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A B S T R A C T   

In dietary risk assessment of plant protection products, residues of active ingredients and their metabolites need 
to be evaluated for their genotoxic potential. The European Food Safety Authority recommend a tiered approach 
focussing assessment and testing on classes of similar chemicals. To characterise similarity, in terms of meta-
bolism, a metabolic similarity profiling scheme has been developed from an analysis of 46 chemicals of stro-
bilurin fungicides and their metabolites for which either Ames, chromosomal aberration or micronucleus test 
results are publicly available. This profiling scheme consists of a set of ten sub-structures, each linked to a key 
metabolic transformation present in the strobilurin metabolic space. This metabolic similarity profiling scheme 
was combined with covalent chemistry profiling and physico-chemistry properties to develop chemical cate-
gories suitable for chemical prioritisation via read-across. The method is a robust and reproducible approach to 
such read-across predictions, with the potential to reduce unnecessary testing. The key challenge in the approach 
was identified as being the need for metabolism data and individual groups of plant protection products as the 
basis for the development of such profiling schemes.   

1. Introduction 

The European Food Safety Authority (EFSA) requires an assessment 
of the genotoxicity potential for fungicide residues, where the term 
residue is defined as any compound associated with the active ingredient 
(EFSA (Scientifc Committee), 2016). More specifically, residues that 
humans could potentially be exposed to through their diet need to be 
assessed for hazard, including genotoxicity. To this end, EFSA have 
published guidance detailing a workflow that includes category forma-
tion and read-across for the prediction of genotoxicity (EFSA (Scientific 
Committee), 2011). Category formation relates to deriving criteria 
describing chemical similarity and demonstrating adherence to those 
criteria for a set of chemicals, while read-across relates to predicting 
toxicological data-gaps utilising existing data from a chemical (or 
chemicals) within the category (Schultz et al., 2015). 

The general approach is that plant protection residues should not 
increase the hazard to humans (and livestock). Thus, within a set of 
(structurally similar) plant protection residues, a category, a represen-
tative number need to have in vitro and/or in vivo data for gene mutation 
as well as structural and numerical chromosomal aberration. For a 
negative read-across prediction, data (for the category members) from 
the Ames test (gene mutation) and an in vitro micronucleus test (struc-
tural and numerical chromosomal aberration) are the minimal 
requirement to enable the data gap to filled. The availability of addi-
tional negative in vivo data would add further weight of evidence to the 
read-across prediction (especially where exposure to the bone marrow 
has been demonstrated from toxicokinetic studies). If a read-across 
prediction of genotoxicity is negative, then no further experimental 
testing is required under the EFSA guidance (EFSA (Scientific Commit-
tee), 2011). In contrast, a positive read-across prediction for 
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genotoxicity requires further experimental data to be generated in a 
tiered approach. For example, if an initial in vitro micronucleus test 
confirms the positive read-across prediction for chromosome damage, 
an in vivo micronucleus test would be triggered. 

The key step in the use of the category formation approach is the 
ability to confidently define ‘similarity’ between chemicals (Enoch et al., 
2010; Enoch et al., 2013; OECD, 2007). In terms of the use of category 
formation in the EFSA genotoxicity workflow noted above, defining 
similarity is relatively straightforward for potentially genotoxic chem-
icals. This is due to the key molecular initiating event for DNA-reactive 
genotoxicity being the formation of a covalent bond between nucleo-
philic centres in DNA and a chemical capable of behaving as an elec-
trophile (either directly or after metabolic activation) (Enoch and 
Cronin, 2010, 2012; Benigni and Bossa, 2008; Benigni et al., 2009; 
Mekenyan et al., 2004, 2007; Serafimova et al., 2007). The associated 
chemistry can be encoded easily as structural alert-based in silico pro-
filers that enable chemicals to be assigned to a category based on the 
presence of a common alert. In contrast, defining similarity between 
chemicals that lack an alert for DNA reactivity is more challenging due 
to the lack of such key structural features (Schultz et al., 2018). 

Recent research has shown that “structural space alerts” can be 
defined from an analysis of the genotoxicity and metabolism data 
available in the Draft Assessment Report/Renewal Assessment Report 
(DAR/RAR) documents of plant protection products (available from the 
EFSA website) (Enoch et al., 2022a, 2022b). This analysis showed how 
metabolic information could be used to drive the development of the 
structural space alerts – enabling chemical groupings to be defined in 
which common metabolic pathways were present in the analogues – 
something that has been identified as being a key measure of similarity 
(Gadaleta et al., 2020; Yordanova et al., 2021; Boyce et al., 2022). The 
analysis also showed how these structural space alerts could be used in 
conjunction with other profiling schemes (for example, those available 
in the OECD QSAR Toolbox) to build a weight of evidence for the pre-
diction of Ames, chromosomal aberration, and the micronucleus assays 
via read-across, with predictions being possible for both in vitro and in 
vivo endpoints. However, the key limitation with the previously pub-
lished structural space alerts was that each alert was not explicitly linked 
to a single metabolic transformation. Thus, the aim of the current study 
was to expand the previously published structural space alert approach 
into a metabolic profiling scheme in which such information is included. 
The idea being to make the resulting read-across predictions more 
transparent from a metabolism point of view. The approach is exem-
plified using the strobilurin group of plant protection products. 

2. Method 

2.1. Dataset 

A dataset of 46 strobilurin fungicide active ingredients and metab-
olites with either Ames, in vitro chromosomal aberration or in vivo 
micronucleus test results were extracted from the 10 publicly available 
DAR/RAR documents (available from efsa.europe.eu). Genotoxicity 
data were extracted for all compounds that had been directly tested or 
for those chemicals that satisfied the definition of a major metabolite (in 
the rat) as outlined in the EFSA guidance (EFSA (Scientifc Committee), 
2016). In all cases bioavailability had been proven for the in vivo test 
data (for example, exposure to the bone marrow in the micronucleus 
test). The dataset, termed the ‘strobilurin genotoxicity dataset’ con-
tained the following test results (in vitro assays with S9 fraction, Ames 
tests in the standard battery).  

• Ames: 46 chemicals (all negative)  
• In vitro chromosomal aberration: 30 chemicals (23 negative, 7 

positive)  
• In vivo chromosomal aberration: 1 chemical (negative)  
• In vitro micronucleus: 14 chemicals (12 negative, 2 positive)  

• In vivo micronucleus: 24 chemicals (all negative) 

All chemical structures and associated genotoxicity data are avail-
able in the Supplementary Information. 

2.2. Metabolic similarity profiling scheme 

The development of the metabolic similarity profiling scheme uti-
lised the following two steps.  

1. Definition of the metabolic maps for the strobilurin fungicides: This 
analysis involved inspection of the available metabolism data in the 
10 DAR/RAR documents to identify metabolic transformations 
common to this class of fungicides. These metabolic transformations 
were the oxidation, reduction, and hydrolysis reactions centred on 
either the methoxy-acrylate, oximino-acetamides, oximino-acetates, 
dihydro-dioxazines, methoxy-acetamides, and methoxy-carbamates 
moieties.  

2. Sub-structure identification: Common sub-structures were then 
identified from the metabolic maps developed in step 1. These sub- 
structures defined the key functional groups present within chem-
icals identified as undergoing the key transformations defined in the 
metabolic maps. 

2.3. Chemical profiling 

Chemicals in both datasets were profiled using the profiling schemes 
within the OECD QSAR Toolbox (V4.1.1). A subset of the available 
profilers was utilised based on the results of a previous study into their 
suitability for read-across predictions within the plant protection 
chemical space (Enoch et al., 2022a, 2022b). These profilers were (CA is 
chromosomal aberration and MNT is the micronucleus test):  

• DNA alerts for AMES, CA and MNT by OASIS  
• Protein binding alerts for CA by OASIS 

3. Results and discussion 

The aim of this study was to develop a metabolic similarity profiling 
scheme to enable the genotoxicity of the strobilurin group of plant 
protection products to be predicted via read-across. A series of sub- 
structures linked to key metabolic transformations were defined based 
on an expert analysis of the metabolic information available in the DAR/ 
RAR documents for the strobilurin group of plant protection products. 
The key advantage of the approach being that the resulting category 
members undergo a common set of metabolic transformations, which 
increases the robustness, reliability, and repeatability of the approach. 

3.1. Available metabolism data 

Metabolism data were collected from the eight publicly available 
DAR/RAR reports for the strobilurin fungicides. These active ingredients 
are divided into six classes based on the strobilurin functional group 
(www.frac.info) as shown in Table 1 (methoxy-acrylates, oximino- 
acetamides, oximino-acetates, dihydro-dioxazines, methoxy-acet-
amides, and methoxy-carbamates). Inspection of the available DAR/ 
RAR documentation for these compounds showed the primary site of 
metabolism to be the strobilurin functional group (functional groups 
shown in Table 1). In addition, the DAR/RAR documents also showed 
metabolic cleavage of the ether linkage present in the two scaffolds to be 
common across this class of fungicides (Fig. 1). 

3.2. Metabolic map development 

Given that the majority of the metabolism for the strobilurin fungi-
cides occurs at the strobilurin functional group, it was decided that these 

S.J. Enoch et al.                                                                                                                                                                                                                                 

http://www.frac.info


Regulatory Toxicology and Pharmacology 144 (2023) 105484

3

transformations would be used to define metabolic similarity within a 
chemical category. An analysis of the metabolic information available in 
the DAR/RAR documents for the rat resulted in the creation of six 

metabolic maps, one for each class of strobilurin fungicide. Fig. 2 
demonstrates an example of such a map for the methoxy-acrylate stro-
bilurins which shows the parent structure to potentially undergo five 
key metabolic pathways:  

A. Dealkylation: this reaction involves the oxidation of the methoxy 
enol ether group to an alcohol. Inspection of the available data did 
not show an equivalent transformation for simple aliphatic methoxy 
groups (i.e., those lacking the adjacent alkene moiety).  

B. Ester hydrolysis: this reaction involves hydrolysis of the ester group, 
to give the corresponding carboxylic acid. This type of trans-
formation was extremely common in the metabolic maps in the DAR/ 
RAR documents, with most metabolites that contained an ester un-
dergoing hydrolysis.  

C. Alkene reduction: this reaction involves the reduction of the alkene 
moiety to an alkane. This transformation was noted as a key step in 
the overall metabolism of the methoxy-acrylate moiety as it enables 
two further transformation types to occur on the resulting alkane 
(pathways D and E).  

D. Alcohol oxidation: the presence of a primary alcohol moiety enables 
a two-step oxidation reaction to occur in which the alcohol is con-
verted to an aldehyde and then a carboxylic acid. The last step in this 
pathway involves the cleavage of the carboxylic acid moity – this 
only occurs for aliphatic carboxylic acids (i.e., those connected to a 
primary carbon atom).  

E. Hydroxylation: the presence of a secondary or tertiary carbon atoms 
between an aromatic ring and carbonyl moiety enables a hydroxyl-
ation reaction to occur. This is a widespread transformation that 
occurs in most cases featuring this structural feature according to the 
data in DAR/RAR documents. 

Table 1 
Definition of the strobilurin chemical classes for which metabolism data are 
publicly available publicly (in all cases R = aromatic ring, FRAC = Fungicide 
Resistance Action Committee).  

Active ingredient FRAC class Strobilurin functional group 

Picoxystrobin 
Azoxystrobin 

Methoxy-acrylates 

Dimoxystrobin Oximino-acetamides 

Kresoxim-methyl 
Trifloxystrobin 

Oximino-acetates 

Fluoxastrobin Dihydro-dioxazines 

Mandestrobin Methoxy-acetamides 

Pyraclostrobin Methoxy-carbamates 

Fig. 1. Metabolic cleavage of the ether linkages in the two scaffolds present in the active ingredients listed in Table 1 (methoxy-acrylate strobilurin functional 
group shown). 

Fig. 2. Metabolic map for the methoxy-acrylate strobilurin fungicides from an analysis of the DAR/RAR documents for picoxystrobin and azoxystrobin (R = aromatic 
ring, transformations defined from an analysis of rat metabolism). 
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It is important to realise that the metabolic maps represent a sum-
marised overview of the key common transformations for each strobi-
lurin group. The metabolic information in the DAR/RAR documents is 
significantly more complex than (for example) the map shown in Fig. 2. 
For example, ester hydrolysis is only shown once in Fig. 2, even though 
the available metabolic data indicated that most esters undergo hydro-
lysis. The same is true of the other metabolic reactions (in that if the 
relevant structural features are present in a molecule, then they are 
likely to occur). The metabolic maps for the other strobilurin groups are 
available in the Supplementary Information. 

3.3. Metabolic similarity profiling scheme 

The initial step in the development of the metabolic similarity 
profiling scheme was the systematic naming of the transformations. This 
was important as the similarity within a category was defined based on 
the presence of a set of common metabolic transformations shared by 
the target chemical (the chemical with a genotoxicity data gap) and the 
analogues (see case study for further details). Thus, the transformations 
shown in the metabolic map in Fig. 2 were named as detailed in Table 2. 
The naming system being based on the most common phase 1 trans-
formations as defined in references (21, 22). Two levels of naming were 

employed, these being:  

1) Metabolism class. This defines the generic type of metabolic reaction 
occurring between two metabolically related structures in the map in 
terms of oxidation, reduction, or hydrolysis.  

2) Metabolic transformation: This defines the type of transformation 
occurring at a functional group level that is required to convert one 
structure into another. 

A similar analysis was performed for the other classes of strobilurin 
fungicides enabling a set of ten common transformations to be defined as 
shown in Table 2 (the metabolic maps for the remaining strobilurin 
fungicides are available in the Supplementary Information). Within 
Table 2 the parent sub-structure defines the structural space alert used to 
profile the dataset to identify compounds with genotoxicity data from 
the dataset. The analysis showed four of the seven sub-structures to be 
present in more than one class of strobilurin fungicide, with the 
remaining six being present only in the methoxy-acrylates class. In 
addition, most sub-structures have multiple genotoxicity data associated 
with them (note, that more than one sub-structure can be present in each 
molecule – in such cases the associated genotoxicity data shown in 
Table 2 has been counted against each sub-structure present). The 

Table 2 
Common metabolic transformations, and associated genotoxicity data, defined for the strobilurin group of plant protection products (where CA = chromosomal 
aberration, MNT = micronucleus test, N/A = non available, ‘-ve’ indicates a negative result, ‘+ve’ indicates a positive result – the preceding numbers indicating how 
many chemicals that were negative or positive, all positive in vitro CA data were subsequently shown to be negative in an in vivo MNT).  

ID Metabolism Class Metabolic Transformation Sub-structures Strobilurin Genotoxicity data 

Parent Child 

1 Oxidation Dealkylation 

R = sp2 carbon 

Methoxy acrylates Ames: 3 -ve 
In vitro CA: 1 +ve; 1 -ve 
In vivo CA: 1 -ve 
In vivo MNT: 2 -ve 

2 Oxidation Dealkylation 

R = sp2 carbon 

Oximino acetamides 
Oximino acetates 
Dihydro dioxazines 

Ames: 22 -ve 
In vitro CA: 12 -ve; 1 +ve 
In vitro MNT: 7 -ve 
In vivo MNT: 10 -ve 

3 Oxidation Dealkylation 

R = sp2 carbon 

Methoxy acetamides 
Methoxy carbamates 

Ames: 4 -ve 
In vitro CA: 3 -ve; 1 +ve 
In vitro MNT: 1 -ve; 1 +ve 
In vivo MNT: 4 -ve 

4 Oxidation Ester hydrolysis 

R = any carbon 

Methoxy acrylates 
Oximino acetamides 
Oximino acetates 

Ames: 14 -ve 
In vitro CA: 9 -ve, 2 +ve 
In vitro MNT: 6 -ve; 2 +ve 
In vivo CA: 1 -ve 
In vivo MNT: 8 -ve 

5 Oxidation Aliphatic hydroxylation 

R = any carbon 

Methoxy acetamides 
Oximino acetamides 

Ames: 13 -ve 
In vitro CA: 8 -ve, 1 +ve 
In vitro MNT: 3 -ve 
In vivo MNT: 7 -ve 

6 Reduction Alkene reduction 

R = sp2 carbon 

Methoxy acrylates Ames: 3 -ve 
In vitro CA: 1 -ve, 1 +ve 
In vivo CA: 1 -ve 
In vivo MNT: 2 -ve 

7 Oxidation Benzylic hydroxylation 

R = Methyl, hydrogen 

Methoxy acrylates Ames: 1 -ve 

8 Oxidation Alcohol oxidation 
R = sp3 carbon 

Methoxy acrylates No data 

9 Oxidation Aldehyde oxidation 

R = sp3 carbon 

Methoxy acrylates No data 

10 Reduction Carboxylic acid cleavage 

Any carbon   

Methoxy acrylates No data  

S.J. Enoch et al.                                                                                                                                                                                                                                 



Regulatory Toxicology and Pharmacology 144 (2023) 105484

5

exceptions were sub-structure seven which only has a single Ames test 
and sub-structures eight, nine and ten that have no data associated with 
them. 

3.4. Case study: data gap filling for metabolite R234886 from 
azoxystrobin 

The metabolic information outlined in Table 2 can be utilised to 
identify ‘metabolically similar’ compounds to fill data-gaps via read- 
across. As an example, consider the metabolite R234886 of the active 
ingredient azoxystrobin. Inspection of the available data for this 
metabolite showed only a negative Ames study, meaning data gaps 
existing for structural and numerical chromosomal aberration. Meta-
bolic profiling of this chemical shows that it to potentially undergo two 
metabolic transformations: dealkylation of the methoxy group (sub- 
structure 1 in Table 2) and alkene reduction (sub-structure 6 in Table 2). 
Inspection of the available data showed there to be two chemicals in the 
dataset that contained both sub-structures. However, both analogues 
also contained an additional sub-structure related to ester hydrolysis 
(sub-structure 4 in Table 2) that was not present in the target chemical. 
However, the available data associated with this type of transformation 
are negative in the related genotoxicity assays (Table 2). The chemical 
structure and associated genotoxicity data for the metabolically similar 
analogues identified for the R234886 are shown in Table 3. 

An advantage of the proposed approach is the ability to identify 
additional analogues from the other strobilurin chemical classes that 
have the same metabolic profile as the target chemical as sources of 
secondary evidence. Inspection of Table 2 shows there to be a further 
two sub-structures associated with corresponding dealkylation event 
present in the other five classes of strobilurin plant protection products 
(sub-structures 2 and 3 in Table 2). These data add a significant weight 
of evidence that the dealkylation metabolic pathway does not lead to 
genotoxicity – especially the negative Ames and in vivo micronucleus test 
results. Finally, none of the compounds triggered any structural alerts 
within the OECD QSAR Toolbox when profiled with the OASIS endpoint 
specific profilers for genotoxicity. The sole use of the OASIS profilers 
being supported by previous studies in which the applicability domains 
of the various genotoxicity profiling schemes within the OECD QSAR 
Toolbox was assessed (Enoch et al., 2022a, 2022b). Taking all the 
available data together enabled prediction of R234886 as negative for 
structural and numerical chromosomal aberration via read-across. 
Given that the bioavailability of the test compounds had been previ-
ously demonstrated for all the in vivo test results (an important addi-
tional piece of evidence in the absence of in vitro chromosomal 
aberration or micronucleus test data), no further experimental testing 
would be required within the EFSA guidance (EFSA (Scientific Com-
mittee), 2011). 

3.5. Metabolic similarity workflow 

The key aim of this study was to develop a metabolic similarity 
profiling scheme for the strobilurin group of plant protection products. It 

is important to outline how the approach outlined in this study could be 
applied to other class of plant protection products, given the availability 
of metabolic information in a set of DAR/RAR documents. This is as 
outlined in step 1–6 below. As with the previous work in this area 
(Enoch et al., 2022a, 2022b), the protocol also enables other lines of 
evidence to be included, for example, predictions from endpoint specific 
in silico profiling schemes. In principle this approach can be applied to 
any dataset using the workflow outlined as follows:  

1. Key functional group/groups identification: the initial step in the 
analysis is the identification of a key functional group of metabolic 
concern within the agrochemical class of interest. Typically, this will 
be a single moiety of high concern and/or the site of primary 
metabolism within a class of agrochemicals. The method is less 
applicable to classes of agrochemicals that undergo complex meta-
bolism involving multiple functional groups.  

2. Metabolic map development: having identified the key functional 
group (or groups) of metabolic concern, the next step is to gather 
available metabolic data to enable the known transformations of this 
group/these groups to be defined. The most common source of these 
types of data are the publicly available DAR/RAR documents.  

3. Transformation naming: this is the key step in the approach in which 
expert judgement is used to name the transformations that have been 
identified during the metabolic map development. The naming 
convention needs to be systematic as the transformation names are 
used to define metabolic similarity within a category. In the current 
study several key references sources have been identified to aid this 
process (Testa et al., 2007; Trager et al., 2007). 

4. Sub-structure definition: sub-structures that define the key func-
tional groups capable of undergoing the metabolic transformations 
identified in step 3 are defined. These sub-structures enable ana-
logues to be identified based on the presence of a common metabolic 
transformation present in the target and analogues.  

5. Identification of metabolically similar analogues: the sub-structures 
associated with the key transformations identified in step 4 are uti-
lised to identify analogues. All possible analogues are returned in 
situations where a target chemical has more than one sub-structure 
present.  

6. Additional profiling: evidence from other in silico profiling schemes 
such as the endpoint specific profilers in the OECD QSAR Toolbox 
can be added to further substantiate the weight of evidence. For a 
recommendation of suitable profiling schemes see references (Enoch 
et al., 2022a, 2022b). 

4. Conclusions 

This study has outlined the development of a metabolic similarity 
profiling scheme for the strobilurin group of plant protection products to 
enable genotoxicity data-gaps to be filled via read-across. In addition, a 
protocol has been developed that enables such profiling schemes to be 
developed for any class of plant protection products for which meta-
bolism information is available in DAR/RAR documents. The key 

Table 3 
Metabolic profiling results for metabolite R234886 corresponding to dealkylation of the methoxy group and the reduction of an alkene (sub- 
structures 1 and 6 in Table 2). Where CA = chromosomal aberration, MNT = micronucleus test, R/A = read-across prediction. All in vitro data 
carried out with and without S9 liver fractions.  

R234886 (Target) Picoxystrobin Azoxystrobin 
Ames: negative Prediction: 

In vivo CA, MNT: negative (R/A) 
Ames, In vitro CA, 
In vivo MNT: negative 

Ames, In vivo CA, 
In vivo MNT: negative 
In vitro CA: positive  
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advantage to the approach being that all the resulting analogues iden-
tified within a category are metabolically related to the target chemical 
of interest. However, the proposed workflow does rely on the avail-
ability of metabolic data (typically from DAR/RAR documents) and 
expert judgement around the key site (or sites) of metabolism upon 
which to focus the development of the metabolic maps. In addition, it is 
possible that metabolites may fall out of the scope of the defined 
structural space alerts. The approach was exemplified using a case study 
approach that showed these chemical categories could be used to predict 
genotoxicity or prioritise strobilurin residues for further targeted 
testing. Importantly, this approach enabled an assessment of gene mu-
tation as well as structural and numerical chromosomal aberrations. 
Finally, the approach presented enables multiple lines of evidence to be 
included to strengthen the weight of evidence of the read-across 
prediction. 
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