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Simple Summary: Glioblastoma (GB) is a malignant brain tumour with no cure, even after the
best treatment. The evaluation of a therapy response is usually based on magnetic resonance
imaging (MRI), but it lacks precision in early stages, and doctors must wait several weeks until
they are confident information is produced, facing an uncertain time window. Magnetic resonance
spectroscopy (MRS/MRSI) can provide additional information about tumours and their environment
but is not widely used in clinical settings since the spectroscopy format is not standardised as MRI
is, and doctors are not familiarised with outputs/interpretation. This study aims to improve the
assessment of the treatment response in GB using MRSI data and machine learning, including state-of-
the-art one-dimensional convolutional neural networks. Preclinical (murine) GB data were used for
developing models that successfully identified tumour regions regarding their response to treatment
(or the lack thereof). These models were accurate and outperformed previous methods, potentially
providing new opportunities for GB patient management.

Abstract: Background: Glioblastoma (GB) is a malignant brain tumour that is challenging to treat,
often relapsing even after aggressive therapy. Evaluating therapy response relies on magnetic res-
onance imaging (MRI) following the Response Assessment in Neuro-Oncology (RANO) criteria.
However, early assessment is hindered by phenomena such as pseudoprogression and pseudore-
sponse. Magnetic resonance spectroscopy (MRS/MRSI) provides metabolomics information but is
underutilised due to a lack of familiarity and standardisation. Methods: This study explores the
potential of spectroscopic imaging (MRSI) in combination with several machine learning approaches,
including one-dimensional convolutional neural networks (1D-CNNs), to improve therapy response
assessment. Preclinical GB (GL261-bearing mice) were studied for method optimisation and vali-
dation. Results: The proposed 1D-CNN models successfully identify different regions of tumours
sampled by MRSI, i.e., normal brain (N), control/unresponsive tumour (T), and tumour responding
to treatment (R). Class activation maps using Grad-CAM enabled the study of the key areas relevant
to the models, providing model explainability. The generated colour-coded maps showing the N, T
and R regions were highly accurate (according to Dice scores) when compared against ground truth
and outperformed our previous method. Conclusions: The proposed methodology may provide
new and better opportunities for therapy response assessment, potentially providing earlier hints of
tumour relapsing stages.

Keywords: therapy response; glioblastoma; temozolomide; preclinical models; magnetic resonance
spectroscopy; class activation mapping; Grad-CAM; convolutional neural networks; deep learning
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1. Introduction

Glioblastoma (GB) is an aggressive and highly malignant brain tumour that is notori-
ously difficult to treat. Standard treatment typically involves surgical resection, followed by
radiation therapy and chemotherapy with temozolomide (TMZ), known as the Stupp pro-
tocol [1], with an average survival of 12–15 months after diagnosis. Despite advancements
involving novel therapy research, GB often recurs, and the prognosis remains poor.

Therapy response follow-up in GB is paramount in improving patient outcomes
and guiding treatment decisions, and it is mostly based on magnetic resonance imaging
(MRI). The most widely utilised criteria are the Response Assessment in Neuro-Oncology
(RANO) criteria [2], which provide guidelines for evaluating treatment responses in brain
tumours, including GB. The criteria consider various factors, including changes in the
tumour size, enhancement pattern and clinical status, to categorise treatment response
into specific categories such as complete response, partial response, stable disease or
progressive disease.

However, the early assessment of therapy efficacy is usually hampered by phenomena
such as pseudoprogression and pseudoresponse [3]. Patients and doctors may have to wait
several weeks in order to confirm whether a therapeutic approach might be maintained
or, contrarily, whether it should be halted and changed to a second-line therapeutic agent
due to a lack of a response. Precious time is wasted, contributing to the poor outcome in
GB-afflicted patients.

Magnetic resonance (MR) can also provide metabolomics information about the tu-
mour and its microenvironment, namely, MR spectroscopy or spectroscopic imaging
(MRS/MRSI), which are known to provide earlier information about the response to
therapy and preclinical and clinical settings [4,5]. Nevertheless, spectroscopic approaches
are currently underused in clinical settings, since doctors are not fully familiarised with
the output of the acquisition, as well as its processing, postprocessing, quantitation and
interpretation. The lack of standardisation in file formats and formal studies of its added
value (with some exceptions, such as [6]) do not contribute to the implementation of MR
spectroscopic approaches in clinical settings.

Our groups have been working in the preclinical scenario in order to explore, interpret,
analyse and validate the potential of the spectroscopic approaches, especially spectroscopic
imaging (MRSI), in the early assessment of therapy responses [7–9]. Also, for several
years now, machine learning (ML) and deep learning (DL) methods have been consistently
shown to be able to help with tasks such as brain tumour detection [10–12], diagnosis and
grading [13–15], classification [16–19], segmentation of the affected/tumour area [20–22]
and therapy response prediction to distinguish post-treatment effects and tumour progres-
sion [23–27], among others. Hence, we firmly believe that ML and DL methods applied to
such metabolomic datasets using whole pattern inputs may help to unravel its potential in
a way that would not be possible with a single metabolite or ratio quantitation.

There is currently a strong recommendation regarding applying advanced MRI tech-
niques for treatment response assessment in gliomas [28], including spectroscopy, which
might also require the use of advanced ML techniques to properly analyse, integrate and
take advantage of such complex information, but there are only a few reported studies
including CNN in MR spectroscopic studies related to glioma or glioma therapy follow-up.
Specifically, the use of convoluted neural networks in glioblastoma studies and incor-
porating spectroscopic-related data (such as MRSI, which contains rich metabolomics
information) is not widely reported in the literature. An example of these studies is
Acquarelli et al. [29] for grading gliomas (grades 3 and 4) and identifying Alzheimer’s
disease patients using MRSI and MRI data, identifying spectral regions most important
in the diagnosis process. The application of neural networks to single-voxel spectroscopic
data for tumour grading has been also reported [30]. The use of such approaches with
MR Imaging data has been described to be useful for high-grade glioma prognosis [31],
diagnosing brain tumours [32,33], grading and subtyping glioma [34], planning radiation
therapy in brain tumours [35] or tumour segmentation [36]. Overall, it seems that our work
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could contribute, through the analysis of preclinical glioblastoma MRSI data, to unravelling
the potential of CNN for therapy response assessment using metabolomics for this purpose.

In order to perform detailed studies for MRSI acquisition, optimisation and the cellu-
lar/molecular validation of our findings, we rely on the GL261 GB preclinical model, which
is able to mimic human GB in features such as invasiveness, proliferation and palisade
cellular structures, and which presents a transient/sustained response to TMZ, depend-
ing on the therapeutic schedule used. Then, in our previous work [5], we developed a
semi-supervised approach which uses non-negative matrix factorisation (following the
method proposed in [37]) in a defined cohort and defined paradigmatic spectra for three
conditions, namely: normal brain parenchyma, untreated or unresponsive GB and GB
treated–responding to therapy. The semi-supervised method could be applied to new
individuals [9] and was able to correctly distinguish responses not only with TMZ but also
with cyclophosphamide [38] and immune checkpoint inhibitors such as anti-PD1 alone or
in TMZ combination [39]. However, there are still some issues with room for improvement,
such as the appearance of a ‘responding’ pattern when tumours are in the late relapsing
stage or getting earlier hints on tumour relapsing stages.

In this paper, we aim to improve our previous work’s performance [5]. For this, we
propose the use of convolutional neural networks (CNNs) [40], which are also tested and
compared against four other widely used machine learning algorithms.

2. Materials and Methods
2.1. MRI/MRSI Data Used in This Study
2.1.1. Preclinical Model Generation and Treatment Administration

Mice were obtained from Charles River Laboratories (France) and housed at the animal
facility of the Universitat Autònoma de Barcelona (Servei d’Estabulari, https://sct.uab.cat/
estabulari/content/presentaci%C3%B3.html, accessed on 4 August 2023). Tumours were
induced by an intracranial stereotactic injection of 105 GL261 glioma cells in the caudate
nucleus, as previously described by us in [41]. TMZ was administered intragastrically to
tumour-bearing mice in three cycles of 5, 2 and 2 days interleaved with 3-day intervals.
The periods of administration were days 11 to 15, 19–20 and 24–25 post-implantation
(considering ‘day 0’ as the tumour generation day) at a dose of 60 mg/kg per day of
treatment. For this purpose, the stock TMZ solution was diluted in the administration
vehicle (DMSO 10% in saline), and the volume administered was 200 µL per animal (taking
20 g per animal as the mean weight). Mice were coded as CXXXX, XXXX being a correlative
number for their identification used in our group.

2.1.2. MR Data Acquisition

MR studies were performed at the joint nuclear MR facility of UAB and CIBER-
BBN, Unit 25 of NANBIOSIS (https://www.nanbiosis.es/portfolio/u25-nmr-biomedical-
application-i/, accessed on 4 August 2023), with a 7 Tesla horizontal magnet (BioSpec
70/30, Bruker BioSpin, Ettlingen, Germany). The MRI and MRSI acquisition parameters
are described in [5,41]. In brief, horizontal, high-resolution, T2-weighted (T2w) MRIs
(TR/TEeff = 4200/36 ms) were acquired using a RARE (Rapid Acquisition with Relaxation
Enhancement) sequence (field of view (FOV), 19.2 × 19.2 mm2; number of slices, 10; number
of averages, 4). The T2w MRI resolution ranged from 75 × 75 to 150 × 150 µm2/pixel
and the slice thickness ranged from 0.5 to 1 mm, depending on the case studied. The
MRSI for this study was acquired at short TE (12–14 ms), using a 2D CSI (Chemical Shift
Imaging) sequence with PRESS localisation, where: FOV, 17.6 × 17.6 mm2; volume of
interest (VOI), (5.5 × 5.5 × 1.0 mm3) and with ST, 1 mm; TR, 2500 ms; SW, 4006.41 Hz;
number of averages, 512. Water suppression was performed with VAPOR, using a 300 Hz
bandwidth [5,41]. Short TE typically shows complex patterns, including metabolites with
short and long T2 relaxation times, e.g., lipids, glutamine/glutamate and myoinositol, with
an overall suitable signal-to-noise ratio. The MRSI data grid was formed by an array of
10 × 10 voxels, and the MR spectrum from each voxel contained 692 data points. This

https://sct.uab.cat/estabulari/content/presentaci%C3%B3.html
https://sct.uab.cat/estabulari/content/presentaci%C3%B3.html
https://www.nanbiosis.es/portfolio/u25-nmr-biomedical-application-i/
https://www.nanbiosis.es/portfolio/u25-nmr-biomedical-application-i/


Cancers 2023, 15, 4002 4 of 20

volume of interest was manually positioned approximately in the centre of the brain, based
on the reference image, in a way that it would include most of the tumour mass and part
of the normal/peritumoural brain parenchyma. MRI/MRSI data were always acquired
prior to TMZ administration if they took place on the same day. In single-point cases (see
Section 2.1.4), mice were euthanised at chosen time points for histopathological validation,
as described in [5]. In longitudinal cases, mice were followed up periodically during a
transient response until relapse and were euthanised at the endpoint. The primary outcome
pursued with TMZ treatment is essentially the increase in the survival rate. However, the
intermediate endpoint biomarkers as surrogates for the primary outcome were tumour
volume changes (in the longitudinal explored cases and Ki67 immunostaining in single-
point cases where animals were euthanised before the endpoint (e.g., to assess proliferation
by Ki67 immunostaining)).

2.1.3. MR Data Processing and Post-Processing

MRI T2w high-resolution images were used for the tumour volume calculation. MRSI
data were initially pre-processed at the MR workstation with ParaVision 5.0 (Bruker
BioSpin) and later post-processed with 3DiCSI v1.9.10 [42] and exported in ASCII for-
mat. The total number of points of each acquired voxel (original data) is 2048, distributed
over 13.3 ppm. However, in both previous and current work, the authors have focused
on the spectral window that concentrates the most relevant metabolites, i.e., between 0
and 4.5 ppm, which also avoids the residual water signal observed at 4.75 ppm. This
finally resulted in 692 data points being analysed. The Dynamic MRSI Processing Module
(DMPM) [43] running over MATLAB (MathWorks, Natick, MA, USA) was used to align
and normalise all the spectra to unit length (UL2) [44].

2.1.4. Single-Point and Longitudinal Cases Used

This study analysed a total of 28 mice, of which 21 were single-point cases and 7 were
longitudinal. The single-point cases included a control (untreated) group of 7 mice (i.e.,
C32, C69, C71, C179, C233, C234, C278) previously studied in [17] and another group of
14 cases previously studied in [5,7], of which 8 were treated with TMZ, as described in
Section 2.1.1 (i.e., C415, C418, C437, C525, C527, C575, C586, C584), and 6 were additional
control, untreated cases (i.e., C255, C288, C351, C520, C529, C583). From the treated cases,
C575 and C584 received three cycles of TMZ prior to euthanisation, whilst the rest of the
group received two cycles. The longitudinal cases, recorded in Table 1, received three
cycles of TMZ and were followed up for several days. Most of these cases were previously
described in [5].

Table 1. Longitudinal cases. Number of MRSI grids available and the days on which they were
acquired (counting from when tumour cells were inoculated) per mouse.

Mice: Number of MRSI Grids: Days When They Were Acquired:

C797 6 10, 15, 17, 18, 20, 22
C806 8 11, 12, 14, 16, 18, 20, 22, 24
C808 11 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 33
C809 12 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 31, 33
C817 24 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 35, 39, 45, 48, 50, 56, 58, 61, 63, 66, 68, 70
C819 18 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 41, 43, 45
C821 13 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34

2.1.5. Data Used for the Development of the Models

The voxels from each MRSI grid were labelled by experts as normal/non-tumour (N),
tumour in response to therapy (R), control/untreated tumour (T) or unknown (usually
peritumoural areas or edges of the grid). In order to assign the ‘R’ label, in longitudinal
cases, we have considered the time points at which tumours present transient growth arrest
or a volume decrease, consistent with Stable Disease or Partial Response according to our
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modified RECIST criteria described in [5]. The voxels labelled as N, R and T from selected
MRSI grids were used to develop the training and test sets, as shown in Table 2.

Table 2. Labelled voxels used for analysis, including the number and percentage of records per class.

Class (Labelled Voxels) Number of Records Percentage of Records

Normal/non-tumour (N) 998 39.5%
Tumour in response (R) 1151 45.6%

Control/untreated tumour (T) 376 14.9%

For the development of the models, we randomly selected 21 of the cases for training,
which resulted in 83 MRSI grids. The remaining seven cases, i.e., C32, C179, C278 (single-
point control cases), C437, C525, C584 (single-point treated cases) and C817 (longitudinal,
treated), were reserved as an independent test set, resulting in 30 MRSI grids. Therefore,
the split of cases was 75% and 25% for the training and test sets, respectively.

2.2. Model Development
2.2.1. Hierarchical Classification Approach

We performed a hierarchical classification approach in which we first trained a clas-
sifier to discriminate between the normal brain parenchyma (N) and the tumour regions,
regardless of whether they received treatment or not (i.e., including voxels labelled as R
or T), which will be referred to as [N vs. R + T]; then, we trained a second classifier to
distinguish between the areas of the tumour in response to TMZ (R) from those that were
either control/untreated tumours (T), which will be referred to as [R vs. T]. The decision of
using a hierarchical classification approach (i.e., N vs. R + T first, and then R vs. T) rather
than modelling a multi-class classifier (i.e., R vs. T vs. N) was to facilitate the models to
learn the differences between classes R and T due to the similarities between these two
groups. A summary of the proposed methodology can be found in Figure 1.
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2.2.2. Methods Used for Classification

For the implementation of the classifiers, we proposed the use of CNN [40], specifi-
cally, 1D-CNN, which we benchmarked against four other methods, i.e., logistic regression
(LR) [45], support vector machines (SVM) [46], random forest (RF) [47] and extreme gra-
dient boosting (XGBoost) [48]. These are widely used machine learning algorithms with
distinct characteristics.

LR is a statistical modelling technique used to predict categorical outcomes by esti-
mating the probability of an event occurring based on a set of independent variables. It
assumes a linear relationship between the predictors and the log odds of the outcome and
uses a logistic function to transform these log odds into probabilities.

SVM seeks to separate data into distinct classes by finding an optimal hyperplane
in a high-dimensional feature space. It aims to maximise the margin between different
classes while minimising the classification error and can handle both linearly separable and
non-linearly separable data by using kernel functions to implicitly map the input data into
a higher-dimensional space.

RF is an ensemble learning method that constructs several decision trees and combines
their predictions to make accurate classifications. Each tree in the forest is built using a
random subset of the training data and random subsets of the predictor variables, resulting
in a diverse set of trees that collectively provide robust and reliable predictions.

XGBoost is also an ensemble learning technique that combines the outputs of multiple
weak prediction models, typically decision trees, to create a powerful and accurate model.
XGBoost employs a gradient boosting framework, where each subsequent tree is built to
correct the mistakes made by the previous trees. It optimises a specific loss function by
iteratively fitting new trees to the residuals of the previous predictions, resulting in a highly
flexible and effective predictive model.

CNNs are DL [49] architectures that specialise in processing and extracting fea-
tures from input data with a grid-like structure (e.g., images). One-dimensional CNNs
(1D-CNNs) can be employed for time series and sequence analyses [50] by sliding a convo-
lutional window across the sequence, extracting local features and leveraging the learned
filters to capture temporal patterns and make predictions, making them particularly useful
for the analysis of metabolomic datasets using whole pattern inputs.

Each method has its strengths. LR is interpretable and computationally efficient, but it
is limited, as it is a linear classification algorithm. SVM is powerful in high-dimensional
spaces and can handle both linear and nonlinear relationships. RF and XGBoost are known
for their strong predictive capabilities, handling complex interactions and dealing with
high-dimensional datasets. However, RF tends to be more computationally intensive due
to its ensemble nature, whereas XGBoost efficiently handles large datasets by parallelising
the boosting process. CNNs excel in image and sequence analysis, leveraging hierarchical
feature extraction and parameter sharing, yet they demand substantial computational
resources. The choice of algorithm depends on the specific problem and requirements.

2.2.3. Hyperparameter Tuning

Hyperparameter tuning was performed to optimise the configuration of the parame-
ters of the machine learning models. The aim was the identification of the optimal settings
(which are not learned from the data but are set by the user before the training process) that
maximise model performance [51].

In the case of the 1D-CNN, we optimised various hyperparameters that govern the
architecture and training of the network. These included the number of convolutional
layers (two to four layers), with the number and size of filters (from 16 to 144, with a step
size of 32) and kernel size (from 3 to 12, with a step size of 3). We also optimised the number
of units of the dense layer (from 64 to 512 units, with steps of 64) and the learning rate (from
10−4 to 10−2) of the Adam optimiser. LeakyReLU was chosen as the activation function of
the convolutional and dense layers, with He normal as the kernel initialiser.
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The algorithms used for comparison, i.e., LR, SVM, RF and XGBoost, were also
optimised to avoid an unfair comparison with the deep learning model. For this, we
performed a random search of the optimal values. In the case of LR, we searched for
the optimal regularisation strength (best ‘C’ found: 545.6), penalty type (best ‘penalty’:
‘elasticnet’) and solver (best ‘solver’ found: ‘saga’). For SVM, we included the regularisation
parameter (best ‘C’ found: 10) and the kernel function (best found was ‘rbf’: radial basis
function or Gaussian kernel, with a gamma of 0.5). For RF, we searched for the optimal
number of trees in the forest (best ‘n_estimators’ found: 1000) and the maximum depth of
each tree (best ‘max_depth’ found: 40). In the case of XGBoost, we included the number of
boosting stages or decision trees to be built (best ‘n_estimators’ found: 100), the learning
rate (best ‘learning_rate’ found: 0.1), the fraction of features to consider when building
each tree (best ‘colsample_bytree’ found: 0.75) and the maximum depth of individual
decision trees in the ensemble (best ‘max_depth’ found: 12). In addition, the same splits for
training and testing were used for training and evaluating the models developed with the
different algorithms.

2.3. Model Explainability
2.3.1. Class Activation Maps

To provide insight into the decision-making process of the 1D-CNN model, we used
Grad-CAM, short for gradient-weighted class activation mapping [52]. Grad-CAM utilises
the gradients of a target class (the class the network predicts) with respect to the final
convolutional layer of a deep neural network. These gradients indicate the sensitivity
of the predicted class to changes in the activation values of the convolutional layer. By
weighting the activations of the final convolutional layer based on these gradients, Grad-
CAM generates a class activation map that highlights the regions of the input data (the
MRSI spectra in this study) that were crucial for the network prediction. It provides a
form of visual explanation that aids in understanding and validating the model’s decision-
making process.

2.3.2. Colour-Coded Maps

Colour-coded maps were produced based on the class assignment by the two models.
For this, the [N vs. R + T] model is applied to all the spectra (voxels) for any given MRSI
grid. The voxels that are predicted as normal (N) are assigned a blue colour. Then, the
[R vs. T] model is applied to all the remaining voxels (those that were not predicted as N).
All the voxels from this ‘not N’ group that are predicted as T by the second model are then
assigned a red colour, and those predicted as R are assigned green. In this way, every voxel
from the MRSI grid will be assigned a colour: blue for N, red for T and green for R. These
colour-coded maps are a form of a nosologic image of the brain [53], which summarises the
presence of different tissue types in a single image by colour-coding each voxel according
to the class it is assigned to.

2.3.3. Evaluation of the Colour-Coded Maps Using a Dice Score

The Dice score [54], also known as the Dice coefficient or Dice similarity coefficient, is
a metric commonly used to evaluate the similarity between two masks, as it quantifies the
spatial overlap between them and provides a measure of their agreement. The Dice score
is calculated by dividing twice the intersection of the predicted and ground truth masks
by the sum of their individual pixel or voxel counts. It ranges from 0 to 1, where a score
of 1 indicates a perfect match between the images, and a score of 0 indicates no overlap.
For the cases of multiple classes, the Dice score can be extended to calculate the score for
each class individually and then average them to obtain the multiclass Dice score. The
multiclass Dice score provides a good evaluation of the overall segmentation performance
when dealing with multiple classes simultaneously.

In this study, we use the multiclass Dice score to quantitatively evaluate how much
overlap there is between the expected ground truth and the generated colour-coded maps,
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i.e., how accurate the produced colour-coded maps are. For this, we use a selection of
cases with the following criteria: (i) single-point cases followed by euthanisation and, when
available, histopathological validation; (ii) for control cases, all available cases were used;
(iii) for treated cases, we have selected cases that received at least two TMZ cycles and
either presented tumour growth arrest, changes in the proliferation index or mitoses/field
counting or both. From our experience, cases undergoing only the first TMZ cycle could
show mixed results and therefore would not be appropriate for validation purposes. We
calculate the multiclass Dice score using the predicted and ground truth masks at the
voxel-level resolution (not at the pixel level).

3. Results
3.1. Selection of the Best Models
3.1.1. Training of the Models

For the training of the models, all the voxels from each individual subject were ensured
to be uniquely assigned to either the training or the test set (25% of the cases were reserved
and used as an independent test set). This is to avoid what is known in the machine learning
literature as ‘data leakage’, which is when information from the test set or about the target
variable leaks into the input of the model during the training. Due to class imbalance
(see Table 2), we used Synthetic Minority Oversampling TEchnique (SMOTE) [55] on the
training data and increased the size of the smaller class to match the size of the larger class.

3.1.2. Comparison and Evaluation of the Different Algorithms

For the comparison of the classifiers produced by the different machine learning algo-
rithms, several metrics were used to evaluate their performance, i.e., accuracy, sensitivity,
specificity, precision and F1-score. These metrics were calculated based on the areas labelled
by the experts as N, T or R, not on the whole MRSI grid (meaning that the areas labelled
as unknown were not used). Therefore, these results should be used with caution and
mainly for the purpose of comparing the different classifiers. The results are compiled in
Tables 3 and 4 for [N vs. R + T] and [R vs. T], respectively.

Table 3. Performance of the [N vs. R + T] model on the labelled voxels of the independent test set.

Accuracy Sensitivity Specificity Precision F1-Score

LR 96.538% 96.157% 97.878% 99.377% 97.010%
RF 97.711% 97.664% 97.878% 99.387% 97.771%

SVM 97.946% 97.664% 98.939% 99.692% 98.297%
XGBoost 96.890% 96.534% 98.143% 99.457% 97.332%
1D-CNN 99.328% 99.344% 99.293% 99.671% 99.319%

Table 4. Performance of the [R vs. T] model on the labelled voxels of the independent test set.

Accuracy Sensitivity Specificity Precision F1-Score

LR 91.560% 92.674% 85.052% 97.312% 88.699%
RF 92.238% 92.851% 88.660% 97.952% 90.707%

SVM 84.476% 83.230% 91.753% 98.332% 87.284%
XGBoost 88.621% 88.976% 86.598% 97.486% 87.767%
1D-CNN 99.750% 99.810% 99.310% 99.905% 99.560%

Accuracy, specificity and sensitivity show an indication of the correct classifications
that were made out of all the classifications, the negative cases made out of the total
number of original negative cases and the positive cases made out of the total number of
original positive cases, respectively. Precision focuses on the quality of positive predictions,
indicating how many of the predicted positive cases are actually correct. The F1-score is a
metric that combines precision and sensitivity (also known as recall) into a single value
to provide a balanced evaluation of a model’s performance. In the [N vs. R + T] model,
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the negative class is N (hence, R + T is the positive class), and in the [R vs. T] model, the
negative class is T (hence, R is the positive class).

According to the results in Tables 3 and 4, 1D-CNN consistently outperformed the rest
of the methods. Therefore, we will focus our attention on the 1D-CNN models for the rest
of this study.

3.1.3. Description of the Best-Performing Models

As detailed in Section 3.1.2, the best-performing classifiers were developed using 1D-
CNNs. These models were produced after optimising their hyperparameter to ensure the
best learning and generalisation capabilities of the models. The details of their architectures
can be found in Tables 5 and 6. The optimal learning rate for the Adam optimiser used was
0.00081 for the [N vs. R + T] model and 0.00075 for the [R vs. T] model.

Table 5. Architecture of the best-performing 1D-CNN model for [N vs. R + T].

Layers Output Size Parameters

1D Convolution 692 Filters: 80, Kernel size: 12
1D Max Pooling 346 Pool size: 2
1D Convolution 346 Filters: 112, Kernel size: 9
1D Max Pooling 173 Pool size: 2
1D Convolution 173 Filters: 112, Kernel size: 3
1D Max Pooling 86 Pool size: 2

Flatten 9632
Dropout 9632 0.5

Dense 192 Units: 192
Dropout 192 0.5

Dense 1 Units: 1

Table 6. Architecture of the best-performing 1D-CNN model for [R vs. T].

Layers Output Size Parameters

1D Convolution 692 Filters: 144, Kernel size: 9
1D Max Pooling 346 Pool size: 2
1D Convolution 346 Filters: 48, Kernel size: 6
1D Max Pooling 173 Pool size: 2
1D Convolution 173 Filters: 112, Kernel size: 3
1D Max Pooling 86 Pool size: 2

Flatten 9632
Dropout 9632 0.5

Dense 448 Units: 448
Dropout 448 0.5

Dense 1 Units: 1

3.2. Model Explainability
3.2.1. Class Activation Maps

We applied Grad-CAM to the output of our two selected 1D-CNN models and overlaid
the activation maps generated on the average of the classes, as shown in Figure 2. They
explain, in a visual manner, the decisions made by the respective models. The higher
values, indicated by the intensity of the yellow areas (note that they use a viridis colour
palette), show the most influential areas and parts of the spectra that the models are taking
into account for the separation of the classes.
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Figure 2. Activation maps of the class averages. They show the areas of interest to the models
for classification. (A) Activation maps for the [N vs. R + T] model. (B) Activation maps for the
[R vs. T] model. Class averages represent the average of the spectra (voxels) used for training the
1D-CNN models.

3.2.2. Colour-Coded Maps

Representative cases are shown in Figures 3 and 4 for single-point cases and in Figure 5
for a longitudinal case, at different days post-implantation (p.i.). Details about the chosen
cases are explained in Table 7.
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Figure 4. Single-point treated cases. Three representative cases are shown. First column, horizontal
T2w MRI with the MRSI grid position shown (yellow square). Second column, enlarged view of the
tumour/peritumoural zone used in MRSI acquisition. Third column, voxels labelled as N (blue) or R
(green) by the experts, superimposed to the corresponding MRI zone. Fourth column, the resulting
coloured image generated (see Section 2.3.2), superimposed to the corresponding MRI zone.
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Figure 5. Representative longitudinal case C817. Each point represents a T2w/MRSI exploration.
The y-axis shows the tumour volume, while the x-axis represents the day after tumour implantation.
Green bars indicate the TMZ administration periods. This tumour started to show a volumetric
response after the first TMZ cycle, about day 18 post-implantation (p.i.). The response was sustained,
even showing a tumour volume decrease after day 30 p.i. After day 56 p.i., the tumour started
to regrow, finally relapsing with exponential growth. The selected coloured images (Section 2.3.2)
illustrate the evolution observed in this case, which presented a significant survival enlargement,
since untreated mice have an average survival of 21 days.

Table 7. Data from tumour-bearing mice shown in Figures 3 and 4. All individuals were euthanised
right after the last T2w/MRSI acquisition, at the indicated post-implantation (p.i.) day, for histopatho-
logical validation.

Condition Day p.i.
(Range) TMZ Cycles Tumour Volume

(Average ± SD mm3)
Ki67 Index

(Average ± SD %) *
Mitosis/Field

(Average ± SD) *

Control 16–19 - 93 ± 60 56.4 ± 1.9 13.9 ± 2.7
Treated 22–26 2–3 105 ± 48 49.3 ± 5.9 3.1 ± 1.0

* Ki67 immunostaining and mitoses/field counting were performed as described in [5] by histopathology experts.
The final number of fields examined depended on the tumour size. Ki67 is a marker for the tumour proliferative
status, which is expected to decrease under successful treatment. In the same line, the number of mitoses is
expected to decrease in treated-responding cases. SD = standard deviation.

3.2.3. Evaluation of the Colour-Coded Maps

The evaluation of the generated colour-coded maps was determined using the Dice
score, which shows the overlap between the produced colour-coded maps and the expected
ground truth. The Dice score was calculated individually for each of the expected areas
in each case, i.e., normal (N), control/unresponsive (T) and treated/responding (R), to
ensure enough evidence was provided to assess the quality of the models. In addition, we
calculated the Dice scores of the results obtained when using the semi-supervised approach
using sources from [5] for a comparison of the two modelling approaches on the same cases.
These results are compiled in Table 8.
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Table 8. Evaluation of the colour-coded maps. Dice score results for the normal (N), con-
trol/unresponsive (T) and treated/responding (R) groups. Results include the semi-supervised
approach using sources from [5] and the proposed methodology using 1D-CNN. CI: Confidence
Interval. Best values per group are highlighted in bold.

Semi-Supervised NMF [5] 1D-CNN

Mice Condition N T R N T R

C32 Control 0.88 0.90 - 0.91 0.93 -
C69 Control 0.84 0.72 - 0.95 0.91 -
C71 Control 0.67 0.71 - 0.77 0.86 -
C179 Control 0.73 0.55 - 0.86 0.89 -
C233 Control 0.89 0.91 - 0.92 0.94 -
C234 Control 0.91 0.94 - 0.89 0.94 -
C278 Control 0.90 0.87 - 0.70 0.86 -
C255 Control 0.85 0.80 - 0.86 0.88 -
C288 Control 0.82 0.72 - 0.93 0.86 -
C351 Control 0.86 0.55 - 0.86 0.87 -
C520 Control 0.68 0.90 - 0.60 0.88 -
C529 Control 0.69 0.74 - 0.86 0.96 -
C583 Control 0.86 0.93 - 0.94 0.96 -
C437 Treated 0.76 - 0.95 0.96 - 0.92
C525 Treated 0.90 - 0.00 1.00 - 0.87
C527 Treated 0.94 - 0.79 0.95 - 0.96
C575 Treated 0.96 - 0.12 0.91 - 0.91
C584 Treated 0.94 - 0.69 0.95 - 0.89
C586 Treated 0.85 - 0.95 0.90 - 0.99

Average ± CI: 0.84 ± 0.04 0.79 ± 0.07 0.58 ± 0.31 0.88 ± 0.04 0.90 ± 0.02 0.92 ± 0.03

4. Discussion

Although deep learning models have demonstrated strong classification performances
in many scenarios and fields, they are not fully utilised in tackling healthcare problems due
to their black-box nature, which leads to a lack of trust [56,57]. This is exacerbated when it
comes to decisions impacting patient management and treatments.

In the case of malignant brain tumour patients, decisions about treatment management
are of paramount importance and rely mostly on non-invasive approaches, especially MRI.
Spectroscopic approaches such as MRSI have been proven to have an added value reflecting
some local changes earlier than anatomical changes related to a volumetric decrease, but it
is currently underused in clinical settings. Challenges in data handling, processing and
interpretation, in addition to the lack of standardisation, can at least partially explain why
it is fully unexploited. Most authors employing spectroscopic approaches for brain tumour
management investigate few signals or signal ratios. Moreover, clinicians are more used to
imaging-like outputs and less familiarised with spectroscopic features. Therefore, machine
learning approaches that could be turned into imaging-based outputs could have much
better acceptance, provided they account for enough explainability regarding the decision
pathways and also have suitable biological validation.

For evident ethical reasons, it is not feasible to perform studies with repeated MR
explorations in clinical patients, and it is not acceptable to perform repeated biopsies for
biological validation. Thus, preclinical studies might be of relevance in this landscape,
allowing for (i) repeated and periodic MR explorations, (ii) the establishment of a control,
non-treated group and (iii) the euthanisation of chosen mice at defined time points in
order to validate the spectroscopic findings. Our group has a large track dealing with
preclinical brain tumour models, their treatment and non-invasive therapy response follow-
up [9,38,39,58], with a special view to the immunocompetent GL261 GB model, which
recapitulates some features of human GB and presents transient or sustained responses
under TMZ treatment.
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Moreover, the strong contribution of the host immune system in response to therapy
cannot be neglected (e.g., [59]), and, in this sense, the use of immunocompetent models such
as GL261 is preferred over the use of immunosuppressed ones. Thus, we wanted to explore
whether we could improve our previous work, describing source-based classification for
investigating the response to TMZ treatment in such preclinical GB model [5].

The GL261 GB model has an average survival of 21 days when it is not treated. Such
survival proved to be increased to 34 days with the 5-2-2 treatment protocol [7] and to even
higher values with some protocol adaptations [9], proving a consistent response. In this
work, we used well-defined datasets for training the new models using machine learning.
The first step of the hierarchical classification approach goes toward the straightforward
discrimination between affected and non-affected tissue. The second step deals with much
less obvious changes, which are difficult to detect even by an experienced spectroscopist,
and the local heterogeneity of GB in response might also be considered, in which tumours
can have responding and non-responding mixed zones. This classification can be further
complicated since even untreated (or unresponsive) tumours can deal with a non-negligible
amount of natural cell death (i.e., not produced by a therapeutic agent), which in turn
would lead to local biochemical and molecular changes spotted by the classifier.

In this study, we implemented and evaluated several machine learning approaches,
ranging from linear models to more sophisticated deep learning architectures using 1D-
CNN. Tables 3 and 4 show the performance of all of these models and how 1D-CNN
outperformed the rest. These results were expected, as 1D-CNNs can outperform other
linear and non-linear models due to their ability to capture local patterns and features within
sequential data, making them well suited for this study. Their parameter-sharing technique
reduces overfitting and enhances efficiency. Additionally, their hierarchical representation
learning enables the extraction of abstract features at different levels, making them highly
effective in capturing complex relationships in the data.

The representative cases using the 1D-CNN models shown in Figures 3 and 4 prove
that the superimposition of the colour-coded images over the MRI anatomical tumour mass
is excellent, even in cases with atypical growth such as C179 in Figure 3.

The activation maps shown in Figure 2 provide model explainability, as they offer an
intuitive way to understand the developed 1D-CNN models by highlighting the regions
of the input MR spectra that are most influential in the models’ decision-making process.
This helps us to gain insights into the models’ reasoning and builds trust by providing
interpretable explanations for the models’ predictions. Figure 2 (top) for the [N vs. R + T]
model indicates that the signals most contributing to the classification decision are 3.04 ppm
(consistent with a creatine signal), 2.93 ppm (contributed by creatine and glutathione),
2.00–2.04 ppm (consistent with an N-acetyl aspartate- or N-acetyl-containing compounds
signal) and 1.34 ppm and other near positions such as 1.21 and 1.4 ppm (consistent with a
mobile lipids/lactate signal). This is coherent with our previously registered patterns in
the same preclinical model [44], also described by others [60].

Both creatine and N-acetyl aspartate are typical metabolites from normal/non-affected
brain tissue, being an energy level indicator and a neuronal marker, respectively, while high
signals of mobile lipids/lactate are usually observed in malignant tumours/tissues [61],
related to membrane turnover and tumour metabolism, respectively. Such differences are
also described for human GB [62–64], reinforcing both the suitability of the signals chosen
and the applicability of a preclinical developed model to a clinical setting. It is also worth
noting that these changes are easily spotted by a trained spectroscopist, as opposed to
changes challenged by the second step of the hierarchical classification approach.

Regarding glutathione, it is not one of the majority signals, being less represented in
the literature of non-invasive brain tumour studies. It is the most abundant non-enzymatic
antioxidant in mammalian cells, playing a crucial role in regulating tumour oxidative stress.
GB might present elevated glutathione levels, especially under hypoxic conditions, and
this metabolite can also play a role in resistance to therapy [65].
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The cases for classifier training were carefully chosen, and some representative/
interesting results are shown in Figure 4. In this figure, we can see two cases showing
mostly a responsive pattern around the investigated tumour zones (C525 and C584), while
a third case shows a heterogeneous feature, with a small responding zone surrounded by
tumour tissue characterised as control/unresponsive (C418). This result is in agreement
with C418, having a large tumour volume, which did not show growth arrest after the
first TMZ cycle, with a higher number of mitoses/field in comparison with the other two,
combined with a Ki67 value comparable to those of untreated cases. Still, the same trend
was found for case C418 in our previous study [5].

On the other hand, C525 and C584 did show a lower number of mitoses/field and
volume values in the range of or below the average of responding cases. Overall, it
suggests that the classifier can learn and handle small local differences, correctly spotting
heterogeneous tumours. Regarding the activation maps, Figure 2 (bottom) for the [R vs.
T] model shows that decisions are driven by the 3.54 ppm signal (corresponding to the
myo-inositol/glycine position, not resolved at this magnetic field) and signals compatible
with mobile lipids/lactate signals (1.23, 0.8 and 0.83 ppm), although not over the described
maximum positions.

The mobile lipids/lactate signal was also one of the differential trends between the
responding and control/unresponsive zones described by us [5] in this same preclinical
GB model. Lactate is described to be an indicator of altered tumour metabolism, with
a less efficient process of aerobic glycolysis that converts pyruvate into Lac, ultimately
resulting in energy (ATP) [66,67], and it has been investigated for a long time as one of
the signals for assessing the response to therapy in human gliomas [68]. The appearance
of mobile lipids due to cell apoptosis, especially from methylene and methyl groups at
ca. 1.3 and 0.9 ppm, has been described by several authors (e.g., [69,70]. Myo-inositol is
involved in central nervous system osmoregulation and is elevated in response to brain
inflammation, highlighting its potential in assessing the response to therapy [67]. Its
concentration may indicate a metabolic reaction to osmotic changes in the brain, and
some authors have investigated the potential of myo-inositol to assess the response to
antiangiogenic therapy [71].

Finally, our results suggest that one additional spectral position contributing to this
classification is at 2.71 ppm. This could also have a biochemical explanation: some authors
have described the appearance of a ca. 2.8 ppm signal from polyunsaturated fatty acids
(PUFA) appearing due to cell apoptosis after treatment [72], and it was also one of the
differential signals from untreated vs. treated–responding in our previous work [5]. Since
this signal has a broad feature in vivo (in our datasets, when present, it comprises the 2.7
to 2.9 ppm zone), we cannot discard that this feature is spotting the rise in PUFA signals
due to the cell death triggered by treatment. Other minor signals in activation maps lack
evident biochemical signification, and their meanings are unclear.

It is also worth mentioning that TMZ treatment with this tumour model induced the
appearance of giant, multinucleated cells [8], a well-described effect of TMZ also over
human GB cells [73]. These polyploid cells usually have senescent characteristics and a
higher metabolic rate than the euploid control population [74]. Last but not least, we should
also bear in mind that MRSI acquisitions are a reflection not only of tumour cells but of the
whole tumour microenvironment. Tumour-associated macrophages may constitute up to
40% of the tumour mass [75], displaying different phenotype characteristics, and the MRSI
pattern will also be related to their metabolism. Our previous work with GL261 GB under
TMZ treatment proved that tumours with a clear response to treatment showed a relevant
change in macrophage phenotypes, switching from a more ‘antitumour’ phenotype [76],
and it was already described by others that different macrophage phenotypes will have
different metabolic profiles [77], including glycolytic pathways involving lactate production.
Additionally, immune cells can also display relevant changes in their lipid profiles, as
reviewed by [69].
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The method was also applied to our longitudinal cases. Accordingly, Figure 5 shows
the application of the proposed 1D-CNN classifier to one characteristic case. In this case,
the exploration pre-treatment shows a control/unresponsive classification, which turns
into responding in subsequent days with growth arrest and a tumour volume decrease. At
the relapsing time frame, a heterogeneous classification arises, suggesting the reappearance
of proliferating and/or unresponsive zones.

When evaluating the colour-coded maps generated by our proposed approach against
the ground truth, we could see that our method was overall very good at identifying the
three areas (Table 8). It was particularly good at identifying the response signal (with an
average overlap of 92%), followed by the control/unresponsive tumour region (with 90%).
On some occasions, voxels were identified as T by the system when it was expected to be R
(according to the pre-defined ground truth). This is not surprising, since the heterogeneity
of GB is well recognised in the literature both at preclinical and clinical levels [78,79]. In
other words, it is perfectly feasible that a tumour is heterogeneously formed by responding
and unresponsive/highly proliferative zones, with a net result of an overall response in
the tumour volume. Still, we preferred to fall on the conservative side for the sake of
the comparisons and record those voxels as incorrectly classified, in accordance with the
pre-defined ground truth.

Utilising the same evaluation process with the Dice score, we also compared the
proposed new method with our previously developed semi-supervised approach using
NMF [5]. The comparison yielded interesting insights—particularly, how much more accu-
rate the 1D-CNN approach is at identifying the responding and the control/unresponsive
tumour regions, whilst also managing to outperform the normal region.

5. Conclusions

In this paper, we propose a new methodological approach using 1D-CNN for therapy
response assessment in the GL261 GB preclinical model under TMZ treatment. The 1D-
CNN models developed were compared against ground truth and against other previous
methods, providing evidence of high performance and competitiveness. Model explain-
ability was also achieved via the development of Grad-CAM activation maps, which
highlighted the areas of importance for model prediction, enabling further understanding
and trustability in the results. The proposed methodology may provide new and better
opportunities for therapy response assessment, with capabilities of detecting even hetero-
geneity within responding tumours. This might provide a potential pipeline for therapy
response tracking, also bearing the potential of producing earlier relapsing hints.
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https://www.uab.cat/web/experimentacio-amb-animals/presentacio-1345713724929.html
https://www.uab.cat/web/experimentacio-amb-animals/presentacio-1345713724929.html
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