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Abstract 

Machine-learning-based systems are now part of a wide array of real-world 

applications seamlessly embedded in the social realm. In the wake of this 

realization, strict legal regulations for these systems are currently being 

developed, addressing some of the risks they may pose. This is the coming of age 

of the concepts of interpretability and explainability in machine-learning-based 

data analysis, which can no longer be seen just as an academic research problem. 

In this paper, we discuss explainable and interpretable machine learning as post-

hoc and ante-hoc strategies to address regulatory restrictions and highlight 

several aspects related to them, including their evaluation and assessment and 

the legal boundaries of application. 
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1. Introduction 

The design of Machine Learning (ML) models is currently dominated by the 

development of deep Multi-Layer Perceptrons (MLPs) and variants thereof, which 

consist of increasingly complex structures and modules under the umbrella 5 term 

of Deep Learning (DL) [1, 2]. These approaches may include specific components 

like convolutional layers for adaptation to specific tasks like image processing and 

classification [3, 4]. The numerical validation of deep networks justifies the 

theoretical correctness [1, 2, 5, 6]. 

The training of such complex models requires careful adaptation of the inter- 

1 nal model parameters (frequently accompanied by strategies to reduce numerical 

instabilities), to ensure robustness and to avoid overfitting [7, 8, 9]—including 

autoencoder learning for the pre-training of layers, dropout learning approaches, 

regularization techniques, and resilient network architectures, to name a few [3, 

10, 11, 12]. 

15 Nevertheless, the more complex the architectures, the more difficult the 

interpretation or explanation of how and why a particular network prediction is 

obtained, or the elucidation of which components of the complex system 

contributed essentially to the obtained decision. The need for transparency varies 

with the application area. This involves proportionality between the burden 

20 imposed by explainability and interpretability, against the value this offers to the 

end-user. The approach we take is that the arbiter for proportionality is the 

applicable set of legal frameworks, hence they are the pivotal content of the paper. 

A unified approach for the assessment of interpretability that combines several 

existing axiomatic methodological frameworks is subsequently presented 

25 and its relations with the legal frameworks are discussed. An overall limitation of 

the accompanying review of technical methods is that it has a particular focus on 

tabular data and imaging data. This is because these types of data are frequently 

used in safety-critical contexts such as medicine and engineering, for instance, in 

diagnostic decision support and autonomous driving, where it be- 

30 comes crucial to understand how the model generated the prediction. In other 

words, the model acting as a black-box system is not sufficient any longer [13]. 
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In the European context, legal requirements have been enforced by the 

General Data Protection Regulation (GDPR) since 2018, which, as explained by 

Bacciu et al. [14], mandates a “right to explanation” of decisions made on cit- 

35 izens by “automated or artificially intelligent algorithmic systems.” This is 

compounded by the current development of a legal framework on Artificial 

Intelligence (AI) by the European Commission of obvious impact on ML [15]. 

While mirroring many of the GDPR elements, it also discriminates between 

AI applications according to a four-level risk assessment, from “minimal-risk” 

40 to “unacceptable-risk,” with “high-risk” AI applications being subject to strict 

obligations before being marketed, and even “limited-risk” ones being tied to 

specific transparency obligations. Note, though, that this legal proposal often 

refers to transparency and trustworthiness of AI systems, instead of explainability 

and interpretability, which have a role to play in delivering the higher level 

45 goals. 

Regulatory restriction has made the development of tools and strategies to 

explain those complex models an urgent necessity [16]. As pointed out by Rudin 

[17], these post-hoc strategies might be problematic because explanations 

frequently are unreliable and can even be misleading. An alternative to that are 

50 interpretable models, which provide ante-hoc inherently the possibility for model 

explanations. It was recently pointed out that interpretable models should be favored 

for high-stakes decisions if possible, rather than “explained” black-box models [18]. 

For these reasons, in the review of methods of Section 3, we take as the starting point 

the same high-level distinction between post-hoc explanations 55 and ante-hoc models 

that are explainable or interpretable by design. 

This has led to a number of guidelines for algorithmic transparency and 

accountability, but also to a statement from the Association of Computing 

Machinery, made in 2017, that is aptly reviewed by Burkart and Hubert [19], that 

formalises five ways to gain interpretability based on three concepts: explana- 

60 tion generation, learning interpretable models, and surrogate model learning. In our 

paper, we group methods starting from the distinction between post-hoc and ante-
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hoc approaches, leading to a focus on metrics to quantify transparency in a unified 

framework that includes several concepts that recur in current reviews. 

While our proposed framework is consistent with the taxonomy of methods 

65 presented elsewhere, our review of methods can be complemented in some aspects 

where existing reviews are especially detailed. The survey by Guidotti 

et al. [20] is particularly informative about decision tress and rule-based models, 

which, alongside linear models, are noted as being considered “easily 

understandable and interpretable for humans.” This paper underlines that these 

70 methods for providing explanations are effective only when they have 

“humanreasonable sizes.” In the context of assessment of explainability, three 

desiderata known as the PDR framework are introduced by Burkart and Hubert 

[19]: predictive accuracy, descriptive accuracy, and relevancy [21]. These three 

aspects are contained in the framework proposed later in Section 3, and predictive 

ac- 

75 curacy, in particular, motivates the inclusion of the performance criterion in Table 1. 

Both Guidotti et al. [20] and Linardatos at al. [22] provide detailed and well-

illustrated reviews of methods to explain DL models, including a comparison of 

saliency maps for samples from ImageNet. 

In this position paper, we aim to make the following contributions: 

80 • We consider in detail the state-of-the-art in regulatory and legal frameworks for 

the application of ML in terms of transparency, interpretability, and explainability. 

This is still fluid as legal statutes have, to our knowledge, been barely tested in court. 

Nevertheless, core principles are emerging which are discussed in the paper, along 

with our position regarding 85 the direction of travel of these key developments for the 

future of our field. 

• We develop a unified approach for the assessment of interpretability that 

combines several existing axiomatic frameworks. The proposed approach 

comprises a super-set of measurable criteria for the evaluation of 

standalone models, that can be readily complemented with qualitative 

indica- 
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90 tors from end-user experiments in real-world applications. In order to support this 

unified approach, we include a non-exhaustive review of the current state 

of eXplainable AI (XAI) and discuss it according to the regulatory and legal 

frameworks previously described. In order to highlight the domain-

dependency of this problem, two case areas are discussed in 

95 detail: healthcare and banking. 

2. The Legal Boundaries of Interpretability and Explainability for Machine 

Learning-based Models 

At a time when ML is no longer just an academic pursuit with minor inroads 

on real-world applications but a commercial commodity that is proactively being 

100 sold to citizens in many guises and consequential contexts, the societal impact of this 

technology makes it enter a completely different realm. A realm in which ML is 

bound to normative regulation and law and in which model interpretability or 

explainability, or both, come to the fore to play a central role as tools to guarantee 

model accountability and acceptance, as well as trustworthiness. In 

105 Europe, this must be considered in the context of the GDPR since 2018, which, as 

first pointed out by Goodman and Flaxman [23] and explained by Bacciu et al. [14], 

mandates a “right to explanation” of decisions made on citizens on the basis of 

“automated or artificially intelligent algorithmic systems.” Note, though, that the 

own interpretation of this mandate is nothing but controversial 

110 (as one might expect of the complex matching between technical systems and law) 

and that even its mere existence was quickly put into question by Wachter et al. 

[24]. A common theme in this controversy has to do with how much a 

requirement of explainability might harm ML effectiveness (think of DL as an 

extreme example) and how much it could contribute to stifling innovation. 

115 At this point, the priority is understanding how a legal text such as GDPR can 

ultimately be interpreted in courts that are not necessarily aware of the nuances 

of (semi-)automated decision-making based on AI and ML in particular. Such 

difficulty in bridging AI technicalities and law has been thoroughly discussed, for 

instance, in the socially-sensitive context of UK law and pub- 
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120 lic administration [25]. This work identifies lack of explanation in automated 

decision-making as the greatest legal challenge encountered, as it is “key to judicial 

review” and defines it in three flavors, following Burrell [26]: intentional opacity (for 

intellectual property protection), illiterate opacity (ML systems only interpretable by 

data scientists), and intrinsic opacity (systems that are per se 125 non-interpretable, 

according to the definition defended in the current paper). 

The qualification of what the idea of explanation means specifically in legal 

terms (i.e., what sort of explanation would be appropriate and accepted in court) 

is a task that may require discussion across domains between legal scholars and 

data and cognitive scientists [27]. This is not just an academic flight of 

130 fancy but, in fact, the core requirement of legal interpretation and, therefore, of 

paramount importance. Unsurprisingly, this debate has flourished far more in legal 

texts than in technical publications [25, 28]. Doshi-Velez et al. [27] agreed on a 

definition of explanation as “human-interpretable information about the logic by 

which a decision-maker took a particular set of inputs and reached a 135 particular 

conclusion,” with obvious translation to ML-based decision-making. They also discuss 

the situations in which the benefits of providing an explanation outweigh the costs 

(which implies the notion that this is not the case in all situations) and focus on the 

interesting distinction between ML explanation at large and legally-operative 

explanation. The latter is described as best focused 

140 on elucidating the relative impact of individual data attributes on model-based 

decisions. Therefore, and following the distinction between interpretable and 

explainable ML we are posing in this paper, such idea means that, from a legal 

standpoint, it would be preferable to focus on explainable systems, whose posthoc 

nature fits the idea of the “explanation system” being independent of the 

145 ML system itself and requiring a “concept-mapping” that makes this information 

regarding relative input relevance amenable to human understanding. This 

conceptual mapping can only be made operational through the collaboration 

between domain experts and data scientists in the design of ML-based pipelines 

for decision support, as in the framework proposed by Vellido [13]. Such collab- 
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150 oration is also necessary, as the ML pipelines will not be able to provide proper 

explanation ex post unless the domain-specific explanation requisites have 

already become part of the ML-based pipeline design. Furthermore, we argue that 

if the decision-making process affects citizens and is legally liable, legal experts 

should also be part of the design of the explanation system tied to the 

155 ML-based pipeline, together with data scientists and domain experts. This is further 

sustained by the exploration of the significance of contextual and performative 

factors in the implementation of retrospective transparency in the form of 

explanation [29]. In this study, Felzmann et al. warn of the potential limitations of 

GDPR in this aspect unless “assessments of trustworthiness based 

160 on contextual factors mediate the value of transparency communications.” Different 

stakeholders might require different types and levels of explanation in different 

application contexts, a detail which is not covered by the text of the law itself. The 

authors support “a tailored and multi-stakeholder approach to transparency for 

AI” with performativity [30] as a way to conceptualize the “link 

165 between transparency effects and contextual factors.” 

As already stated in Section 1, the legal frameworks and proposals often refer 

to transparency and trustworthiness of AI systems, instead of explainability and 

interpretability, but with different connotations; note also that language here can 

be tricky, as notions of transparency and interpretability or explainability do 

170 not necessarily equate; something that, as reported by Doshi-Velez and Kim [27], 

was neatly stated in a report of UK’s House of Lords, back in 2017 [31]. 

The main risk faced by the implementation of transparency, explainability, 

and interpretability of ML systems in practice is the existing gap between law, 

regulation, and the implementation in such context-specific practice. The ability 

175 to bridge such a gap will be the true hallmark of the coming of age of these concepts 

in ML. 

The need for interpretability and explainability increases with the liability and 

responsibility for decisions made by an ML model. For example, if a recommender 

system presents products to consumers while surfing through the 
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180 internet, there is an expectation that sales will increase by this type of 

advertisement. If this is not the case, the project lead might have to explain why 

the advertisement campaign was unsuccessful. Consequently, there might be a 

need to interpret or explain the recommender system to the customer because the 

project lead is responsible for the product. Another example where the sole 

185 responsibility for a functioning ML model could cause a need for interpretability and 

explainability is stock market forecasting. If the forecast is too often false, 

customers will lose trust in the product. However, if the company equipped the 

forecasting model with explaining factors so that customers can make their own 

decisions on whether to trust the forecast or not as a basis for an investment, 190 

this would mitigate disappointment in case of an incorrect forecast. 

Doshi-Velez and Kim [32] summarized several ML-related desiderata where 

interpretability and explainability are used for confirmation: 

• Fairness and unbiasedness: Avoid the discrimination of protected groups; • 

Privacy: Protect sensitive information in the data; 

195 • Robustness: Ensure the prediction is stable in terms of parameter or input 

variations; 

• Causality: Guarantee that observable input-output relations will also occur in 

the real system; 

• Usability and trust: Provide information on why the model made a specific 

200 prediction to improve the confidence of humans and to assist users. 

Hence, beyond the required interpretability and explainability by law, there is 

often an intrinsic motivation behind the quest for model behavior 

comprehensibility. The forthcoming Artificial Intelligence Act (AIA) [15], though, 

makes us veer from desideratum to obligation in certain application areas. Its 

Recital 47 

205 (linked to Article 13) states that “to address the opacity that may make certain AI 

systems incomprehensible to or too complex for natural persons, a certain degree 
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of transparency should be required for high-risk AI systems. Users should be able 

to interpret the system output and use it appropriately.” Annex III of the AIA lists 

these high-risk AI systems as biometric identification and catego- 

210 rization of natural persons; management and operation of critical infrastructure; 

education and vocational training; employment, workers management, and access 

to self-employment; access to and enjoyment of essential private services and 

public services and benefits; and law enforcement. Any ML application pertaining 

to any of the shortlisted areas will therefore have to abide to trans- 

215 parency and interpretability requirements. A tool that provides a procedure 

for AIA conformity assessment (called capAI) and described as “a governance tool that 

ensures and demonstrates that the development and operation of an AI system are 

trustworthy—i.e., legally compliant, ethically sound, and technically robust – and thus 

conform to the AIA” has recently been proposed [33]. In 

220 capAI, XAI is addressed as an element of Ethics-Based Auditing (EBA), where EBA is 

understood as “a governance mechanism that allows organisations to 

operationalize their ethical commitments and validate claims made about their AI 

systems.” 

A summary comment on different elements of current regulation that are 

225 relevant to the issues of interpretability and explainability is provided in Table A.2 

in the appendix. This does not attempt to be comprehensive, but it aims to reflect 

the highest-level attempts by different regulatory sources. 

3. Explainable and Interpretable Models in Machine Learning 

As already mentioned in the introduction, the majority of currently applied 

230 ML models are based on deep MLPs, which often achieve impressive results in 

regression and classification problems in very different application areas. 

Unfortunately, most of these complex networks work as black-box algorithms 

such that the user is only provided with the prediction or decision of the model, 

but with none or very limited information on how these results were obtained. 

235 However, the benefit of ML models will be much higher for the data analysts and the 

experts in the application domain if they are provided with additional information 
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about the prediction process—even in an interactive manner as part of the 

learning process, such as in the Explanatory Interactive Machine 

Learning framework proposed by Teso and Kersting [34]. Such information can 

240 potentially increase the trustworthiness of the model, allowing the user to draw 

further conclusions and extend, in this way, the knowledge base for the problem 

(as clearly illustrated for specific domain scenarios in Section 4.2). In particular, 

several desiderata for interpretability and robust explainability of ML models can 

be identified as minimum requirements [18, 35, 36]: 

245 • Explicitness and Comprehensibility: Is the learning approach able to 

represent its learned knowledge in a human-understandable fashion, and 

are explanations immediately understandable? 

• Faithfulness: Does the interpretation and/or explanation truly reflect the 

learned model? 

250 • Stability: How consistent are the explanations for similar or neighboring 

examples? 

• Sparsity: Is the explanation compact, minimizing the information provided 

to the user? 

• Modularity: Is the model not too complex and can be decomposed into 

255 simple sub-modules which are interpretable and can be easily explained? 

• Model inspection: Is it possible to obtain model representations and 

descriptions of specific model properties? 

Two main strategies in this context can be observed: XAI and interpretable 

models, which we characterize by the following definitions: 

260 • Explainable models: The decision or prediction process of the model can be 

comprehended post-hoc by experts in the field using additional tools and 

elaborate considerations. 

• Interpretable models: The decision or prediction process of the model can 

be easily comprehended (in a reasonable amount of time) by experts in 
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265 the field according to the ante-hoc model design and their domain knowl- 

edge. 

Both strategies have to provide a qualitative understanding of the process that 

links the input variables (features) with the outcome or response to make the 

model plausible and the prediction trustable [37]. The following subsections 

270 list, non-exhaustively, some post-hoc and ante-hoc approaches, as well as an 

inbetween approach: Self-Explaining Neural Networks (SENN). This is followed 

by a description of measures to quantify interpretability and explainability. 

3.1. Post-hoc Approaches: Explaining Machine Learning Models 

Post-hoc approaches comprise those for black-box models for which expla275 nations 

are sought to describe particular aspects of the considered model [36]. The 

corresponding tools generally fall into the following categories, starting with 

variants of sensitivity analysis, but extending to more complex methods: 

• Feature attribution with SHAP. Feature attribution methods relate the model 

output to a small number of numeric or semantic input features. A 

280 landmark paper provides a unified framework to explain black-box models using 

SHapley Additive exPlanations (SHAP, [38]). Shapley values are becoming a 

standard method for local explanations, for instance, in medicine [39]. Originally 

founded on game theory as a way to determine the added value of an individual 

player in a coalition, Shapley values have 285 attractive theoretical properties 

that translate to their application in ML. In particular, Lundberg and Lee [38] 

prove that the additive contributions defined by Shapley values are unique in 

meeting the properties of local accuracy, the requirement that inputs that are 

switched off must have no attributed impact, and consistency in the sense that if 

a model output 

290 experiences a more significant difference than another when a particular feature 

is omitted, then the attribution to that feature will also be more significant. The 

application to molecular diagnostic tests gives a critical appraisal of how the 

exact method and practical sub-sampling strategies compare to explain the 

relative importance of features for a specific patient 
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295 in this challenging setting [39]. The setting can be described as including a large 

number of covariates, a restricted number of observations, and a training set that 

is not representative of the population on which the model will be tested. Even in 

such setting, it was found that exact Shapley values can be used to determine the 

relative importance of features to 

300 the classification for a specific patient. Moreover, the feature attribution 

maps can be interpreted in the same way that physicians use different weightings of 

clinical factors to diagnose diseases for individual patients. 

In contrast, Izzo et al. [40] showed that an inappropriate choice of baseline 

could negatively impact the explanatory power of Shapley values and pos- 

305 sibly lead to incorrect interpretations. To avoid such defects, they present a method 

for choosing a baseline according to a neutrality value that is in accordance 

with how the model is used while decision-making. An alternative approach 

is to represent pre-trained black-box models with mimic models that are 

interpretable by design. However, it is difficult to derive 

310 them from data in a computationally efficient manner. Some advances have been 

made in generating nomograms for flexible models applied to tabular data 

[41]. This approach has also been pursued with a constructive approach to 

infer from a trained MLP a model with univariate and bivariate effects, in 

the form of partial response networks [42, 43]. 

315 • Feature attribution with Saliency Maps identify sparse components of the original 

signal that have the most influence on the model predictions, for example, 

Class Activation Mappings (CAM, [44]), occlusion maps [45], or gradient-

weighted CAM [46]. It is important to note that saliency maps need to be 

correctly configured, or they can be misleading. Simple shifts 

320 in the inputs were used to test the so-called input invariance of several saliency 

maps and found that this property was not always observed and even that 

saliency maps could differ in models with different architectures but 

identical predictions for every input [47]. A popular feature attribution 

method that also fits this type is Local Interpretable Model-agnostic Ex- 
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325 planations (LIME), which aims to identify an interpretable model that is locally 

faithful to the classifier. It optimizes the trade-off between fidelity and 

interpretability (explainability) based on sampled instances (local) 

explained by simple interpretable models like linear models, which serve 

as local surrogates [37]. 

330 • Adversarial and counterfactual explanations comprise methods and approaches to 

reduce the opaqueness of black box models [48]. Adversarial samples 

demonstrate where ML models fail in a way that the investigation 

of those failures helps to understand model behavior and decisions [49]. 

Frequently, there is no specific desired outcome for an adversarial sam- 

335 ple, but, more in general, the adversarial sample is just designed to fool the model 

predictions. In this sense, adversarial attacks (samples) detect model 

vulnerabilities, which could be exploited for malicious intent [50]. In 

contrast, counterfactual samples provide information about the model 

decision process by contrastive explanations for model decisions. More 

340 precisely, counterfactuals describe limitations of the model, such that this 

information can be used to influence the outcome in a directed manner; 

frequently a desired outcome is demanded [51]. Thus, adversarial samples 

should be semantically indistinguishable from original data whereas 

counterfactuals are designed to highlight limits of the model. However, 

345 both concepts are closely related and the generation of these samples frequently 

relies on similar mathematical concepts. Both concepts implicitly shed light 

on internal model decision processes, which can be used for the 

regularization and adaptation of the model as well as for explanation of the 

decision/prediction process [52]. Further, one can distinguish two differ- 

350 ent aims for adversarial or counterfactual investigations and explanations, 

particularly in the context of one-class-classifiers [53, 54, 55]: First, the 

perturbation of target class samples is considered to yield a prediction as 

non-target. We denote this as a false-negative adversarial/counterfactual 

approach. Second, non-target samples are modified to be detected as tar- 

355 get by the model, which is denoted as false-positive attempt. 
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• Activation maximization, based, for example, on Generative Adversarial 

Networks (GAN) [56], use deep generative networks and tailored 

optimization methods to generate class-relevant inputs for convolutional 

neural networks [57]. A human user can then understand the internal 

represen- 

360 tations assimilated by the network and the typical representations of the 

classes. 

• Rule extraction, which, in this context, can be split into two categories: 

the first is decompositional rule extraction algorithms, which rely on the 

internal structure of a neural network, for instance, by interpreting the 

365 activity of individual hidden nodes; the second is pedagogical rule extraction 

algorithms, which are model-agnostic and so apply to any black-box 

algorithm [58]. These models can be surprisingly effective in distilling 

loworder, very interpretable rules for complex models. Explanation 

through rule extraction is further discussed by Guidotti et al. [59]. Decision 

trees 

370 are often used as a tool for rule extraction. An example was presented by 

R¨ognvaldsson et al. [60], which allows for the extraction of decision rules 

from deep neural networks to transfer knowledge from a reference model 

into an explainable equivalent [61]. This is an example of a mimic model, 

which seeks to reproduce the predictions of a black-box using, in this case, 

375 a rule set. 

• Post-hoc metric learning involves deriving a metric from a classifier and 

using it to map out the data structure [62]. Then, similarity networks are 

generated from which a classification of an input can be obtained by 

consulting its neighbors, a form of case-based reasoning (CBR). Typically, 

380 the Fisher Information (FI) metric is calculated from a feedforward neural network, 

which induces a Riemannian metric on the space of input data. An example 

of the use of the FI metric in a medical CBR problem was presented by 
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Ortega-Martorell et al. [63]. This makes explicit the (dis)similarity metric 

that is implicit in all probabilistic models. The 

385 metric can be used to calculate pairwise distances along geodesics, which serve to 

map out the data structure in the form of a similarity network. The 

neighbours of a test point are the reference cases for k-NN classification 

with the Riemannian metric. This approach can also be implemented with 

Siamese networks, which have become very popular of late in the 

390 context of self-supervised learning [64]. Alternatively, the similarity maps can also 

be used for case-based reasoning, which is particularly relevant to medical 

applications [65]. 

3.2. Ante-hoc Approaches: Interpretable Models 

Arguably, “the best explanation of a simple model is the model itself” [38] 

395 (i.e., it perfectly represents itself and is easy to understand). More formally, the 

propagation of information in a form that can be interpretable by the end-user 

with reasonable domain knowledge is clear from input through to prediction. 

Thus, interpretable models have to be transparent on all levels. The models 

surveyed in the following list belong to this category of transparent models: 

400 • Linear models, such as linear regression or Linear Discriminant Analysis (LDA), in 

which the linear dependencies between data and prediction makes them 

inherently transparent (even if, as discussed by Molnar [66], they do not 

always create the best explanations). This concept can be adapted for 

classification beyond LDA through the use of appropriate link 

405 functions, as in the case of logistic regression. It should be noted that the success of 

logistic regression over many years is due in no small part to clever 

representations, for example, by careful discretization of continuous 

variables. This results in a linear-in-the-parameters model that is, in fact, 

very much non-linear. The downside of this approach is that it 

410 is at least partly subjective, as well as introducing discretization boundaries that can 

result in substantial variations in output for relatively small amounts of 

noise in the inputs, compounding the inter-observer variation that is known 
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to be an issue, for instance, in cytology [67]. This is a potentially strong 

argument for the use of ML methods that do not require 

415 discretization, provided they have appropriate levels of transparency. In this 

respect, this also points to the approaches discussed later involving 

generalized additive models. 

• Decision trees: This rule-based system generates logical implications for 

model prediction (i.e., it can be taken as a rule-based model). However, 

420 interpretability becomes difficult as the decision tree grows. Geometrically, if-then 

rules on the original input variables generate axis-orthogonal boundaries, 

which will require many rules when fitting complex decision 

surfaces. This may be alleviated although not necessarily avoided by using 

other types of rule sets, such as oblique decision trees. These models have a 

425 long history including ID3, C4.5, Chi-square Automatic Interaction Detection 

(CHAID) [68] and Classification and Regression Trees (CART) [69], to name 

a few. All methods rely on a principled approach to measuring class 

separation either using information theory or statistical tests. 

The CART method was combined with bagging, a form of bootstrap re- 

430 sampling with replacement, to create the Random Forest algorithm [70] which is 

known to be very accurate but is no longer interpretable because of the large 

number of rules in the ensemble of decision trees, although it does provide 

a measure of variable importance. 

• Bayesian models: These models show a factorization of the joint proba- 

435 bility distribution of the data, represented in the form of a graph with variables as 

nodes and parent-child relationships of conditionality shown by edges. The 

graphs are initially derived from conditional independence maps followed 

by edge orientation. The resulting Directed Acyclic Graph 

(DAG) explicitly shows the dependencies between the input and the out440 

come to be predicted, which is what makes this approach interpretable. However, 

finding the initial skeleton of edges with the requirement of mutual independence 



17 

conditional on the rest of the graph is NP-complete. Fortunately, the PC algorithm, 

named after the initials of Spirtes and 

Gilmour [71], provides assurances of convergence to the generating graph 

445 of the data [72]. However, this method is sensitive to the order in which the nodes 

are tested for recursive elimination, so that care must be taken to stabilise 

the inferred map [73]. Recent developments include cognitive aspects of 

learning and knowledge representation separating detectable features and 

the respective reasoning for inference. This is represented by 

450 a novel network architecture denoted as the Classification-By-Components network 

(CBC) [74], which follows an intuitive reasoning-based decision process 

inspired by recognition-by-components theory from cognitive psy- 

chology. 

• Prototype methods: These methods are based on learning of or the ex- 

455 traction of prototypical representations of the data set based on a dissimilarity 

measure [75] and a prototype assignment rule (e.g., the nearest prototype 

principle, k-nearest neighbors rule). By the prototypical representations 

and the dissimilarity measure, this paradigm naturally ensures 

interpretability. For classification learning, the family of Learning 

460 Vector Quantizers (LVQ, [76, 77]) is well-known to provide possibilities for non-

standard metric usage and metric adaptation [78, 79]. The latter allows a 

direct evaluation of feature dependencies according to the model-inherent 

classification correlation analysis [80]. Unsupervised models for 

representation learning are the neural gas, fuzzy c-means, and self- 

465 organizing maps [81, 82, 83] or related one-class-classifier models [55]. In fact, 

prototype-based methods can be seen as a realization of case-based 

reasoning, which is a paradigm that involves solving a new problem using 

known solutions to similar past problems [18, 84]. Recent examples of this 

include the ProtoPNet method proposed by Chen et al. [85] for 

470 interpretable image classification and the method based on autoencoder 

architectures proposed by Li et al. [86]. 
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• Generalized additive models: Recently, there has been interest in 

representing neural networks in the form of Generalized Additive Models 

(GAMs), that is to say, as a linear combination of interpretable non-linear 

475 functions involving only one or two input variables at a time [87]. GAMs are more 

than just explainable, as they are interpretable globally over the full range of input 

data and are considered a potential gold standard for interpretability [20]. Examples 

include Neural Additive Models (NAM) [88] and Explainable Boosting Machines 2 

(EBM) [89]. They belong to a class 480 of models that already included spline-based 

versions from the traditional statistical literature [90]. These models are positioned 

at the intersection between ML and statistics [91]. However, they have been hampered 

by a lack of effective ways to select the most informative components, particularly 

when bivariate terms are included. A proposal originally made 

485 by Friedmann [90] to interpret black box models was further developed in EBM 

and NAM. An alternative approach using ANOVA decompositions applied 

to pre-trained black box models, followed by model selection with Lasso, is 

used in the Partial Response Network (PRN) [42]. Results published with 

the NAM, EBM, SAM, and PRN show that, in performance 

490 for binary classification applied to tabular data, these methods are comparable with 

state-of-the-are ML including deep neural networks. Some of these methods 

are available for download from public domain websites.3 

• Evolutionary fuzzy modeling: Fuzzy logic systems combine Boolean rules 

with continuous membership functions. They are capable of making accu495 rate 

predictions while providing a reasonable level of interpretability [61]. This approach 

has been successfully applied in practical contexts, including biomarker discovery and 

cancer diagnosis, leading to a commercial solution for the discovery of interpretable 

diagnostic signatures.4 

3.3. Self-Explaining Neural Networks 

 
2 https://interpret.ml/docs/ebm.html 
3 For instance, see https://interpret.ml. 
4 https://www.quartz.bio 

https://interpret.ml/docs/ebm.html
https://interpret.ml/
https://interpret.ml/
https://www.quartz.bio/
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500 Another strategy to generate explainable/interpretable models that is currently 

gaining attention are the so-called SENN [35], which, in fact, can be understood 

as an intermediate between explainable and interpretable models. As pointed out 

by Hausmann and van Lehn [92], self-explaining is a domainindependent 

learning strategy that generally should lead to a robust under- 

505 standing of the domain knowledge. For example, the prediction model is forced to 

act locally as a linear model, while keeping the non-linearity for the global 

approach. 

Another possibility to achieve self-explaining models is to demand model 

sparsity while disentangling the factors of variation in the data (so-called gen- 

510 erative factors), but preserving all the relevant information for the task to be solved. 

Model sparsity should result in an inherent model structure such that only a 

relatively small subset of the latent variables are activated for any given input, 

whereas disentangled representation may be viewed as a concise representation 

of the variation in data within the model [93]. Further, additional 

515 relevance scores or metrics can be incorporated into the models to evaluate model 

outcomes for user inspection and interpretation [94]. 

In summary, and as compared to interpretable approaches, self-explaining 

models try to balance the trade-off between the original complex model 

structures and types of local linearity, sparsity, and internal disentangled data 

repre- 

520 sentation by using additional penalty constraints or evaluation metrics, whereas 

interpretable models are straightforwardly designed to be interpretable. 

3.4. How to Quantify Interpretability and Explainability 

There is not yet a complete consensus on how to evaluate the quality of a 

method for explanation and interpretation. Evaluation methods for inter- 

525 pretable ML include “real humans on real tasks,” proposed by Doshi-Velez and Kim 

[32] and “AI rationalization” introduced by Ehsan et al. [95]. The quality of a given 

explanation needs to be evaluated in the context of its task, measuring how much 

the explanations facilitate and improve decision-making. 

In order to compare the properties of different classes of methods for ex- 
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530 planation and interpretation, we follow the approach of application-grounded 

evaluation, combining the concepts reviewed earlier into a common structure 

starting at the highest level with the three Cs of interpretability (Correctness, 

Completeness, and Comprehensibility). In principle, application-grounded 

evaluations involve end-user experiments in a real-world application [96], 

ultimately 

535 to assess the extent to which the explanations for the model predictions can be 

integrated seamlessly with the reasoning model of the domain expert. We use the 

experience of the authors to list our understanding of the properties of different 

classes of methods, in best case scenarios—that is, assuming idealized 

explanation models of the given class. This is summarized in Table 1. Fur540 ther, 

we develop a set of evaluation criteria that are amenable to measurement. 

Thereby, we make reference to the following three conceptual frameworks: 

• The three axes proposed by Backhaus and Seifert [97] for radar plots, namely 

performance (which they call accuracy) together with slimness (model 

complexity) and interpretability (class typical representations). 

545 The latter characterizes compactness with the components of sparsity and 

grounding, defined below. These two axes closely relate to the functionally 

grounded evaluation method proposed by Kim et al. [98], which involves 

evaluation of interpretability without human experiments but relying on 

quantitative assessments by proxy. 

550 • The two axioms that deep neural networks should fulfil proposed by Sundararajan 

et al. [99], namely sensitivity and implementation invariance (consistency). 

Carvalho et al. [96] considers these axioms to correspond to the foundation 

of Honegger [100] for an Axiomatic Explanation Consistency Framework 

grounded on human intuition. Sensitivity is the same 

555 as defined below, and implementation invariance requires that two models for 

which the outputs are equal for all inputs, should have identical 

explanations. We focus on explanations of a single model with different 

initialisations, where this requirement maps onto stability/consistency. 
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• The three desiderata by Alvarez-Melis and Jaakkola [35], namely fidelity, 

560 diversity and grounding. In particular, fidelity and diversity form components of 

correctness in our framework. The concepts of fidelity and diversity are 

included in our framework, although we add property of continuity for 

real-valued features, which is central to the definition in of self-explaining 

prediction models [35]. Grounding is directly mapped onto 

565 the first characteristic of comprehensibility. 

The criteria in the last two bullet points serve to define explanation correct- 

ness in a quantifiable manner. The full set of desirable properties for explainable 

and interpretable models is as follows: 

1. Correctness [96]: This is how much explanations or interpretations are 

570 true to the model predictions and the extent to which their values are 

uniquely defined for a given prediction task: Specifically, this comprises five 

characteristics that are listed below: 

a. Sensitivity (Se)—Axiom 1 in the articles by Carvalho et al. [96] and 

Sundararajan et al. [99]: 

575 i. If there are two different predictions for two inputs that differ in 

only a single feature, then this feature should be present in the 

explanation of at least one of those predictions. The implication is 

that the difference between the predictions should be associated 

with a difference in feature values. 

580 ii. If the predictive model never depends on a particular feature value 

for its predictions, implying that the feature is uninformative or 

can be treated as noise, then its importance value should be zero. 

b. Stability/Consistency (St)—Axiom 2 in the articles by Carvalho et al. [96] 

and Sundararajan et al. [99]: Similar instances should have 

585 similar explanations. In particular, the algorithm should be stable for 

different initializations when making predictions for the same data 

point. 
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c. Fidelity/Faithfulness (Fi)—Desideratum 1 in the article by Alvarez- 

Melis and Jaakkola [35]: How accurately the model prediction f(x) 

590 can be built from the explanations φi, forming a direct connection 

between the explanations and the original model such that, as far as 

possible, f(x) = g(φ1,...φd). 

d. Diversity (Di)—Desideratum 2 in the article by Alvarez-Melis and 

Jaakkola [35]: Inputs should be represented by non-overlapping con- 

595 cepts, for instance, with explanations φi and φj that are orthogonal according 

to a given measure or with prototypes, which determine a data space partition by 

means of Voronoi cells (nearest prototype 

principle) [101]. 

e. Continuity (co): We adopt the definition of Alvarez-Melis and Jaak- 

600 kola [35]. This is a weakened version of Lipschitz continuity, defined 

by the requirement that the predictions are difference-bounded by the 

explanation measures, namely, given model predictions f(x) and 

quantitative explanations φ(x), for every data point x0 there is an 

interval with δ > 0 and a scalar L ∈ R such that ∥x − x0∥ < δ ⇒ 

605 ∥f(x) − f(x0)∥ ≤ L∥φ(x) − φ(x0)∥. This property confers robust- 

ness against small perturbations in the data. 

2. Completeness [96]: The coverage of the explanation in terms of the number 

of instances explained is considered to have two states only, local vs. 

global, depending on whether a given explanation applied in a limited 

610 region of the input space or across the full range of inputs. 

3. Comprehensibility [96]: This evaluates the usability of the explanations, 

namely, how quick and easy they are to grasp by the end-user. 

a. Grounding/Understandability (Gr)—Desideratum 3 in the article by 

Alvarez-Melis and Jaakkola [35]: To which extent the explanations φi 

615 form class typical representations that have human-understandable 

interpretations. 
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b. Compactness/Sparsity (Cp) [97]: Describes the complexity of the 

explaining model, aiming to involve only a minimal set of explanations. 

In the case of saliency maps for images, this applies to pixels. In gen- 

620 eral, the aim is to improve comprehensibility by having as compact 

an explanation as possible. 

c. Efficiency (Ef) [96]: Immediacy and usability of the human-

understandable interpretations. 

Figure 1 graphically summarizes this set of desirable properties for explain- 

625 able and interpretable models. 

 

Figure 1: Graphical representation of the hierarchy of the desirable properties for explainable and 

interpretable/transparent ML models. 

Table 1 follows the above hierarchy of desirable properties, preceded by 

predictive performance for the explained/interpreted model. Further, note that 

the six desirable properties listed in Section 3 are included in the set of properties 

listed above. In particular, transparency is considered to be the combination of 

630 completeness, compactness, and comprehensibility. 



 

 

 
Model Performance C1  C2 C3 Comments 

  Se St Fi Di Co  Gr Cp Ef  

  Post-hoc      

Feat. attrib. (SHAP) - ✓ ✓ ✓ - ✓ local ✓ - ✓ Explanatory only; identification of 
Feat. attrib. (Saliency 

Maps) 

- ✓ ✓ ✓ - ✓ local ✓ - ✓ class relevant inputs but not class 

representations. 

Adversarial and 

counterfactual samples 
- ✓ ✓ ✓ - ✓ local ✓ - ✓  

Activation maximiza- 

tion 

- ✓ ✓ ✓ - ✓ local ✓ - ✓  

Rule extraction Moderate ✓ - ✓ ✓ - local ✓ ✓ ✓ Prediction is by application of the 

extracted decision tree; discontinuities at 

rule boundaries. 

Metric learning High ✓ ✓ - - ✓ local - - ✓ Prediction by nearest neighbors along 

geodesics; case-based reasoning. 

 Ante-hoc/Intrinsic     

 

Linear models Low ✓ ✓ ✓ - ✓ global ✓ ✓ - Assume linearity in the original inputs; does not 

form class representations. 

Decision Trees Low ✓ ✓ ✓ ✓ - local ✓ - ✓ Tree depth can be excessively large. 

Bayesian models High ✓ ✓ ✓ - ✓ global - ✓ ✓ Bayesian prediction from graph of joint probability 

distribution. 

Prototype methods High ✓ ✓ ✓ - ✓ local ✓ ✓ ✓ Extraction of multiple class proto- 

types. 

Generalized Additive 

Models 

High ✓ ✓ ✓ ✓ ✓ global ✓ ✓ - Addition of orthogonal nonlinear univariate and 

bivariate functions. 

Evolutionary Fuzzy High ✓ ✓ ✓ - ✓ local ✓ - - Fuzzy rule-based predictions. 

Models 



 

Table 1: Post-hoc and ante-hoc models’ desirable properties, with comments. Column descriptions: Performance categorized as low, moderate, or high. C1: 

Correctness with sub-categories a)–e); C2: Completeness; C3: Compactness with sub-categories a)–c). 
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Note that GAMs as well as prototype methods are the only methods that fulfill 

all of the quantitative properties. The discussion of model predictions with GAMs 

therefore moves beyond predictive performance and onto the form of the 

covariate indicator functions φi. 

635 4. Interpretable and Explainable ML Models in Light of Regulation and Law 

4.1. General Considerations 

One of the main regulations currently affecting the use of AI and ML in 

particular is the European GDPR, as explained in Section 2. It does so through 

640 its stated, even if controversial, “right to explanation” on any algorithm-based 

decisions affecting citizens. According to Wachter et al. [24], the objections to the 

requirement for explanation include two aspects: ambiguity about what is meant 

by meaningful information and the feasibility of providing this for all ML models. 

In the case of tabular data, which are prevalent, for instance, in clinical 

645 decision support and also in risk models in the insurance and banking industries, it 

can be argued that meaningful information is potentially available by applying 

several of the methods reviewed earlier in this section. This includes any models 

that are interpretable by design, like those described in Section 3.2. Clearly, 

interpreting more complex data such as images, time series, and free-text raises 

650 significant difficulties that are still unsolved at large. Nevertheless, existing post-hoc 

methods, such as saliency maps, at least provide useful confirmatory information 

in a form that can also raise substantive questions if the regions being classified 

are incorrectly mapped [102]. 

But this is by no means the only possible viewpoint. Let us again empha- 

655 size the interesting point made in Doshi-Velez et al. [27] about the distinction 

between ML explanation as a general technical concept and legally-operative 

explanation, because this is the Gordian knot to be cut in order to smoothly 

connect technical feasibility and legal compliance. As mentioned in Section 2, 

legally-operative explanation benefits from elucidating the relative impact of 
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660 individual data attributes on model-based decisions. In this case, this would suggest 

that legal practice should rather seek post-hoc explainable systems that 

emphasize the “concept-mapping” linking relative input relevance with human 

understanding. 

The European Commission’s drafted (and soon to be implemented in full) 

665 AIA discriminates, as stated in the introduction, between AI applications according 

to a four-level risk assessment, with any of them even of “limited-risk” being tied 

to specific transparency obligations. As argued by Fink [103], and in relation to AI 

explainability, Article 13 in the proposal specifies that high-risk 

AI systems are to be developed “to be sufficiently transparent to ensure the 

670 user’s ability to interpret and use the system’s output,” but without including any 

obligations of “AI users to explain or justify the decisions they reach towards those 

affected by them.” This leaves ML practitioners in an awkward position, given that 

it might seem to favour ante-hoc strategies and, thus, simpler models. This would 

be consistent with the warning by Rudin [17] that 

675 post-hoc strategies might be problematic because explanations could be unreliable. 

Unfortunately, this completely ignores the fact that, as we next describe in Section 

4.2, many domains cannot do without human intelligible post-hoc explanation. In 

this situation, a compromise method such as that provided by 

GAMs, in the form of a linear combination of interpretable non-linear functions 

680 involving only one or two input variables at a time, as described in Section 3.2, could 

be both “sufficiently transparent,” providing interpretability without renouncing 

to complexity, and easily explainable. 

Regulatory requirements appear to be subject-led, where the so-called data 

subject is the individual person affected by a decision made by the ML model, for 

685 example, the applicant denied a request for insurance or a credit loan. There are 

other stakeholders in this space who may have a claim to request transparency. 

Another class of end-user might be an auditor, who may be retrospectively 

checking whether good practice has been consistently applied in the processing 

of the requests. In the case of the data-subject or auditor, the gold-standard will 
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690 arguably be some form of counterfactual explanation, where there is a direct 

link between the model and the explanation for the decision. Prototype methods, 

GAMs, and decision trees might be expected to meet this requirement. 

A third category of stakeholder is the domain expert. This may be subject to 

the doctrine of the learned intermediary (used often in reference to liability 

695 in healthcare),5 whereby it is the decision maker’s responsibility to understand the 

algorithm well enough to know when and how to use it and so to inform users 

appropriately about any risks involved. It is arguably good practice in this case for 

the algorithm to ask the user to enter their decision prior to providing an 

algorithmic recommendation. This can provide a level of protection against 

700 decision makers becoming complacent in following algorithms, especially when the 

algorithm is often correct in its recommendation. Indeed, the onset of 

complacency is a potential objection against the use of decision support systems 

in safety-critical domains. This is an area in need of further research [104]. 

Finally, there is a fourth category, that of AI experts or data scientists, who 

705 may want to understand how the method uses the data, sometimes in order to 

detect issues in observational data, such as spurious correlations. 

All in all, and summarizing the discussion of the previous paragraphs, most 

legal regulations in place or under development are not specific enough as to 

make clear overall recommendations regarding the preference of either ante-hoc 

710 or post-hoc methods in pursuit of retrospective transparency [29]. Furthermore and 

importantly, these sweeping recommendations might not apply in certain 

domains such as those commented next, highlighting that transparency 

regulatory requirements might be quite domain-specific and even, within a 

domain, stakeholder-dependent. 

715 4.2. Some Example Domains for Interpretability and Explainability Realizations 

 
5 https://frostbrowntodd.com/the-learned-intermediary-doctrine/ 

https://frostbrowntodd.com/the-learned-intermediary-doctrine/


29 

It is generally accepted that interpretability is important in some domains but 

not in all domains. This has been related by Burkart and Huber [19] to the notion 

of incompleteness, meaning that the utility of the model requires more than 

accuracy, but demands also compliance with broader aspects of fairness 

720 and ethics [27]. Nevertheless, transparency is a common requirement in highstakes 

applications. 

It has also been argued that we could think of “right levels” of explainability in 

a given domain where a combination of technical, legal, and economic aspects is 

used in a three-stage process, including: the definition of contextual 

725 factors and stakeholders, the operational context, the potential level of harm that 

the system could cause, and the legal and regulatory framework affecting the 

domain [105]. 

Even beyond domain-specificity of transparency requirements, we must be 

prepared to face the fact that, as mentioned in previous sections, the diverse 

730 stakeholders of the same domain might require different types and levels of 

explanation [106]. This is clearly discussed by Felzmann et al. [29], where, in the 

context of GDPR, authors support “a tailored and multi-stakeholder approach to 

transparency for AI.” 

In what follows, we illustrate these ideas using two specific but broad and 

735 sufficiently different domains: healthcare and the banking industry. 

4.2.1. Healthcare 

Healthcare is a domain that could be seen as the canary in the coal mine from 

the point of view of the interaction between the practical use of AI and ML and the 

regulation of interpretability, XAI, and transparency. This is because its ob- 

740 vious social relevance and its ambiguous standing in terms of the level of societal 

risk involved in the application of AI, as errors can have serious consequences 

(high-stakes decisions). An early example of the subtleties of interpretable models 

in healthcare is a frequently cited application for predicting pneumonia risk and 

30-day re-admission by Caruana et al. [107]. The fitted model associated 
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745 asthma with a lower risk of dying from pneumonia, which is counter to clinical 

knowledge. However, precisely because of this known risk, asthma patients 

received more aggressive care, actually resulting in reduced mortality relative to 

the general population. It is noted by Murdoch et al. [21] that “without having 

been interpreted, pneumonia patients with asthma would have been deprior- 

750 itized for hospitalization.” This is an example of an unexpected relationship 

contained in observational data, which requires a contextual interpretation. 

A concern recently expressed in respect of clinical medicine is the legal 

uncertainty that the AIA may create for medical device manufacturers. Tietjen et 

al. [108] argued that “a comprehensive regulatory framework has already ex- 

755 isted for medical devices at the European level for some time in the form of the 

European Medical Device Regulation” (EMDR), also covering AI-based medical 

devices, but to some extent overlapping the AIA in a way in which, arguably, the 

European legislator has failed to integrate both regulations to avoid 

contradictions. A key point made by Tietjen et al. [108] is that the AIA already 

760 “stipulates that all AI medical devices that must undergo a conformity assessment 

procedure by a Notified Body are classified as a high-risk.” With most medical devices 

being based on software, the EMDR already makes AI-based medical software fall into 

a category that requires it to undergo a conformity assessment procedure. As a result, 

almost all AI medical devices would be 765 classified as “high-risk AI systems” within 

the meaning of the AIA. 

Needless to say, unless the final European regulation on AI resolves these 

potential hurdles, ML developers in this application domain will be bound to 

ensure, amongst others such requirements, that their models fully comply with 

transparency and interpretability regulations regardless of the clinical medicine 

770 problem they aim to tackle. Some leeway in this context can be found in the 

European Commission’s Q&A document for the “New rules for Artificial 

Intelligence,” 6  where we find that “legislative action is needed to ensure a 

 
6 https://ec.europa.eu/commission/presscorner/detail/en/QANDA_21_1683 

https://ec.europa.eu/commission/presscorner/detail/en/QANDA_21_1683
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wellfunctioning internal market for AI systems where both benefits and risks are 

adequately addressed. This includes [...] AI decisions touching on important 

775 personal interests, such as in the areas of [...] healthcare.” The requirements for high-

risk areas include “transparency and the provision of information to users; human 

oversight; and robustness,” all of which relate to the explainability and 

interpretability concepts discussed in this paper. Unfortunately, it is not specific 

enough as to ascertain whether ante-hoc interpretable models 

780 would be preferred to post-hoc explainability. The final form of the AIA can 

potentially address these matters in line with the earlier proposition that the 

guiding principle ought to be the “Performance of the Human-AI Team.” 

Another layer of complexity hides beyond this: the fact that, as previously 

mentioned, not all the stakeholders in a given domain have the same trans- 

785 parency requirements. In healthcare, stakeholders may include doctors and other 

medical staff, medical centers, patients, public health institutions and, potentially, 

private investors, and insurance companies. Doctors will need explanations that 

are compatible with existing guidelines and workflow, whereas patients will need 

explanations tailored to their lack of expertise. In turn, insur- 

790 ance companies might only require explanations that might affect their contractual 

and legal standing on a case. All these actors should be accounted for in the design 

of transparency strategies (and arguably involved in such design), as proposed, 

for instance, in the Social Transparency perspective developed by Ehsan et al. 

[109] that “incorporates the socio-organizational context into explaining 

795 AI-mediated decision-making.” Creating consensus guidelines that involve multiple 

stakeholders on the application of AI in healthcare would be a paramount task, as 

those developed for clinical trials by the SPIRIT-AI and CONSORT-AI working 

groups [110], or even the guidelines for reporting AI-based diagnostic results of 

the STARD-AI steering group [111] and TRIPOD-ML [112]. 

800 A straightforward example of the gap between the current state of AI 

implementation and regulation can be found in the recent efforts by the U.S. Food 

and Drug Administration (FDA), together with Health Canada and the UK 
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Medicines & Healthcare Products Regulatory Agency to define some guiding 

principles for “Good Machine Learning Practice for Medical Device Develop- 

805 ment” [113]. One of the proposed guiding principles is precisely that “Focus Is Placed 

on the Performance of the Human-AI Team,” according to which “the human 

interpretability of the model outputs are addressed with emphasis on the 

performance of the Human-AI team, rather than just the performance of 

the model in isolation.” Another guideline recommends that “Users Are Pro- 

810 vided Clear, Essential Information,” having “ready access to clear, contextually 

relevant information that is appropriate for the intended audience.” Note that 

guidelines such as this, issued by a trusted and relevant regulator, even if not 

mandatory as a law, may have a greater impact on the actual practice in a specific 

context such as medicine than the law itself. A manifestation of this is 

815 the currently limited number of FDA-approved AI/ML-based medical technologies 

[114]—the first of this in 2016 and with an AI-specific regulatory framework 

proposed only in 2019 [115]. In this same context, AI explainability mechanisms 

have been taken out of their user-oriented scope to be suggested as methods to 

guarantee deployment robustness in medical algorithmic audit frameworks 

[116]. 

820 4.2.2. Banking 

The publication of the AIA draft has caused a domino effect of regulatory 

proposals from which banks are not exempt. Both the European Central Bank 

(ECB) and the European Banking Federation (EBF) have expressed their views 

through the publication of position papers [117, 118]. Both documents wel- 

825 come the regulatory proposal, but qualify the need to clarify different points, 

including: 

• A more specific definition of what is considered AI, in order to distinguish 

between the different systems and the scope of application. 
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830 • The clear identification of when the use of AI systems will be considered 

high risk and therefore subject to the requirements set out in this Regu- 

lation. 

• Promotion of measures to support customer education and awareness of the 

Regulation and the use of AI. 

835 • Clarification of the applicable requirements and competent authorities with regard 

to outsourcing by users of high-risk AI systems that are credit 

institutions. 

Furthermore, the ECB document invites the Union legislator “to further reflect 

on the need to designate relevant competent authorities as responsible for 

840 the supervision of the conformity assessment conducted by credit institutions” in 

matters of “transparency and the provision of information to users, human 

oversight, and robustness” when AI systems are applied. Also interestingly, the 

EBF document underlines “the need to ensure coherence with the proposal for a 

revision of the Consumer Credit Directive (CCD),” given that “Recital 48 of the 

845 CCD provides for transparency and contest right as well as human intervention in 

case of automated decisions.” This potential conflict with AIA is similar to the one 

with the EMDR in healthcare (software for medical devices) described in Section 

4.2.1. 

Conformity assessment has to do with the use of audit frameworks, a concept 

850 that also resonates with the banking domain. Beyond customers themselves, the 

stakeholders in the banking sector may include, among others, the bank’s data 

scientist, usually led by a chief data officer (CDO), internal and external auditors, 

and several levels of regulators. Auditors can be seen in this context as guarantors 

of regulation compliance. 

855 Bu¨cker et al. [119] discuss auditability and explainability in the context of one of 

the banking problems to which ML has historically paid more attention [120]: 

credit scoring. Authors argue that transparency and explainability are 
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inextricably linked to the stakeholder involved: analysts and risk managers are 

likely to be interested in the global understanding of the model provided, 

860 for instance, by feature importance methods, while auditors and regulators are 

likely to be more interested in global explanations—note that, in Europe, this type 

of transparency requirements are set by the European Banking Authority [121], 

reinforcing, like in the case of the healthcare sector, the already stated idea that 

domain-specific regulations can have stronger and more immediate 

865 effects than more general laws such as GDPR. Credit officers and customers are 

argued to be instead more interested in the clarification of individual credit 

decisions that could be obtained by methods such as SHAP or LIME. Interestingly, 

authors also link the latter to GDPR’s requirement of methods that explain 

individual predictions so as to “identify an applicant’s most adverse 

870 characteristics that were negatively contributing to a credit rejection by a given 

model.” 

The adaptation of explainability and interpretability to the needs of different 

stakeholders can also be seen from the viewpoint of scenario-based requirements 

elicitation, as for the specific case of fraud detection [122], another classic appli- 

875 cation of ML in banking. In the authors’ words: “scenarios have the potential to 

bridge the gap between the social and operational focus with the organizational 

focus of information systems development.” Such scenarios are seen as 

“narratives on the sequence of events and steps performed by a stakeholder in 

their daily operations.” The key point here is the systematization of this process 

in 

880 five stages, namely: Identify Stakeholder Settings, Identify Stakeholder Goals, 

Identify Stakeholder Tools Capabilities, Create Scenarios, and Use Scenarios and 

Identify Requirements. Using this method, authors stress the importance of 

tailoring the interpretability and explainability methods to both stakeholder and 

scenario. For a fraud detection expert, it is concluded that explanations about 
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885 how an ML method makes a prediction should be selective and understandable, so 

as not to overwhelm the expert. For that, local explanations provided by post-hoc 

methods are encouraged. Feature importance-based explanations are also 

advocated. 

Strategies for ML interpretability and explainability are also considered for 

890 specific scenarios and specific stakeholder by Jiang and Senge [123] using a case 

study on consumer lending where compliance and legal professionals are the 

stakeholders—as these have “strong incentives to understand AI decisions [...] 

largely to comply with regulatory requirements.” Here, the emphasis is placed on 

the difference between two cultures: that of technical stakeholders 

895 (data scientists) and that of non-technical ones (who may still be conversant with 

quantitative analysis in general). Authors found that compliance and legal 

professionals in this area required i) statistically rigorous explanations that were 

still within their understanding; ii) explanations that are actionable and can be 

used in decision making; and iii) explanations that are accompanied 

900 by documentation, precise quantitative outputs and robustness tests. Methods 

tailored to this type of stakeholders are suggested, including feature importance 

lists for generalized linear models; single decision trees with features, labels, and 

probabilities on each split; rule-based models and, only if assisted by AI experts, 

SHAP summary plots and dependency plots. The importance 

905 of taking into account users’ domain experience and supporting users with limited 

domain expertise is also emphasized by Dikmen [124], where the author explores 

interpretability and explainability in financial decision making using cognitive 

work analysis as a domain-centric tool and, particularly, one of its phases: work 

domain analysis, to identify goal-related constraints. These tools 

910 are recommended to be used to make data-driven post-hoc methods explanations 

amenable to end-users. This approach is exemplified using random forest 

classifiers with local rule-based explanations (LORE). 
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5. Conclusions 

AI and, central to it, ML, are becoming increasingly bound by law and 

915 regulatory frameworks due to the increasing impact of their use in society at large. 

These go all the way from generic mandates such as the European General Data 

Protection Regulation or the forthcoming Artificial Intelligence Act to domain-

specific recommendations and guidelines, including from the U.S. Food and Drug 

Administration. 

920 In one way or another, all these regulations place great relevance on issues of 

algorithmic trustworthiness, transparency, interpretability, and explainability. Much 

of this responsibility is placed on the shoulders of the data controllers and data 

analysts and their ability to engage with domain-specific stakeholders, which implies 

that the methods required to comply with these obligations must 925 enter a phase of 

maturity. 

The necessary interaction between the concepts of ML interpretability and 

explainability, on the one hand, and legal regulation, on the other, that we have 

described in this paper, can be summarized as a list of general recommendations: 

• Interpretability and explainability must be understood beyond their tech930 

nical description to also be considered as tools for regulatory compliance. 

• At this time, no standard exists for mapping the abstract transparency 

requirements in the text of legal regulations to the technical concepts of ML 

interpretability and explainability. 

• The real boundaries of legal requirements will only be substantiated 

through 

935 jurisprudence produced in court. Therefore, public and private ML developments 

involving model interpretability and explainability must include risk 

contingency plans to account for the intrinsic uncertainty involved in any 

attempt to comply with legislation on this matters. 

• The development of ML systems that are legally compliant in terms of 
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940 model interpretability and explainability in applications of social impact should 

benefit from the creation of multi-disciplinary teams that add legal and 

social sciences experts to the usual teams of data scientists. 

• Interpretability and explainability requirements are domain-specific and, 

within a domain, stakeholder- and even scenario-specific; therefore, ML- 

945 based systems that are legally compliant on those terms should only be developed 

once these requirements have been clearly specified. 

• The idea of explanation of ML-based systems requires the human-in-theloop, 

so as to ensure that explanations are provided in a form and at a time that 

human users can truly benefit from them. 

950 Three key themes for the next stage of maturity of AI systems have been identified 

in primary evidence-based research on behalf of the Information Commissioner’s 

Office in the UK involving public engagement (citizen’s juries) and industry 

engagement (roundtables) [125]:. 

i. Context is key. The expectation of explanations of AI decisions will depend 

955 on the impact of the decision, the ability to change it and the data used to inform it. 

This is confirmed in a further report [126], which points out 

that “the need for explainability must be considered in the context of the 

broader goals or intentions for the system, taking into account questions 

about privacy, accuracy of a system’s outputs, the security of a system 

960 and how it might be exploited by malicious users if its workings are 

wellknown, and the extent to which making a system explainable might raise 

concerns about intellectual property or privacy.” 

ii. Challenges in explaining AI decisions extend beyond technical implementation and 

include “cost, commercial sensitivities and a lack of internal or- 

965 ganisational accountability.” However, it is clear that for systems impacting on 

individual citizens the minimum requirement remains as expressed in the 
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guidance that accompanies the GDPR text, that the “information provided 

should be sufficiently comprehensive for the data subject to understand the 

reasons for the decision.” 

970 iii. “There is a desire for education and awareness raising activities to better engage 

with the public on the benefits and risks of AI in decision-making.” Linked to 

this important premise is the provision of information to practitioners on 

the relative merits and technical implementation of explainable AI systems, 

to which this paper contributes. 

975 In this paper, we have first revised and discussed the current regulatory and legal 

frameworks for the application of AI and ML. This has been followed by a 

description of explainability and interpretability as post-hoc and ante-hoc 

strategies. The former strategies can be seen as depending on developments 

beyond the modeling itself (often domain-specific), whereas the latter strategies 

focus on 

980 interpretable models that inherently offer the possibility for model explanations. 

The aim of Section 3 was to show what is possible. A limitation of the methods and 

metrics described in this section is that they focus mostly on tabular and imaging 

data. Ultimately, algorithms must conform with good software development 

practice, including elements of verification (is the model built right?) and 

985 validation (is it the right model for the intended purpose?). Only then can ML models be 

integrated into workflows for routine use—often the key to success in practice. It looks increasingly as 

though the verification process will have to move from being primarily performance-based to becoming 

also founded on the internal logic of the operation of the model [127]. This might also be a step to990 wards 

causal interpretability as it is demanded for forthcoming AI systems [128]. Additionally, the potential links 

between regulations and ante hoc and post hoc approaches have also been discussed, and we have 

broached, using two specific domains as examples, the issues of domain-specificity and 

user/stakeholderspecificity in transparency requirements. Here, we have highlighted the yet 



39 

995 to be resolved incompatibility between the heterogeneity of requirements this 

entails and the sweeping homogeneity of regulatory frameworks. 
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