongside the log stress-strain plot used to derive the
material’s ‘m’ value throughout testing. We observed reduced peak stresses in the material
as the temperature increased with peak stresses of 95 MPa at 350 ◦C and 20 MPa at 550 ◦C
as the material approached its melting temperature. A slight reduction in peak strain
was observed from 500 ◦C to 550 ◦C; at this temperature further softening of the alloy
led to promoted cavitation around secondary particles as shown in Figure 5 and led to
premature failure. This demonstrates the alloy’s ability to deform at elevated temperatures,
a requirement for high strength aluminium alloys, but shows that increasing forming
temperatures past 500 ◦C is not beneficial. The material exhibits a low ‘m’ value which is
a material’s strain rate sensitivity or its ability to resist localised necking; with a peak of
around 0.18, this would indicate deformation controlled by dislocation creep as would be
expected at such relatively high strain rates [25]. Previous studies have also reported low
‘m’ values for 6000-series alloys, which is beneficial as faster forming rates can be employed
industrially without negatively impacting levels of formability [26].
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To better illustrate the behaviour of the material across all conditions, forming pro-
cessing maps illustrating strain to failure and peak stress are shown in Figure 4. Strain
to failure increases due to the increased energy available at higher temperatures, which
allows extra deformation mechanisms to become active within the microstructure. Figure 4
then better illustrates the reduction in peak strain at 550 ◦C compared to 500 ◦C due to
excessive material softening. Similar reductions in strain to failure have been reported
at lower temperatures in AA6082, indicating AA6010’s ability to be formed at higher
temperatures [23].

Aluminium alloys are strain rate sensitive during hot forming but as stated AA6010
is only slightly strain rate sensitive with an ‘m’ value ranging from 0.14–0.18; as such, we
observe that for a given temperature the strain to failure decreases with increased strain
rate but not by a significant amount. At 450 ◦C we see a decrease in strain to failure from
0.65 to 0.55 when the strain rate is increased from 1 × 10−1 s−1 to 1 × 101 s−1. Whilst
this does not represent the material’s optimal forming parameters, this region still offers
industrially relevant levels of deformation.

Optimal forming conditions were observed to be 500 ◦C with a strain rate of 1 × 10−1 s−1,
giving a maximum strain to failure of around 0.7. It has been reported that dynamic recovery
and dynamic recrystallization are the dominant deformation mechanisms with 6000-series
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alloys at elevated temperatures. The strain rates during testing were greater than those where
grain boundary sliding would occur, and so a combination of dislocation creep and dynamic
recrystallization would have been responsible for the material’s deformation.
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3.2. EBSD Analysis of Deformed Specimens

EBSD maps from the failure region of samples deformed at 1 × 10−1 s−1 strain rate
and three temperatures (350 ◦C, 400 ◦C and 500 ◦C) are shown in Figure 5a–c, respectively.
Tearing failures can be observed within the 350 ◦C and 400 ◦C specimens with far more
deformation and localised necking observed in the 500 ◦C specimen. With all specimens,
tearing and void coalescence is evident in the presence of secondary particles which is
more clearly shown in the band contrast image in Figure 5d where a clear tear in the bulk
material is obvious as the grains have moved past the intermetallic.

Within the 350 ◦C and 400 ◦C specimens there are clear bands orientated in the
direction of deformation, showing highly elongated grains; this is typical of deformation
controlled by dislocation creep where grains elongate rather than rotate and move past
each other. Within the 500 ◦C specimen the same ‘bands’ are visible; however, within
these bands there are clearly new individual grains, showing the presence of dynamic
recrystallization within the specimen during deformation. The presence of this extra
deformation mechanism at the higher temperature is responsible for the increased peak
strain at failure.

3.3. Post-Forming Heat Treatment

As with all 6000-series alloys, AA6010 is age-hardenable, which allows its use in
a variety of high strength applications. To identify the suitability of the alloy within
industrial applications, the strength of the material post-forming required investigation;
this was done by applying a heat treatment cycle the same as that of the optimal forming
conditions. Following solutionisation at 565 ◦C, specimens were then transferred to a
furnace at 500 ◦C to replicate the optimum forming temperature, and then water quenched
and then exposed to a rapid aging treatment of 205 ◦C for 1 h, to achieve a fine dispersion
of Mg2Si precipitates which inhibit dislocation movement. As shown in Figure 6 there
is limited strain hardening of the material observed, indicating it has achieved its peak
strength. Following artificial aging the material had an average 335 MPa yield strength
with an average 11.5% axial strain.
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4. Discussion

In this study the formability of AA6010 was investigated across a range of industrially
applicable strain rates; optimal forming parameters were identified as 500 ◦C and 1 ×
10−1 s−1 with peak strains of 0.7 achieved. Sub-optimal but still industrially relevant
levels of formability were observed at lower temperatures and higher strain rates, with
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a peak strain of 0.55 at 450 ◦C and 1 × 101 s−1. Forming above 500 ◦C led to a decrease
in peak strains with premature failures occurring due to excessive softening of the alloy
around intermetallics.

The low ‘m’ value of the material combined with the evidence from EBSD results
indicated that dislocation creep in combination with dynamic recrystallization are the
dominant deformation mechanisms within the material. Coalescence of voids around inter-
metallics leading to tearing was responsible for failures within the material. The reduction
of formability at 550 ◦C compared to 500 ◦C indicates that at the higher temperature, the
rate of dynamic recrystallization is not sufficient to overcome the rate of development of
voids due to excessive softening.

The ability to form the material at higher strain rates increases the potential industrial
applications and shifts the use of the material towards higher volume manufacturing.
To further investigate the suitability of the material within these applications, a rapid
aging treatment was investigated; when combined with a preheating treatment to replicate
optimal forming conditions, the material achieved a yield strength of 335 MPa. The material
exhibited no evidence of strain hardening within this condition, indicating it had achieved
peak strength, further demonstrating its suitability for automotive applications.

5. Conclusions

This paper set out to identify optimum forming parameters for AA6010 in an HFQ
like forming process by means of elevated temperature tensile tests, and to demonstrate
the material’s suitability for use in industrial processes by assessing strength after a rapid
aging treatment. From this work we conclude the following:

1. Optimal forming conditions for AA6010 in terms of peak ductility were established as
500 ◦C and 1 × 10−1 s−1 achieving a strain to failure of 0.7.

2. Industrially usable levels of deformation are achievable under sub-optimal conditions
at 450 ◦C and 1 × 101 s−1 achieving a strain to failure of 0.55.

3. Dislocation creep and dynamic recrystallization are the dominant deformation mech-
anisms within AA6010 during HFQ like deformation.

4. Following rapid aging treatments the material can achieve a yield strength of 335 MPa.

Author Contributions: Conceptualization, S.T.; methodology, S.T. and C.S.; validation, S.T., S.D. and
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