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86 Abstract Purpose: The aim of this work was to optimize biodegradable polyester poly
(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL, microparticles as 
sustained release (SR) carriers for pulmonary drug delivery. 
Methods: Microparticles were produced by spray drying directly from double 
emulsion with and without dispersibility enhancers (L-arginine and L-leucine) 

(0.5–1.5%w/w) using sodium fluorescein (SF) as a model hydrophilic drug. 
Results: Spray dried microparticles without dispersibility enhancers exhibited 
aggregated powders leading to low fine particle fraction (%FPF) (28.79 ± 
3.24), fine particle dose (FPD) (14.42 ± 1.57 µg), with a mass median 
aerodynamic diameter (MMAD) 2.86 ± 0.24 µm. However, L-leucine was 

significantly superior in enhancing the aerosolization performance (L-arginine:%

FPF 27.61 ± 4.49–26.57 ± 1.85; FPD 12.40 ± 0.99–19.54 ± 0.16 µg 
and MMAD 2.18 ± 0.35–2.98 ± 0.25 µm, L-leucine:%FPF 36.90 ± 3.6–

43.38 ± 5.6; FPD 18.66 ± 2.90–21.58 ± 2.46 µg and MMAD 2.55 ± 
0.03–3.68 ± 0.12 µm). Furthermore, incorporating L-leucine (1.5%w/w) 

reduced the burst release (24.04 ± 3.87%) of SF compared to unmodified 
formulations (41.87 ± 2.46%), with both undergoing a square root of time 
(Higuchi’s pattern) dependent release. Comparing the toxicity profiles of PGA-
co-PDL with L-leucine (1.5%w/w) (5 mg/ml) and poly(lactide-co-glycolide), 

(5 mg/ml) spray dried microparticles in human bronchial epithelial 16HBE14o- 
cell lines, resulted in cell viability of 85.57 ± 5.44 and 60.66 ± 6.75% 
respectively, after 72 h treatment. 
Conclusion: The above data suggest that PGA-co-PDL may be a useful 
polymer for preparing SR microparticle carriers, together with dispersibility 
enhancers, for pulmonary delivery. 
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12 ABSTRACT
13 Purpose The aim of this work was to optimize biodegradable
14 polyester poly(glycerol adipate-co-ω-pentadecalactone), PGA-
15 co-PDL, microparticles as sustained release (SR) carriers for
16 pulmonary drug delivery.
17 Methods Microparticles were produced by spray drying
18 directly from double emulsion with and without dispersibility
19 enhancers (L-arginine and L-leucine) (0.5–1.5%w/w) using
20 sodium fluorescein (SF) as a model hydrophilic drug.
21 Results Spray dried microparticles without dispersibility
22 enhancers exhibited aggregated powders leading to low fine
23 particle fraction (%FPF) (28.79±3.24), fine particle dose (FPD)
24 (14.42±1.57 μg), with a mass median aerodynamic diameter
25 (MMAD) 2.86±0.24 μm. However, L-leucine was significantly
26 superior in enhancing the aerosolization performance (L-argi-
27 nine:%FPF 27.61±4.49–26.57±1.85; FPD 12.40±0.99–
28 19.54±0.16 μg and MMAD 2.18±0.35–2.98±0.25 μm,
29 L-leucine:%FPF 36.90±3.6–43.38±5.6; FPD 18.66±2.90–

3021.58±2.46 μg and MMAD 2.55±0.03–3.68±0.12 μm).
31Furthermore, incorporating L-leucine (1.5%w/w) reduced the
32burst release (24.04±3.87%) of SF compared to unmodified
33formulations (41.87±2.46%), with both undergoing a square
34root of time (Higuchi’s pattern) dependent release. Comparing
35the toxicity profiles of PGA-co-PDL with L-leucine (1.5%w/w)
36(5 mg/ml) and poly(lactide-co-glycolide), (5 mg/ml) spray dried
37microparticles in human bronchial epithelial 16HBE14o- cell
38lines, resulted in cell viability of 85.57±5.44 and 60.66±
396.75% respectively, after 72 h treatment.
40Conclusion The above data suggest that PGA-co-PDL may be
41a useful polymer for preparing SR microparticle carriers,
42together with dispersibility enhancers, for pulmonary delivery.

43KEY WORDS dry powder inhalation . microparticles .
44polyester polymers . pulmonary drug delivery . sustained drug
45release

46INTRODUCTION

47Poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-
48PDL, is a biodegradable polyester polymer synthesized via
49lipase enzyme, from candida albicans, catalyzed ring opening
50co-polymerization reaction of activated diacid, glycerol and
51lactone monomers (1). This polymer is synthesized by a one
52step reaction via a single non-biosynthetic pathway under
53mild reaction conditions (2), compared to fermentation and
54other chemical processes that have been extensively studied
55for the synthesis of biodegradable aliphatic polyesters (3). In
56addition, these polymers are designed to overcome the lack
57of chemical functionality associated with poly(lactic acid)
58(PLA) and its derivatives, due to the presence of pendant
59hydroxyl groups from the glycerol monomer in the PGA-
60co-PDL polymer, which permit the attachment of chemical
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61 moieties such as pharmaceutically active drugs. Further-
62 more, the degree of hydrophilicity can be altered by
63 varying the backbone chemistry (4). Previously PGA-co-
64 PDL has been formulated as microparticles for delivery of
65 dexamethasone phosphate and ibuprofen (5,6), and inves-
66 tigated in our group for delivery of macromolecules using
67 α-chymotrypsin as a model protein (7). In the current
68 investigation, we propose using these polyester polymers as
69 pulmonary carriers for sustained delivery (SR) of therapeu-
70 tic agents to the lungs.
71 Pulmonary drug delivery is an attractive, convenient and
72 effective route for the administration of therapeutic drugs,
73 macromolecules (8) proteins and peptides (9), and is an
74 alternative for the treatment of many pulmonary disorders,
75 such as, lung cancer (10) and cystic fibrosis (11) enhancing
76 the pharmacokinetic effect of the therapeutic agent. Dry
77 powder inhalers (DPIs) are commonly used as they are
78 portable and less expensive compared to nebulizers, and
79 are considered to be environmentally friendly due to the
80 absence of propellant, as well as overcoming the synchro-
81 nization problems associated with pressurized metered dose
82 inhalers (pMDIs) (12,13). Furthermore, there is improved
83 stability in storage for therapeutic agents formulated as dry
84 powders (13).
85 Lately, research has focused on protecting the therapeu-
86 tic agent from degradation or premature clearance by a
87 suitable delivery system, and using the lungs as a portal for
88 sustained drug release and absorption over many hours to
89 days. SR therapeutic agents can reduce side effects and the
90 frequency of administration, hence increasing patient
91 acceptability and compliance (14,15). However, the clear-
92 ance mechanisms of the lung towards foreign particles are
93 likely to jeopardize the potential of a SR formulation to
94 release therapeutic agents over extended periods. Therefore
95 to achieve a SR effect, pulmonary formulations should
96 possess a small mass median aerodynamic diameter
97 (MMAD) and high fine particle fraction (%FPF) in order
98 to minimize central/tracheobronchial deposition and by-
99 pass the effects of mucociliary clearance (16). This has
100 generally been achieved using polymeric particles such as,
101 poly(ether-anhydride) and poly(lactic-co-glycolic acid), PLGA,
102 as carriers for pulmonary delivery to achieve sustained or
103 controlled release of the intended therapeutic agent (17–
104 21). However, PLGA and PLA have many shortcomings,
105 such as, the polymer backbone cannot be chemically
106 functionalized, stability of macromolecules are affected
107 due to the degradation of PLGA and PLA polymers to its
108 acidic monomers, (22), and are often associated with drug
109 release in a triphasic manner (22,23). This is partly due to
110 the fact that PLGA and PLA were not specifically designed
111 for use in the lungs. Thus, a new polymer which overcomes
112 these problems is imperative in the formulation of carriers
113 for pulmonary delivery.

114Previously; we investigated the aerosol performance of
115PGA-co-PDL microparticles prepared via the emulsion
116solvent evaporation technique (w/o/w) using sodium
117fluorescein as a model drug (24). This study emphasized
118the aggregated properties of the produced microparticles as
119the%FPF did not exceed 15% (24). Consequently, this
120investigation aims to enhance the respirable fraction and
121maximize the drug deposition in the lung, using sodium
122fluorescein (SF) as a model hydrophilic drug, via spray
123drying from double emulsion (20,25). Furthermore, the
124addition of various dispersing agents, such as L-arginine and
125L-leucine amino acids, as potential dispersibility enhancers
126(26,27) to improve the aerosol performance was investigat-
127ed. In addition, to ensure the safety of PGA-co-PDL a
128toxicity study was also performed in normal human
129bronchial epithelium cell lines utilizing the MTT assay
130with comparison to spray dried PLGA microparticles.

131MATERIALS AND METHODS

132Materials

133Novozyme 435 (a lipase from Candida antartica immobi-
134lized on a microporous acrylic resin) was purchased from
135Biocatalytics, USA. ω-pentadecalactone, sodium fluorescein
136(SF), poly(vinyl alcohol) (PVA, 9–10 KMw, 80%), L-leucine
137and L-arginine, RPMI-1640 medium with L-glutamine and
138NaHCO3, thiazoly blue tetrazolium bromide (MTT), poly
139(DL-lactide-co-glycolide) (PLGA) (50:50) inherent viscosity
1400.15–0.25, were obtained from Sigma-Aldrich, UK.
141Dichloromethane (DCM) was purchased from BDH labo-
142ratory supplies, UK. Tetrahydrofuran (THF), 75 cm2/
143tissue culture flask with vented cap, 24 well tissue culture
144plates, 96 well flat bottom plates, Antibiotic/Antimycotic
145Solution (100X) were purchased from Fisher Scientific,
146UK. Divinyl adipate was obtained from Fluorochem, UK
147and Foetal Calf Serum (FCS) heat inactivated was
148purchased from Biosera UK. 16HBE14o- cells were
149produced by Dr Dieter Gruenert from the California
150Pacific Medical Center, University of California San
151Francisco, USA.

152Polymer Synthesis

153The co-polymer PGA-co-PDL was synthesized via enzyme
154catalyzed condensation and ring opening co-polymerization
155reactions as described by Thompson et al. (28). The
156synthesized polymer was characterized by gel permeation
157chromatography, GPC (Viscotek TDA Model 300 using
158OmniSEC3 operating software), calibrated with polysty-
159rene standards (polystyrene standards kit, Supelco, USA),
160and H1-NMR spectroscopy (Bruker AVANCE 300, Inverse
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161 probe with B-ACS 60, Autosampler with gradient chemm-
162 ing) as described by Thompson et al. (28).

163 Microparticles Preparation

164 PGA-co-PDL microparticles were prepared by spray drying
165 directly from double emulsion (w/o/w). Briefly, 5 mg SF
166 was dissolved in 1.5 ml distilled water and homogenized
167 (IKA yellowline DI 25 basic at 8000 rpm for 3 min) in
168 13 ml DCM containing 390 mg polymer to form the first
169 w/o emulsion. This was gradually added to the second
170 aqueous phase, 135 ml distilled water containing 1%w/v
171 PVA as an emulsifier, under moderate stirring conditions
172 (Silverson L4RT mixer, 2000 rpm at room temperature,
173 25°C) to form the w/o/w emulsion (PGA-co-PDL, control).
174 L-arginine (0.5, 1, 1.5%w/w of polymer weight) (Repre-
175 sented in text as: PGA-co-PDL, 0.5% Arg; PGA-co-PDL,
176 1% Arg and PGA-co-PDL, 1.5% Arg) and L-leucine (0.5, 1,
177 1.5%w/w of polymer weight)(Represented in text as: PGA-
178 co-PDL, 0.5% Leu; PGA-co-PDL, 1% Leu and PGA-co-
179 PDL, 1.5% Leu) were incorporated into the second
180 aqueous phase in addition to PVA. The produced emulsion
181 was spray dried at room temperature (25°C) utilizing a
182 mini-spray dryer (Büchi, B-290 Flawil, Switzerland) with
183 standard two-fluid nozzle (0.7 mm diameter), inlet and
184 outlet temperature of 100 and 47°C respectively, a pump
185 flow rate of 5–7 ml/min, aspirator at 38 m3/h and air flow
186 at 600 L/h. Control spray dried PLGA microparticles
187 incorporating L-leucine (1.5%w/w, PLGA, 1.5% Leu), for
188 comparison to optimum PGA-co-PDL microparticles, were
189 produced as above.

190 Microparticles Characterization

191 Yield, Encapsulation Efficiency and Drug Loading

192 10 mg of spray dried microparticle formulations were
193 weighed and solubilized in DCM/water mixture (2:1) to
194 dissolve the polymer and extract SF. The two phases were
195 separated by centrifugation (5 min at 16200 X g, accuSpin
196 Micro 17) and the aqueous layer analyzed for SF using
197 spectroscopy at 273 nm. The yield of spray dried micro-
198 particles was quantified as a percentage mass of expected
199 total powder yield (n=6). The percentage encapsulation
200 efficiency (EE) and drug loading were determined for all
201 batches using Eqs. 1 and 2 respectively (n=6):

EEð%Þ ¼ actual weight of SF in sample
theoritical weight of SF

� �
� 100 ð1Þ

202203204

Drug Loading ¼ weight of SF in microparticles
microparticles sample weight

ð2Þ205206

207Particle Size, Zeta Potential, Powder Density and Primary
208Aerodynamic Diameter

209100 μl microparticle suspension was diluted to 5 ml using
210double distilled water and the measurements recorded at
21125°C (n=3) to determine the geometric particle size and
212zeta potential using a Zetaplus, Brookhaven Instruments,
213U.K. The poured density of spray dried microparticle
214powders were determined by adding approximately 0.5 g of
215powder to a 10 ml graduated cylinder and recording the
216volume. The tapped density was determined by tapped
217density measurements on the same samples in a 10 ml
218graduated measuring cylinder until constant volume was
219obtained (29) (n=3). Carr’s Index values for each of the
220spray dried formulations were calculated according to Eq. 3
221(30), and can provide an indication of powder flow. Carr’s
222Index flowability: 5–12%, excellent; 12–18%, good; 18–
22321%, fair; 21–25%, poor, fluid; 25–32%, poor, cohesive;
22432–38%, very poor; >40%, extremely poor. A value less
225than 25% indicates a fluid powder, whereas a value greater
226than 25% indicates a cohesive powder (31).

Carr0s Indexð%Þ ¼ Tapped density � Poured density
Tapped density

� 100 ð3Þ

227228229Theoretcial primary aerodynamic diameter (dae) was
230calculated using data acquired from geometric particle size
231(d) and tapped density (p) according to Eq. 4 (32).

dae ¼ d

ffiffiffiffiffi
p
p1

r
p1 ¼ 1 g cm�3 ð4Þ

232233

234Amorphous Nature and Water Content

235The degree of amorphous material from the spray dried
236formulations were performed using differential scanning
237calorimetry (DSC, Perkin Elmer Pyris 1). Briefly, 3–5 mg of
238sample was placed into a hermetically sealed and crimped pan.
239The samples were subjected to two scanning programs in the
240DSC using a heating rate of 20°C/min purged with nitrogen at
24120 ml/min as described previously by Thompson et al. (6). The
242weight loss of the powders as a function of temperature
243was determined using a thermogravimetric analyser
244(TGA 2050-Thermogravimetric analyzer, UK). Approx-
245imately 6–8 mg of each sample was weighed in a
246platinum pan and heated at the temperature range 25–
247260°C using a scanning rate of 10°C/min purged under
248nitrogen at 20 ml/min (n=3).

249Particle Morphology

250The spray dried microparticles were visualized by scanning
251electron microscopy (FEI—Inspect S Low VAC Scanning

Q1Poly(Glycerol Adipate-co-ω-Pentadecalactone) Spray Dried Microparticles
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252 Electron Microscope). Particles were mounted on alumin-
253 ium stubs (pin stubs, 13 mm) layered with a sticky
254 conductive carbon tab and coated in gold (10–15 nm)
255 using an EmiTech K 550X Gold Sputter Coater, 25 mA
256 for 3 min. Confocal images were obtained using a Zeiss 510
257 Meta laser scanning microscope, mounted on a Axiovert
258 200 M BP computer-controlled inverted microscope. A
259 small amount of spray dried microparticles were placed
260 onto a cover glass chamber slide (Fisher Scientific, UK),
261 and imaged by excitation with an argon ion laser at a
262 wavelength of 488 nm and a Plan Neofluar 63×/0.30
263 numerical aperture (NA) objective lens. Image analysis was
264 carried out using the Zeiss LSM software.

265 In-Vitro Aerosolisation Studies

266 The aerosol performance of spray dried microparticles was
267 determined using a Next Generation Impactor (NGI).
268 Microparticle samples (~20 mg) were manually loaded into
269 hydroxypropyl methylcellulose capsules (HPMC size 2), and
270 placed in a HandiHaler® (Boehringer Ingelheim, Ingel-
271 heim, Germany). A pump (Copley Scientific, Nottingham,
272 UK) was operated at a flow rate of 60 L/min for 4 s and
273 the NGI plates were coated with 1%w/w glycerol/metha-
274 nol solution. Following inhalation all parts of NGI were
275 washed with DCM/water (2:1), and analyzed as above.
276 The fine particle fraction (%FPF) (defined as the mass of
277 drug deposited (dae<4.6 μm), expressed as a percentage of
278 the emitted dose), mass median aerodynamic diameter
279 (MMAD) (33), and the fine particle dose (FPD), expressed
280 as the mass of drug deposited in the NGI (dae<4.6 μm),
281 was determined (n=3).

282 In-Vitro Release Studies

283 10 mg of spray dried microparticle formulations were
284 added to 1.5 ml microtubes, containing 1 ml phosphate
285 buffer saline pH 7.4 (n=3), and incubated at 37°C on an
286 orbital shaker (IKA KS 130) at 250 rpm. The supernatants
287 were collected to observe the release of SF over 24 h by
288 centrifugation (5 min at 16200 X g, accuSpin Micro 17) and
289 analysed using spectroscopy as above. The cumulative drug
290 release was assessed in different release models namely zero
291 order, first order and Higuchi’s square root plot, and a
292 correlation coefficient close to unity was used as the
293 mechanism and order of release (34).

294 Toxicity Study

295 The toxicity profiles of PGA-co-PDL (control) and PGA-co-
296 PDL, 1.5% Leu were evaluated over 24 h in normal human
297 bronchial epithelial (16HBE14o-) cell line, and compared
298 to spray dried PLGA, 1.5% Leu microparticles.

29916HBE14o- cells (passage No. 28) were cultured in 24 well
300plates with 1 ml RPMI-1640 medium supplemented with
30110% FCS/1% Antibiotic/Antimycotic solution for 24 h in
302a humidified 5% CO2/95% incubator at 37°C. The wells
303were replaced with fresh medium (1 ml) containing PGA-
304co-PDL, PGA-co-PDL, 1.5% Leu and PLGA, 1.5% Leu
305(0–5 mg/ml) (n=6) and incubated for a further 24 h as
306above, followed by the addition of 1 ml MTT solution
307(0.5 mg/ml in PBS, pH 7.4) solution to each well. After
308further 2 h incubation, the medium was removed and any
309formazan crystals generated were solubilized with 500 μl of
310isopropanol. Thereafter, aliquots of the resulting solutions
311were transferred to 96 well plates and the absorbance was
312measured using spectroscopy at 570 nm and corrected for
313background absorbance. The relative cell viability (%) was
314calculated using Eq. 5 as follows:

Viability ð%Þ ¼ A� S
CM � S

� 100 ð5Þ

315316317Where A is the absorbance of the test substance
318concentrations, S is the absorbance obtained for the
319(isopropanol) and CM is the absorbance obtained for
320untreated cells incubated with medium (control).

321Statistical Analysis

322Each formulation was compared with the control formula-
323tion 1 by a one-way analysis of variance (ANOVA) with
324Dunnett multiple comparison test. The formulations were
325then compared with each other by means of a one-way
326ANOVA with the Tukey’s comparison test. The statistical
327significance level was set at p≤0.05.

328RESULTS

329Polymer Synthesis

330The PGA-co-PDL (equimolar monomer ratio, 1:1:1)
331prepared was a white solid powder, and the nature of the
332co-polymer was confirmed from the integration pattern of
333peaks obtained from H1-NMR spectra (δH CDCl3,
334300 MHz): 1.34 (s, 22 H, H-g), 1.65 (m, 8 H, H-e, e′, h),
3352.32 (m, 6 H, H-d, d′, i), 4.05 (q)-4.18 (m) (6 H, H-a, b, c, f),
3365.2 (s, H, H-j) (Fig. 1). The molecular weight of PGA-co-
337PDL was 23.0 KDa, as determined by GPC.

Fig. 1 Chemical structure of PGA-co-PDL polymer (MW 23 KDa).
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338 Microparticles Characterization

339 A good yield of over 40% for the different formulations was
340 obtained except for PGA-co-PDL, 1.5% Arg which had the
341 lowest value of 16.4%±1.4 (Table I). Furthermore, an
342 inverse correlation between increasing arginine concentra-
343 tion and yield was observed. There was no significant
344 difference with addition of amino acids in encapsulation
345 efficiency or drug loading when comparing spray dried
346 formulations against control (PGA-co-PDL) (p>0.05,
347 ANOVA/Dunnett). In addition, all formulations had a
348 negative surface charge, with higher values observed in
349 L-leucine modified spray dried microparticles (PGA-co-
350 PDL, 0.5,1, 1.5% Leu and PLGA 1.5% Leu), indicating a
351 greater degree of colloidal stability within the dispersion
352 medium (Table I). It is also worth noting that increasing the
353 L-arginine concentration correlated with increased moisture
354 content (Table I), while an inverse correlation was observed
355 with L-leucine. However, the results for all formulations
356 were within the range of moisture content obtained from
357 spray dried powders (35,36). All formulations had a
358 geometric particle size less than 2 μm (Table I) suitable for
359 targeting the respiratory bronchioles. The tapped densities of
360 all formulations were similar (0.24±0.04–0.31±0.05 g cm−3;
361 Table I), and together with the geometric particle size,
362 were used to calculate the theoretical aerodynamic
363 diameter (dae). As shown in Table I, the dae for all
364 formulations was between 0.50±0.13–0.91±0.11. How-
365 ever, the MMAD obtained from cascade impaction studies
366 ranged from 2.18±0.35 to 3.68±0.12 μm, indicating
367 particle aggregation (duplicate or triplicate) compared to
368 geometric particle size. The aggregation was confirmed
369 from Carr’s index with values greater than 25 indicating
370 poor and cohesive flowing powders (31).
371 Figure 2 represents DSC thermograms of PGA-co-PDL
372 polymer, spray dried PGA-co-PDL (control) and PGA-co-
373 PDL, 1.5% Leu formulations respectively. The spray drying
374 process changed the thermal properties of the polymer,
375 resulting in a lower onset of melting, 50.46°C (PGA-co-
376 PDL, control) and 50.35°C (PGA-co-PDL, 1.5% Leu)
377 compared to 55.27°C for the polymer alone. In addition,
378 the endothermic peaks became broader in shape with spray
379 dried formulations coupled with a decrease in area under
380 the endothermic curve and the heat of fusion (ΔH) (Fig. 2).
381 Furthermore, PGA-co-PDL, 1.5% Leu had a broader
382 melting peak and a lower ΔH (2.484 J/g) compared to
383 control formulation (ΔH, 4.621 J/g). Scanning electron
384 microscopy (SEM) confirmed PGA-co-PDL particles had a
385 smooth surface, with no difference between the control
386 (PGA-co-PDL) and amino-acid modified formulations
387 (Fig. 3). However, L-arginine modified microparticles
388 (PGA-co-PDL, 1.5% Arg) were aggregated and appeared
389 to be fused together compared to unmodified control
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390 microparticles (Fig. 3a and b respectively), whereas,
391 L-leucine modified microparticles (PGA-co-PDL, 1.5%
392 Leu) appeared spherical in shape, with no visual evidence
393 of particle fusion (Fig. 3c). Confocal microscopy confirmed
394 SF was homogenously distributed inside the microparticles
395 in control formulation and PGA-co-PDL, 1.5% Leu (Fig. 4)
396 during the emulsion/spray drying process.

397 In-Vitro Aerosolisation Studies

398 SF deposition data obtained from spray dried formulations
399 indicated there was a difference in aerosolisation perfor-
400 mance between the type and concentration of amino acids
401 used (Fig.5). For example, PGA-co-PDL, 1.5% Arg showed
402 significantly higher powder deposit in the capsule and
403 inhaler compared to the other formulations, including
404 control formulation (PGA-co-PDL) (p<0.05, ANOVA/
405 Dunnett) and PGA-co-PDL, 1.5% Leu (p<0.05,

406ANOVA/Tukey’s). In addition, L-arginine modified for-
407mulations displayed a higher throat deposition in contrast
408to L-leucine modified microparticles, particularly PGA-co-
409PDL, 0.5% Arg and PGA-co-PDL, 1.5% Arg formulations,
410in comparison to control formulation (p<0.05, ANOVA/
411Dunnett) and PGA-co-PDL, 1.5% Leu (p<0.05, ANOVA/
412Tukey’s). In addition, PGA-co-PDL, 1.5% Leu resulted in
413significantly lower powder deposits in capsule and inhaler
414(p<0.05, ANOVA/Tukey’s), and throat (p<0.05,
415ANOVA/Tukey’s) compared to PLGA, 1.5% Leu. Over-
416all, PGA-co-PDL, 1.5% Leu had the lowest powder
417deposit in the capsule and inhaler, and throat.
418Addition of L-arginine (0.5–1.5%w/w) resulted in no
419significant change to%FPF (p<0.05, ANOVA/Dunnett)
420compared to control formulation (PGA-co-PDL) (Fig. 6a).
421In contrast, L-Leucine modified microparticles (PGA-co-
422PDL, 1% Leu & PGA-co-PDL, 1.5% Leu) produced
423significantly higher%FPF compared to control formulation

Fig. 2 Comparison of DSC ther-
mograms of blank PGA-co-PDL
polymer (bottom) and spray
dried PGA-co-PDL (control)
(middle) or PGA-co-PDL,
1.5% Leu (top).

Fig. 3 SEM images comparing PGA-co-PDL (control formulation) (a) with PGA-co-PDL, 1.5% Arg (b) and PGA-co-PDL, 1.5% Leu (c). The scale bar
represents 5 μm.
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F424 (p<0.05, ANOVA/Dunnett) and L-arginine modified for-

425 mulations (PGA-co-PDL, 1% Arg & PGA-co-PDL, 1.5%
426 Arg) (p<0.05, ANOVA,Tukey’s). In fact, PGA-co-PDL,
427 1.5% Leu produced the highest%FPF (43.38±5.61%)
428 which was more than 1.5 times greater than the value
429 obtained with same concentration of L-arginine (26.57±
430 1.85%) (p<0.05, ANOVA,Tukey’s). However, increasing
431 the L-leucine concentration from 1.0 to 1.5%w/w did not
432 significantly enhance%FPF (p>0.05, ANOVA/Tukey’s)
433 (Fig. 6a). Addition of amino acids resulted in no significant
434 difference in FPD against control (p>0.05, ANOVA/
435 Dunnett) (Fig. 6b). However, incorporating L-leucine,
436 PGA-co-PDL, 1% Leu (21.58±1.21 μg) and PGA-co-
437 PDL, 1.5% Leu (21.42±1.46 μg), resulted in almost double
438 the FPD compared to PGA-co-PDL, 1% Arg (12.40±
439 0.99 μg) (p<0.05, ANOVA/Tukey’s). Overall PGA-co-
440 PDL, 1.5% Leu had the highest%FPF and FPD, but no
441 significant difference was noted when compared to PLGA,
442 1.5% Leu (p>0.05, ANOVA/Tukey’s).

443In-vitro Release Studies

444It was clear PGA-co-PDL, 1.5% Leu could be considered
445as an optimum delivery system based on the aerosolisation
446results (lowest throat deposition, highest FPD and%FPF).
447Therefore, in vitro release studies comparing PGA-co-PDL
448(control), PGA-co-PDL, 1.5% Leu and PLGA, 1.5% Leu
449were performed and reported as cumulative percentage SF
450released over time (Fig. 7). Initially the SF adsorbed on the
451microparticles surface was removed by washing with 1 ml
452PBS buffer. A rapid burst release of SF was observed from
453all three formulations after 30 min, however the release of
454SF from PGA-co-PDL, 1.5% Leu (24.54%±3.87) and
455PLGA, 1.5% Leu (24.04%±2.67) was significantly less than
456PGA-co-PDL (41.87%±2.46) (p<0.05, ANOVA/Dunnett).
457The rapid release continued for all three formulations up to
4585 h, where PGA-co-PDL, 1.5% Leu (38.52%±3.27)
459resulted in significantly less SF released compared to
460PGA-co-PDL (54.90%±5.76) and PLGA, 1.5% Leu

Fig. 4 Confocal laser scanning
microscopy images comparing
PGA-co-PDL (control formulation)
(a) and PGA-co-PDL, 1.5%
Leu (b). The scale bar
represents 2 μm.

Fig. 5 Comparison of sodium fluo-
rescein deposition in capsule and
inhaler, mouthpiece and throat via
different formulations. Data repre-
sent mean ± S.D., n=3. *p<0.05
(Throat) PGA-co-PDL, 0.5% &
1.5% Arg vs PGA-co-PDL
(ANOVA/Dunnett) and PGA-co-
PDL, 1.5% Leu (ANOVA/Tukey’s),
**p<0.05 (Capsule & Inhaler)
PGA-co-PDL, 1.5% Arg vs PGA-
co-PDL (ANOVA/Dunnett) and
PGA-co-PDL, 1.5% Leu (ANOVA/
Tukey’s), ***p<0.05 (Throat)
PLGA, 1.5% Leu vs PGA-co-PDL,
1.5% Leu (ANOVA/Tukey’s), ±p<
0.05 (Capsule & Inhaler) PLGA,
1.5% Leu vs PGA-co-PDL, 1.5%
Leu (ANOVA/Tukey’s).
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461 (54.20%±4.67) (p<0.05, ANOVA/Tukey’s). After this
462 time period the release of SF reached a plateau providing
463 a slow continuous release phase up to 72 h, with PGA-co-
464 PDL, 1.5% Leu (47.10%±3.78) releasing significantly less
465 SF compared to PGA-co-PDL (61.35%±2.48) and PLGA,
466 1.5% Leu (63.07%±4.28) (p<0.05, ANOVA/Tukey’s). In
467 this study SF was released from PGA-co-PDL, PGA-co-
468 PDL, 1.5% Leu and PLGA, 1.5% Leu formulations
469 according to Higuchi diffusion model (R2 value of 0.890,
470 0.924 and 0.832 respectively) and the release rate constant
471 (Kh 2.13, 2.68 and 3.95 respectively) (Table II).

472 Cell Toxicity Study

473 Unmodified spray dried control formulation, PGA-co-PDL,
474 and L-leucine modified formulation, PGA-co-PDL, 1.5%
475 Leu appear to be well tolerated by normal lung bronchial
476 epithelial cells in vitro, compared to PLGA, 1.5% Leu
477 microparticles. Significant reduction in% cell viability was

478noted between PGA-co-PDL, 1.5% Leu and PLGA,
4791.5% Leu microparticles at a concentration of 0.5 mg/
480ml (91.19±4.32, 82.72±2.58 respectively), 1 mg/ml
481(87.14±3.40, 74.20±3.13 respectively) and 5 mg/ml
482(85.57±1.44, 60.66±1.75 respectively) (p<0.05,
483ANOVA/Tukey’s). Furthermore, the addition of L-leu-
484cine, as a dispersibility enhancer, to the optimum
485formulation during the emulsion/spray drying process
486did not alter the% cell viability, with values similar to
487PGA-co-PDL (p>0.05, ANOVA/Dunnett) (Fig. 8).

488DISCUSSION

489The aim of this study was to investigate the ability of a new
490family of polyesters, PGA-co-PDL, as SR carriers for
491pulmonary drug delivery, particularly as it had been
492investigated and shown promise as a delivery vehicle for
493both small molecular weight drugs and proteins (6,7). PGA-

Fig. 6 a The percentage fine particle fraction of spray dried micro-
particles. Data represent mean ± S.D., n=3. *p<0.05 PGA-co-PDL,
1% & 1.5% Leu vs PGA-co-PDL (ANOVA/Dunnett) and PGA-co-PDL,
0.5%, 1% & 1.5% Arg (ANOVA/Tukey’s). b The fine particle dose (μg) of

spray dried microparticles. Data represent mean ± S.D., n=3. *p<0.05
PGA-co-PDL, 0.5 & 1.5% Arg, PGA-co-PDL, 0.5%, 1% & 1.5% Leu and
PLGA, 1.5% Leu vs PGA-co-PDL (ANOVA/Dunnett).

Fig. 7 Cumulative in-vitro release
of sodium fluorescein from
spray dried microparticles in PBS
buffer at 37°C. Data represent
mean ± S.D., n=3.
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494 co-PDL microparticles were prepared utilizing double
495 emulsion/spray drying technique as our previous inves-
496 tigations indicated preparation of these particles via double
497 emulsion alone were highly aggregated and exhibited poor
498 aerosolisation performance (24).
499 The spray drying parameters were set to preserve the
500 outlet temperature in the range of 44–47°C, as DSC
501 analysis indicated a low melting point for PGA-co-PDL
502 polymer. Generally, the EE was low in all formulations
503 possibly due to the hydrophilic nature of SF partitioning
504 into the external aqueous phase and a lower concentration
505 remaining in the organic phase of the double emulsion/
506 spray drying process (37). The negative surface charge
507 demonstrated the anionic nature of the produced micro-
508 particles, which may be associated with incomplete removal
509 of the PVA emulsifier in the external aqueous phase of the
510 double emulsion. It is accepted that spray drying products
511 are mainly characterized by their amorphous nature or
512 disordered crystalline phase due to rapid drying of droplets
513 (38). This behavior was demonstrated in our study by the
514 broadening of the melting endotherm peaks for spray dried
515 formulations. It is also worth noting that the accumulation
516 of L-leucine at the air-liquid interface and hence the surface
517 of microparticles resulted in physicochemical modifications,
518 such as, surface charge, water content and particle size,

519which, additionally may have contributed to the enhanced
520broadening of the endothermic melting peak compared to
521control formulation (PGA-co-PDL). Furthermore, the shift
522to a lower temperature and intensity (peak height) indicated
523distribution of SF inside the PGA-co-PDL microparticles,
524which was confirmed from confocal microscopy images.
525Thus L-leucine treated formulations exist in a less crystalline
526state compared to untreated control formulation, and it is
527possible that incorporating L-leucine with these polymers
528may influence the encapsulation efficiency as the drug is
529mainly encapsulated in the amorphous region (6) and alter
530the physicochemical properties as noted above, which will
531inadvertently have an impact on the aerosolisation perfor-
532mance as observed in this study. However, further inves-
533tigations are required to understand the influence of
534incorporating amino acids on the crystalline structure and
535the potential changes this may have on the physicochemical
536properties of generated spray dried particles.
537The geometric particle size, particle shape and mor-
538phology are known to affect the aerodynamic properties
539and pulmonary deposition (39). The theoretical aerody-
540namic diameters calculated from tapped density indicate
541the spray dried particles generated are suitable for targeting
542the alveolar region. However, in vitro aerosolisation results
543from this investigation suggest the formulations did not

t2.1 Table II Kinetic Analysis of Spray Dried Microparticle Formulations (n=3)

t2.2 Formulation Zero Order (R2) First Order (R2) Higuchi model (R2) Mechanism of Release Kh

t2.3 PGA-co-PDL 0.802 −0.828 0.890 Higuchi 2.13

t2.4 PGA-co-PDL, 1.5% Leu 0.848 −0.869 0.924 Higuchi 2.68

t2.5 PLGA, 1.5% Leu 0.732 −0.786 0.832 Higuchi 3.95

Kh = mg/cm2.min1/2 is the release rate constant for Higuchi diffusion model

Fig. 8 Cell viability of human
bronchial epithelium cell line
(16HBE14o) measured by MTT
cytotoxicity assay following 24 h
exposure to different concentra-
tions of PGA-co-PDL and PLGA
microparticles suspension. Data
represent mean ± S.D., n=6.
*p<0.05 PGA-co-PDL, 1.5%
Leu vs PGLA, 1.5% Leu
(ANOVA/Tukey’s).
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544 aerosolize as individual particles, but rather as particle
545 aggregates, as indicated when comparing geometric particle
546 size with MMAD. This most likely occurred due to
547 incomplete powder de-aggregation as van der Waals forces
548 between particles were not completely overcome upon
549 inhalation. In addition, powder aggregation of all spray
550 dried powders generated was confirmed with a Carr’s index
551 of ≥30 indicating the flow was very poor and/or cohesive.
552 Moreover, depending upon the addition and concentration
553 of amino acids, different deposition profiles were observed.
554 For example, L-arginine treated microparticles due to their
555 low zeta potential and high percentage of water content
556 were highly aggregated, which affected the deposition
557 pattern by incomplete powder release from the capsule
558 and device, and higher deposition in the throat region,
559 compared to control and L-leucine modified micropar-
560 ticles. Furthermore, increasing the L-arginine concentra-
561 tion resulted in a higher percentage of water content on
562 the surface of microparticles, possibly due to the hydro-
563 philic nature of L-arginine, which increased the tendency
564 of aggregation and consequently affected deposition.
565 Many researchers have indicated the formation of wrin-
566 kled surface morphology (40) due to excessive build up of
567 vapor pressure during solvent evaporation in the spray
568 drying process, especially with hydrophobic amino acids,
569 such as L-leucine, for improved aerosolization perfor-
570 mance (41). However, this behavior was not observed in
571 particles produced in this investigation, which had a
572 predominantly smooth surface morphology, and may be
573 related to little or no build up of vapor pressure within the
574 particles under spray drying operating conditions used in
575 this study.
576 The low yield associated with PGA-co-PDL, 1.5% Arg
577 primarily occurred due to production of highly cohesive
578 particles, as indicated from Carr’s Index and the high water
579 content, resulting in powder adhesion to the wall of spray
580 drying chamber. Similar results have been reported where
581 enhancing the concentration of L-arginine resulted in
582 decreased spray drying powder yield and aerosol perfor-
583 mance, such as%FPF (40). Furthermore, PGA-co-PDL,
584 1.5% Arg had the lowest zeta potential value, −25.39±
585 0.67, which provided an indication to the instability and
586 cohesiveness as the repulsion force could not exceed the
587 attraction forces between particles. Hence the aggregation,
588 low yield and poor aerosolisation performance (low%FPF,
589 FPD and high powder deposits remaining in the inhaler
590 and capsule, mouthpiece and throat), compared to the
591 other formulations resulted, due to strong van der Waals
592 forces between particles. van der Waals forces are directly
593 proportional to the contact surface area of a particle, and
594 hence an increase in strength is observed with smaller
595 particle sizes due to larger surface area. However, similar
596 zeta potential values were achieved with the other L-argi-

597nine modified formulations, but they possessed larger
598geometric particle sizes resulting in decreased van der
599Waals forces between particles.
600Comparing all formulations, L-Leucine had the highest%
601FPF and FPD values compared to control formulation
602(PGA-co-PDL), L-arginine and PLGA modified formula-
603tions. The possible mechanisms for the enhanced perfor-
604mance might be related to the surface activity of the
605relatively strong hydrophobic alkyl side chain of L-leucine
606accumulating at the particle surface during spray drying
607(40). Similar reports have also demonstrated the enhanced
608aerosol performance with L-leucine containing formulations
609compared to L-arginine and other investigated amino acids
610(40,42,43). Comparing the three L-leucine formulations,
611PGA-co-PDL, 1.5% Leu was considered to be the optimum
612formulation as a carrier for pulmonary drug delivery, as it
613exhibited the highest%FPF and FPD. Hence, although the
614powders generated had poor cohesive flow properties, the
615high zeta potential values indicated good physical stability,
616which together with the lowest tapped density, water
617content and relatively large particle size compared to other
618formulations resulted, in weak van der Waals forces
619between particles. Consequently, inhalation provided suffi-
620cient energy to de-aggregate the particles resulting in an
621enhanced aerosolisation performance.
622The results of this investigation indicate that L-Leucine
623plays an important role not only in enhancement of the
624aerosolisation proprieties of the microparticles but also in
625sustaining drug release over 72 h, as indicated with PGA-
626co-PDL, 1.5% Leu. Once again this could be attributed to
627the surface activity of L-leucine coating the microparticles
628during the spray drying process, resulting in reduced
629surface adsorption of SF, which can be seen from confocal
630images, and hence a decreased burst and continuous release
631(44). Similar results have been reported for other surfac-
632tants, such as polysorbate 20 and sodium dodecyl sulphate,
633which reduced the surface accumulation of certain proteins
634in a concentration dependant manner (41,45). As a result, it
635is possible the high burst release associated with PGA-co-
636PDL may be due to SF particles migrating towards the
637microparticle surface by residual solvent during spray
638drying. However; none of the formulations could be
639considered an optimum SR pulmonary delivery system, as
640PGA-co-PDL possessed a high burst release and although
641PGA-co-PDL, 1.5% Leu had a lower burst release, it failed
642to release its entire pay load during 72 h, with similar
643results obtained by Thompson et al. (6). The incomplete
644release of SF may be associated with the slow hydrolyzation
645of the ester linkages in the polymer backbone (46). Data
646from our laboratory showed approximately 40% loss in
647polymer molecular weight after 14 days incubation in PBS
648buffer at 37°C (47) indicating the ester linkages between the
649monomers were very stable. In this current investigation the
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650 release of SF from control formulation (PGA-co-PDL) and
651 PGA-co-PDL, 1.5% Leu was according to the Higuchi’s
652 model, and mediated through the diffusion process with
653 very little contribution from degradation of the polymer.
654 Hence, the controlled release of small molecular weight
655 hydrophilic compounds from modified PGA-co-PDL spray
656 dried particles appears to be a diffusion limited process.
657 The more significant release of SF from PLGA, 1.5% Leu
658 may be associated to the smaller particle size and hence a
659 greater surface area. Future investigations are required to
660 optimize the release profile, and may involve manipulating
661 the polymer characteristics, such as decreasing the molec-
662 ular weight or increasing its hydrophilic properties by
663 incorporation of poly(ethylene) glycol, PEG, to the polymer
664 backbone.
665 The results from this investigation indicate that PGA-
666 co-PDL, 1.5% leu was an optimum pulmonary drug
667 delivery carrier. However, the safety of the carrier used
668 for pulmonary drug delivery is an important issue.
669 Normal bronchial epithelial cells (16HBE14o-) were
670 chosen in accordance with the aerosolization and
671 particle size distribution (MMAD) results for the
672 particles generated (48). The cytotoxicity profile data of
673 PGA-co-PDL and PGA-co-PDL, 1.5% Leu was more
674 superior to PLGA, 1.5% Leu spray dried microparticles
675 at 0.5, 1 and 5 mg/ml concentrations. Consequently, this
676 provides an indication about the feasibility of using PGA-
677 co-PDL polymers as alternative safe carriers for pulmo-
678 nary drug delivery.

679 CONCLUSIONS

680 The present investigation suggests that PGA-co-PDL could
681 be considered as an alternative novel biodegradable carrier
682 for pulmonary drug delivery having the ability to control
683 the release of the encapsulated drug. In addition, incorpo-
684 ration of L-leucine was found to enhance the aerosolisation
685 performance and decrease both the burst and continues
686 release of encapsulated drug. Toxicity studies revealed the
687 safety of the spray dried PGA-co-PDL modified micro-
688 particles compared to PLGA microparticles.
689 Future studies will be conducted to determine if the
690 polymers elicit an immune response. In addition we will
691 investigate enhancing the aerosolisation performance, en-
692 capsulation efficiency and optimizing the release of thera-
693 peutic agents from these polymers.
694
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