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The growth of the Internet has enabled the popularity of open online learning platforms to increase 

over the years. This has led to the inception of Massive Open Online Courses (MOOCs) that enrol, 

millions of people, from all over the world. Such courses operate under the concept of open learning, 

where content does not have to be delivered via standard mechanisms that institutions employ, such 

as physically attending lectures. Instead learning occurs online via recorded lecture material and 

online tasks. This shift has allowed more people to gain access to education, regardless of their 

learning background. However, despite these advancements in delivering education, completion 

rates for MOOCs are low. In order to investigate this issue, the paper explores the impact that 

technology has on open learning and identifies how data about student performance can be captured 

to predict trend so that at risk students can be identified before they drop-out. In achieving this, 

subjects surrounding student engagement and performance in MOOCs and data analysis techniques 

are explored to investigate how technology can be used to address this issue. The paper is then 

concluded with our approach of predicting behaviour and a case study of the eRegister system, 

which has been developed to capture and analyse data. 

Keywords: Open Learning; Prediction; Data Mining; Educational Systems; Massive Open Online 

Course; Data Analysis 

1.   Introduction 

The evolution of technology, and ease of communication through the Internet and World 

Wide Web (WWW) has dramatically altered the landscape of teaching and learning in 

higher education (Kop, 2011). In its infancy, the first iteration of the WWW (Web 1.0) 

was simply a place for users to gather information, from static web pages, to supplement 

their learning and offered very little communicative capabilities (Nath, Dhar, & 

Basishtha, 2014). However, the inception of Web 2.0 provided a new platform where 

users could read, write, modify and update content online (Nath et al., 2014). This 

development enabled users to become active participants of the web and has allowed 
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technologies and websites, such as blogs, YouTube and wiki’s to be at the forefront of 

the user’s learning experience (Duffy, 2008). As technology develops and more devices 

become connected, the convergence of people, process, data and things, will enable the 

Internet of Everything (IoE) to be the next trend of the Internet’s evolution (Bradley, 

Barbier, & Handler, 2013). This rapid growth has created a $14.4 trillion market and has 

seen approximately over 10 billion devices being connected to the Internet, with this 

number set to increase to 50 billion by 2020 (Bradley et al., 2013). As such, the IoE will 

enable educational institutions to be available to people who previously didn’t have 

access and will improve a number of issues, including 1) access to content by addressing 

scalability issues so that course material and recordable instructions can be available on 

any device, at any time, 2) improved quality of learning by enabling people to access and 

study material at their own pace and 3) the ability to access proactive content, free 

materials and customization of curriculum (Bradley et al., 2013). This shift of instant 

connectivity has produced a new type of student who now have the option of learning 

online, without having to formally attend an institution, and who are experiencing 

education in different ways. This phenomenon is known as e-learning and can be 

described as a new framework for education whereby considerable amounts of 

information, which describe a variety of teaching–learning interactions are endlessly 

generated and ubiquitously available (Félix Castro, Vellido, Nebot, & Mugica, 2007). 

One outcome of this improved connectivity are massive open online courses 

(MOOCs), which are quickly developing as a popular way for a wide-range of 

communities, who may not have access to an institution, to become involved in online 

distance education (Clarà & Barberà, 2013). Through such high-profile platforms, 

including Coursera, EdX and Udacity, free courses have become available from a range 

of exclusive universities, which is altering the way people are undertaking learning 

(Jordan, 2014). Furthermore, the benefit of instantly accessing high-quality educational 

material, regardless of location and educational background, has attracted a large range of 

students onto these courses (Balakrishnan & Coetzee, 2013). As such, the development of 

large-scale MOOCs has increased over the years, with enrolment on such courses 

averaging around 33,000 students (Jordan, 2014). Nevertheless, whilst enrolment is quite 

high, only 7.5% of students complete their course, with the main reason for withdrawal 

being attributed to poor time management skills (Jordan, 2014; Nawrot & Doucet, 2014). 

In order for MOOCs to have an impact in the educational sector maintaining and 

supporting student engagement is a necessity (Ramesh, Goldwasser, Huang, Daume, & 

Getoor, 2013). In order to alleviate this issue, to a certain extent, data analytic techniques 

can be used to study student engagement with their course in order to identify and predict 

trends about a student’s performance. This is important as engagement is positively 

linked to academic performance (Carini, Kuh, & Klein, 2006). By providing this 

information to the student at an early stage it is hoped that this will serve as a 

motivational tool to improve. As described by Simpson (2006), predicting student 

success in distance education is particularly important for new students as the pre-course 

information is sometimes inadequate and withdrawal often occurs very early. Measures 
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such as sex, previous educational qualifications and age, have been used in logistic 

regression analysis to identify a new student’s chance of withdrawing (Simpson, 2006). 

However, analysis of engagement with course material, via Learning Management 

Systems (LMSs), offers a considerable amount of more information that is very valuable 

for analysing behaviour and predicting success (Romero, Espejo, Zafra, Romero, & 

Ventura, 2013). 

Globally, data has increased substantially over the past 20 years, with hundreds of 

Petabytes (PB) being processed monthly (M. Chen, Mao, & Liu, 2014). This growth of 

information can be attributed to the medium of Web 2.0 services, the IoE, social 

networks, medical applications, online education services and cloud computing; data is 

everywhere and in every sector (M. Chen et al., 2014). As such, the term ‘big data’ is 

often used to describe datasets that have grown in size well beyond Exabyte’s and 

Zettabyte’s. These datasets reach a point where the ability to capture, manage, and 

process such items, within a reasonable amount of time, cannot be achieved with 

commonly used software tools (Kaisler, Armour, Espinosa, & Money, 2013; Xindong 

Wu, Xingquan Zhu, Gong-Qing Wu, & Wei Ding, 2014). This type of data can be 

characterised by the four Vs – volume, variety, velocity and veracity. Volume relates to 

the amount of data that an organisation can access but not necessarily own (e.g. social 

media and IoE). Variety pertains to the richness of the data that has been obtained from 

multiple sources (text, images, video, audio, etc.). Velocity is the speed at which data is 

created, streamed and aggregated, whilst veracity relates to the accuracy of the data 

(Kaisler et al., 2013; O’Leary, 2013). In terms of MOOCs, a variety of information can 

be gathered about a student to indicate engagement with their course, including 

engagement with online course materials, communication with the online community by 

posting in forums and asking and answering questions or by watching lectures and taking 

quizzes, without such interaction (Ramesh et al., 2013). This data can then be used to 

profile them and predict their performance. As these courses gain popularity a concern in 

this new era of data generation and open learning is the rapid extraction of vital and 

valuable information from such big datasets that can be used to the benefit of people and 

institutions (M. Chen et al., 2014). However, the application of data analysis and mining 

techniques can be used to overcome this problem. This area brings together the fields of 

statistics, pattern recognition and Machine Learning (ML) to extract knowledge and 

detect patterns from complex sets of data (Félix Castro et al., 2007). In the case of 

MOOCs, such techniques can be used to analyse student generated data in order to find 

patterns of system usage and behaviour, which can be used to indicate performance and 

predict trends (Félix Castro et al., 2007). As such, educational data mining (EDM) has 

emerged as a field in itself to resolve such research issues (Romero & Ventura, 2010). 

With the advent of smarter devices, technology has become instrumental in the 

development of open learning and is widening the availability of such services to people 

who may have been previously restricted from the chance to enhance their education. As 

enrolment on MOOC’s increases and students generate more data, the pool of 

information that is available to obtain knowledge is becoming richer. This paper explores 
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the impact of technology on opening learning and examines how data analytics can be 

used to identify and capture relevant data about student performance and engagement to 

predict trends.  

2.   Background 

The landscape of our environment is becoming more and more digital, with online 

learning and MOOCs becoming increasingly popular. Nevertheless, despite their benefits 

and popularity, completion levels are low, which can be attributed to the openness of the 

environment. In one sense, the far-reaching nature of such courses is an advantage; 

however, it is also a hindrance as almost anyone can enrol and the consequences for 

failing are minimal (Balakrishnan & Coetzee, 2013).  

In order to increase the completion rates of such courses requires insight into 

potential issues that could hinder a student’s success of finishing their course. However, 

pinpointing concerns, in a timely manner, becomes harder in an online environment, 

where the student could potentially be on another continent. In this instance, advanced 

techniques are required that are able to analyse a student’s online presence and 

engagement with their course in order to predict their performance so that issues can be 

flagged up in a timely manner. 

2.1.   Student engagement and performance in MOOCs 

MOOCs attract a wide variety of students, from all over the world and who all have 

different learning styles. As such engagement, maintaining a level of interest and 

tailoring the learning environment is more difficult (X. Chen, Barnett, & Stephens, 2013). 

As such, in this type of online learning environment, engagement cannot be observed in 

person and thus becomes more challenging to recognise and measure (Ramesh et al., 

2013). For instance, in a classroom setting, if a student is struggling, they have the benefit 

of building up relationships with their lecturers, who can encourage and talk to them 

personally about their issues. Furthermore, traditional monitoring mechanisms, such as 

registers, can be used to pinpoint low attendance, which is linked to poor motivation and 

performance retention (Field, 2012; Muir, 2009). As such, issues that could contribute to 

weak performance and that could be monitored and dealt with in an institution cannot be 

employed in a distance learning environment. However, by monitoring their online 

presence, engagement with course materials and online communities could offer an 

insight into a student’s behaviour, which could be used to predict their performance and 

probability of completion. 

Due to the large numbers of participants and complex nature of such courses the 

definition of participation and engagement has led to a number of frameworks (Bayne & 

Ross, 2014). For instance, the ‘funnel of participation,’ as described by Clow (2013), 

attempts to conceptualise the idea of participation into four steps of awareness, 

registration, activity and progress. The greatest concentration of students is at the first 

stage of awareness; as people move through each stage participation is reduced until only 

a small number progress and complete the course. In contrast, Kizilcec et al. (2013) 
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categorise learners into patterns of engagement (completing, auditing, disengaging and 

sampling). Completing students mirror traditional classroom based learners and complete 

the majority of their assessments; auditing learners prefer watching video lectures and 

completed their assessments infrequently; disengaged students start off strong at the 

beginning and then decrease their engagement as the course progresses; whilst sampling 

learners briefly explore the material and preferred to watch videos at the beginning of the 

course for only a couple of assessments (Kizilcec et al., 2013). Another approach, posited 

by Hill (2013), offers a similar method of classifying students into five categories (no-

shows, observers, drop-ins, passive participants and active participants). In this study, no-

shows appear to be the largest group, with people registering but never logging back in to 

take part. A trend that has occurred is that, all of the groups witnessed a decline in 

engagement as the weeks progressed (Hill, 2013). Meanwhile, Milligan et al. (2013) use 

a similar approach of three categories of participation (active, lurking and passive). In 

their study, ‘lurkers’ seemed to be the largest category of engagement. These types of 

learners did follow the course but didn’t actively engage with other student’s. They 

preferred to learn independently without communication with the community, such as 

with the use of blogs or forums. It can therefore be agreed that in order to profile 

engagement, interaction with course material is vital in understanding the behaviour 

patterns of students. Even though people might not interact with the community their use 

of course material still offers a glimpse into their uptake of the course. Furthermore, other 

avenues, such as blog posts and social media interaction, also pose another interesting 

line of enquiry to pursue. 

Many studies have been undertaken that have explored the use of such variables to 

determine engagement and performance. For instance, Balakrishnan and Coetzee (2013) 

used measures including 1) total time spent watching lecture videos, 2) number of threads 

viewed on forums, 3) number of posts made on forums and 4) the number of times the 

course progress page was checked within Hidden Markov Models (HMMs) to study 

student behaviour and retention in MOOCs. This approach was successful in predicting 

retention and offered an interesting insight into patterns of behaviour. For instance, 

students who rarely or never check their progress, watch no lectures and don’t post/view 

forums are more likely to drop out (Balakrishnan & Coetzee, 2013). In other works, 

Anderson et al. (2014) have developed a taxonomy of behaviour by investigating the role 

that forum participation plays to the course and by also examining the behavioural 

patterns of high and low achieving students. This work separated students into different 

engagement styles (viewers, solvers, all-rounders, collectors and bystanders) by 

determining the number of assignment questions they attempted and the lectures that they 

have watched. Furthermore, their final grade is proportional to their activity, with 

increased interaction with the course (completed assignments, quizzes, viewed lectures 

and forum threads) all contributing to a better overall score (Anderson et al., 2014). This 

work is also of interest as they have tried to increase participation with the introduction of 

badges as an incentive to participate, with more interaction earning a student more 
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badges. The results concluded that “making badges more salient produced increases in 

forum engagement” (Anderson et al., 2014). 

MOOCs are still in their infancy and as with any growing market, they need to ensure 

that they employ means to maximise their existence in the long-term by understanding 

their customer-base (Nawrot & Doucet, 2014). Despite their popularity and extraordinary 

enrolment rates, their high drop-out rate is problematic in ensuring this longevity (Nawrot 

& Doucet, 2014). In order to be a viable method of learning it is therefore, vital to 

increase this completion rate by understanding student engagement in order to minimize 

dropout rates (Ramesh et al., 2013). As such, interaction with their course in crucial in 

understanding student behaviour so that measures can be employed to reduce the 

occurrence of dropping out. 

2.2.   Data analysis techniques in predicting student performance in MOOCs 

Investigating a student’s online behaviour and course interaction to predict performance 

requires sophisticated algorithms and data analysis techniques. One thread of research 

that is promising in this area is the application of data mining (DM) techniques that are 

able to turn large datasets into useful information and knowledge (Hanna, 2004). Data is 

being created at a phenomenal rate and can now be stored in many different types of 

databases, with data warehousing technologies, including data cleansing, integration and 

on-line analytical processing (OLAP), becoming increasingly popular (Hanna, 2004). 

This type of technology is especially useful for mining educational data as it is known for 

its universality in many applications and for its high performance (Mansmann, Ur 

Rehman, Weiler, & Scholl, 2014). Such data warehouses are usually comprised of five 

layers (see Figure 1).  

 

Figure 1. Data warehouse design 
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In this architecture, raw data is obtained and processed through the ETL (Extraction, 

Transform, and Load) layer to ensure that its format is compatible before it can be stored 

in the warehouse. Within this layer, ETL is composed of three stages that are concerned 

with extracting, transforming and loading data. The Extract stage is concerned with low 

level extraction of data from many data sources. These may include databases from 

numerous commercial vendors (i.e. Microsoft, Oracle, DB2, etc) or web services, such as 

RESTful or WSDL based. This data can also be in many formats, including flat file 

CSV’s (Comma Separated File) or semi-structured data such as eXtensible Markup 

Language (XML). Transform refers to a wide ranging set of processes that performs 

various data operations upon data series such as sorting, grouping, merging and pivoting 

data. Typically the aim of this process is to separate numerical statistics from their textual 

descriptions. This facilitates the eventual loading of data into structures known as 

Star/Snowflake Schemas (see Figure 2).  

 

It is these schemas that form the basis of any Data Warehouse. In Figure 2 we firstly see 

the Star Schema in which a single Fact Table containing all numerical and summative 

values resides. Any number of dimensions then describes each row in the Fact Table. 

Dimensions typically represent (in the scope of education) Dates, Courses, Modules, and 

Topics etc. The Snowflake Schema is a logical extension that allows for greater 

 

Figure 2. Conceptual view of star and snowflake schemas 
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granularity of querying i.e. instead of just Dates, they can be decomposed into Years, 

Semesters, Weeks, Days etc. 

In such a system, raw data can be obtained from a range of sources. Interaction with 

course content, such as lecture videos watched, tests taken and forum views/posts, can be 

recorded, as well as personal details (e.g. name, age, gender and past qualifications) 

(Hanna, 2004; Mostow et al., 2005; Romero et al., 2013). Additionally, activity on blogs, 

wiki’s and social media sites are a place where self-directed learners can advance and 

support their learning and provide a wealth of behavioural data about an individual (Kop 

& Fournier, 2011). In such an environment, analysing such a heterogeneous set of 

information requires advanced techniques that can transform this set of raw data into 

knowledge that can be used to predict performance and to potentially prevent such 

dramatic drop-out figures. In summary, this process requires data to be encoded, 

extrapolated and merged into a set of common indices (see Figure 3). 

Once stored, data analysis techniques (OLAP, data mining, etc.) can be employed to 

obtain knowledge from this information before it is visually communicated to the user (in 

this case the student) (Mansmann et al., 2014). Whilst not restricted OLAP, data mining 

is a common way of categorising data by identifying patterns that a data series exhibits. 

The actual methods employed stem from a multidisciplinary arc of computer science and 

mathematical algorithms. There are several areas that data mining can be employed: 

 

a) Anomaly Detection: Concerned with isolating seemingly erroneous records either for 

the purpose of anomaly research or correction of errors in the original data series. For 

example, there are students who defy all preconceptions about the methods of 

learning yet still succeed or vice versa (Chandola, Banerjee, & Kumar, 2009). 

b) Dependency Modelling: Concerned with linking knowledge about one data series 

with knowledge of another. For example, do students spend the same amount of time 

in study regardless if it be private study or direct contact? (Giraud-Carrier & Povel, 

2003) 

 

Figure 3. ETL process 
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c) Clustering: Perhaps the most significant, is concerned with normalising a wide data 

series into groupings that typically have some association with the mean metric of the 

group to which they belong (Jain, 2010). 

d) Summarization: Refers to the process of summarizing the incoming stream of data or 

further analysis by transforming raw data into information. For example we are 

typically more concerned with the Mean and Standard Deviation, the Minimum and 

Maximum etc. of a set of student’s metrics rather than the raw data itself, though 

anomalies do need to be examined, as per Anomaly Detection above (Maimon & 

Rokach, 2010). 

 

As it can be seen, as number of techniques can be employed to predict student 

performance in an online community. The following sections present an overview of two 

interesting lines of enquiry, namely machine learning and social media analytics, which 

utilise varies data mining approaches. 

2.2.1 Machine learning 

As previously discussed, the prevalence of data generation is phenomenal and can be 

collected from a range of sources, thus producing Exabytes of information regularly. 

However, such streams of information are often unstructured or semi-structured and 

come from a variety of sources, which makes them more difficult to analyse (Jain, 2010). 

As such, “the increase in both the volume and the variety of data requires advances in 

methodology to automatically understand, process, and summarize the data” (Jain, 

2010). This type of data is a fairly recent development in the world of data storage, with 

the notion of the NoSQL database (Not Only Structured Query Language). These 

databases do not exclusively rely on the tried and tested models of database design, 

dating from the 1970s. Instead, they utilize the massive increase in hardware performance 

to run rapid search/sort and filter algorithms on linear streams of data known as name-

value-collections. Examples of such systems are frequently associated with big data 

analysis and serve to complement rather than replace typical SQL database systems. As 

such, the area of Machine Learning (ML) is a popular area of research that can be applied 

to such heterogeneous sets of data to find patterns for predictive modelling, i.e. training 

data is used to predict the behaviour of the previously unseen test data (Jain, 2010). This 

type of learning can either be supervised (classification), where the data is labelled to 

determine how powerful the algorithm is at learning the solution to the problem, or 

unsupervised (clustering), where the data is unlabelled and the system forms natural 

groupings (clusters) of patterns automatically (Duda, Hart, & Stork, 2000).  

Kloft et al.’s (2014) work uses support vector machines (SVM’s) in order to predict 

when during the course a student will leave. Their work used clickstream data from 

3,475,485 web logs from page and lecture video views to train the classifier. The work 

achieved a moderately good accuracy rate of approximately 72% at the beginning of the 

course and this steadily improved over the duration. In other works, Ramesh et al. (2014) 
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use probabilistic soft logic (PSL) to predict whether a learner will complete assignments 

and quizzes, scoring more than zero, and whether the learner will finish the course. This 

approach also produced moderately good accuracy rates of 72% and greater and 

illustrated that people who were engaged at the start and middle exhibited passive 

behaviour, whilst at the end they become more active (Ramesh et al., 2014).  

Jiang et al. (2014) use logistic regression to predict performance using a mixture of a 

student’s achievement in the first assignment and social interaction within the MOOC 

community. This work achieved an accuracy of 92% in predicting whether a student 

achieved a distinction or normal certificate and achieved 80% accuracy in predicting 

whether someone achieved a normal certificate or didn’t complete (Jiang et al., 2014). In 

other works, Romero et al. (2013), have developed a data mining tool for Moodle that 

compares the performance of data mining techniques, including statistical methods, 

decision trees, rule and fuzzy rule induction methods, and neural networks, to predict a 

student’s final mark. This work used data from quizzes, assignments and forums and 

achieved a very moderate accuracy of 65%.  

In contrast, Ezen-Can et al. (2015), have used an unsupervised clustering approach to 

gain an insight into the structure of forum posts in MOOCs. The k-medoids algorithm has 

been used to gain an insight into conversations that learners have on discussion forums. 

This is an important step in building systems that can automatically understand the topic 

of the discussion in order to provide adaptive support to individual students and to 

collaborative groups (Ezen-Can et al., 2015). The literature demonstrates that whilst it is 

possible to predict student performance from their interaction with course content further 

work is required that uses more and different students’ attributes as inputs (Romero et al., 

2013). 

2.2.2 Social Media Analytics 

Social media sites offer a plethora of information about a user, their behaviours and their 

preferences that can be collected and analysed. Such outlets are now so pervasive that 

91% of adults use social media, and spend more than 20% of their time on these sites, 

(Fan & Gordon, 2014). Additionally, Twitter has 255 million active users who 

collectively send 500 million tweets per day, whilst Facebook has 1.01 billion mobile 

monthly active users who have created 50 million pages (Bennett, 2014). In order to 

capitalize on this growth, many companies employ social media analytics to extract 

useful patterns and intelligence from this data (Fan & Gordon, 2014). One key technique 

in this area is sentiment analysis that can uncover and reveal a variety of behaviours and 

attitudes of a learner by using text analytics, computational linguistics and natural 

language processing to extract emotion or opinion on a subject (Fan & Gordon, 2014; 

Wen, Yang, & Rosé, 2014).  

In one such approach, Wen et al. (2014) have used data from Twitter to study drop 

out behaviour across three MOOCs (teaching, fantasy and Python courses). In order to 

achieve this, posts about the specific courses, the lecture topic and assignments were 

identified and used in the analysis. The results determined that there was a significant 
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correlation between the mood in the posts and the number of students who drop the 

course (Wen et al., 2014). In other works, Kop and Fournier (2011) have used blog posts, 

Twitter and Moodle participation to identify activities and relationships between learners 

on the Personal Learning Environments, Networks and Knowledge (PLENK) program; a 

free course that lasted 10 weeks with 1641 registered participants. Using such data, the 

findings illustrated that over this period, 900 blog posts and 3,104 Tweets were 

generated; however, regular contributions were only made by 3% of the group 

(approximately 40-60 people). The largest group of people were silent and did not 

produce artefacts nor participate extensively in discussions but they did feel engaged with 

the course (Kop & Fournier, 2011). This study is important as it “provided some clarity 

on the nature of the interactions between course participants, resources and networks,” 

whilst highlighting how analytics can be used to understand learners in a distributed, 

open networked environment (Kop & Fournier, 2011).  

In other works, Koutropoulos et al. (2014) have analysed the Twitter stream of a six-

week MOOC and have illustrated that positive emotions were displayed throughout the 

course and that content was mostly produced during the first few weeks. Furthermore, 

Twitter itself seems to have been used as an outlet to engage in community learning as 

participants mainly tweeted to 1) share links containing news and resources, 2) comment 

about participation or to reflect on learning or to 3) comment on the live sessions of the 

course. As such, this data source seems to have become a medium for troubleshooting 

and broadcasting your activities, outside of the course (Koutropoulos et al., 2014). As it 

can be seen, social media provides an ideal and open platform to analyse the behaviour of 

learners, outside of the course environment, and provides vital information about 

behaviour and sentiment that should be included when predicting performance. This is 

useful for predictive modelling where disengaged students can be targeted to ensure that 

drop-out rates do not increase. 

2.3.   Visualisation of data 

An often overlooked area of data analysis is the conversion of data into readily readable 

formats. Many learning analytics solutions are “pedagogically neutral”, and do not 

feature or support formative feedback and simply solely address how educators monitor 

and provide summative feedback to learner (Alabi, Code, & Irvine, 2013). Furthermore, 

many solutions produce raw data in fantastically un-tabulated/ungrouped data series. 

However, careful analysis of these results need presentation, which typically involves 

transforming their raw data into visually appealing graphs and charts. As such, “Business 

Intelligence Dashboards” have become a key component in performance management 

and are a tool to visually summarise large amounts of data (Watson & Wixom, 2007). 

Many implementations exist that can either perform the entire ETL > OLAP > Reporting 

process or provide front ends to connect to existing OLAP data. Furthermore, such 

interfaces can display the relevant data to students to indicate their key performance 

indicators (KPIs) (Golfarelli, Rizzi, & Cella, 2004). For instance, Filva et al.’s study 



12     G. Hughes and C.Dobbins 

 

(2014), use Google Analytics to visualise data about student’s behaviour in accessing 

Moodle content. Data was displayed in a series of graphs, within the dashboard, to 

illustrate their interaction with the course material. Similarly, Alabi et al. (2013) have 

visualised learner’s trace data as a timeline that is intended to be tool to provide 

formative feedback in order to improve educator efficacy and timely feedback.  

In order to effectively communicate a learner’s performance close attention is 

required in organising and displaying such information so that it is useful. If data is not 

organised efficiently then it risks becoming meaningless and as a tool to improve 

performance is useless. 

3.   An approach to learner predication in MOOCs 

In order to predict a student’s performance to ascertain their probability of completing a 

MOOC we first need to address what information is required. To this end, it is necessary 

to conduct a series of steps to formalise information and the data from which it derives 

(see Figure 4). 

 

 

During this process, identifying suitable data is a human-driven judgement. However, 

drawing on the literature, it is safe to assume measures such as sex, previous educational 

qualifications, age and social media presence, which have been used in previously, are a 

 

Figure 4. Steps to formalise information 
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good starting point (Koutropoulos et al., 2014; Simpson, 2006). It is important during the 

next stage to formalise a method of data capture that is neither controversial ethically, or 

problematic conceptually. In any system that collects and utilises personal data privacy 

concerns arise and questions are raised, including “Who keeps and who owns the record 

of personal preferences? Can individuals view their own records, and what right of 

response do they have if that information is wrong? What happens if this information is 

released deliberately or is stolen in a security breach?” (Ashman et al., 2014). These are 

important points to consider in any system and when addressing such issues it is 

important to protect privacy by restricting access to data by adding certification or access 

control to the data entries and by anonymizing data such that sensitive information cannot 

be pinpointed to an individual (Xindong Wu et al., 2014). A related issue arises in the 

next stage of data capture as information must be collected reliably to ensure that the 

mechanisms through which we undertake this collection are secure and deliver 

unmolested results. Furthermore, in striking a balance between privacy and data, it is also 

important to capture data that encompasses the widest possible demographic to ensure 

that we are sampling the breadth of samples as to not distort the results. However, in the 

experience of the authors the above is rarely likely to be total in its participation. Indeed, 

how does one measure a student who doesn’t exist in terms of the metrics defined? 

Nevertheless, the following approach assumes total engagement with the measured 

metrics. 

3.1.   Are we big data? 

The authors at this stage avoid the term big data for the purposes of this investigation. 

Big data is a moniker? When is something broad enough or deep enough to warrant the 

title “big”? When is data disparate enough to warrant analyses that make it “big”? As 

such, Big Data has complicated practical and ethical considerations. For example, if we 

are to measure every aspect of a student’s engagement a course, academically and 

otherwise then the data collected could quite easily be misused for any purposes. 

Considering the aim is to support student learning by identifying trends, positive or 

negative there is only so much that can be done to anonymise the origins of the data. 

Regardless of what data we capture from what sources, there is typically an issue of the 

format it is in and whether or not it is fit for purpose in its native condition. More often 

than not, this will not be the case and it must be pre-processed through refactoring / 

augmentation either before or during the stages of ETL. Extraction is either strait forward 

or a tedious process of accumulating data. One must be careful in assuming that any large 

data set is big data. Big data is an umbrella term, meaningless in itself until it is placed in 

context. How much data in depth does take? How much data in breadth does it take? 

When does one decide this data is big? These are important points to consider when 

designing any system that requires data to be analysed to derive meaning. 
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3.2.   Theory driven vs results driven analysis 

One might wish to pose hypothetical (theory driven) queries to data analysis systems 

such as “do students who study topics one by one typically perform better than those 

students who study their topics side-by-side?” In order to answer such a query, there is a 

predominantly bottom-up process of data analysis, i.e. turning data into information. 

First, we must isolate the sets that represent polar groupings (clearly being one case or the 

other) as well as those that lie in groupings somewhere in between. However, on its own 

this may not be sufficient to produce any firm conclusions. In a system which must 

analyse many differing metrics there is a tangible problem of false positives and vice 

versa. To that end, numerous relatively simple queries should be posed and answered and 

then their results themselves analysed in a second round of hypothetical querying. 

In contrast, one might wish to identify any commonality between students in a given 

grouping such as “what characteristics (learning or otherwise) do students who excel at 

practical topics have?” This type of query can be seen as a more top-down process as we 

already have the result set but now wish to dig into the metrics that define that set. The 

issue here is one of metrics explosion as we are attempting to turn information back into 

data and there could be a great deal of data to sift through. It is not unreasonable to see if 

each approach complements the other with one generating information from raw data and 

the other deriving the raw data that makes up that information. 

3.3.   Asking correct questions of suitable data 

A critical step in the analysis of any data series is to ensure that we firstly know what we 

are trying to learn or prove / disprove. Secondly we should be confident that the metrics 

we are submitting for analysis are actually capable of supporting the derivation of the 

results we desire. This is not a straight forward requirement as a hypothetical query by its 

very definition is speculative and the meaning of any results only apparent once they 

have been generated.  

Furthermore the experimental nature of such data analysis may be prone to the 

aforementioned false positives and vice versa. When we incorporate a new metric to be 

measured alongside previously stabled metrics we need to carefully monitor that new 

metric’s effect. It will either contradict, reinforce or have no effect upon the already 

established patterns. 

We must also design in thresholds that cater for anomalies. There will always be a 

few blocks of raw data that “rock the boat”. When this happens a choice must be made to 

exclude them from the overall trend or depending on their frequency of occurrence, 

perhaps produce additional trends so as to have both conventional data patterns and 

unusual ones. 

3.4.   Do we like the results? 

Ethical issues perpetually make their presence known, not least in capturing student 

behaviour. In reality, many students many not be overly concerned about monitoring of 
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their learning activity. That said, a spot check by the authors showed that 100% of 

students would not like a system to predict their “academic destiny if the outlook was 

going to be negative”. Rather, do the results of these analysis need to be confined to 

“need to know” people? Who owns this data; the student or the institution? 

3.5.   eRegister case study 

For seven years, the School of Computing Mathematical Sciences, within the Faculty of 

Technology and Environment, in Liverpool John Moores University has run an 

attendance monitoring system, aptly named “eRegister”. The system began life as an 

exploration into the metrics of students in a controlled group. Over the years, it has 

grown in depth and breadth. The results it has produced have been interesting, often 

supporting many well established viewpoints of university learning. Figure 5 illustrates 

how eRegister fits into the grander scheme of OLTP, ETL and OLAP, which all use 

Microsoft SQL Server as the basis of the data analysis. 

 

Whilst not fitting directly into the MOOC model, the data capture, analysis, reporting 

model that eRegister represents is easily extendable into many metrics. As mentioned 

earlier, the issue of data capture is not as nearly problematics than the analysis of that 

data. In this scenario, eRegister captures all forms of student attendance (i.e. lecture or 

lab). Various vectors were employed ranging from direct entry (via eRegister produced 

print outs), to RFID scanning to post logon Windows NT.x scripts. 

As data capture takes place, the database utilizes the process defined in ETL to “fill in 

the blanks” and normalise the data into consistent a series that is process able together as 

 

Figure 5. High level model of SQL Server’s ETL and OLAP components 
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one result set. The end result is series of reports that describe Course, Module, or Student 

attendance. 

3.6.   Evaluation 

Recent work has involved placing the reported attendance data, alongside assessment 

data both, in terms of an overall module attendance vs final score as well as trends 

throughout the year. For example it was found that students attended more during exam 

revision periods then they did for coursework revision periods but did not necessarily 

score better in examinations. As Figure 6 illustrates, it was however fairly conclusive that 

attendance does have a real tangible effect on attainment generally. This information 

could then be discussed with students. 

 

Ideally students would be able to take a reflective look at their own learning style and 

make changes should they be needed. By seeing anonymised overall trends they should 

be able to identify the simplest areas in which to improve or rather the areas which the 

trends suggest would allow them to perform to higher standard. 

By comparing patterns from year to year the system would be able to self-evaluate 

both its effectiveness in highlighting problems and the student’s attempts (or lack of) to 

rectify those problems through changes in their approach to learning. 

This work and the related concepts are easily transferrable to a MOOC environment, 

where attendance can relate to engagement with lecture videos and assignments, as 

opposed to physically attending a lecture. As it can be seen, as engagement declines so 

 

Figure 6. Overall module attendance vs attainment 
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does the student’ final mark. Using this information, data analysis methods can be 

employed to predict performance when attendance begins to fall, around 70%. This 

would then be visually communicated to the learner that if their current engagement 

patterns continue that their marks would suffer so that intervention measures can be 

utilised before attendance drops dramatically. 

4.   Summary and future work 

The development of the Internet and communication technologies has enabled massive 

open online courses (MOOCs) to quickly become a new method for engaging a wider 

community in open learning. Such developments alter the traditional learning institution 

paradigm into an open and distance approach, whereby there are no entry qualifications 

and students study “at their own risk” (Simpson, 2006). Nevertheless, in such an 

environment it is still important to predict a learner’s chance of success as open 

institutions have a vested interest in retaining students or risk losing funding (Simpson, 

2006).  

This paper has explored the role that technology can play in open learning to predict a 

learner’s performance. This is important as identifying “at risk” students before they 

drop-out has the potential to increase MOOC completion rates. As part of the analysis, 

various areas have been explored, which can be used to predict performance, namely 

machine learning and social media analytics. The paper has then been concluded with a 

case study that explores how current techniques, within our institution, can be adapted to 

such an environment. The eRegister system supports the notion that high engagement and 

attendance is reflective of higher marks. Although the system has been used within an 

institution, it’s relevance within the MOOC community can be seen and as a proof of 

concept clearly illustrates a need for predictive systems within learning communities. 

Future work would consider implementing a version of the eRegister system within a 

MOOC environment in order to monitor its effect on retention. In this instance, the 

system could track engagement with course material. A dashboard could also be 

implemented that would profile an entire course, an individual module, different types of 

learning activity undertaken as well as individual students so that the lecturer could see 

how the whole group interacts with the course, as well as the performance/engagement of 

individuals. For instance, if a student has not been interacting with the course, then the 

lecturer can be notified so that they can communicate with the student before they 

disengage completely. Using the system in this way would provide detailed statistics of 

individuals and would provide an insight into their behaviors. 
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