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A B S T R A C T 

Galaxy populations are known to exhibit a strong colour bimodality, corresponding to blue star-forming and red quiescent 
subpopulations. The relative abundance of the two populations has been found to vary with stellar mass and environment. In this 
paper, we explore the effect of environment considering different types of measurements. We choose a sample of 49 911 galaxies 
with 0.05 < z < 0.18 from the Galaxy And Mass Assembly surv e y. We study the dependence of the fraction of red galaxies on 

different measures of the local environment as well as the large-scale ̀ geometric’ environment defined by density gradients in the 
surrounding cosmic web. We find that the red galaxy fraction varies with the environment at fixed stellar mass. The red fraction 

depends more strongly on local environmental measures than on large-scale geometric environment measures. By comparing 

the different environmental densities, we show that no density measurement fully explains the observed environmental red 

fraction variation, suggesting the different measures of environmental density contain different information. We test whether 
the local environmental measures, when combined together, can explain all the observed environmental red fraction variation. 
The geometric environment has a small residual effect, and this effect is larger for voids than any other type of geometric 
environment. This could provide a test of the physics applied to cosmological-scale galaxy evolution simulations as it combines 
large-scale effects with local environmental impact. 

K ey words: galaxies: e volution – galaxies: fundamental parameters – galaxies: statistics. 
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 I N T RO D U C T I O N  

he field of galaxy formation and evolution tackles the task of
xplaining how a universe with a spatial uniformity of 1 in 10 5 —as
vident from the cosmic microwave background (CMB) radiation and
ther observ ations—e volv ed into the comple x population of galaxies
e see today. This population exhibits strong variations in a diverse

et of properties including stellar mass, luminosity, size, morphology,
olour, star formation rate (SFR), mean stellar age, etc. (e.g. Strauss
002 ; Peacock 2003 ; Driver et al. 2009 ). 
The framework currently fa v oured by cosmologists for explaining

hese properties is the � CDM model. Here cold dark matter (CDM)
aloes form hierarchically from local o v erdensities, and the baryons
all into the gravitational potential wells of these haloes and form
alaxies (e.g. Navarro, Frenk & White 1997 ). Ho we ver, there are
any details not well understood, especially due to the complex

nteractions of baryons with other baryons and with dark matter. 
A wide variety of models attempting to produce realistic galaxy

opulations exist. These may be broadly separated into two classes:
 E-mail: pcb.astro@gmail.com (PCB); i.baldry@ljmu.ac.uk (IKB) 
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emi-analytic models (SAMs) and hydrodynamical simulations.
AMs predict the formation and evolution of galaxies by combining

he merger trees of dark matter-only N -body simulations with analytic
rescriptions of baryonic physics (e.g. Bower et al. 2006, 2017 ;
roton et al. 2006 ; Somerville et al. 2008 ; Lagos et al. 2012 ).
ydrodynamical simulations, in contrast, evolve dark matter and
aryons simultaneously and broadly self-consistently (Schaye et al.
010 ; Dubois et al. 2014 ; Hopkins et al. 2014 ; Vogelsberger et al.
014 ; Crain et al. 2015 ; Schaye et al. 2015 ; Springel et al. 2018 ; Dav ́e
t al. 2019 ). Baryonic processes taking place under the resolution
imit of the simulation are modelled via analytic ‘subgrid’ routines. 

Both classes of model are naturally informed by observations
f galaxy populations. Recent large-scale multiwavelength galaxy
urv e ys pro vide a wealth of observations which enable an impro v ed
nderstanding of galaxy formation and evolution. 

.1 Galaxy colour bimodality 

he advent of large-scale galaxy surveys have helped discover a
ange of features in galaxy properties. One such interesting feature is
he bimodality in galaxy colour. Strate v a et al. ( 2001 ) first observed
his in the observed-frame colour using data from the Sloan Digital
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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k y surv e y (SDSS, Stoughton et al. 2002 ). Baldry et al. ( 2004a )
nalysed the effect in the rest-frame colour when looking at the 
olour magnitude relations using SDSS data. 

The colour-magnitude diagram (CMD) is an important diagnostic 
elation in astronomy, particularly in galaxy evolution. The absolute 
agnitude of a galaxy is its integrated starlight and is a proxy

or stellar mass. The colour encodes information on the ages of
he contributing stellar populations, i.e. the star formation history- 
arring extinction caused by dust. A CMD thus helps understand 
he evolution of star formation in the galaxy as a function of its
tellar mass. Recent works (e.g. Taylor et al. 2015 ) have used
tellar population synthesis (SPS, Taylor et al. 2011a ) to estimate 
he stellar mass, and have used colour-mass diagrams instead of 
olour-magnitude diagrams. 

Subsequent research into colour bimodality has validated the 
ndings of Strate v a et al. ( 2001 ) and Baldry et al. ( 2004b ) to at

east z < 2 (e.g. Balogh et al. 2004 ; Bell et al. 2004 ; Williams et al.
009 ; Taylor et al. 2015 ; Foltz et al. 2018 ). The colour bimodality
s interesting to theorists as well because colour has a direct relation
ith star formation history. 
When looking at just the colour of galaxies, the corresponding 

istribution appears to be well approximated as a sum of two 
aussian distributions (e.g. Strate v a et al. 2001 ; Taylor et al.
015 ), This suggests that galaxy formation processes given rise to 
wo different dominant galaxy populations, each with a different 
istribution of colour values. The two populations are generally 
abelled ‘blue’ and ‘red’ based on their lower and higher colour 
 alues, respecti v ely, though their e xact definitions hav e varied from
ne research work to another (e.g. Taylor et al. 2015 ). Studies of this
imodality at different redshifts have revealed another interesting 
nding—although the populations are roughly equi v alent in total 
tellar mass at z ∼ 1, the red population has nearly doubled in stellar
ass, stellar mass density, and number density o v er the past ∼7 Gyr

e.g Bell et al. 2004 ; Arnouts et al. 2007 ; Foltz et al. 2018 ). This
uggests that galaxies mo v e between the two populations—these are 
wo evolutionary stages. But the existence of two distinct colour 
odes must mean the transition from blue to red stage is relatively

uick (e.g. Balogh et al. 2004 ). 
In order to reproduce the observed colour distribution and its 

volution with redshift, theoretical models tend to add mechanisms 
hat rapidly disrupt or prevent star formation in galaxies. This process
s generically called ‘quenching’ (see e.g. Peng et al. 2010 ), and
t mainly involves removal of star-forming gases. While the exact 
ature of quenching remains debated, popular candidates involve 
eedback from active galactic nuclei (AGNs; e.g. Benson et al. 2003 ;
ower et al. 2006 ; Croton et al. 2006 ; Somerville et al. 2008 ). 

.2 The effect of environment 

n addition to stellar mass, galaxy colour is also found to be dependent
n the local environment. Previous works have identified that galaxies 
re likely to be red in denser environments (e.g.Kauffmann et al. 
004 ; Baldry et al. 2006 ; van der Burg et al. 2018 ; Reeves et al. 2021 ).
revious studies have found an increase in the local environment 
ensity to correlate with a decrease in the SFR (Schaefer et al. 2017 ,
019 ), a decrease in the number of star-forming galaxies (Barsanti
t al. 2018 ) or a change in the stellar kinematic properties of galaxies
van de Sande et al. 2021 ). The most widely agreed reason for
nvironmental dependence is therefore the loss of star-forming gas as 
 result of stripping in denser environments (e.g. Barsanti et al. 2018 ;
russler et al. 2020 ; Sotillo-Ramos et al. 2021 ). The major processes

nvolved include galaxy harassment and mergers (e.g. Bialas et al. 
015 ), strangulation (e.g. Peng, Maiolino & Cochrane 2015 ), and
am pressure stripping (Gunn & Gott 1972 ; Brough et al. 2013 ). 

The environment of a galaxy, broadly speaking, is the region 
urrounding it that has a potential to interact with the galaxy. The
erm environmental density (also called an environmental measure) 
efers to a metric that characterises the kind of environment a galaxy
s located in. Just like for the terms red and blue (as mentioned
bo v e), there are man y commonly used definitions for environment.
hese include the number of (other) galaxies in a giv en re gion (e.g.
aldry et al. 2006 , 2018 ; Yoon et al. 2008 ; Peng et al. 2010 ; Brough
t al. 2013 ; Liske et al. 2015 ; Schaefer et al. 2017 ; van de Sande et al.
021 ), the type of large-scale structure surrounding it (e.g. a void, a
not, etc., see Alpaslan et al. 2014 ; Eardley et al. 2015 ), group/cluster
irial mass and distance from the cluster centre (e.g. Barsanti et al.
018 ; van der Burg et al. 2018 ), position as a central/satellite galaxy
n a halo (e.g. Balogh et al. 2016 ), and identifying galaxy groups
sing friends-of-friends (FoF) based grouping algorithm (Robotham 

t al. 2011 ; Schaefer et al. 2019 ). The source of environmental
ependence is generally thought to be the local o v erdensity (e.g.
aldry et al. 2006 ; Behroozi et al. 2019 ) but there may also be a
ossible effect of the region of the cosmic web in which the galaxy
ies (e.g. Eardley et al. 2015 ). The former type of dependence is
ermed the local environment, while the latter is often termed the
arge-scale environment. In accordance with Eardley et al. ( 2015 ),
e use the term ‘geometric environment’ to denote the different 

egions of the cosmic web. 
Baldry et al. ( 2006 ) investigated the effects of local environment

n galaxy colour in detail. In particular, they studied how the double
aussian fits to the colour distribution changed with the projected 
ensity of neighbouring galaxies. They found that increasing the en- 
ironmental density has two effects—a major effect is the transition 
f galaxies from the blue Gaussian distribution to the red one, and
 minor effect is the modest reddening of each Gaussian fit, i.e. the
ean shifting to slightly higher colour values. They also found that
ithin each environmental density bin, the data were al w ays well
odelled by a double Gaussian fit. This suggests that the galaxy

roperties within the blue and red distributions do not change much
ith environment. 
In contrast, Alpaslan et al. ( 2015 ) investigated the effect of galaxy

olour (and other properties) as a function of non-local environment. 
ne of the environmental measures used by them was derived 

rom classifications of the large-scale structure, as obtained from 

he GAMA Large Scale Structure Catalogue (Alpaslan et al. 2014 ).
heir results do not show a significant difference in galaxy colour (or
ny other property) when comparing across the different large-scale 
tructure environments. 

There has also been work done that compares the effect of
ifferent environments. Perez et al. ( 2009 ) study the effects of galaxy
nteractions and mergers in different local density and host-halo mass 
nvironments, using data from SDSS DR4. Wilman et al. ( 2005 )
btain independent measurements of density on different scales and 
se that to study galaxy colour dependence in SDSS DR5 data.
 ande y & Sarkar ( 2020 ) use spectroscopic data from SDSS DR16 to
xplore galaxy colour in different environments of the cosmic web. 

Environmental effects in hydrodynamical simulations arise natu- 
ally from the evolution in the properties of individual gas particles.
he change in these properties are computed through a combination 
f hydrodynamical schemes such as smoothed particle hydrodynam- 
cs (SPH; Hopkins 2013 ), and subgrid processes, e.g. star formation
nd radiative cooling (Wiersma, Schaye & Smith 2009 ). The influ-
nce of environmental processes such as ram-pressure stripping in 
uenching star formation within simulated galaxies is a popular area 
MNRAS 522, 4116–4131 (2023) 
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f study (e.g. Trayford et al. 2016 ; Simpson et al. 2018 ). Discrepancy
etween simulations in the influence of environment arise due to
ifferences in resolution, subgrid treatment, and the hydrodynamic
olvers employed. SAMs, in contrast, require the inclusion of explicit
nalytic forms of environmental effects, such as galaxy mergers, tidal
nteractions, and ram pressure stripping (Tecce et al. 2010 ; Ayromlou
t al. 2019 ). The processes included and the methods employed vary
etween SAMs. The success of hydrodynamic simulations and SAMs
re largely measured through their ability to match observations.
ith the advent of large-scale surv e ys like the SDSS and the Galaxy

nd Mass Assembly (GAMA) surv e y (Driv er et al. 2009 , 2011 ; Liske
t al. 2015 ; Baldry et al. 2018 ), we have opportunities to study the
nvironmental dependence in more detail and thereby further test the
ccuracy of simulations of galaxy formation and evolution. 

There is also the potential to study the effect of geometric
nvironment. The cosmic web (Bond, Kofman & Pogosyan 1996 ) has
een theorized to affect the properties of galaxies and their host dark
atter haloes, with N -body simulations and simulations of galaxy

ormation and evolution playing a key role in this field of study (e.g.
ahn et al. 2007 ; Wang et al. 2011 ; Goh et al. 2019 ; Kraljic, Dav ́e &
ichon 2020 ; Hellwing et al. 2021 ). Simulations have also been
sed to explore the relationship between environment and galaxy
roperties (e.g. Bhowmick, Blecha & Thomas 2020 ; Kristensen
t al. 2021 ), as well as the variation in this relationship imparted
y different measures of environment (Haas, Schaye & Jeeson-
aniel 2012 ; Muldrew et al. 2012 ). It is suggested that measures
f environment defined on varied spatial scales are encoded with
if ferent information, af fected as they are by physical processes to a
reater or lesser extent, which then leads to varied correlations with
alaxy properties. 

.3 Aim of this work 

n this paper, we examine the effect of environment and stellar mass
n the galaxy colour distribution. We use as a metric the fraction of
alaxies within a given mass/environment region that are red. We
im to answer the following questions: 

(i) How does the red fraction change as a function of stellar mass
nd environment? 

(ii) Do the different environmental measures conv e y different
nformation? 

(iii) In particular, can the local environment fully explain the red
raction variation, or is there a residual effect from the geometric
nvironment (i.e. the cosmic web)? 

In this sense, our high-level goals are similar to that of Baldry
t al. ( 2006 ), Peng et al. ( 2010 ), Alpaslan et al. ( 2015 ), and Taylor
t al. ( 2015 ). We build upon their work, by using the latest data and
xperimenting with different density measures. The remainder of
his paper is organized as follows: Section 2 describes the samples
f galaxies used in the investigation, which is taken from the GAMA
urv e y. Section 3 details the methodology used to compute the red
raction estimates. In Section 4 , we present and discuss our findings.
ection 5 provides a summary of this work and suggests future
esearch directions. 

Throughout this work, we assume a flat � CDM cosmology with
he parameters H 0 = 70 km s −1 Mpc −1 , �m, 0 = 0 . 3 , ��, 0 = 0 . 699.
ll stellar mass estimates obtained from GAMA assume a Chabrier

 2003 ) initial mass function (IMF). All magnitudes provided by
AMA are given in the AB magnitude system. Logarithms are as-

umed to be with base 10 unless specified otherwise, and abbreviated
s log . 
NRAS 522, 4116–4131 (2023) 
 DATA  

he GAMA surv e y (Driv er et al. 2009 , 2011 ; Liske et al. 2015 ;
aldry et al. 2018 ; Driver et al. 2022 ) is an international large-

cale galaxy redshift surv e y. Its goal is to probe the universe on
ntermediate scales between 1 kpc and 1 Mpc. While cosmological
urv e ys hav e impro v ed our understanding of the universe on large
cales ( > 1 Mpc), the picture is less clear on the scales of galaxies,
roups, and clusters. The goal of GAMA is to provide observations
f structure formation at these scales, including measuring the dark
atter halo mass function, as well as the effect of baryonic feedback

hrough measurements of stellar mass function down to very low-
ass haloes. 
GAMA surv e ys the sky over five regions (three equatorial-named

09, G12, and G15 and two southern-named G02 and G23), co v ering
 total area of 286 de g 2 . It pro vides spectra (Hopkins et al. 2013 )
nd redshift (Baldry et al. 2014 ) estimates from the AAOmega
pectrograph as part of the 3.9m Anglo Australian Telescope. It
lso provides photometric data comprising of optical ugriz imaging
rom SDSS (DR7) and near-infrared (NIR) ZYJHK imaging from
he VIKING surv e y. When analysing environmental effects, it is
mportant to ensure spectroscopic completeness in the sample to
 v oid selection effects due to local density of galaxies. Through
ultiple visits to each field (Robotham et al. 2010 ), GAMA provides

ccurate redshift estimates ( > 98 per cent confidence) with uniform
nd near total spectroscopic completeness ( � 98 per cent ) upto a
etrosian r -band magnitude limit of r petro < 19 . 8 mag , except in
23 which instead has an i -band limit of 19 . 2 mag . (Liske et al.
015 ; Baldry et al. 2018 ). 

.1 Our chosen sample 

ur sample is obtained from Data Release 4 (DR4, Driver et al.
022 ) of the GAMA surv e y. DR4 has redshift and other information
or ∼330 000 objects. For the local environment, we choose the
nvironment measures defined in the EnvironmentMeasures
ata Management Unit (DMU; Brough et al. 2013 ; Liske et al. 2015 ).
alaxy environment has been studied previously for GAMA using
ata products available in the GAMA Galaxy Group Catalogue (G3C,
ata provided in the GroupFinding DMU), where the neighbours
f a galaxies are determined by a FoF linking algorithm. (Robotham
t al. 2011 ). In a FoF approach, all objects grouped together will
ave the same number of neighbours. Since we are more interested
n environmental measures that vary continuously, we do not include
ata from G3C in our sample. 
We chose limits of 10 9 M � � M � 10 11 . 6 M � and 0.05 � z �

.18, where M and z are the stellar mass and CMB-frame redshift
espectively. See Sections 2.2 and 2.4 for justification of our choice of
imits for mass and redshift, respectively. Our sample size is 49 911
bjects, about 16.6 per cent of all objects in GAMA. 
Below, we provide a brief description of the different attributes in

ur samples. 

.2 Stellar mass ( M / M �) 

his is the total stellar mass of a galaxy in units of solar mass. It is
stimated from SPS models of the measured galaxy spectral energy
istributions (SEDs). For more details, see Taylor et al. ( 2011a ) and
ection 5.3.2 of Baldry et al. ( 2018 ). For our sample, we chose a
ower limit of 10 9 M � in line with Baldry et al. ( 2006 ), and an upper
imit of 10 11 . 6 M � due to lack of significant number of higher mass



Environmental effects on galaxy colour 4119 

9.0 9.5 10.0 10.5 11.0 11.5
log(  / ⦿⦿) (Stellar Mass)

0

2,000

4,000

6,000

8,000
C

o
u

n
t 

(1
/V

m
ax

 c
o

rr
ec

te
d

)

(a)

0 1 2 3 4
Colour

0

2,000

4,000

6,000

8,000

C
o

u
n

t 
(1

/V
m

ax
 c

o
rr

ec
te

d
)

(b)

Figure 1. Histograms of (a) mass and (b) colour attributes for the objects in our chosen sample. The counts shown here are volume (1/ V max ) weighted, see 
Section 3.1 for more information on how this correction is done. 
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bjects. Fig. 1 a shows the stellar mass histogram for objects in our
ample. 

.3 Colour ( u –r ) 

he galaxy colour used here is the difference between the u and
 band magnitudes and is denoted u − r . This colour is obtained
rom SED fitting (Taylor et al. 2011b ), with apertures obtained using
AMBDAR (lambda adaptive multiband deblending algorithm in 
) photometry (Wright et al. 2016 ). The values are provided as
art of GAMA DR4 and are k -corrected as well as Milky Way dust
xtinction corrected. Fig. 1 b shows a histogram of the resulting colour
alues. 

We also experimented with two other versions of colour, derived 
rom the same bands but with variations in photometry and dust
xtinction correction. We defer to Appendix A the discussion of how 

he different colours affect the red galaxy fraction evolution. We 
hoose the colour u − r for work as it is derived from more accurate
hotometry compared to the other two colours and it produces 
 red fraction dependence consistent with what is known in the 
iterature. 

.4 Redshift 

here are two redshift attributes in our data set. One is the redshift z of
he object, corrected to the CMB frame. We select 0.05 � z � 0.18 for
ur chosen sample. The lower limit is to a v oid regions dominated by
ndividual stars. The upper limit is the maximum redshift for which 
he local environmental measurements are available in GAMA DR4. 
ee Section 2.5 for how this redshift upper limit is determined as
ell for definitions of environmental densities. 
The other attribute is the limiting redshift z max —the maximum 

edshift at which the object would be visible for a given r -band
Petrosian) magnitude limit. GAMA provides these estimates from 

teratively solving the k -correction to a limiting magnitude of 
 < 19 . 8 mag . The limiting redshift is helpful for doing volumetric
orrections (see Section 3.1 ). 
.5 Environmental densities 

e use four different environmental densities in our data set as
rovided by GAMA and as described below. The first three estimate
he number of galaxies within the local neighbourhood, while the 
eometric environmental measure is related to the location of the 
alaxy within the cosmic web. As described in Section 1.2 , the first
hree are measures of local environment, while the final is a measure
f the large-scale environment. 
We note that all the local environmental measures are defined 

n a density defining population (DDP) of galaxies which is also
olume limited (see Section 3.1 ). This population is defined as all
alaxies with M r ( z ref = 0 , Q = 0 . 78) < −20 mag , where Q defines
he expected evolution of M r as a function of redshift (Lo v eday et al.
012 ). Given GAMA’s limiting magnitude of r < 19 . 8 mag , this
eads to a redshift limit of z � 0.18 for these density measures. See
rough et al. ( 2013 ) for more information. 
We note that objects in our sample have estimates defined for each

nvironmental measure. Also, we exclude any objects that do not 
ave reliable density estimates due to survey edge effects. 

.5.1 5th Nearest neighbour surface density ( �) 

his environmental measure estimates the projected 2D surface 
ensity based on the distance to the N -th nearest spectroscopically
onfirmed bright neighbouring galaxy (within the DDP) within a 
iven redshift and absolute magnitude range. If this distance is d N ,
hen the surface density is given by 

 = 

N 

πd 2 N 

(1) 

GAMA uses N = 5, a redshift range ±� zc = 1000 km s −1 and
bsolute magnitude M r < −20 mag (Brough et al. 2013 ). When one
r more of the N neighbours are beyond the surv e y edge, additional
onsiderations are required and upper limits are estimated. Ho we ver, 
e do not include any such galaxies in our data set. 
Fig. 2 a shows the distribution of � for the galaxies in our sample.

ote that in this paper, we al w ays plot environment measures in
ogarithmic units, since we are interested in their effects on an order
f magnitude scale. 
MNRAS 522, 4116–4131 (2023) 
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Figure 2. Histograms of the different environmental density measures for the objects in our chosen sample, namely (a) 5th Nearest neighbour ( �), (b) Cylindrical 
count (CC), (c) Adaptive Gaussian Ellipsoid (AGE), and (d) Geometric Environment with count smoothing scale σ = 10 h −1 Mpc (GeoS10). See Section 2.5 
for details on these environmental measures. The counts shown here are volume (1/ V max ) weighted, see Section 3.1 for more information on how this correction 
is done. 
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.5.2 Cylindrical count (CC) 

imilar to the 5th nearest neighbour surface density, this measure
rovides the number of (other) galaxies (within the DDP) within a
ylindrical volume centred on the galaxy in question. It is given by 

C = 

N cyl 

n̄ ref V cyl 
∝ N cyl (2) 

here N cyl is the number of galaxies in the cylinder and V cyl is the
olume of the c ylinder. The (co-mo ving) radius of the cylinder is
aken as 1 Mpc, and the height is determined by the redshift range
f ±1000 km s −1 as before. n̄ ref = 0 . 00911 Mpc −3 is the average
umber density of the density defining population. See Liske et al.
 2015 ) for more information. Since V cyl and n̄ ref are the same for
very object, we can use the galaxy count N cyl as a proxy for the
 v erdensity. 
Fig. 2 b shows a histogram of the CCs. About 25 per cent of the

bjects do not have any galaxies in their cylinder and so have N cyl =
. In order to include these zero counts when working in log units,
e set log (CC) = −1 when CC = 0, which is why the histogram
as a huge bar centred on −1. 
NRAS 522, 4116–4131 (2023) 
.5.3 Adaptive Gaussian environment density (AGE) 

his density measure is equi v alent to a weighted local volume density
f galaxies, where closer galaxies receive more weight than more
istant ones (Yoon et al. 2008 ). First, the neighbouring galaxies are
dentified (from the DDP) as those lying within an adaptive Gaussian
llipsoid (AGE) defined by 

( r a 

3 σ

)2 
+ 

( r z 

AGEScale ∗ 3 σ

)2 
≤ 1 (3) 

here r a , r z are the distances from the centre of the ellipsoid (i.e. from
he position of the galaxy in question) in the plane of sky and along
he line-of-sight in co-moving Mpc, respectively, and σ = 2 Mpc .
GEScale is the adaptive scaling factor, defined as 

GEScale = 1 + (0 . 2 n ) (4) 

where n is the number of galaxies from the DDP within 2 Mpc.
GEScale is used to scale the value of sigma along the redshift
xis by up to a factor of 3 (corresponding to n = 10) for the highest
ensity environments to compensate for the ‘finger-of-God’ effect
Schawinski et al. 2007 ; Thomas et al. 2010 ). The adaptive Gaussian
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ensity parameter is then computed as: 

GE = 

1 √ 

2 πσ

∑ 

i 

exp 

[
−1 

2 

(( r a,i 

σ

)2 
+ 

( r z,i 

AGEScale ∗ σ

)2 
)]

(5) 

Fig. 2 c shows a histogram of the Adaptive Gaussian Environment 
ensity. 

.5.4 Geometric environment: GeoS10 

his environmental measure identifies the cosmic web of large-scale 
tructure within the GAMA equatorial surv e y re gions by classifying
he geometric environment of each point in space as either a void,
 sheet, a filament, or a knot (Eardley et al. 2015 ). The label
s assigned based on the number of dimensions along which the 
nderlying matter is collapsing. Galaxies are used as a proxy to 
stimate the o v erall matter distribution. A Hessian (matrix of second-
rder partial deri v ati ves) of the gravitational potential is computed,
nd eigenvalues of the Hessian give the directions along which the 
essian is changing. This matrix is also called the tidal tensor. The
umber of positi ve eigenv alues is the number of dimensions along
hich matter is collapsing. In practice, the only directions considered 

re ones where the collapse is happening reasonably quickly. This 
s equi v alent to counting the number of eigenv alues higher than a
ertain threshold. The classification assigned is as follows: 

(i) Voids : all eigenvalues below the threshold ( λ1 < λth ). 
(ii) Sheets : one eigenvalue abo v e the threshold ( λ1 > λth , λ2 <

th ). 
(iii) Filaments : two eigenvalues abo v e threshold ( λ2 > λth , λ3 <

th ). 
(iv) Knots : all eigenvalues abo v e the threshold ( λ3 > λth ). 

Where λ1 , λ2 , and λ3 are the three eigenvalues, with λ3 < λ2 < λ1 .
th is the threshold mentioned abo v e. Thus, a ‘void’ re gion means

hat there is no significant collapse happening along any direction-it 
s a region surrounded by similar or higher density regions in all
irections. Similarly, a ‘sheet’ region means that matter is collapsing 
ainly along a single direction, and so on. 
The original galaxy counts used to estimate the matter distribution 

re smoothed to minimize noise and remo v e non-linearities. The 
moothing scale σ is also a free parameter in addition to the 
igenvalue threshold λth . Eardley et al. ( 2015 ) chose values of σ and
th so as to divide the galaxies into the four regions (determined by the 
our labels abo v e) as equally as possible, so that any measurements
ade from these maybe statistically significant. Two combina- 

ions of these parameters are chosen: ( σ, λth ) = (4 h 

−1 Mpc , 0 . 4) or
10 h 

−1 Mpc , 0 . 1). Both combinations have at least 10 per cent of
alaxies within each of the four re gions. F or our work, we want
o use this measure to study environmental effects on large scales 
nd be independent of the local environmental measures. Hence we 
hoose the estimates from the larger smoothing scale of 10 h 

−1 Mpc .
e refer to it as GeoS10 in accordance with Eardley et al. ( 2015 ).

ig. 2 d shows the histogram of this environmental measure. Overall 
here is a statistically significant number of galaxies in each of the
our bins, with filaments have the highest ( ∼30 000) and voids having
he lowest ( ∼7500) number of galaxies. The definition of geometric 
alaxy environment employed in this work partitions space into 
egions defined as being voids, sheets, filaments, or knots. Galaxies 
re labelled according to the re gion the y reside in, e.g. a galaxy within
 knot region is defined as a knot galaxy (see Eardley et al. 2015 ,
heir figs 2 and 3). The geometric environment is therefore discretely 
efined. Other methodologies, such as the DISPERSE algorithm 

Sousbie 2011 ), directly construct cosmic webs such that they are
keleton structures that exist within space, rather than partitioning 
t directly. Continuous studies of environment, such as how galaxy 
roperties vary with distance to the closest knot (e.g. Kraljic et al.
018 ; Malavasi et al. 2022 ), are then possible. An extension of the
ardley et al. ( 2015 ) methodology to enable such studies here are
eyond the scope of this work. 

 M E T H O D O L O G Y  

ig. 3 a shows a colour mass diagram (contour plot + heatmap) of
alaxy counts. We can identify two peaks (shown by blue and red
rosses in the figure), which would typically be associated with the
eparation of the galaxy population into a blue and red sequence
Tully, Mould & Aaronson 1982 ; Strate v a et al. 2001 ; Baldry et al.
004a , b ; Taylor et al. 2015 ). To understand the effect of mass and
nvironment on galaxy colour, we first need to separate the red and
lue galaxy populations (Section 3.2 ), so that we can estimate the
ed galaxy fraction and study its evolution. Before we do that, we
eed make sure that the sample is volumetrically unbiased (Section 
.1 ). 

.1 Volumetric correction 

.1.1 The 1/ V max approach 

olumetric correction is important for our analysis because blue 
alaxies are brighter at a given stellar mass, and would therefore be
 v errepresented as compared to the red galaxies. This would lead to
iased red fraction estimates. 
We follow the approach of Felten ( 1976 ) to perform volumetric

orrection. Intuitiv ely, as we observ e out to higher redshifts, we will
ecessarily underestimate the number of faint galaxies, since the light 
eaching us from them is not sufficient for inclusion in the surv e y. The
agnitude of a galaxy determines the redshift range o v er which it can

e observed, and there may be a number of galaxies whose observable 
edshift range is much smaller than the surv e y redshift range. To
orrect for this, we weigh each galaxy by a factor f = 

V surv e y 

V max 
to make

he sample complete (unbiased) within the volume, i.e. the chosen 
ky area and redshift limits. The term V max is the maximum comoving
olume o v er which the galaxy under concern can be observed within
he redshift limits of the sample. For a galaxy, i , we compute V max, i 

s 

 max, i ∝ 

[
D ( z max, i ) 

3 − D ( z min,i ) 
3 
]

(6) 

D ( z) is the comoving distance to redshift z. z max, i is the limiting
edshift of the galaxy i (see Section 2.4 ) at or the upper limit of the
ample, whichever is lower. z min, i = z start is the lower redshift limit
f the sample. 
The surv e y volume is computed in a similar manner 

 surv e y ∝ 

[
D ( z limit ) 

3 − D ( z start ) 
3 
]

(7) 

here z limit and z start are the upper and lower redshift limits of the
ample. 

To estimate the limiting redshift ( z max ), we use the distance
odulus equation. Ignoring the evolution of the galaxy o v er the

edshift range, we can write 

m − μ( z) − K( z) = m li mi t − μ( z max ) − K( z max ) 

μ( z max ) = μ( z) + [ m li mi t − m ] + [ K( z) − K( z max )] (8) 
MNRAS 522, 4116–4131 (2023) 
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(b)

Figure 3. Contour plots and heatmaps representing the distribution of galaxy counts as function of the stellar mass log ( M / M �) and colour u − r . Panel (a) 
shows the raw counts, we see two peaks corresponding to red and blue region, shown as cross marks of the corresponding colour. Panel (b) shows volume 
(1/ V max ) weighted counts. The corresponding peaks from Panel (a) are shown by large cross symbols. It also shows peaks in the red and blue region for each 
mass bin (represented as dots of the corresponding colour) along with midpoints (black dots) and the best line line of separation (black line). 
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hich can be used to determine z max . μ = 5log 10 ( D L /10 pc ) is the
istance modulus ( D L is the luminosity distance), K ( z) is the K-
orrection. The differential K -correction K ( z max ) − K ( z) is usually
mall and can be determined from the galaxy SED. 

For our chosen sample, we have z start = 0.05, z limit = 0.18.
e use the values of maximum redshifts z max as provided by
AMA for a limiting Petrosian r -band magnitude of 19 . 8 mag ,

.e. m li mi t = 19 . 8 mag . These values are available under the column
ame zmax 19p8 in the STELLARMASSES DMU (Driver et al.
022 ). 
The 1/ V max is a straightforward approach for working with data that

s not volumetrically complete. It does ho we ver implicitly assume
hat the distribution of galaxies varies uniformly with redshift.

odifications to the method have been proposed to deal with the
resence of large-scale structure, e.g. by introducing additional terms
n the weighting factor V surv e y / V max (see Baldry et al. 2012 ). 

.1.2 Clipping outliers 

hotometric errors can sometimes result in incorrect estimates of the
imiting redshift, causing outliers to be present in the z max distribution
t a fixed mass. The outliers at lower values of z max can cause more
roblems, since they would result in a higher values of 1/ V max , thereby
kewing up the o v erall galaxy counts. To a v oid these outliers, we clip
he z max distribution to the 95th percentile within each (log) mass
in of width 0.01. The percentiles are computed for bins spaced at
ntervals of 0.25 and a second-order polynomial curve is fitted to
hese points: 

 ( x) = a 0 + a 1 x + a 2 x 
2 (9) 

The best-fitting values obtained are ( a 0 , a 1 , a 2 ) = (5.03, −1.1,
.06). 
The 1/ V max weights have values ranging from 1—which is the
edian and the most common weight, to 18.6—which occurs for

ow-mass galaxies ( M ≈ 10 9 M �) The mean weight and standard
eviation are both about 1.6. 
Fig. 3 b shows the updated galaxy counts as a function of colour

nd stellar mass, corrected for volumetric completeness. We can see
hat while the red peak has stage at its original place, the blue peak
as mo v e to wards lo wer mass M ≈ 9 M �. Also, the correlation
NRAS 522, 4116–4131 (2023) 
etween mass and colour has reduced for the region around the blue
eak, as compared to Fig. 3 a. 

.2 Separating the two populations 

e can now use the 1/ V max weighted galaxy counts to separate the
ed and blue populations. We assume that the colour evolution of
he population o v er our redshift range of interest is not significant
nough to matter for the separation. The simplest approach for this
ould be to fit a line through the contour distribution (equi v alently
 plane through the 3D distribution) that divides the two populations
ell. For our purposes, it is not necessary for this line to be exact—

n approximate line would add some noise when computing the red
raction within a given mass/environment bin, but it would still retain
he o v erall signal of the variation in red fraction varies as a function
f stellar mass and environmental density. 
We first bin the weighted galaxy counts by mass, each bin being

f width � log ( M / M �) = 0 . 1. Within each mass bin, we assume
he counts are bimodally distributed as a function of colour, similar
o Baldry et al. ( 2004a ). We therefore search for two peaks (local
axima) within each bin—one each for the red and blue populations.
e restrict our search for the blue peak to 0 < u − r < 1.5 and for the

ed peak to 1.5 < u − r < 2.25—the upper limit of 2.25 is to a v oid
purious local maxima that may falsely get identified as real peaks.
e then use the midpoint of the two peaks as the separating colour

alue for that bin. Fitting a line through these mid-points gives us
ur line of separation for the two populations. The equation of the
ine of separation used is 

 = 0 . 216 M − 0 . 421 (10) 

where C is the colour u − r and M is the galaxy stellar mass in
og ( M / M �). Fig. 3 b shows the results of this approach. The red
nd blue peaks are identified as dots of the corresponding colour.
he red peaks seem to fall on a straight line with limited scatter, and
lign well with the contour lines. The blue peaks do the same for
ower masses M � 10 10 M �. The contours seemed to flatten out in
he range M � 10 10 M �, 0 < u − r < 1 . 5 and there are hardly any
eaks here. We found that varying the different peaks changed the
id-points and the separating line but did not affect the environment

ignal mentioned abo v e, so we maintain this simple approach. The
id-points and the separating line are shown in black in Fig. 3 b. 
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Figure 4. Fraction of red galaxies as a function of stellar mass and different environmental densities. The fractions are computed for bins of stellar mass 
[ log ( M / M �), shown on the x -axis] and environment (shown by different colours). The plots are for (a) 5th nearest neighbour ( �), (b) cylindrical count (CC), 
(c) Adaptive Gaussian Ellipsoid (AGE), and (d) Geometric Environment (GeoS10). Note the logarithmic scale for both mass and environmental density. 
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 RESULTS  A N D  DISCUSSION  

n this section, we discuss the results of our inv estigation. F or all
lots, we bin the mass and environment variables (except the discrete- 
alued geometric environment) to increase the signal-to-noise (S/N) 
atio of our estimates. In addition, we omit points (or grids in
he heatmaps) that represent fewer than 20 galaxies, to ensure that 
tatistically significant conclusions can be drawn from the results. 

.1 Effect of environment on galaxy colour 

ig. 4 shows the variation of galaxy colour with the stellar mass and
he environmental densities. As previously mentioned, we use the 
raction of galaxies that are red within a given mass-environment 
in as our metric for assessing the colour dependence. The general 
rend from looking at these plots is that both the stellar mass and
he environmental density play a key role in explaining the evolution 
n the red fraction, independent of each other. When looking at a
iven stellar mass bin, denser regions are dominated by red galaxies. 
imilarly when looking at regions of a given environmental density, 

he more massive galaxies are likely to be red. 
It is worth asking at this point whether the results in Fig. 4
ranslate from galaxy colour to galaxy SFRs. This could be interesting 
ecause observational SFR indicators may probe different intrinsic 
roperties of galaxies. We used a specific star formation rate (SSFR)
ndicator available in the GAMA DR4 MagPhys catalogue instead 
f colour. We repeated our analysis using the methodology described 
n Section 3.2 to separate the population into quenched/star-forming 
ubpopulations. We estimated the quenched fraction equi v alent to 
he red fraction and studied its dependence on the environment and

ass, similar to Fig. 4 . Our analysis did not yield any new information
ompared to the results obtained using galaxy colour. This suggests 
hat the SSFR is not necessarily more reliable at selecting quenched
alaxies. 

.2 Comparing different environments 

ven though there is some variation in red fraction for all environ-
ents in Fig. 4 , the largest dependence occur for the 5th nearest

eighbour surface density � and the cylindrical count (CC). The 
ffect is weaker for the AGE density, and the weakest for geometric
nvironments. For a given mass bin, the change in red fraction is less
MNRAS 522, 4116–4131 (2023) 

art/stad1218_f4.eps


4124 P. C. Bhambhani et al. 

M

Table 1. Red Fraction ranges (difference between red fractions at highest 
and lowest density bins) for different individual environmental measures. 
The uncertainty estimates are obtained through jackknife resampling. Also 
shown are ranges when contrasting two different measures of environment. 
The local optimal density ( � ) has the highest red fraction range. 

Environmental density 
Red Fraction range 

(averaged across stellar mass) 

5th Nearest neighbour ( �) 0.492 ± 0.007 
Cylindrical count (CC) 0.499 ± 0.007 
Adaptive Gaussian ellipsoid (AGE) 0.408 ± 0.008 
Geometric environment GeoS10 0.150 ± 0.007 
� versus CC 0.500 ± 0.007 
� versus AGE 0.509 ± 0.010 
CC versus AGE 0.475 ± 0.011 
Local optimal density ( � ) 0.521 ± 0.007 
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tark as we mo v e from voids to knots, as defined by the Eardley et al.
 2015 ) method. 

We can do a quantitative check of this by estimating for each
ensity measure the average red fraction range, i.e. the difference in
he red fraction between the lowest and highest density regions. Note
hat we do not consider the stellar mass variation for this calculation.

e can do this because all the environment measures in this approach
re computed for the same set of objects and have the same stellar
ass range. 
The red fraction range is easy to calculate for the geometric
easure, which has pre-defined discrete bins. In contrast, the local

nvironment measures are continuous values, and we must bin the
ata. To ensure a fair comparison, we choose bins such that the
owest and highest bins contain the same number of objects across
he individual environments, and choose the remaining bins to be
f the same size of 0.2. For the lowest bin, we set this number to
e 25 per cent of all objects in our sample, and for the highest
in, we set it to be 5 per cent. The lowest bin fraction is kept
igh because the CC measure has a value of 0—its least possible
alue—for a quarter of its samples, as mentioned in Section 2.5.2 .
he resulting red fraction ranges are shown in Table 1 , with the
ncertainty estimates obtained through jackknife resampling. The
umbers show that there is varying information across different
nvironmental measures. While the 5th nearest neighbour surface
ensity and the CC density have similar red fraction ranges, the
ange for the AGE density is lower—with ∼8 σ difference from the
revious two densities. Table 1 also shows the red fraction range for
he geometric environment, although we not that it is not directly
omparable to the range for local measures since the bin sizes are
ifferent. 
We can also assess the similarity of information provided by each

ensity measure by looking at how the red fraction compares as a
unction of two different environmental measurements. Fig. 5 shows
his as heatmaps. (Here too we are not studying the dependence
cross stellar mass). Analysing these plots, we see that there is
ariation in the red fraction along each environment axis, increasing
hen moving from lower to higher density regions. Interestingly, if
e focus on the heatmaps containing only the local environmental
easures (Fig. 5 a, c, and b), we find that the maximum variation

ccurs as we mo v e diagonally, from the bottom right (lowest bin for
oth densities) to the top left (highest bin for both densities). This
uggests that all three measures contain different information and
re complementing each other. We might therefore be able to define
 new environmental measure that combines these three measures
nd better explains the variation in red fraction. The slightly higher
NRAS 522, 4116–4131 (2023) 
ed fraction ranges when comparing the local densities (especially
he entries corresponding to � versus CC and � versus AGE) as
hown in Table 1 also support this, although we note that the number
f objects in the lowest and highest bins vary by a few per cent for
hese results. By contrast, if we focus on the heatmaps involving the
eometric environment (Fig. 5 e, d, and f), we see that the variation is
ower along the axis of geometric environment. This suggests that the
ed fraction is relatively less dependent on geometric environment
han on local measures. 

.3 Testing the effect of geometric environment 

e have seen that the effect on galaxy colour is more pronounced
or local environment densities (Fig. 4 a, b, and c) than the geometric
nvironment (Fig. 4 d). Here we probe this further by asking whether
he geometric environment adds any significant information beyond
hat is available in the local environment. Testing for this is

mportant for galaxy evolution models. The cosmic web affects
alaxy stellar mass (e.g. Kauffmann et al. 2004 ) and morphological
roperties (e.g. Das et al. 2015 ). It is therefore not unreasonable
o expect that large scale flows might influence galaxy evolution.
f they do, this information is most likely to be contained in the
eometric environment (e.g. Wetzel et al. 2007 , 2008 ; Welker et al.
020 ). There is previous work done to identify the effect of large
cale environment on dark matter haloes (e.g. Hellwing et al. 2021 ),
uggesting there is interest in the question we seek to answer here.
e define � to be the ‘optimal’ local environment measure—

he maximal information we can extract out of local environment.
iven that the three local environmental measures seem to contain

ome what dif ferent information, we model � as a linear combination
f these (in log space) 

log � = log � + α log CC + β log AGE (11) 

ote that since our aim is to maximize the red fraction range, the
wo parameters in equation ( 11 ) are sufficient for optimizing—the
oefficient on log � can be set to 1 without loss of generality. 

Quantitatively, optimal density means one which best explains
he variation in the red fraction—specifically whose distribution
aximizes the red fraction range. We bin the optimal density in

he same way we binned the individual densities. To seek the optimal
arameters we first did a coarse search of 10 −3 < α, β < 10, which
etermined that the optimal parameters lay in the ranges 0.1 < α <

0, 0.01 < β < 1. A subsequent fine grained search of the region
ielded best results for α = 0.48 and β = 0.09. For the coarse and fine
earches, we found the red fraction range to be continuous in α and
, with only a single notable minima. It makes sense that the optimal
oefficient for the CC is close to 1 (at an order of magnitude level)
ince it seems to do an equally good job as the nearest neighbour
ensity in explaining the red fraction variation. 
Fig. 6 shows the histogram of the local optimal density � . From

able 1 , we see that the maximal red fraction range obtained for �
s 0.521 ± 0.007. This is 2.2 σ higher than the range obtained from
he CC density and 2.9 σ higher than the range obtained from the 5th
earest neighbour surface density. We therefore recommend using
 in applications involving precision measurements of the effect

f local environment on the red galaxy fraction, e.g. if one aims to
emo v e the local environmental dependence. 

In the discussion below, ˜ � , ˜ G , ˜ M stand for bins of the local envi-
onment (log � ), geometric environment and stellar mass ( log M 

M � )
espectively. r( θ) is the red fraction estimate as a function of one
r more parameters θ . We can now look for the effect of geometric
nvironment beyond that accounted for by the local environment
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(a) (b)

(d)(c)

(e) (f)

Figure 5. Heatmaps showing the variation in the fraction of red galaxies (represented as colour) as a function of two different environmental densities (one on 
each axis). Both environmental densities are binned on a logarithmic scale. White cells indicate regions with < 20 samples and where a statistically significant 
estimate was not achie v able. Overlaid on the heatmaps are the median (mode for geometric environment) environmental density values for galaxies in different 
mass bins. These points show that there is an effect on mass that needs to be controlled for, and we do that in the subsequent analysis (Section 4.3 ). Finally, the 
sides of each plot show marginalized histograms of individual environmental density, to give information of number density of the galaxies in the different bins. 
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nd the stellar mass. The environmental density comparisons in 
ig. 5 show that the median (mode in case of geometric environment)
nvironmental density varies with mass, so we need to control for this
ffect. We do that by removing the red fraction dependence on stellar
ass and examine how the residuals vary with the environment, 
.e r( ̃  � , ˜ G ). In order to estimate the stellar mass dependence, we
ecompute the red fraction values for different stellar mass bins, 
gnoring the environmental differences, i.e. r( ˜ M ). The points in 
MNRAS 522, 4116–4131 (2023) 
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Figure 6. Histogram of local optimal density � . We model it as a linear 
combination of local densities (in log space) that maximizes the red fraction 
range, thereby best explaining the red fraction variation. Optimizing for this 
gives log � = log � + αlog CC + βlog AGE with α = 0.48, β = 0.09. See 
Section 3.1 for meaning of the term 1/ V max corrected. 
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Figure 7. The dependence of the red galaxy fraction on the stellar mass 
log ( M / M �), ignoring (or averaging) the effects of local and geometric 
environments. The points are the estimations for different mass bins, while 
the curve is the best fit obtained using the generalized sigmoid function 
defined in equation ( 12 ). 
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ig. 7 show the recomputed red fraction as a function of stellar mass.
e found a linear or logistic regression model did not give a good

t to these values, instead we found a generalized sigmoid function
o work better (minimized the root mean-squared error) 

( ˜ M ; a, b, c, d ) = 

a 

1 + exp ( −b ˜ M + c ) 
+ d (12) 

The optimal value of parameters obtained was a = 0.85, b = 2.29,
 = 23.15, and d = 0.14. The corresponding curve is shown as the
olid line in Fig. 7 . 

To remo v e the effect of mass from the red fraction estimates, we
ompute r( ̃  � , ˜ G ) and subtract the average contribution from stellar
ass 〈 r( ̃  � , ˜ G ) 〉 ˜ M 

. We obtain the latter by averaging r( ˜ M ) for mass
ins of size 0.1, weighted by the number of objects in each ( ̃  � , ˜ G , ˜ M )
in. We label the residuals R( ̃  � , ˜ G ). 

 

(
˜ � , ˜ G 

) ≡ r 
(

˜ � , ˜ G 

) − 〈
r 
(

˜ � , ˜ G 

)〉
˜ M 

= r 
(

˜ � , ˜ G 

) − 1 

N 

∑ 

i 

r 
(

˜ M i 

)
n i (13) 
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here n i is the number of objects in bin ( ̃  � , ˜ G , ˜ M i ) and N = 

∑ 

i n i .
Fig. 8 shows R( ̃  � , ˜ G ) as a function of the local environment

 x -axis) and the geometric environment (colour). The error bars
hown in the plot are 1-sigma standard error estimates obtained by
ackknife resampling. The jackknife resampling is done both when
veraging across r( ˜ M ) and also when computing the red fraction
stimates r( ̃  � , ˜ G ). The latter incorporates the uncertainty due to
arying sample size across different environment bins. For instance,
oids at lowest local densities have ∼3000 objects, while those at the
ighest densities have ∼30 objects. The error bars at higher densities
re therefore higher. 

The figure suggests a residual geometric environment effect
etween the different bins, e.g. between voids and sheets. We
erform an analysis of variance (ANOVA) test to assert whether
here is a difference between R( ̃  � , ˜ G ) for the different geometric
nvironment bins when looking at a fixed local environment bin. The
esults are shown in Table 2 and confirm the presence of a residual
ifference at significant level α = 0.1. The above-average red fraction
esiduals for voids could be a consequence of the definition of voids
s per Eardley et al. ( 2015 ) and may require further investigation
see 5.1.1 ). Conversely, the result may indicate a potential effect
f the surrounding large-scale structure—perhaps a mechanism for
eplenishing star-forming gas, whose absence in voids leads to
arger fraction of red galaxies. At higher local densities the trend
s reversed—voids have lower residuals than other geometric bins,
hough the error bars are also wider. Finally, the residuals increase
s we go from lower to higher local density, reaffirming a positive
orrelation of red fraction with local environment independent of
ass. 

 C O N C L U S I O N S  A N D  F U T U R E  WO R K  

n this work, we studied the effect of environment on the restframe
alaxy colour, using the fraction of red galaxies as a metric. We found
hat the red fraction varies with the local environment independently
f the stellar mass. For a given stellar mass, galaxies in a high-density
nvironment are more likely to be red when compared to those in a
ow-density environment. Possible explanations include loss of star
orming gas due to stripping in denser environments, through mech-
nisms such as strangulation, galaxy harassment and ram pressure
tripping. We also found that the different environmental measures
efined in GAMA contain different information. In particular, the
ocal environmental measures exhibit more red fraction variation as
e mo v e from re gions of lower to higher densities, when compared

o the geometric environment. Ho we ver, when the dif ferent local
easures are combined to produce an ‘optimal’ local density, there

s a residual effect of the geometric environment independent of the
ocal environment and stellar mass. 

.1 FUTURE WORK 

he following are potential directions for further research: 

.1.1 Investigate the effect of alternate definitions of large-scale 
nvironment 

he higher value of R( ̃  � , ˜ G ) for voids at a given local density is
ependent on the definition of voids within the geometric environ-
ent framework of Eardley et al. ( 2015 ), i.e. voids being regions

urrounded by similar or higher density regions in all directions. It
ould be useful to repeat our analysis of Section 4.3 using alternative
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Figure 8. The residual of the red galaxy fraction after subtracting the average stellar mass contribution (based on the fit in Fig. 7 ). The residual is plotted as a 
function of the local optimal environment log � (shown on x -axis) and the geometric environment (shown by various colours). The plot suggests that geometric 
environment does have an effect on the red fraction. In particular, at low to medium local densities, voids tend to have a larger fraction of their galaxies as 
red than other geometric environments. The error bars are 1-sigma standard deviation errors obtained using jackknife resampling and incorporate the effect of 
sample size within each environment bin. 

Table 2. ANOVA result to test whether there is a difference in R( ̃  � , ˜ G ) for the different geometric environment bins when looking at a fixed local environment 
log � . The critical F -statistic for df 1 = 3, df 2 > 120 at significance level α = 0.1 is 3.78. There is therefore a significant residual difference at each local 
environment bin. 

log � 

Sum of squares 
within group 

Mean of squares 
within group 

Sum of squares 
between groups 

Mean of squares 
between groups F -statistic df 1 df 2 

Significant at 
α = 0 . 1 ? 

−2.746 38.757 0.002 6.640 2.213 1048.209 3 18354.465 Yes 
−0.919 11.689 0.002 3.755 1.251 503.467 3 4701.871 Yes 
−0.719 13.116 0.002 12.948 4.316 1584.159 3 4814.153 Yes 
−0.519 14.234 0.002 9.468 3.156 1209.381 3 5454.602 Yes 
−0.319 14.253 0.002 5.073 1.691 656.601 3 5534.304 Yes 
−0.119 13.631 0.002 14.616 4.872 1869.357 3 5229.968 Yes 
0.081 11.569 0.002 8.267 2.755 1099.752 3 4616.798 Yes 
0.281 9.795 0.002 4.258 1.419 575.594 3 3971.571 Yes 
0.481 9.135 0.002 0.535 0.178 65.414 3 3350.898 Yes 
0.681 10.407 0.002 2.392 0.797 289.701 3 3780.694 Yes 
0.881 8.687 0.002 3.707 1.235 448.259 3 3151.066 Yes 
1.081 6.806 0.002 2.355 0.785 313.924 3 2721.003 Yes 
1.281 6.459 0.002 9.644 3.214 1186.889 3 2385.002 Yes 
1.481 10.863 0.002 7.507 2.502 1145.862 3 4974.112 Yes 
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eans of defining large scale environment, in order to determine
hether the apparent strong influence of voids is robust to variations

n methodology. 

.1.2 Studying the residual effect of dark matter haloes on galaxy 
olour 

he red galaxy fraction is also expected to be affected by dark matter
alo mass, with more massive haloes expected to have more red
alaxies (see e.g. Behroozi et al. 2019 ). The environmental density
ertainly plays a role in this relation—more massive dark matter
aloes would form out of bigger o v erdensities, which would accrue
ore baryons, forming more galaxies and thus in general have higher

nvironmental densities. For instance, Baldry et al. ( 2006 ) found a
orrelation between the o v erdensity and the projected 5th nearest
eighbour environmental density � as estimated from simulations. 
It would therefore be interesting to study whether the halo mass has

ny residual correlation with the red galaxy fraction, after accounting
or the effects of environment and stellar mass. If a correlation is
ound, it may suggest that massive dark matter haloes have some
nherent mechanism that affects the evolution of galaxies and makes
hem more likely to be quenched. 

.1.3 Studying the environmental effects via simulations 

uture work could also look into seeing how well simulations explain
he observed environmental effects. In particular, we would look to
ee whether simulations also show a small residual dependence on
arge scale geometric environment, and if so what mechanism is
ausing this. This would be similar to the approach of Baldry et al.
 2006 ), but for all the environmental densities used in this work. For
.g. the geometric environmental measure is a conceptually different
etric, so it would be intriguing to see how well it is reproduced

n analytical models, especially given that it has a small effect on
he red fraction. Any environmental metric which is measurable in
bservational data can be reproduced in a cosmological simulation,
hich is an important step in any robust comparison with simulations.

n this case, it would involve identifying mechanisms that explain
he observed red fraction trends found in the different environmental

easures. It would also involve comparing the different galaxy
volution models with their different feedback mechanisms (e.g.
ower et al. 2006 ; Somerville et al. 2008 ; Van Den Bosch et al.
008 ; Peng et al. 2015 ; Bianconi, Marleau & Fadda 2016 ; Bower
t al. 2017 ) to see which models more closely align with the results
hown here. 

C K N OW L E D G E M E N T S  

AMA is a joint European-Australasian project based around a
pectroscopic campaign using the Anglo-Australian Telescope. The
AMA input catalogue is based on data taken from the Sloan
igital Sk y Surv e y and the UKIRT Infrared Deep Sk y Surv e y.
omplementary imaging of the GAMA regions is being obtained by a
umber of independent surv e y programmes including GALEX MIS,
ST KiDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT, and
SKAP providing UV to radio co v erage. GAMA is funded by the
TFC (UK), the ARC (Australia), the AAO, and the participating in-
titutions. The GAMA website is http://www .gama-survey .org/. Our
ork builds on many software tools/libraries, which we acknowledge
y citing. Our analysis was done in the P YTHON ecosystem, with the
ollowing packages being the most relevant: 
NRAS 522, 4116–4131 (2023) 
(i) For the environment: ANA COND A (Anaconda 2020 ) and
UPYTER NOTEBOOK (Kluyver et al. 2016 ); 

(ii) For the analysis: NUMPY (Harris et al. 2020 ), SCIPY (Virtanen
t al. 2020 ), PANDAS (McKinney 2010 ), ASTROPY (Astropy Collabo-
ation 2013 , 2018 ), SCIKIT-LEARN (Pedregosa et al. 2011 ), and STAN

Riddell, Hartikainen & Carter 2021 ; Stan 2021 ); 
(iii) For plotting and visualization: ALTAIR (VanderPlas et al.

018 ), SEABORN (Waskom 2021 ), MATPLOTLIB (Hunter 2007 ), and
LOTLY (Plotly 2015 ). 

ATA  AVAI LABI LI TY  

his work uses publicly available data as part of data release 4 (DR4,
river et al. 2022 ) of the GAMA survey. DR4 can be accessed at
ttp://www .gama-survey .org/ dr4/ 
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PPENDI X  A :  H OW  T H E  R E D  FRAC TI ON  

STIMATES  VA RY  A M O N G  T H E  DI FFERENT  

O L O U R S  

n our analysis abo v e, we used the colour u − r which is obtained
rom LAMBDAR photometry, k -corrected as well as corrected for 

ilky Way dust extinction. We also experimented with two additional 
olours and studied their dependence on the red galaxy fraction. 
hese two colours are defined below: 

(i) Based on SDSS model magnitudes u model − r model : This 
olour is estimated from model magnitudes provided as part of 
AMA from DR7 of the Sloan Digital Sky Survey (SDSS). These

re corrected for Milky Way dust extinction. We also perform k-
orrection to redshift z = 0. Fig. A1 a shows a histogram of the
esulting colour values. This colour term is similar to that used by
aldry et al. ( 2006 ). 
(ii) Based on GAMA magnitudes with host galaxy dust extinc- 

ion correction u 

∗ − r ∗: The estimates for this colour are obtained 
imilar to u − r , but then are additionally corrected for the light
bsorbed by dust in the host galaxy. This correction is done using
PS models (Taylor et al. 2011a ). In this type of modeling, there can
e de generac y between internal dust reddening and age/metallicity 
ffects. Fig. A1 b shows a histogram of the resulting colour values.
ee Taylor et al. ( 2015 ) for more details. 

The histogram of u − r is shown again in Fig. A1 c for comparison.
e note that for all the colours, the same approach described in

ection 3.2 was used to separate the red and blue populations. 
Fig. A2 shows the resulting red fraction estimates. The plots that

se the colours u − r (Fig. A2 a) and u model − r model (Fig. A2 b) look
imilar to each other and to the results obtained by Baldry et al.
 2006 ; specifically fig. 11(b) of that paper). For high environmental
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Figure A1. Histograms of the different colours used to study the red fraction 
dependence—(a) u model − r model , (b) u ∗ − r ∗, and (c) u − r . The counts shown 
here are volume (1/ V max ) weighted, see Section 3.1 for more information on 
how this correction is done. 
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Figure A2. Effect of using different colours on the fraction of red galaxies 
as a function of stellar mass log ( M / M �) and 5th nearest neighbour density 
( �). The labels are similar to those shown in Fig. 4 . Using u ∗ − r ∗ results 
in low red fraction estimates in high environmental regions, especially at 
low mass. This is contrary to what is known in the literature (Baldry et al. 
2006 ) and warrants further investigation into how the colour estimates are 
generated. 
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ensity, we observe high values of red fraction even at low masses.
his agreement may be seen as a consistency check for the approach
sed in this work. 
In contrast the plot for the colour u ∗ − r ∗ (Fig. A2 c) has low red

raction values at low masses for high environmental densities. This
s different from what has been seen in the literature. As mentioned
NRAS 522, 4116–4131 (2023) 
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n Section 2.3 , the colour u − r is defined similarly to u − r , except
t also attempts to correct for the extinction caused by dust in the
ost galaxy (Taylor et al. 2015 ). This correction involves performing 
PS modeling and is considerably more difficult than estimating the 
ilky Way dust extinction. In addition, the degeneracy between dust 

nd the age of a stellar population (Bell & de Jong 2001 ) makes it
ifficult to model and extract only the dust part of a galaxy, hence
eparate models must be fit for the stars and the dust. It is therefore
ossible that there are some unresolved degeneracies in the SPS 

tting and the dust extraction which leads to incorrect values of u ∗

r ∗ colours. This therefore warrants further investigation into how 

he colour estimates are generated. 
2023 The Author(s) 
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The colours u model − r model and u − r produce comparable 
esults, ho we ver Taylor et al. ( 2011a ) have shown for SDSS that
he magnitudes obtained using model based photometry tend to be 
iased compared to their Petrosian counterparts, and have therefore 
ecommended using the latter magnitudes. The colour u − r is 
omputed from GAMA magnitudes obtained using LAMBDAR 

hotometry, which uses elliptical apertures rather than circular 
nes, and is expected to yield even better estimates than Petrosian
agnitudes. For this reason, the colour u − r was chosen for all the

nalyses in this work. 
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