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and for the Alzheimer’s Disease Neuroimaging Initiative*

Abstract— Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the
corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as
relevant biomarkers for this condition. This study aims to identify SNPs biomarkers associated with the AD in order to perform a
reliable classification of AD. In contrast to existing related works, we utilize deep transfer learning with varying experimental
analysis for reliable classification of AD. For this purpose, the convolutional neural networks (CNN) are firstly trained over the
genome-wide association studies (GWAS) dataset requested from the AD neuroimaging initiative. We then employ the deep
transfer learning for further training of our CNN (as base model) over a different AD GWAS dataset, to extract the final set of
features. The extracted features are then fed into Support Vector Machine for classification of AD. Detailed experiments are
performed using multiple datasets and varying experimental configurations. The statistical outcomes indicate an accuracy of 89%
which is a significant improvement when benchmarked with existing related works.

Index Terms— Alzheminer’s Disease, GWAS, SNPs, Machine Learning, Transfer Learning, Genome Wide Data

1 INTRODUCTION

Izheimer’s disease (AD) is the most common type of
dementia with ever increasing prevalence within peo-
ple over 65 years of age. Despite of significant attempts to
study the disease biology and create therapeutic drugs, the
cause and course of the disease remain unknown, and
there is no treatment available to stop or reverse the dis-
ease other than symptomatic treatments [1]. In order to as-
sess efficacy in the development of AD treatments, it is crit-
ical to enrol relevant individuals using accurate disease di-
agnosis techniques. However, clinical diagnosis of AD is
based on a physician's assessment of specific neurological
and cognitive symptoms, which can be subjective [2].
Generally, the AD can be categorised as Early-onset AD
(EOAD) and late-onset AD (LOAD) [3]. An EOAD has
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been found in about 5% of AD patients with onset ranging
from the age of 30s to the mid-60s. Studies have identified
the presenilin 1, presenilin 2, and amyloid precursor pro-
tein which are the genes involved in EOAD [4]. A LOAD,
on the other hand is common one which appears after the
age of mid-60s and affects 90-95 percent of total AD pa-
tients. Literature indicates Apolipoprotein E (APOE e4) as
the frequently confirmed gene being affected in LOAD [5].

The LOAD has been appearing as a complicated condi-
tion caused by both hereditary and environmental factors
[6]. Because AD has no definitive cure, studying the genes
associated in its progression serves as a guide for an early
identification of LOAD, close monitoring at risk patients,
early treatment and prevention of the disease.

Genome-Wide Association Studies (GWAS) are a fre-
guent study strategy for determining association between
common DNA sequence variants and a phonotype. The
GWAS studies are large-scale studies that collect genetic
diversity in form of SNPs across the human genome. Each
of the variations is statistically assessed to find links to a
well-defined trait being under investigation [7]. The case-
control design is the most prevalent strategy in GWAS,
where cases refer to a cohort that has been affected by the
disease under study while controls refer to healthy (i.e.,
normal) subjects. The odds ratio (OR) is the first statistical
measure considered in a traditional case-control GWAS,
with an OR value greater than 1 indicates the association
of an allele is a risk for disease whereas an OR less than 1
indicates the association of an allele as a protective associ-
ation against the disease [8].

Literature have also reported that the genetic factors
play a significant role in AD. In 2013, one of the largest AD
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GWASs study reported 19 risk loci related to AD [9]. Re-
cent works also identified additional risk loci (risen to 40)
[10-12] which clearly shows the significant contribution of
GWAS towards the understanding the genetic components
associated with the AD.

Despite the success of classical machine learning (ML)
approaches within a wide range of practical applications,
it has certain limitations in some real-world dynamics. A
typical supervised ML approach require substantial
amount of labelled training instances with the same distri-
bution as the test data. However, in many cases, gathering
sufficient labelled training data is prohibitively expensive,
time-consuming, or even impractical [13]. One of the most
commonly used ML approaches to address the aforemen-
tioned problem is Transfer Learning (TR), which learns the
underlying knowledge required to solve one problem us-
ing large amount of data and applies it to subsequent prob-
lems with comparatively small datasets. The base network
is firstly trained over larger dataset for a certain task which
is then used to be fine-tuned over comparatively small da-
taset in the target domain [13]. Although there are many
studies [14-19] using machine learning in the area of
GWAS. However, there are some limitations to these stud-
ies. In terms of accuracy, results show low predictive per-
formance or a biased performance (i.e., the model's sensi-
tivity is higher than its specificity). While other methods
involve only a simple universal test to select relevant fea-
tures.

In this study, we employ multiple types of transfer
learning for the reliable classification of AD using GWAS
data. In contrast other existing literature, the proposed
study comprises following novelties:

a) To the best of our knowledge, this is the first study to
use deep transfer learning to address the data size chal-
lenges associated with the GWAS.

b) A comprehensive analysis of multiple types of the
transfer learning models has been proposed.

¢) Varying configurations of transfer learning applied to
GWAS data.

d) A robust feature selection approach to identify the
most promising SNPs contributing to the AD classification.

The reminder of this paper is organised as follows. Sec-
tion 2 represents the related works while Section 3 presents
the materials and proposed approach for the AD classifica-
tion. Results and discussions on statistical outcomes are
detailed in Section 4. Finally, Section 5 concludes the find-
ings of proposed study.

2 RLEATED WORK

Modern ML methodologies employing well-planned AD
research can be used to investigate the complexity of
LOAD [20]. The major goal has been set to identify and un-
derstand various factors that contributes the development
of AD. In study [14], the authors investigated three ML
claiming as powerful predictive models (i.e., least absolute
shrinkage and selection operator (LASSO), step-wise, and
genetic algorithm) and suggest that the misclassified data
can be used to increase an overall prediction accuracy. The
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results reveal that adding misclassified sample attributes
to the initial model enhanced Area Under the receiver op-
erating characteristic Curve (AUC) by about 5%, reaching
to 84%.

To forecast the major depressive illness responses and

remissions, different ML models has been proposed using
GWAS data [15]; a database comprising 186 patients
classed as Major Depressive Disorder (MMD) responders
or remitters. LASSO regression was used to extract the
most promising variables from a genome-wide association
test to discover the possible important variations related to
the duloxetine response/remission. Subsequently, support
vector machines (SVM) and classification-regression trees
were applied to construct the classification models. In rela-
tion to duloxetine response, none of the models indicated
satisfactory outcomes. The SVM performed comparatively
better in terms of remission, producing 52%, 58% and 46%
accuracy, sensitivity, and specificity, respectively.
The work presented in study [16] compared different ML
models for predicting LOAD from genetic data supplied
by the Alzheimer's Disease Neuroimaging Initiative
(ADNI) cohort in a systematic manner. According to the
outcomes, the top performing models generated 72% of
AUC towards the classification of LOAD and healthy indi-
viduals.

In study [18] utilised DL using convolutional neural net-
works (CNNs), separated the genome into nonoverlapping
fragments and then selected the fragments associated with
phenotypes. By significant SNP from the identified frag-
ments build a CNN classification model for AD.

Maj et. al [19] assess the applicability of multiple ML al-
gorithms using omics data from ADNI, which is based on
matrices of tissue-specific predicted transcriptome profiles
in AD as a case study. Variational autoencoder pre-pro-
cessing of input data was discovered to be an effective for
feature selection prior to the development of classification
models using deep learning. The outcomes reported that
the Random Forest (RF), Logistic Regression (LR) and SVM
were unable to learn to classify cases and controls, because
the samples were only assigned to the majority class. The
findings also suggest that integration of unsupervised and
supervised ML methods can provide complementary
knowledge, leading to better performance.

In addition to aforementioned literature, it should also
be noted that the AD is largely occur due to genetic causes.
As a result, one of the ADNI's main goals is to provide re-
searchers the ability to associate genetics with imaging and
clinical data, in order to better understand the disease
causes. In this regard, GenADA is a multi-site collaborative
effort that aims to create a dataset of 1000 AD patients and
1000 ethnically matched controls in order to analyse the
DNA sequence changes in candidate genes with respect to
symptoms of AD.

In relation to genetic aspect in AD, study [21] focuses on
identifying AD biomarkers using ML techniques. On mul-
tiple AD genetic data, the learning algorithms used include
Nave Bayes (NB), SVM, LR, and RF. The results show that
the overall accuracy of the NB, RF, SVM, and LR learning
algorithms is 98%, 97.9%, 95.8%, and 83%, respectively. The
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beneficial to aid in the early detection of Alzheimer's ill-
ness. A similar work is presented in study [22] to predict
the AD using SVM model trained over gene-coding pro-
tein sequence data. The work used frequency of two suc-
cessive amino acids to characterise the sequence infor-
mation. According to the experimental results, the pro-
posed approach for identifying AD indicated an accuracy
of 85.7%. The study outcomes also revealed that the se-
guence information of gene-coding proteins can be used to
forecast the AD.

In addition to the ML models employed in above litera-
ture, various levels of success have been achieved by kernel
functions used in the prediction model to capture nonlin-
ear effects [23, 24]. Nevertheless, kernel-based methods are
often sensitive to the underlying aetiology of diseases be-
cause their performance is largely determined by pre-se-
lected kernels [25].

2.1 Review of Transfer Learning in Bioinformatics

In transfer learning, a pre-trained model can be used as
base model allowing knowledge transmission for given
task which is particularly useful to avoid repetitive train-
ing [26]. As part of the TL process, knowledge is gained
from a dataset (source domain) and transferred to a new
dataset (target domain), thereby improving learning in the
target domain.

Generally, TL can be categorised into three subcatego-
ries that include inductive, transductive, and unsupervised
TL. These categories are based on difference in context be-
tween the source and the target domains and tasks [27].
The TL has been widely used in various bioinformatic ap-
plications [28-30]. Zhao et. al., [31] use TL to propose a pol-
ygenic risk score (PRS) method called TL-PRS. The ML
model from an ancestry group with large GWAS samples
is fine-tuned to fit the target dataset. The model was ap-
plied to South Asian and African ancestry individuals
from the UK Biobank for seven quantitative and two di-
chotomous traits. In comparison to the standard PRS
method, the TL-PRS method achieved an average relative
improvement based on predicted R squared of 25% for
South Asian samples and 29% for African samples. An-
other example of a multi-modal deep learning method in
genomics is the DeePathology [32], which uses multi-task
and TL to simultaneously infer multiple properties of the
biological samples. Using the fine-tuned model, the work
reported accurate prediction of tissue and disease types
based on the whole transcription profile.

There has been a demonstration of the utility of TL for
chromatin accessibility prediction models based on se-
guences. An analysis of 149 cell types was carried out using
the multitask Basset model [33] to predict binary chroma-
tin accessibility profiles. Following this, single-task models
of chromatin accessibility were trained using parameters
derived from the multitask model. Compared to the mod-
els with randomly generated parameters, models with
transferred parameters indicated better performance in
terms of prediction. However, there are yet several un-
knowns regarding how many parameters should be
shared and which models should be used for which tasks
[34].

for the analysis of high-dimensional genomic data using
deep TL. By using the proposed group-wise feature im-
portance score, the study proposes a method for detecting
predictive genes harboring both linear and non-linear ge-
netic variants. Using the proposed TL based network archi-
tecture, disease risk can also be predicted based on the de-
tected predictive genes. This method was built at the gene
level, so it is much easier to interpret the model biologically
[25].

In relation to the use of TL in GWAS, a novel statistical
method called TL-Multi seeks to improve the polygenic
risk prediction across diverse populations, by using sum-
mary statistics from GWAS from different ancestries and
incorporating the concept of TL [35]. Likewise, Muneeb et.
al. [36] proposed prediction of genotype-phenotype with
deep learning models through TL while utilising a simu-
lated data.

In contrast to aforementioned literature particularly, the
use of TL in GWAS, which either use simulated data or
classify AD at gene level, the proposed approach in this
study is utilises TL in GWAS analysis on real data. We
firstly train a deep CNN model over a GWAS dataset
which is then used to extract features from another GWAS
AD dataset. The selected features are then fed into a SVM
model for the classification of healthy and unhealthy indi-
viduals at SNPs level.

3 MATERIALS AND METHODS

The proposed approach exploits TL where multiple da-
tasets are used to train a deep ML model and transfer the
learned knowledge efficiently to target domain (to predict
the AD class). We conducted detailed experiments to ana-
lyse the effectiveness of varying types of TL and to investi-
gate the impact of knowledge transfer from one dataset to
another in GWAS analysis. The proposed approach is com-
posed of several components that include quality control,
association test, feature selection and classification. A de-
tailed description of each task is provided in the following
sections.

3.1 Datasets

The following three datasets comprise the GWAS data sets
used in this study:
Dataset A: ADNI GWAS dataset

GWAS dataset requested from the ADNI database
(http://adni.loni.usc.edu). The ADNI was founded in 2003
as a public-private cooperation with primary purpose to
investigate if magnetic resonance imaging, positron emis-
sion tomography, and other biological markers and clinical
and cognitive assessments could be used to track MCI and
early AD progression.

The ADNI dataset continues collecting participants
information that is classified into three classes: Cognitively
Normal (CN), Mild Cognitive Impairment (MCI) or Alz-
heimer’s Disease (AD). In our study, only CN and AD clas-
sified participants were selected with 216 controls and 183
cases divided into 215 males and 184 females. Participant
were genotypes using lllumina Human610-Quad Bead-
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Chip Genotyping Platform comprising 620,901 SNPs in to-
tal which are stored in a PLINK [37] format file.

Dataset B: AD GWAS Dataset
The second dataset we use in this study is GWAS case-con-
trol dataset obtained from [38]. The inclusion criteria for
participants is a) who reported themselves to be from Eu-
ropean ethnicity, b) according to the National Alzheimer's
Coordinating Centre standards, and c) board-certified neu-
ropathologists confirmed late-onset AD in cases and no
neuropathology in controls. Furthermore, participants
with death age of over 65 years is selected. Plaque and tan-
gle assessment (unique structures that effect cells in the
brain which could contribute to the pathophysiology of the
disease) conducted on all cases and controls. Samples with
a history of stroke, Lewy bodies, or any other neurological
disorder were excluded. The final dataset includes 191
males and 173 females partitioned into 176 cases and 188
controls, each with genotyping information for 502,627
SNPs. The DNA of participants were genotyped via Affy-
metrix GeneChip Human Mapping 500K Array Set. De-
tailed information regarding the dataset can be found in
primary study [38].

Dataset C: AdaptMap goat GWAS dataset
In contrast to above two dataset (containing human rec-
ords), the third dataset we use in this study is AdaptMap
[39] which contains 4653 animals representing 169 popula-
tions from 35 countries spread across 6 continents. To gen-
otype the animals, an lllumina GoatSNP50 BeadChip with
53,347 SNPs was used [40]. This dataset has been used to
investigate transductive type of transfer learning.

3.2 Quality Control

In the proposed study, individuals and SNPs were sub-
jected to quality control (QC) and filtering procedures in
accordance with conventional QC protocols and guide-
lines as shown in [41] using PLINK software.

For Dataset A, there are 620901 SNPs before genotyping
trimming. Based on the Hardy-Weinberg equilibrium
(HWE) test, 72490 markers were excluded (with p = 0.1);
61065 markers failed the HWE test in cases, whereas 72490
markers failed the HWE test in controls. The missingness
test failed 31368 SNPs (GENO > 0.1). Atotal of 154598 SNPs
failed the frequency test (MAF 0.1). in total, there are
411077 SNPs remained after frequency and genotyping
trimming. One individual is removed for low genotyping
(MIND > 0.1). After all quality control stages, a total of 398
individuals and 411077 SNPs are left for subsequent anal-
ysis.

For Dataset B, the following QC methods were carried
out to filter out the genetic markers. SNPs with the geno-
type missing rate over 5% are eliminated. Likewise, SNPs
are filtered for Hardy-Weinberg with a p-value less than
0.001, and the minor allele frequency was less than 0.05.
Furthermore, each individual was subjected to QC pro-
cesses, which consist of a missing genotyping data rate of
0.05, related people, and sex-homozygosity. For subse-
guent analysis, 356499 SNPs were retained in the samples.

For Dataset C, SNPs and samples are filtered out for
missing genotype data (0.1) and the minor allele frequency
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pass filters and QC.
3.3 Association Analysis

Because the resulting information from association analy-
sis varies, it is critical to select the appropriate method for
the given context. The association of all SNPs (in Dataset A
and Dataset B) within the study with disease status of bi-
nary variables (0/1) for case and control patients was as-
sessed using logistic regression under an additive genetic
model. The genomic control of logistic regression associa-
tion test is adjusted to control the population structure. An
association test between SNPs and the AD was carried out
to decrease the computationally enormous number of ge-
netic variants. The SNPs are sorted in ascending order by
p-value, and only the first 5000 SNPs are retrieved for fur-
ther analysis. Figure 1 depicts the p-values obtained from
the association analysis of the AD GWAS dataset using the
standard case-control method in a Manhattan plot. The
graphic demonstrates that there are two SNPs that have
met the GWAS association threshold.

5429358

®rs4420628

Ioguolp)

Chromosomes

Fig. 1. Manhattan plot of standard case-control shows
association of between genotypes and AD.

3.4 Feature selection

The GWAS uses high dimensional data where it is ex-
tremely difficult to interpret the data directly, and the ma-
jority of the SNPs are irrelevant or uninformative. As a re-
sult, identifying the most crucial SNPs is critical. This has
three main advantages. Firstly, to simplify the ML model's
interpretation. Secondly, it can lower the model's variance
and hence overfitting. Finally, reduced number of features
can lower the computational cost required to train the ML
model. The results of the association analysis are used in
this stage to generate a selected features that are signifi-
cantly associated with the specified phenotype.

The RF is a ML model that has been frequently used for
the feature selection [42]. To rank the purity of nodes, RF
employs tree-based decision techniques where each deci-
sion tree is made up of internal nodes and leaves. The se-
lected features are utilised in the internal node to decide
how to partition the data set into two different sets with
similar responses. The feature importance is measured as
the average of all trees in the forest. The Gini measure, one
of the RF methods for measuring feature relevance, used
as a feature selector in the current study. Substantial num-
ber of SNPs are identified as irrelevant with extremely low
significance values. As a result, any SNPs with a Gini value
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of 0.0009 or higher are included in the feature set for clas-
sifications. The significance criterion of 0.0009 was chosen
by trial-and-error approach because it can catch the right
SNPs that reflect favourable results in the classification
task. A total of 60 SNPs were selected by RF as important
features which are then used for the classification task for
both Dataset A and Dataset B. On the other hand, for Da-
taset C, only 57 SNPs are used as significant following the
Bertolini et. al. [43] analysis of the same dataset. Table 1
shows the top 10 SNPs chosen by RF during the feature se-
lection stage. The SNPs rs429358 and rs4420638 were cho-
sen by RF as two of the top ten features, indicating that the
model is effective in identifying the most promising fea-
tures that are relevant to the disease.

TABLE 1
Characteristics of the top 10 SNPs being selected as im-
portant features
SNP Location Function Gene
rs2937774 5:74124992
rs26642 5:62488562 Intron Variant IPO11
rs153864 5:62425115 Intron Variant IPO11
rs7718940 5:86207592
rs862245 5:82289918 Intron Variant ATP6A
P1L
rs429358 19:44908684 Coding Se- APOE
guence Variant
rs4420638 19:44919689 Downstream APOC
Transcript Vari- 1
ant
rs12374530 5:63761206
rs37032 5:62388203 Genic Down- KIF2A
stream Tran-
script Variant
rs16890651 5:62333712 Intron Variant KIF2A

3.5 Convolution Neural Network (CNN) and
Transfer Learning

Abstract high-level representation features can be gener-
ated using deep learning by combining low-level features,
resulting in the finding of data's hidden features. The
CNN, one of commonly used deep learning model, can re-
duce the number of learning parameters by leveraging spa-
tial correlations. As a result, training performance can be
improved and data characteristics can be extracted more
efficiently [44, 45].

In CNN, the convolution operation extracts the high-
level properties such as edges from the input image. The
first layer is traditionally in charge of capturing low-level
features such as edges, colour, gradient direction, and so
on. The architecture adapts to the high-level features as it
progresses through the hidden layers, producing a neural
network with in-depth understanding of the data [46].

The size of the convolved feature is recued even further
in the pooling layer. This is performed to decrease the com-
putational cost required to analyse the data by reducing its
dimensionality. Full connection layer is used to learn and

layers. The CNN frequently optimises its parameters dur-
ing the training phase by employing optimisation algo-
rithm (e.g., gradient descent) and modulating the intensity
of back-propagation with the learning rate [45].

In order to improve learning in the target domain, TL
involves gaining knowledge from a dataset (source do-
main), and then transferring that knowledge (the pre-
trained model) to a new dataset (target domain). The TL is
heterogeneous when the source dataset and target dataset
come from different domains, with different marginal dis-
tributions, predictive distributions, and feature spaces.
Homogeneous TL is defined, on the other hand, when the
source and target datasets are less different from one an-
other.

In this study, we first time employed both heterogeneous and
homogeneous TL to the datasets described earlier. Homogeneous
TL was used due to the fact that the human GWAS dataset had
the same feature space and domain characteristics from both
source and target domains. Source and target datasets of human
GWAS used in this study vary in terms of genotyping platforms.
Since genotyping platforms tend to generate markers based on a
selection strategy and number of markers, the data is influenced
by these factors [47]. On the other hand, as the feature space and
domain of the animal and human GWAS datasets are different,
heterogeneous TL is employed

3.6 Support Vector Machine

Support vector machine (SVM) is a supervised ML algo-
rithm that finds a hyperplane in an N-dimensional space
which clearly classifies the input data points. Hyperplane's
position and the direction is determined by data points
that fall near the hyperplane. Using these support vectors,
the classifier's margin is maximised. The position of the hy-
perplane changes if the support vectors are removed.
These are the points that assist in developing the SVM. The
bigger the margin of the hyperplane, the more confident
algorithm is in classifying new data points [48].

3.7 Experiment Design

The outline of the proposed model is depicted in Figure 2.
The GWAS data is pre-processed and filtered to contain
only high-quality samples and markers by employing ap-
propriate quality control processes on all datasets. A lo-
gistic regression-based association test is performed to
identify the SNPs that are strongly associated to the dis-
ease. Furthermore, RF algorithm is used for the selection of
important features and to reduce the dimensionality, mak-
ing the number of features appropriate to the number of
available observations.

As a result of trial-and-error testing, we chose convolu-
tion layers between 2-4 because using excessive layers may
overfit the model, while very few layers may limit its capa-
bilities [49]. According to best practices in the literature
and similar related work [18, 50, 51], we selected the num-
ber of convolutional layers in this study, as well as the other
hyperparameters for the deep learning models [52-54].
Where as for SVM and RF classifiers, a grid search is con-
ducted on user defined hyper-parameters values. The deep
learning models’ structures are demonstrated in Table 2.
Customization of Transfer Learning:
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e Prediction: use the pre-trained model to immedi-
ately classify new observations

e Fine-tuning: unfreeze the classifier, or a portion of
it, and retrain it on new dataset.

e Feature extraction: The output of the layer preced-
ing the final layer is fed into a new model as input.
The goal is to pre-process the inputs and extract
essential features using the pre-trained model, or
a subset of it.

Following the completion of the necessary data pro-
cessing and filtering, multiple experiments are conducted
to examine the effectiveness of TL in GWAS domain:

Experiment 1 (EXP1): Implementation of transductive
TL, to train the model using source and target dataset from
similar domain and a similar task in both source and target
models. Therefore, a CNN is trained on Dataset A as a Base
CNN where Dataset A is partitioned as 80 percent for train-
ing and 20 percent for testing (pre-trained). A number of
architectures are built, and the one with the best perfor-
mance is kept as the base CNN model; the architecture of
the base CNN is displayed in (Table 2.A). Then the base
CNN is used in three approaches for prediction, fine-tun-
ing, and as a feature extractor for Dataset B.

Experiment 2 (EXP2): Implementation of inductive TL
to train the model on source and target datasets from sim-
ilar domain but different tasks (in our case, we train the
model on GWAS data Dataset C of animal to classify goat
into 11 subcontinental breeds; the architecture of the base
CNN is displayed in Table 2.B) then use the TL over the
pretrained model to classify the individuals in Dataset B.
Experiment 3 (EXP3): Implementation of inductive TL to
use the pretrained model from EXP2 to classify individuals
in Dataset A.

Experiment 4 (EXP4): Implementation of inductive TL

to use the pretrained model from EXP2 to classify individ-
uals in an aggregated dataset comprising both Dataset A
and Dataset B.
In all of the above experiments, ML algorithms are built
using the Scikit-learn Python library [55]. The PyPlink li-
brary [56] is used to read the genotype data in Python.
Deep learning models are built utilizing Keras and Tensor-
Flow as backend [57].

TABLE 2
ARCHITECTURES OF THE PROPOSED CNNS; (A) FOR EXP1 AND
(B) FOR ExP2, 3AND 4

CNN Model A CNN Model B

Layer Description  Layer Description

Type Type

ConvlD F =16, K= ConvlD F =16, K= (5),
(5,), ReLu RelLu

ConvlD F =16, K= ConvlD F =32 K =(3),
(3,), ReLu RelLu

Pool1D Max Pooling PoollD Max Pooling (2,)
2)

Dropout  10% Dropout  10%
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Reshape Flatten ConvlD F =32, K= (3),
RelLu
Dense F = 64, Sig- PoollD Max Pooling (2,)
moid
Dropout 10% Dropout 10%
Dense F=2,softmax ConvlD F =32, K = (3),
RelLu
Pool1D Max Pooling (2,)
Dropout 10%
Reshape Flatten
Dense F = 64, Sigmoid
Dropout 10%
Dense F=2, softmax
Data Quality Control! Data Quality Control Data Quality Control,
v : i
Feature Selection Association Test Association Test
} { v
Data Partition Feature Selection Feature Selection
' 4
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Fig. 2. The proposed Transfer Learning Framework. On
left side, quality control and feature selection are con-
ducted on Dataset C, then a CNN is trained on animal data
as a base model to be transferred to both Dataset A and
Dataset B for EXP 2,3 and 4. In the middle, a CNN model
is trained on human data as a base model to be transfer to
Dataset B for EXP 1.

4 RESULTS AND DISCUSSIONS

4.1 Evaluation Criteria

In this study, we use GWAS data to train a deep TL model
to distinguish the healthy and LOAD-infected subjects. To
assess the performance of proposed approach, we use
AUC which is one of the commonly used ML evaluation
metric [58-61]. Along with the AUC, we employ standard
evaluation metrics [62, 63] including accuracy, precision,
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4.2 Transductive Transfer Learning Based AD clas-
sification (EXP1)

A CNN model is trained and tested over Dataset A in
EXP1. The pre-trained model was saved for TL so that it
could be reused in the target domain, Dataset B. The pre-
trained model firstly used after training only the fully con-
nected layers, to predict the samples in Dataset B. Sec-
ondly, we then unfreeze the frozen pre-trained model's lay-
ers, then trained the transfer model on 80% of the observa-
tions in Dataset B and tested on the remaining observations
in Dataset B. Finally, the fine-tined model is used as a fea-
ture extractor and serves as an input to ML classifiers (i.e.,
SVM and RF in this case).

The results attained during this experiment are listed in
Table 3 which shows that the highest accuracy (89.04%)
and F1 score (88.57%) are achieved by customizing the pre-
trained model as a feature extractor and fed into an SVM
with rbf kernel. Whereas, utilizing the pre-trained model
for the prediction task did not generalize well on target da-
taset and showed a significant decrease in accuracy to 39%.
Although the drop in accuracy, but model achieved high
score in terms of recall, in comparison to other models in
EXP1. This suggest that accuracy metric is not enough to
examine the true performance and any biasedness towards
a specific class in a model.

It can be noted that the change in kernel type also influ-
ence the model’s performance, an improvement of around
2% in terms of both accuracy and fl-score when utilizing
rbf kernel compared to liner kernel. Likewise, more bal-
anced performance is achieved using FE+SVM with rbf
kernel in terms of precision and recall which is not the case
otherwise.

TABLE 3
Results of EXP1 Transductive Transfer Learning (Transfer
from Dataset A to Dataset B)

Model Use Accu- Preci- Recall F1-
racy sion score

Prediction 0.3972 0.4354 0.75 0.551

Fine-tuning 0.7671 0.8064  0.6944  0.7462

FE+RF 0.8904 0.966 0.8055  0.8787

FE+SVM 0.8767 0.9354 0.8055 0.8656

with  linear

Kernel

FE+SVM 0.8904 0.9117 0.8611  0.8857

with rbf Ker-

nel

4.3 Inductive Transfer learning Based AD Classifi-
cation (EXP 2, 3 and 4)

In EXP2, the source dataset used is GWAS data of ani-
mals to train a CNN model to classify the goat into 11 sub-
continental breeds. The pretrained model, as in EXP1,
adapted to classify the samples of target dataset (Dataset
B) by a) only changing and training the top layer, b) fine-
tune the model to make them relevant for the target task,
c) as a feature extractor. The detailed statistical outcomes
of this experiment are shown in Table 4. Similar to EXP1
results, the pre-trained model generalized well when fine-

with rbf kernel. However, the model shows maximum ac-
curacy of 60.27% when used directly (without fine-tuning
the pre-trained model’s layers) to predict the class in the
target dataset. This is a significant drop in model’s perfor-
mance which clearly indicates the usefulness of fine-tuning
of TL for the task of AD classification. Even though a high
accuracy of 84% achieved after fine-tuning and utilizing
the pre-trained model to classify samples in Dataset B,
there is clearly a biased performance in terms of precision
(93%) and recall (75%) metrics which shows biasedness to-
wards one class. In construct, balanced performance of
87% and 80% for precision and recall achieved when cus-
tomizing the pre-trained model as feature extractor fol-
lowed by an SVM.

TABLE 4

Results of EXP2 (Transfer from Dataset C to Dataset B)
Model Use Accu- Preci- Recall  F1-

racy sion score
Prediction 0.6027 0.6060 0.5555  0.5797
Fine-tuning 0.8493 0.9310 0.75 0.8307
FE+RF 0.8082  0.8437 0.75 0.7941
FE+SVM with 0.7671 0.7878 0.7222  0.7536
linear Kernel
FE+SVM with 0.8493 0.8787 0.8055  0.8405
rbf Kernel

In Experiment 3, the same pre-trained model from Exp 2,
is used for the TL over Dataset A. The main objective is to
investigate if the pre-trained model is able to well general-
ize for different datasets. Following the same TL strategies,
Table 5 lists the statistical results from EXP3. Unlike the
outcomes from EXP2, the pre-trained model did not per-
form well in general, however, indicates better recall scores
than precision. After fine-tune the model to make it more
relevant to Dataset A, we achieved 67.5% and 59.37% accu-
racy and fl-score, respectively. These statistical outcomes
clearly indicate that employing the pre-trained model as a
feature extractor could not help in improving the model
performance in this experiment.

Similar to outcomes from EXP1 and EXP2, the rbf kernel
outperforms linear kernel which may be due to the non-
linear nature of the dataset.

TABLE 5
Results of EXP3 (Transfer from Dataset C to Dataset A)

Model Use Accu- Preci- Recall F1-
racy sion score
Prediction 0.5875 0.4193  0.4642  0.4406
Fine-tuning 0.6750 0.5277 0.6785  0.5937
FE+RF 0.6375 0.4827 0.5 0.4912
FE+SVM with 0.625 0.4705 05714 0.5161
linear Kernel
FE+SVM with 0.65 0.5 0.5357 0.5172
rbf Kernel

In EXP2 and EXP3, the pre-trained model is reused in
target domains of Dataset A and Dataset B individually, to
examine the generalization of pre-trained model on both
datasets. Furthermore, the pre-trained model utilized in
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tuned over aggregated dataset of A and B. the main inten-
tion is to investigate how the pre-trained model will be-
have in varying settings. Table 6 demonstrate the results
achieved through this experiment (EXP4). The statistical
outcomes show that the accuracy dropped to 58% when
customizing the pre-trained model over the aggregated da-
taset. This might be because of the effect of Dataset A, as
the model in EPX3 did not perform very well. Similar to
EXP2, the model achieved highest performance of 69.28%
and 64.66% of accuracy and fl-score, respectively, when
fine-tuned over the aggregated dataset and used as a fea-
ture extractor followed by an SVM.

TABLE 6
Results of EXP3 (Transfer from Dataset C to aggregated
dataset of Dataset A and dataset B)

Model Use Accu- Preci- Recall F1-
racy sion score

Prediction 0.5882 0.5744 0.3857 0.4615
Fine-tuning 0.6601  0.6551 0.5428  0.5937
FE+RF 0.6405 0.6315 0.5142 0.5669
FE+SVM with 0.6666 0.6727 0.5285  0.5920
linear Kernel

FE+SVM with 0.6928 0.6825 0.6142  0.6466

rbf Kernel

In Fig. 3, we present a comparison of receiver operating
characteristic curves (ROC) for each model within each of
the four experiments. The best performance was achieved
by using transductive transfer learning utilized in EXP1
(Fig. 3a). The second-best results were obtained with in-
ductive transfer learning (i.e. transfer from Dataset C to
Dataset B) as demonstrated in Fig. 3b. However, this high
performance did not hold when the pre-trained model was
transferred to Dataset A (Fig. 3c). Figure 3 also shows that
using pre-trained models as feature extractors provides
better results than other TL approaches. It was fine-tuning
the pre-trained model that resulted in a better AUC in ex-
periment 3.

4.4 Comparison with Related Work

Table 7 presents performance comparison between the pro-
posed TL based AD classification approach and related

a) ROC curve for EXP1 b) ROC curve for EXP2
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works from the literature. It can be noticed that our ap-
proach outperforms the existing methods in terms of al-
most all performance metrics with an increase of 5% of ac-
curacy and AUC, and 8% increase in f1-sore. In addition, it
is very important to note that the proposed approach uses
only 60 features as input to ML model as compared to state
of the art [14] which uses over 500 features. This results the
proposed model less noisy, light weight, and efficient
model. Furthermore, identification of fewer most contrib-
uting feature to AD might be useful to set a baseline for
further analysis and future research direction. Our pro-
posed model not only show high accuracies, but also
shows well balanced performance in terms all metrics. In
contrast, gradient boosted decision tress [64] showed an in-
crease of 11% in terms of AUC comparing to other metrics.

4.5 Discussions

The genetics of phenotypes such as AD is of complex
nature. Multiple genetic markers play a role in the emer-
gence of complicated human disease. Despite the fact that
GWAS were successful in identifying SNPs associated with
complex features, this strategy lacks the identification of
variants with low influence that might play a significant
role when combined with other variants [65]. Additionally,
traditional GWAS have only discovered SNPs that can only
account for 33% of the estimated 79% [66] of genetic risk
related with AD.

Although this value is insufficient for a reliable clinical
prediction, ML algorithms have been shown to be more ef-
fective in discovering candidate SNPs and predicting com-
plicated genetic diseases [67-69]. In the last decade, the ap-
plication of ML-based techniques for genetic-based preci-
sion medicine has expanded and is expected to continue
[70].

The results shown in Table 3 that the TL can be an effec-
tive tool for GWAS data classification. This is owing to the
fact that the deep learning models must be trained on a
large amount of data. Because the high dimensionality of
GWAS data makes the training of deep learning models
more challenging, transfer learning from one dataset to an
other can help to resolve this issue. However, carful selec-
tion of source dataset for the pre-trained model plays a ma-
jor role towards the model performance when the model is
transferred to another dataset.

d) ROC curve for EXP4

C) ROC curve for EXP3
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