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A B S T R A C T 

Interactions between galaxies leave distinguishable imprints in the form of tidal features, which hold important clues about 
their mass assembly . Unfortunately , these structures are dif�cult  to detect because they are low surface brightness features, 
so deep observations are needed. Upcoming surv e ys promise several orders of magnitude increase in depth and sky coverage, 
for which automated methods for tidal feature detection will  become mandatory. We test the ability of a convolutional neural 
network to reproduce human visual classi�cations for tidal detections. We use as training � 6000 simulated images classi�ed 

by professional astronomers. The mock Hyper Suprime Cam Subaru (HSC) images include variations with redshift, projection 
angle, and surface brightness ( µ lim =  26–35 mag arcsec Š2 ). We obtain satisfactory results with accuracy, precision, and recall 
values of Acc =  0.84, P =  0.72, and R =  0.85 for the test sample. While the accuracy and precision values are roughly constant 
for all surface brightness, the recall (completeness) is signi�cantly affected by image depth. The reco v ery rate shows strong 
dependence on the type of tidal features: we reco v er all the images showing shell features and 87 per cent of the tidal streams ; 
these fractions are below 75 per cent for merg er s, tidal tails , and bridges . When applied to real HSC images, the performance of 
the model worsens signi�cantly. We speculate that this is due to the lack of realism of the simulations, and take it as a warning 

on applying deep learning models to different data domains without prior testing on the actual data. 

K  ey words: methods: observ ational – software: development – galaxies: interactions – galaxies: structure. 
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 INTRODUCTION  

n the standard �  -Cold Dark Matter ( �  CDM) cosmology scenario
mall-scale o v erdense perturbations in the early Universe collapse 
 E-mail: hdominguez@cefca.es 
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rst,  and produce dark matter haloes that accumulate baryons at 
he centre. The small structures aggregate successively into larger 
tructures via mergers in a process known as hierarchical growth 

White &  Rees 1978 ; Fall &  Efstathiou 1980 ; White &  Frenk
991 ; Lacey &  Cole 1993 ). In addition, accretion processes of small
atellite galaxies or gas in �laments produce a vast and complex
etwork of ultra-low surface brightness streams, which should be 
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resent around all galaxies (e.g. Pillepich et al. 2014 and reference
herein). 

Therefore, galaxy mergers have a fundamental and critical role
ithin the �  CDM cosmogony. While there is a general consensu

hat the merger fraction increases with galaxy stellar mass, both from
imulations (e.g. Rodriguez-Gomez et al. 2016 ; Hu �sko, Lacey &
augh 2022 ) and observ ations (v an Dokkum et al. 2010 ; L ́opez-
anjuan et al. 2012 ; Rodr ́�guez-Puebla et al. 2017 ), the relative
ontribution of in situ star formation and accreted stellar mass
emains an open question across much of the galaxy mass spectrum
e.g. Qu et al. 2017 ; Fitts et al. 2018 ; Conselice et al. 2022 ). The rate
f major and minor merger events, and their impact on galaxy mass
ssembly and morphological transformations, are also under debate
e.g. Lotz et al. 2011 ; Lofthouse et al. 2017 ; Martin et al. 2017 , 2018 ,
021 ). 
Minor mergers (with baryonic mass ratios below 1:4) are expected

o be signi�cantly more common than major ones (e.g. Cole et al.
000 ; Lotz et al. 2011 ), and to remain frequent even at the presen
poch (although this is still under debate, see for example O’Leary
t al. 2021 ). As minor mergers do not necessarily destroy pre-existing
tellar discs (e.g. Robertson et al. 2006 ), signs of recent or ongoing
inor mergers should be apparent around galaxies in the form of

tellar tidal features, which extend into the halo of the central galaxy.
erger remnants, which are only a few dynamical periods old,

hould leave distinguishable imprints in the outskirts of galaxies. The
requency and characteristics of these features hold vital clues to the
ature of the events which have created them (Hernquist &  Quinn
989 ; Mihos, Dubinski &  Hernquist 1998 ; Helmi &  White 1999 ;
art ́�nez-Delgado et al. 2009 ; Hendel &  Johnston 2015 ; Montes et al.
020 ; Spa v one et al. 2020 ; Vera-Casanova et al. 2022 ), and can thus
e used to disentangle the different formation channels. Following
uc et al. ( 2015 ), tails are expected to be pulled out material from

 gas-rich disc galaxy, while streams would be stripped materia
rom a low-mass companion being consumed by the primary galaxy.
ther features such as fans and plumes are expected to come from
ry, major mergers. In addition, clouds and shells are expected to
e the result of interactions with radial orbits, while great circles
re more predominant for circular orbits events (Johnston et al.
008 ). 
Unfortunately, the majority of tidal features have very low surface

rightness, expected to be fainter than 29 mag arcsec Š2 in the r -band
Bullock &  Johnston 2005 ; Cooper et al. 2013 ), and extremely deep
bservations are necessary to detect them, as shown explicitly in
onselice, Bershady &  Jangren ( 2000 ), Ji, Peirani &  Yi  ( 2014 ),
ottrell et al. ( 2019a ), Thorp et al. ( 2021 ) and Mancillas et al.

 2019 ), where the authors �nd  two and three times more stream
ased on a surface brightness cut-off 33 mag arcsec Š2 than with
9 mag arcsec Š2 . Although there is an increasing interest in the

iterature on the identi�cation and characterization of tidal features
ost works focus on the detailed analysis of a small number of
bjects via visual inspection (e.g. Mart ́�nez-Delgado et al. 2010 ;
avanmardi et al. 2016 ; Morales et al. 2018 ; Martinez-Delgad
t al. 2021 ; Huang &  Fan 2022 ; Sola et al. 2022 ; Valenzuela &
emus 2022 ), some of them belong to local groups or clusters
f galaxies (e.g. Iodice et al. 2017 ; Mihos et al. 2017 ; Spa v one
t al. 2018 ). A sample of 92 ETGs galaxies from ATLAS 3D was
resented in Duc et al. ( 2015 ), reporting signs of interactions or
erturbed morphologies in more than half of them, thanks to an
bserving strategy and data reduction pipeline optimized for low
urface brightness features. Hood et al. ( 2018 ) present a visual

denti�cation of galaxies with tidal features based on DECam
e gac y Surv e y images ( r -band 3 � depth of � 27.9 mag arcsec Š2 ),
NRAS 521, 3861–3872 (2023) 
ut due to the small area inspected (100 arcsec 2 ), less than 200 of
hem have tidal features detected with high con�dence. One of the
argest catalogues of tidal detections up to date was presented in
ado-Fong et al. ( 2018 ) using The Hyper Suprime-Cam Subaru
trategic Program (HSC-SSP, Miyazaki et al. 2012 ) data. The
uthors applied applied a �ltering  algorithm that iteratively separate

ow- and high-spatial frequency features of images, resulting in
 sample of � 1200 galaxies with tidal detections from a sample
f � 20 000. 
With the arri v al of large imaging surv e ys such as Euclid (Laureijs

t al. 2011 ) and the Vera Rubin Observatory’s Le gac y Surv e y of
pace and Time (LSST; Ivezi ́c et al. 2019 ), the detection of these

eatures via visual inspection is unfeasible and automated methods
ecome imperative. The use of supervised deep learning for the
nalysis of galaxy images, such as convolutional neural networks
CNN), has pro v en to be extremely successful for classifying galaxy
mages (e.g, Dieleman, Willett &  Dambre 2015 ; Huertas-Compan
t al. 2015 ; Cheng et al. 2020 ; Ghosh et al. 2020 ; Hausen &  Robertson
020 ; Vega-Ferrero et al. 2021 ; Dom ́�nguez S ́anchez et al. 2022 ;
almsley et al. 2022 ), including classi�cations of relatively rare

bjects such as strong lensed galaxies (Lanusse et al. 2018 ; Cheng
t al. 2020 ) or post-mergers (e.g. Bickley et al. 2021 ). Ho we ver, one
f the main drawbacks of supervised learning approaches is the need
or a large sample of labelled galaxies (of the order of thousands
o train and test the algorithm and its performance in different
e gimes (see Huertas-Compan y &  Lanusse 2022 for a re vie w on the
opic). An alternative is the use of simulations: the viability of using
alaxies from hydrodynamical simulations to train deep learning
odels to classify real galaxies and mergers has indeed been shown

n Bottrell et al. ( 2019b ) and Huertas-Company et al. ( 2019 ). The
carcity of a large number of galaxies showing tidal features to be
sed as training data has prevented to develop automated supervise
etection algorithms, and so far there have been almost no attempts in
he literature to this respect. A pioneering effort to develop a CNN for
idal stream detection was presented in Walmsley et al. ( 2019 ), where
he authors used imaging for the Canada–France–Hawaii Telescop
e gac y Surv e y-Wide Surv e y (Gwyn 2012 ). Ho we ver, the models
nly achieved a 76 per cent accuracy, probably due to the small size
f the training sample ( � 1700 galaxies, of which only 305 showed

idal stream detections). 
In this work, we use synthetic HSC images of galaxies generate

y the NewHorizon cosmological simulations (Dubois et al. 2021 )
o examine the viability of using CNNs to identify galaxies with
idal features. The original sample, described in Section 2 , includes
6000 images at different surface brightness limits classi�ed by
rofessional astronomers. This is the largest catalogue of tidal

eatures based on visual classi�cation up to date. We describe
ur CNN and training strategy in Section 3, and test the ability
f the CNNs to reco v er human-like classi�cations in Section 4 ,
here we present the performance of the model as a function
f the feature class (Section 4.1 ), redshift (Section 4.2 ), and im-
ge depth (Section 4.3 ). The outcome of applying the models
o real data are discussed in Section 5 , including an attempt of
sing the Kado-Fong et al. ( 2018 ) classi�cation as a training
ample. We summarize our results and discuss their implications in
ection 6 . 

 DATA  

e take advantage of the galaxy images and labelling presente
n Martin et al. ( 2022 , herafter M22). The galaxies are gener



Tidal feature identi�cation with CNNs 3863 

Figure 1. Example of the classi�cation performed in M22. Images of the same galaxy observed at z =  0.05 with different µ lim (28, 29, 30, 31, 35 mag arcsec Š2 , 
form left to right) were classi�ed by a varying number of astronomers ( N ) into different categories. The number of observed features of each class is reported in 

the cut-outs (St =  streams, Sh =  shells, T =  tails, M =  mergers, B =  bridges) along with the total number of features ( N f ) and F Tidal =  N f / N . In this work, we 

consider as positiv e e xamples to those images with F Tidal >  1, ne gativ e those with F Tidal =  0, and uncertain otherwise. Following this criteria, the images with 

µ lim =  28 and 29 have an uncertain classi�cation, while those with µ lim >  29 are classi�ed as showing tidal features. The cut-outs are normalized in the (0, 1) 
range using arcsinh stretch , as described in Section 3.1 . 
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1 Note that this number is smaller than 10 800 quoted on Section 2.1 due to 

missing progenitors at some snapshots, which are too small to be detected by 

the structure �nder at higher redshift. 
2 The plume and asymmetric categories described in M22 are combined into 

a single miscelanea category in the catalogue, since there was a large degree 
of o v erlap between the two. 
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ted with NewHorizon, state-of-the-art cosmological hydrodynam 

cal simulations (Dubois et al. 2021 ), a zoom-in of the paren
orizon -AGN simulation (Dubois et al. 2014 ). NewHorizon com- 
ines high-stellar mass (1.3 × 10 4 M � ), and spatial resolution 

 � 34 pc) with a contiguous volume of (16 Mpc) 3 . Given the dif-
use nature of galaxy stellar haloes, the trade-off between reso- 
ution and volume is an important consideration. The simulations 
dopt the cosmological parameters from Komatsu et al. ( 2011 , 
m =  0.272, � �  =  0 . 728, � b =  0.045, H 0 =  70 . 4 km s Š1 Mpc Š1 ).
e refer the reader to M22 for more technical details on the

imulations. 

.1 Mock galaxy images 

he parent sample consists of 36 unique galaxies, with masses abo v e
0 9.5 M � at z =  0.2, and their progenitors at z =  0.4, 0.6, and 0.8.
ealistic HSC-like mock images are generated by convolving the 

moothed star-particle �uxes with the g -band HSC 1D PSF (Montes
t al. 2021 ). Three projections of each snapshot ( xy , x z , y z ) are
reated at �ve  different distances (corresponding at z =  0.05, 0.1, 
.2, 0.4, and 0.8). The physical �eld  of view is 100 kpc (proper)
ropped from the initial 1 Mpc cube. Mock images are produced for
ach galaxy by extracting star particles centred around each galaxy. 
he spectral energy distribution (SED) for each star particle is then 

alculated from a grid of Bruzual &  Charlot ( 2003 ) simple stellar
opulation models assuming a Salpeter ( 1955 ) IMF. They accoun 

or dust attenuation of the SEDs using a screen model in front of
ach particle for which a gas-to-dust ratio of 0.4 Draine et al. ( 2007 ),
nd a Weingartner &  Draine ( 2001 ) R =  3.1 Milky  Way dust grain
odel are assumed. After redshifting each particle SED, the �ux  

f each particle is calculated by convolving with the appropriate 
andpass transmission function. Finally, random Gaussian noise is 

dded to the simulated images to reach different limiting surface 
rightness µ lim 

r corresponding to 28, 29, 30, 31, and 35 mag arcsec Š2 

3 � , 10 × 10 arcsec). The combination of these parameters results
n 10 800 unique simulated images. Since the pixel angular size is
xed,  the difference in distance of the galaxies directly translate 

nto cut-outs of different sizes (26 × 26, 36 × 36, 60 × 60, 
08 × 108, 204 × 204 pixels, from z =  0.8 to 0.05). In order to

ncrease the sample size and to have mock images which resemble 
urrent observations better, we have generated 2 × 1453 additiona 

napshots with µ lim =  26 and 27 mag arcsec Š2 by adding Gaussia 

oise following equation ( 3 ) from M22 to the deepest available
mage of each particular counterpart (i.e. with the correspondin 

D, snapshot, redshift, and projection). 
.2 T idal featur e classiÞcation 

22 performed a visual inspection of � 8000 1 unique images by 45
xpert classi�ers, with a random subset of them classi�ed six times by

dentifying the presence of tidal features and classifying them into 

tellar streams, tidal tails, shells, tidal bridg es, merg er remnants
ouble nuclei, or miscelanea . 2 The classi�cation was summarized in 

 catalogue including 5 835 unique images. The missing images were
ot included in the classi�cation catalogue for being too noisy. We use
his catalogue as parent sample in our work. The visually classi�ed
mages were created at HSC pixel angular scale of 0.2 arcsec, but
escaled to 1 arcsec, comparable to the FWHM of the PSF used (an
bserver might reasonably rebin like this in order to gain additiona
epth without losing any detail). This rebinning will  have a signi�cant

mpact when applying the models trained with these images to real
SC-SSP data, as we discuss in Section 5 . In this work, we use

he exact same images as those visually classi�ed to train the deep
earning algorithm, so that the labels are consistent. 

Fig. 1 shows the result of the classi�cation for a particular galaxy
mage observed at redshift z =  0.05 with different limiting surface
rightness. Each image is classi�ed by a number of astronomers ( N ),
hich assign the number of observed features ( N f ) of each class to the

mage. This means that more than one class can be assigned to each
mage and that the classi�cation can change with µ lim , but also due to
rojection effects or spatial resolution (redshift). For this particular 
xample, the deepest image ( µ lim =  35 mag arcsec Š2 ) was classi�ed
y N =  3 astronomers, which annotated features of streams, shells

idal tails, merger , and bridges adding up to a total of N f =  9. On
he other hand, the shallower image ( µ lim =  28 mag arcsec Š2 ) was
lassi�ed by N =  5 astronomers, of whom only one annotated the
eature class of merger ( N f =  1). 

To the best of our knowledge, this is the sample with the
argest number of tidal detections visually classi�ed by professiona 
stronomers up to date, making it the optimal sample for training
 deep learning algorithm for automated detection of tidal features 
o we v er, the e xample from Fig. 1 illustrates the challenges of the
isual identi�cation of tidal features: the de�nition of the different 
lasses of features is not objective, and there is a discrepancy between
MNRAS 521, 3861–3872 (2023) 
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M

Figure 2. Distribution of stellar mass (left), limiting surface brightness (middle), and redshift (right) of the images from the parent sample presented in M22. 
The grey empty histograms represent the full  sample (5835 images), the red �lled  histograms show the images labelled as positive examples of tidal features 
(i.e. with F Tidal >  1), and the brown empty histograms correspond to images with uncertain classi�cations (0 <  F Tidal <  1 or labelled as misc/double nucleus 
only). Note the large dependence of the fraction of tidal feature identi�cation by the astronomers with surface brightness limit  and redshift (or, equi v alently, 
cut-out size). 
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he classi�ers. In some cases, the same images are classi�ed as
howing tidal features by some classi�ers and as featureless by others
his is a warning about the reliability of the visual classi�cations
nd how much they should be trusted as the ground truth. Although,
e are well aware of these caveats, we continue to use this data set in
ur analysis as is the largest and most complete galaxy sample with

idal feature labels up to date. 
To simplify the problem in this work, we focus on the identi�cation

f the presence (or not) of a tidal feature, regardless of its category
nd, thus, we consider all the tidal feature classes simultaneously
ince the images were classi�ed by a varying number of experts

anging from one to six, and more than one tidal feature category
ould be assigned to each image, we divide the number of tidal feature

denti�cations by the number of classi�ers. We refer to this quantity
s the fraction of tidal detections, F Tidal =  N f / N , and consider certain
lassi�cations those with F Tidal =  0 or � 1 (corresponding to 39 and
8 per cent of the sample, respectiv ely). F or the images with 0 <
 Tidal <  1 (the remaining 22 per cent), the classi�cation of different
xperts were inconsistent, and we refer to these cases as uncertain
lassi�cations. To a v oid including uncertain classi�cations in the

oop, we remo v e the images with 0 <  F Tidal <  1 from the train and
est samples. After visual inspection of some images, we found that
he classes misc and double nucleus do not �t  exactly into the tidal
eatures we are aiming to detect. Therefore, images classi�ed only
s misc or double nucleus are also remo v ed from the analysis. 
The distribution in mass, surface brightness limit,  and redshift of

he parent sample, and the images classi�ed as showing tidal features
re shown in Fig. 2 . The detection of tidal features by humans is

argely dependent on the depth of the images and on the image size
or redshift of the galaxy), as reported by M22 and clearly seen in
ig. 2 . This has important consequences for the performance of the
lgorithm for automated detection of tidal features, as we discuss in
ection 4 . 

 METHODOLOGY  

e use supervised learning for the identi�cation of galaxies showing
idal features; i.e. we need to provide the algorithm with the ground
ruth we would like to reco v er in the form of labels (in this case
idal feature detection or not). We use CNNs, a class of arti�cial
eural networks consisting of convolution kernels that slide along

nput features and provide feature maps. These maps are then
NRAS 521, 3861–3872 (2023) 
assed through a fully  connected network that outputs a value,
orresponding to a particular property that we want to learn. The
nal  function (or weights of the model) is the one that minimizes
he difference between the output and the input labels. In this work,
he input to the CNN are single-band images in the HSC r -band (we
se the r -band images since these were the images classi�ed by the
rofessional astronomers in M22) with their corresponding labels (0s
or non-tidal detections and 1s for tidal features). The output of the
odel, P Tidal , is the probability that the image shows a tidal feature 

.1 Image pr  e-pr ocessing 

efore being fed to the CNN, the galaxy images are normalized in
he range (0, 1) to a v oid operating with very large numbers. For
he normalization, the commonly used asinh stretch function 3 (see
upton et al. 2004 ) is used, combined with a sigma clipping of
 per cent of the faintest and the brightest pixels of each image
his pre-processing enhances the detection of low surface brightnes

eatures. The images are converted to the same size, 69 × 69, (the
nput to the CNN is an array of �xed  dimensions) by rebinning or
nterpolating the pixel �ux,  depending on the original image size. We
ested input sizes of 100 × 100 without obtaining signi�cant change
n the results. Throughout the paper, we use the 69 × 69 stamps as
eference. 

.2 Input  labels 

e use a binary classi�cation to separate images which show tidal
eatures (positive samples, labelled as 1s) from images without tidal
ignatures (ne gativ es, labelled as 0s). Therefore, we unify all classe
f tidal features into a single one (detections or non-detections). As
xplained in Section 2.2 , we use the quantity F Tidal to select positive
nd ne gativ e e xamples, and leav e out of the analysis images with
ncertain classi�cations. 
For the images generated speci�cally for this work at µ lim =  26,

7 mag arcsec Š2 , we do not have classi�cations by the professiona
stronomers as these images were not part of the original M22
ample. We choose to use the labels of their counterpart images

art/stad750_f2.eps
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Table 1. Architecture of the CNN used in the main text. 

Layer type Output shape Parameters 

Input (69, 69, 1) 0 

Conv2D (69, 69, 32) 320 

MaxPooling2D (34, 34, 32) 0 

Conv2D (34, 34, 48) 13 872 

MaxPooling2D (17, 17, 48) 0 

Conv2D (17, 17, 64) 12 352 

MaxPooling2D (8, 8, 64) 0 

Flatten (4 096) 0 

Dense (64) 262 208 

Dense (1) 65 

Total number of parameters – 288 817 
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i.e. with the same galaxy ID, snapshot, redshift and projection) 
t µ lim =  28 mag arcsec Š2 as their ‘ground truth’ label. This ex-
rcise allows us to test whether or not the algorithm can reco v er
isually classi�ed features in images with surface brightness limit  

 mag arcsec Š2 shallower than the images used for their visual 
lassi�cation. 
We randomly split the sample in 85 per cent for training (resulting

n 4418 images, out of which 1539 are tidal detections), and reserve
5 per cent for testing (820, out of which 223 are tidals). 

.3 CNN ar chitectur e 

he CNN architecture discussed in the main text, based on the one
resented in Walmsley et al. ( 2019 ), is summarized in Table 1 . It
onsists on three 2D convolution layers with 32, 48, and 64 �lters  with
izes 3, 3, and 2, respectively, and 2 × 2 max-pooling windows. They
re followed by a fully  connected layer with 64 neurons, Recti�ed 

inear Unit (ReLU) non-linear acti v ation function and 0.5 dropou 

ate. A �nal  single neuron outputs values converted to the (0, 1) range
y applying a sigmoid function. Binary-crossentropy is used as loss 
unction and Adam as optimizer. The number of free parameters of
his CNN is 288 817 (for input sizes 69 × 69 × 1). 

We have tested other CNN architectures, namely the one com- 
only used by the authors (e.g. Dom ́�nguez S ́anchez et al. 2018 and
om ́�nguez S ́anchez et al. 2022 ), consisting on four 2D convolutiona

ayers with 32, 64, 128, and 128 �lters  with sizes 6, 5, 2 and
, 2 × 2 max-pooling , and 0.25 dropout, 4 followed by a fully
onnected layer with 64 neurons and 0.25 dropout. The number 
f free parameters is 2600 545, almost ten times larger than in
he Walmsley et al. ( 2019 ) CNN. A variation of the Dom ́�nguez
 ́anchez et al. ( 2018 ) architecture, with �lter  sizes (3, 3, 2, 3),
nd adding a fully  connected layer with 16 neurons before the 

nal  layer, has also been tested. In addition, conventional networks 
uch as ResNet-18, -50, -101 (He et al. 2016 ) and Ef�cientNet-
0,-B1, -B4, and -B7 (Tan &  Le 2019 ) have been attempted. As

he use of more complicated CNNs did not signi�cantly impro v e
he results, we have decided to use the Walmsley et al. ( 2019 )
rchitecture as a reference due to its simplicity with respect to other
lgorithms. 
We use an o v erall standard strategy for training. We train for

00 epochs with a batch size of 100 and a validation split of
.2 (from the training sample). Data augmentations are performed 
hile training, including vertical and horizontal �ip,  weight, and 

eight shifts (by 0.05 per cent), zoom-in and out (0.75–1.3) and 
 This is a slight modi�cation with respect to the original con�guration. 

µ  

t  

(  
otations (0 � , 90 � , 180 � , 270 � ). We train 10 independent models
andomly changing the initialization weights and the training and 

alidation sets. During the training, we observed no signs of o v er-
tting.  The results presented in the following sections are based 
n the average of the output of the 10 models, which we refer to
s P Tidal . 

 RESULTS 

n this section, we study the performance of our models when applied
o the test data set. We consider two different tests sets: the one
ontaining only the original simulations and labels by professiona 
stronomers (i.e. surface brightness µ lim � 28 mag arcsec Š2 ), and 

he test set which includes the original and the simulated images
t µ lim =  26, 27 mag arcsec Š2 . We will  refer to the former as the
riginal test sample and to the latter as the original +  shallow test
ample. 
We use standard metrics for studying the performance of the 

odels: 

ccuracy =  
TP +  TN 

TP +  TN +  FP +  FN 
=  

TP +  TN 

Total 
(1) 

recision =  
TP 

(TP +  FP) 
=  

TP 

P pred . 
(2) 

ecall =  
TP 

(TP +  FN) 
=  

TP 

P input 
(3) 

1 =  2 ×
P × R 

( P +  R) 
, (4) 

here TP, TN, FP, and FN stand for true positives, true negatives
alse positive and false ne gativ e, respectiv ely, while P pred and P input 

re the total number of predicted and input positi ves, respecti vely. To
eparate the instances into positive and negative predictions, we use 
he binary classi�cation threshold probability , P th , which is the value
hat optimizes the true positive rate (TPR, i.e. the fraction of correctly
denti�ed tidal detections) and the false positive rate (FPR, i.e. the
raction of non tidals classi�ed as tidal detections) simultaneously 
he number of galaxies in each test sample and the fraction of
ositives (labelled as tidal detections in the input catalogue), as well
s the accuracy, precision, recall, and F1 score of each sample is
eported in Table 2 . The accuracy is the fraction of correctly classi�ed
nstances, the precision is the fraction of TP among the instance
lassi�ed as positive (analogue to the purity), while the recall is
he fraction of TP among the positive input instances (analogue to
he completeness). Finally, the F1 score is the harmonic mean of
he two. 

Fig. 3 shows the receiver operating characteristic curve (ROC) 
hat represents TPR versus FPR as the discrimination threshold 
 P th ) is varied. An adequate classi�er would maximize the TPR
hile keeping the FPR low. The area under the ROC curve (AUC)

s abo v e 0.9 in both cases (a perfect classi�er would have AUC
 1). We also show the confusion matrices for the two test sample
sing as probability threshold the optimal value for each sample 

o separate the predictions into positive and ne gativ e classes. As
eported in Table 2 , the accuracy (equation 1 ) for the original
nd original +  shallow test samples is 0.84 and 0.85, while the
recision (or purity, equation 2 ) is 0.72 and 0.71, respectively. These
alues are surprisingly similar, taking into account the inclusion 

f � 300 images with µ lim <  28 in the original +  shallow test
ample for which the ground truth is assumed to be the labels at
lim =  28, i.e. those reported for images two magnitude deeper than

he actually classi�ed images. The main difference is in the recall
or completeness, equation 3 ) that drops from 0.85 for the original
MNRAS 521, 3861–3872 (2023) 
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Table 2. Number of galaxies in the original and original +  shallow test samples, and the 

fraction of those labelled as tidal features, as well as the accuracy, precision, recall, and F1 

score obtained when selecting as positive predictions the images with model scores abo v e 

their corresponding P th . 

Test sample N test 

Positives 
(per cent) P th Accuracy Precision Recall F1 

Original 532 33 0.32 0.84 0.72 0.85 0.78 

Original +  shallow 820 27 0.31 0.85 0.71 0.75 0.73 

Figure 3. Upper panel: ROC curve – True Positive Rate as a function of False Positive Rate – for the original (circles, coloured coded by P th ) and 
original +  shallow (orange line) test samples. The red star marks the optimal threshold for the original sample. Bottom panels: Confusion Matrix for the original 
(left) and original +  shallow test sample (right) obtained when selecting positive samples as those abo v e the corresponding P th of each sample. Input labels are 
shown in the y -axis, predictions in the x -axis. The number of objects is reported in each quadrant, colour coded by the fraction of that particular true class (also 
shown in parenthesis). 
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est sample to and 0.75 for the original +  shallow test sample
s expected, it is more dif�cult  for the algorithm to reco v er tidal
etections in shallower images. We discuss the surface brightnes
ependence of the classi�cation in Section 4.3 . Since the precision
alues are very similar for the two test samples, but recall is smaller
or the original +  shallow test sample, the F1 score (equation 4 )
s also lower for the original +  shallow (F1 =  0.73) than for the
riginal sample (F1 =  0.78). 
NRAS 521, 3861–3872 (2023) 

T  
.1 Dependence on tidal  feature class 

ow we study the ability of our CNN to detect different classe
f tidal features. Fig. 4 shows the output probability of our model,
 tidal (larger values correspond to more con�dent detection of tidal

eatures), divided in the classes provided in the M22 catalogue
learly, there are classes which are easier to identify than others
 or e xample, all the shells in the test sample are reco v ered, and the
PR for the streams is 0.84, while for merg er s or tidal tails is below

art/stad750_f3.eps
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Figure 4. Upper panels: Output probability distribution of the model for tidal detection, P Tidal , for the test sample divided into non-tidal visual classi�cations 
(left-hand panel, blue) and tidal visual classi�cations (right-hand panel, red). Darker colours represent the original sample, lighter colours the shallow sample. 
Lower panels: P Tidal , for the test sample divided into different categories, as stated in the legend. The dashed line is P th =  0.31, the threshold used to de�ne a 

instance as positive or negative. The true positive rate (TPR) of each category for the original +  shallow sample is reported in the corresponding panel. 
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Figure 5. TP examples of shells, streams, and mergers, from top to bottom. 
The cut-outs have been processed as described in Section 3.1 , but are shown 
at their original sizes (i.e. they are not binned to 69 × 69, which is the input 
to the CNN), and the x and y axes correspond to the number of pixels. The 

information shown in each cut-out corresponds to the redshift, the surface 
brightness limit  (increasing from left to right), and the output probability of 
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.7. It is also evident from Fig. 4 that the model performs worse for
he shallow sample: the P tidal values are lower for the positive case
f this subsample. We discuss in more detail the effect of the µ lim in
ection 4.3 . 
Fig. 5 shows representative examples of TP identi�cations of 

hells, streams, and merg er s at different surface brightness limits.
he features are very evident for the deep images (right-hand panels) 
nd, in some cases, it is surprising that the model is able to identify the
idal features in the more noisy images (left-hand panels). Besides 
he cut-outs are displayed at their original size, not binned to 69 × 69,
hich is the input to the CNN. These examples show that shells and
treams are easier to identify by eye than merg er s . We note, ho we ver,
hat the number of shells in the test sample is small (12), and that
here are no shells in the shallow test sample. This is due to the
act that there are no visually identi�ed shells in images shallowe 

han µ lim =  28 mag arcsec Š2 , from which the labels for the shallow
ample come from. In other words, the fact that we are reco v ering
ore shells may be due to these structures being identi�ed by eye
nly in the deeper images. We note again that the different classe
eported in the M22 catalogue are not mutually e xclusiv e (see also
ig. 1 ), and therefore images identi�ed as shells can also fall into
ther categories (this happens indeed for 10 out of 12 shells in the
est sample). 

FN cases are shown in Fig. 6 for streams and merg er s . As all
he shells in the test sample are correctly identi�ed by our model,
here are no FN for this cate gory. Ev en for the deeper images
right-hand panels), it is dif�cult  to identify the tidal features 
hile the shallower images (left-hand panels) are dominated by 

oise. Therefore, it is not surprising that the model fails in these
ases. 
the model, P Tidal . 
MNRAS 521, 3861–3872 (2023) 
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Figure 6. Same as Fig. 5 but for FN examples of streams and merg er s (top 

and bottom panels, respectively). Note that there are no false negative shells 
(see Fig. 4 ). The features are hard to detect by eye, so it is not surprising that 
the model fails in these cases. 

Figure 7. ROC curves for galaxies at different redshifts, colour coded as 
indicated by the legend. The grey dashed line shows the ROC curve for the 

full  original sample. Note that there are no positive cases at z =  0.8, and 
the model correctly classi�es all the images at this z as ne gativ es; hence we 

represent the ROC curve as the dotted purple line. 
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Figure 8. Same as Fig. 7 for images at different surface brightness, colour 
coded according to the legend. Note that at µ =  35 mag arcsec Š2 all images 
show tidal features and are correctly classi�ed as such by our model (we plot 
the ROC curve as the brown dotted line). 
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.2 Dependence with  redshift 

n this section, we report the performance of the model when the
est sample is divided into different redshift bins, which is directly
elated to the original stamp size (the stamps are then resample
nto 69 × 69 because the input to the CNN has �xed  dimensions
ee details in Sections 2 and 3.1 ). Fig. 7 shows the ROC curves
s a function of redshift. As expected, the larger AUC is obtained

n the lower redshift bin ( z =  0.05). However, the dependence on
edshift is not very strong and not even linear. For example, the
UC is larger for z =  0.4 (AUC =  0.81) than for z =  0.2 (AUC
 0.76), probably due to the lower fraction of visual detection
t higher redshifts, which increases the o v erall accurac y. This is
vident for z =  0.8 (shown as a dotted line), where there are no
alaxies classi�ed as tidal detections in the test sample, neither

n the input labels nor by our model, and therefore the accuracy
s 100 per cent. 
NRAS 521, 3861–3872 (2023) 
.3 Dependence with  surface brightness 

inally, we study the dependence of the model performance on the
urface brightness of the images to be classi�ed. Fig. 8 shows the
OC curve for the different µ lim values. The lower AUC correspon

o the shallower images ( µ =  26, 27), as expected, and the best results
re obtained for µ =  30 mag arcsec Š2 . We show the ROC curve for µ
 35 mag arcsec Š2 as dotted line because all the images from the test

ample are classi�ed as tidal detections, both in the input catalogue
nd by the model (just the opposite of what happens at z =  0.8).
urprisingly, the AUC at µ =  31 mag arcsec Š2 is lower (AUC =
.87) than at µ =  30 mag arcsec Š2 (AUC =  0.93), and comparabl
o the values obtained at µ =  28 mag arcsec Š2 . 

To shed more light on the classi�cation ef�ciency, Fig. 9 shows the
onfusion matrices (generated by setting P th =  0.31) for three surface
rightness limits ( µ =  26, 30, 31 mag arcsec Š2 ). These confusion ma-

rices highlight the fact that the large AUC for µ =  26 mag arcsec Š2 

s mainly driven by the ability of the classi�er to correctly identify
mages without tidal detections (98 per cent accuracy for the ne gativ e
ubsample), while it struggles to correctly classify the tidal detection
only 33 per cent are reco v ered in this surface brightness range). On
he other hand, at µ =  31 mag arcsec Š2 , the contrary happens: the
odel is able to correctly identify 89 per cent of the tidal detections
t the cost of misclasifying 35 per cent of the non-detections. At µ
 30 mag arcsec Š2 , the model is able to correctly identify 90 per cent
f the tidal detections while keeping the contamination (i.e. the
umber of FP) at 26 per cent. 
While this trend could be expected, and is in line with the larger

raction of tidal detections obtained in deeper images by visual
nspection (see Fig. 2 ), it could be an indication that our model has
t least to some extent, learned the signal-to-noise of the images: it
ends to classify deeper images more frequently as tidal detections
o test this assumption, Fig. 10 shows the accuracy, precision, and
ecall for each surface brightness bin, as well as the fraction of
ositive samples (tidal detections) in the input catalogue. 
As re�ected by the confusion matrices, the recall (completness

f the model is highly dependent on the depth of the images to be
lassi�ed, going from around R � 0.40 at µ =  26 mag arcsec Š2 to R �
.90 at µ =  31 mag arcsec Š2 . Ho we ver, this is not as clearly re�ected

n the precision (purity) values, roughly constant and abo v e P � 0.60
t all surface brightness. In the same way, the accuracy is stable
hroughout the whole magnitude range ( � 80 per cent), indicating
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Figure 9. Confusion matrices for three different surface brightness bins: 
µ lim =  26, 30, 31 mag arcsec Š2 , from top to bottom. The number of objects 
is reported in each quadrant, colour coded by the fraction of that particular 
true class (also shown in parenthesis). 
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Figure 10. Accuracy (blue), precision (red), and recall (green) obtained for 
the test sample as a function of the images’ surface brightness µ lim . The 

fraction of tidal detections in the input catalogue is shown in black. The 

bins at µ lim =  26, 27 mag arcsec Š2 are plotted as empty circles to highlight 
the fact that they are not part of the original sample from M22; the labels 
used for training and testing are the ones for their corresponding images at µ
=  28 mag arcsec Š2 . 
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hat the model has not simply learned the signal-to-noise of the 

mages. The fact that the accuracy does not improve with µ lim , even
f  the recall (completness) does, can be explained by a larger fraction
f FP. Ho we ver, the increase in FP does not decrease the precission
purity) because of the larger fraction of tidal detections in the input
atalogue at higher µ lim (black symbols in Fig. 10 ), which togethe 

ith the larger recall increase the number of TP to counterbalanc 
he larger number of FP. 

We would like to highlight here again that the labels used for
he shallow sample ( µ lim <  28 mag arcsec Š2 ) correspond to the
isual classi�cation of the images with µ =  28 mag arcsec Š2 , which
xplains the drop in completeness in this surface brightness regime 

ndeed, it is remarkable that our model is able to reco v er 40 per cent
f the images with tidal detections, even when the images are two
rders of magnitude shallower that the ones used for labelling. This

s in agreement with recent results suggesting that CNNs trained with
intrinsic’  ground truth can reco v er astronomical features hidden to
he human eye (see e.g. Vega-Ferrero et al. 2021 ). This result could
ave a large impact on the design strategy of future surveys. 
We emphasize that redshift and surface brightness limits are 

ntertwined in the current analysis. Unfortunately, the test sample 
ize is too small to examine the trends at each µ lim limit  separately
t �xed  redshift (or viceversa). 

 APPLICATION  TO  REAL  HSC-SSP DATA  

ur models are trained in HSC-like mock images. Therefore, it 

s important to test the performance of the algorithm in real data
ith similar characteristics to the training data set. We thus use

mages from the HSC-SSP surv e y (Hyper Suprime-Cam Subaru 
trate gic Surv e y) Wide layer Aihara et al. 2018a , b . The HSC Wide

ayer co v ers the largest on-sky area at a relatively shallow depth
 i � 26) relative to the Deep and UltraDeep Layers ( i � 27 and 28,
espectively). 

In particular, we have applied our models to the HSC-SSP images
resented in Kado-Fong et al. ( 2018 ). These are � 21 000 galaxies
rom the internal data release S16A, with spectroscopic redshifts 
rom SDSS at 0.05 <z  <  0.45. Kado-Fong et al. ( 2018 ) used a
ltering  algorithm to identify tidal features, combined with visual 
lassi�cation of the features detected by such �ltering,  resulting in a
ample of � 1200 tidal feature detections. Our �rst  approach to this
 ork w as to use the labels from Kado-Fong et al. ( 2018 ) sample to

rain the algorithm for tidal stream identi�cation, but after e xhaustiv e
esting, the results were not good enough (F1 =  0.37), mostly due to
he small completeness achieved by the models ( R =  0.26). 

As previously explored in the context of tidal feature classi�cation 

f mock images (Section 2.2 ), one source of signi�cant label noise
s the reliability of visual inspection itself. Visual inspection of the
ull  sample by three professional astronomers (I.D., H.S., O.K.L.) 
MNRAS 521, 3861–3872 (2023) 
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rovided a new classi�cation, which revealed that only 1/4 of the
alaxies showing tidal features according to the �ltering  algorithm
ere classi�ed as such by all visual classi�ers. We believe that the
ombination of noisy labels, small positive training sample, and low
urface brightness features to be detected limited the performanc
f the algorithm. This was the main reason why we decided to
se the HSC-like mock images for training the CNN. We note

hat the original classi�cation by Kado-Fong et al. ( 2018 ) used
oth the images and the output of the �ltering  algorithm in order
o detect features close to the host galaxy, so it is expected that
he re-classi�cation of the images alone would yield a lower tidal
eature detection rate. On the other hand, as the original Kado-Fong
t al. ( 2018 ) sample focused on the comparison of the properties of
tream and shell hosts, the visual inspection was performed only for
he images, where a tidal detection was identi�ed by their �ltering
lgorithm, meaning that the completeness of the sample is uncertain
It is well known that deep learning models are sensitive to the

haracteristics of the training sample, and these techniques such
s transfer learning (e.g. Dom ́�nguez S ́anchez et al. 2019 ) should
e used for optimizing models trained on different data sets than the

arget sample. We attempted, without success, to use transfer learning
o �ne  tune the models on real HSC-data, making e xhaustiv e tests
n the number of layers to be trained, the learning rate, etc. The
est result we obtained is AUC =  0.64, and the output values are
oncentrated towards the lower end ( P Tidal <  0.7). These poor results
mphasize the strong dependence of the model performance on the
ata they are trained with and warns us against carelessly applying
odels to different data domains. It also suggest that mock images

rom simulations are not as realistic as we might have expected. 
A possible explanation for the bad performance could be the

ifferences in the way the mock images were created compared
o real HSC data. For example, the angular resolution of the HSC-
ock images is poorer (1 arcsec versus 0 . �� 167 for real HSC-SSP)

n addition, the simulated images do not include real backgrounds
rocessing artifacts, contaminating sources, or sky subtraction resid-
als. This may compromise the model’s ability to assess real data
s already discussed in Bottrell et al. ( 2019a ). The morphologi-
al classi�cation of TNG simulated images presented in Huertas
ompany et al. ( 2019 ) was signi�cantly impro v ed by adding realism

o the simulated images. Unfortunately, adding realism to the images
ould change the visual classi�cation used as ‘ground truth’: some
eatures could become undetectable in the presence of brighter
bjects. Therefore, training the CNN, with more realistic mock

mages and new labels, is beyond the scope of the current analysis
e will  investigate these possible impro v ements in the forthcoming

tudies. 
The reason why transfer learning might not solve the domain shift

ould be the fact that the µ lim in the simulated images is not �xed.
his implies that the model needs to transfer from many sparsely
ampled domains to another, instead of transferring from one well-
ampled domain to another. Intuitively, the former may be harder
nother aspect which could have a signi�cant effect is the small
arent sample of galaxies used to produce the simulations, based
n 36 galaxies only that may not represent the diversity of real
alaxy populations. Since the observed sample is �ux  limited and
he simulated sample is volume limited, the former should have a
atter mass distribution with more massive galaxies. Also, the real
ata have continuous redshift distribution, while the mock images
re simulated in �ve  redshift bins. All  these differences combine

ogether and it is not possible to investigate each aspect separatel
ith the current sample. Thus, we cannot pinpoint the property that

s the main cause of the poor model performance across domains. 
NRAS 521, 3861–3872 (2023) 
 SUMMARY  AND  CONCLUSIVE  REMARKS  

idal interactions are expected to play a critical role in galaxy mass
ssembly and ev olution, b ut their low surface brightness make these

eatures dif�cult  to detect. Automated methods for the identi�cation
nd classi�cations of tidal features will  be compulsory for the
nalysis of large upcoming surv e ys such as LSST or Euclid. 
In this work, we take advantage of the catalogue presented in M22

hat provides tidal feature classi�cations by professional astronomer
or a sample of � 6000 galaxy images from the NewHorizon simula-
ions. This constitutes the largest catalogue of visual identi�cations
f tidal features up to date. The galaxies are simulated at different
volutionary times and redshifts, and HSC-like mock images with
ifferent surface brightness limits ( µ lim =  28–35 mag arcsec Š2 ) were
isually inspected by a varying number of professional astronomer
ranging from 2 to 6). 

We use a CNN to train a supervised deep learning binary mode
hich aims to reproduce human visual identi�cation of galaxies
ith tidal features. For this, we have labelled as positives all the

mages for which a tidal feature was identi�ed by all the classi�ers,
egardless of the tidal feature category ( F tidal >  1, as detailed in
ection 3.2 ) and as ne gativ e those with no tidal identi�cation ( F tidal 

 0). We do not use galaxies for which the presence of a tidal feature
as uncertain (disagreement between classi�ers). In addition to the
riginal sample, we have created shallower images, more similar to
urrent av ailable observ ations, at µ lim =  26, 27 mag arcsec Š2 . These

mages were not classi�ed in M22, and we use their correspondin
abels at µ lim =  28 mag arcsec Š2 as ground truth. We remark the fact
hat, since the visual classi�cations are used as input label to the
odel, any bias present in human classi�cation would be passed on

o the deep learning algorithm (see, for example, how the fraction of
idal detections depends on the image properties in Fig. 2 ). Our main
onclusions are: 

(i) The deep learning model is successful in reproducing the
uman identi�cation of images with tidal features in the HSC-mock

mages, reaching accuracy, precision, and recall values of Acc =
.84, P =  0.72, and R =  0.85 for the original test sample, using the
ptimal threshold, P th =  0.31, to select positive cases of tidals. 
(ii)  The results are surprisingly similar in terms of global accuracy

nd purity (Acc =  0.85, P =  0.71) when the shallower test sample
s included, even though these numbers are computed correspondin
o the labelling of images one or two orders of magnitude deeper. 

(iii)  The completeness of the model for the original +  shallow
est sample is smaller than for the original one ( R =  0.75 versus
.85). There is indeed a clear dependence of the ability of the mode

o reco v er tidal features with respect to the image depth: while for
lim >  30 mag arcsec Š2 around 90 per cent of the tidal features are

eco v ered, this quantity drops below 50 per cent for µ lim <  28 mag
rcsec Š2 (see Figs 9 , 10 ). 
(iv) The accuracy and purity are roughly constant at all surface

rightness, hence we conclude that the model is not learning the
ignal-to-noise of the images, although it is evident that it impacts
he classi�cation performance, mostly in terms of completeness, as
xpected. 
(v) The trend with redshift is not so evident, with the larger AUC

alues obtained at redshift bins z =  0.05 and 0.4. The decrease of
he fraction of visually identi�ed tidal features at higher redshifts
ay explain this non-intuitive result (the model is able to correctly

eco v er the true ne gativ es). 
(vi) Tidal streams and shells are the categories easier to identify

y the model, with TPR =  1 and 0.87, respectively. On the other
and, merg er s and tails reach only TPR =  0.68, 0.69, respectively. 



Tidal feature identi�cation with CNNs 3871 

µ
t r 
l  

s l
r .
B  

r  

m

d
t l
c
(
a  

s  

o
c

,
d
l  

c  

w
t  

p
d  

i
a  

e
s

t
s  

B  

D t 
t .
A  

t  

e  

o ,
b

H
a  

B  

e  

t
f
t
d
n

 

s
p
t
r
t .
F  

e  

u d
f
c e 

t
s

s  

l - 
t
m
p
m
f  

m  

2  

c .
T  

a  

i  

s  

r
i
i
a
g

A

W
h  

k
M
o
e
I
e
R
R
R
g
t  

k
(
u
r
s
S
s
r
t  

G t
F
f  

I
D
t
g
b  

t , 
I

5 ht tps://www.cosmos.esa.int /documents/7423467/7423486/ESA- F2- ARRA 

KIHS- Phase- 2- PUBLIC- v0.9.2.pdf

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/521/3/3861/7084037 by Liverpool John M
oores U

niversity user on 15 June 2023
(vii)  When applied to real HSC images with 

lim =  26 mag arcsec Š2 , the performance is signi�cantly worse 
han on the simulated images (AUC =  0.69), even when transfe
earning is applied. This is probably related to the fact that the
imulated images are not extremely realistic: they have lower spatia 

esolution than real images, and do not include background effects 

esides, the y span o v er a wide µ lim range, do not have a uniform
edshift co v erage, and may not include examples of all observed
orphological types and/or features. 

The results presented in this work represent an important step in the 

evelopment of automated tidal feature detection techniques, even if  

he performance is lower than those found in other astronomica 
lassi�cation tasks like separating elliptical from disc galaxies 
reaching accuracy above 97 per cent). Tidal feature detection is 

 dif �cult  task, gi ven the lo w surface brightness of the subtle
tructures that we wish to detect. An additional limitation is the lack
f a large, homogeneously observed training sample with certain 
lassi�cations. 
One alternative would be to use ‘intrinsic’  labels from simulations 

erived from dynamics or merger trees. The disadvantage of such 
abelling is that observational limitations may not al w ays support the
lassi�cation of an image in accordance with its intrinsic class. In this
ork, the training data is assembled from human labels. Labelling 

idal features via visual inspection is not trivial and the image pre-
rocessing has a signi�cant impact. In addition, classi�ers tend to 

isagree with each other quite often, as shown in M22. Biases in the
denti�cation of interacting galaxies by visual classi�cations have 
lso been reported in Blumenthal et al. ( 2020 ). Therefore, it may not
ven be possible to achieve an accuracy similar to elliptical/spiral 
eparation due to the much greater ambiguity of the classi�cations. 
We are aware of some important efforts of the scienti�c community 

owards building large and robust samples of tidal identi�cations, 
uch as the detailed annotations presented in Sola et al. ( 2022 ),
 ́�lek et al. ( 2020 ), or the on-going tidal stream surv e y by Martinez-
elgado et al. ( 2021 ), which will  certainly help to construct a robus

raining sample to impro v e the algorithms for automated detection 

pproaches such as domain adaptation ( Ćiprijanovi ́c et al. 2022 ),
he use of unsupervised learning (e.g. Cheng et al. 2021 ; Sarmiento
t al. 2021 ), or one-shot learning (Chen et al. 2019 ) could help to
 v ercome the lack of positive training samples currently available 

ut we leave these approaches for the forthcoming analysis. 
The poorer performance of our tidal identi�cation model in the real 
SC-SSP images emphasizes the large dependence of deep learning 
lgorithms on the data they are trained with. As already noted in
ottrell et al. ( 2019a ), Huertas-Company et al. ( 2019 ), Ćiprijanovi ́c
t al. ( 2022 ), the importance of using realistic simulations for
raining the models, including background, real noise, and artifacts, is 

undamental to achieving robust results with real data. This should be 

aken as a warning against applying deep learning models to different 
ata domains without previously assessing their performance on the 

ew domain. 
Our results also highlight the need for deep surv e ys in order to con-

truct complete samples of galaxies showing tidal interactions. Our 
redictions imply that we need images with µ lim >  30 mag arcsec Š2 

o achieve completeness above 60 per cent, although given the non- 
epresentative sample used for the statistical analysis presented in 

his work our current result is only suggestive of this requirement 
 or e xample, as already noted in Bottrell et al. ( 2019a ) and Bickley
t al. ( 2021 ), for rare objects amongst large data sets (such as the
pcoming LSST) the precision, largely dependent on the assume 

raction of positive instances, is paramount. One could increase the 

ompleteness by using larger value of P th , even if  that would decreas
he purity, and complement it with visual inspection of a much smaller 
ample of galaxies. 
The challenges facing the automated detection of tidal features 

hould not prevent us from that endea v our. The scienti�c return of
arge samples of galaxies showing tidal features is huge. The detec
ion and characterization of these faint tidal remnants – including 

easurements of their abundance, width, and shapes/morphology –
robe the recent merger activity, disruption mechanisms, and galaxy 
ass assembly. Furthermore, the characteristics of observed tidal 

eatures can constrain the global properties of the stellar and dark
atter haloes (Johnston et al. 1999 ; Sanderson, Helmi &  Hogg
015 ; Bovy et al. 2016 ; Pearson et al. 2022 ), and, consequently, a
omplementary way to testing cosmological and dark matter theories 

hese are, indeed, some of the scienti�c objectives of the recently
ppro v ed F-ESA mission ARRAKIHS 5 (P.I. R Guzm ́an), that will

mage 50 deg 2 of the sky per year down to an unprecedented ultra-low
urface brightness in visible infrared bands (31 and 30 mag arcsec Š2 ,
espectively). The future of scienti�c analysis based on tidal features 
s bright and promising, and this work undoubtedly represents an 

mportant step forward towards understanding the requirements of 
n optimal automated identi�cation of such powerful ingredient for 

alaxy evolution and cosmological studies. 
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ATA  AVAILABIL ITY  

he catalogue used in this article comes from the analysis of M22.
he code used for the deep learning algorithm will  be shared upon

equest. 
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