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A B S T R A C T

The Proportional, Integral, and Derivative (PID) controller is a ubiquitous controller within
industry. The conventional PID controller can struggle to provide a satisfactory response
for the nonlinear systems faced by industry. In addition, conventional PID controllers have
a trade-off between performance and robustness, where they cannot compensate for both
without compromising stability or speed. In this paper, a novel Nonlinear gains Proportional,
Integral, and Derivative (NLPID) control algorithm is proposed as a practical control strategy
that shows improvements in the simultaneous set-point tracking and disturbance rejection, to
control nonlinear systems. The paper shows the performance and robustness of the proposed
controller for the case of a First Order Plus Time Delay (FOPTD) system, which heavily exists in
industry. The Particle Swarm Optimization (PSO) algorithm is used to tune the proposed NLPID
controller. The performance of the proposed NLPID controller is simulated and compared against
established controllers in literature such as conventional PID, two degree of freedom PID,
and Smith Predictor PID controllers in MATLAB/Simulink for an FOPTD system, with various
uncertainties and disturbances. This study shows that the proposed NLPID controller maintains
faster settling and rise time, with no overshoot and excellent disturbance rejection, without
compromising stability or speed, and is robust against parametric, additive, and multiplicative
uncertainties.

. Introduction

The Proportional, Integral, and Derivative (PID) controller takes the form of three gains, combining linearly the past errors
integration), present errors (proportional), and the future estimates of error (derivative). The transfer function and time-domain
epresentations of the conventional PID control are given, respectively, as follows:

𝐾PID(𝑠) = 𝑘pc + 𝑘ic
1
𝑠
+ 𝑘dc𝑠𝑢PID(𝑡) = 𝑘pc𝜖(𝑡) + 𝑘ic ∫

𝑡f

0
𝜖(𝑡) 𝑑𝑡 + 𝑘dc �̇�(𝑡) (1)

here 𝑘pc , 𝑘ic , and 𝑘dc are the proportional, integral, and derivative gains, respectively, 𝜖(𝑡) is the feedback error and 𝑡𝑓 is the
ntegration time.

The PID controller is one of the most ubiquitous control systems that exist among all feedback control systems [1]. The linearity
nd simplicity of the controller make it useful in industrial applications, which is why it has received a lot of attention from
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researchers and engineers over the years [2]. It is well known that industry faces nonlinear systems with process disturbances and
modelling uncertainty [3,4]. The PID controller forms a single-degree-of-freedom (1DoF) control structure that poses a trade-off
between performance and robustness [3,5]. Once the PID controller has been tuned for optimal disturbance rejection, an overshoot
will likely appear at the set-point response, and once it has been tuned to eliminate the overshoot, a slow disturbance rejection
will likely be observed [1,3,6]. This can be improved by tuning the controller to find a balance between minimizing overshoot
and producing fast disturbance rejection [2]. However, this makes it necessary for the appearance of overshoot with large input
costs in systems of higher than first order and nonlinear systems [1,3,6]. To reduce the need for complex tuning algorithms, gain
scheduling and real-time algorithms have been proposed as a remedy to the issue of using a 1DoF PID controller [2,7]. However,
these algorithms can take large memory in the controller hardware, which can increase costs [1,2,7,8].

An alternative method of eliminating overshoot without compromising on disturbance rejection is by using a two-degree-of-
reedom (2DoF) PID control structure [1,3,5,6]. This allows one to independently tune a second loop for robust disturbance rejection
hile maintaining the tuning of the PID controller in the other loop to eliminate overshoot at the set-point response [1,3,6].
owever, this requires complex, multi-objective tuning algorithms and requires a larger parameter search space that takes long
omputational time and large memory [2,6,9]. Research has been conducted to reduce tuning efforts and maintain the effectiveness
f the 2DoF structure, with an improved control methodology that uses linear functions to express variable PID gains, based on time
nd feedback-error [10–13]. Using this method, one can avoid the excessive usage of computer memory to store different tuning
alues, and instead use a function to compute the new tuning based on the feedback error [10–13]. Although this can overcome many
f the PID challenges and improve systems, industry is suffering from nonlinear dynamics that cannot be adequately compensated
y linear function gains PID controllers [10,14,15].

An alternative commonly proposed in research is the use of nonlinear functions to describe the PID gains, which is also known as
Nonlinear PID (NLPID) control structure [11–13,16]. Many NLPID controllers have been proposed to provide an efficient control

lternative for specific nonlinear systems [11–13,15]. However, NLPID control has been under an active and continuing field of
esearch for the development of industrial NLPID controllers that can work for a class of nonlinear systems [11–13,17].

Modern NLPID controllers have had a resurgence in research and industrial applications, with the use of Passivity based theory
nd an enlarged set of nonlinear functions that have increased the scope of research. In more recent research, a different set of
onlinear functions have been proposed, where the proportional, integral, and derivative functions are all described by a unique
ethod. One such example is the use of the Gaussian error function to compute the gains, where the proportional and derivative

ains are increasing with increasing error, while the integral gain is reduced with increased error [18]. An extension to the Popov
riterion-based NLPID control design has also been proposed for a larger set of nonlinear functions, including exponential and error
ower functions [19]. An improved version of the nonlinear tracking differentiator together with Han’s nonlinear PID controller
ave also been proposed with the tracking differentiator used both in feedback and at set-point [20]. Moreover, a nonlinear PID
ontroller has been proposed that generates large proportional gain at large error that reduces for small errors, while its integral gain
s zero at large errors and increases at steady-state [21]. This controller works together with a nonlinear derivative function that
epends on the error and error rate and has been shown to improve performance when compared to conventional methods [21]. A
onlinear PID controller that utilizes only a scalable integral nonlinearity has a stability proof and provides adequate responses to
inear and delay-type systems [15]. A classical PID controller with derivative filtering has been combined with nonlinear functions
n the feedforward and feedback loops to compensate for the intrinsic nonlinear unstable dynamics of a magnetic levitation system,
mproving transient response and disturbance rejection [16]. A nonlinear PID controller has also been used for the temperature
ontrol of a nonlinear Continuous Stirred Tank Reactor (CSTR) using a local model with internal model control tuning PID combined
ith fuzzy fusion [22]. Nonlinear PID has also been used for the improvement of stability in the hydraulic drive control of an
xcavator using nonlinear proportional gain [11]. In addition, in one of the most recent papers, a nonlinear PID controller has also
een used in combination with the MIT adaptation rule for a set of nonlinear gains that achieved improved results when compared to
he conventional and nonlinear PID methods [12]. An intelligent nonlinear PID controller has also been designed recently, combining
eural networks as weights describing the gains and a particle swarm optimization algorithm to tune the weighting parameters to
ontrol the temperature of a CSTR system [17]. Finally, in another recent paper, a cross-coupled nonlinear PID controller has been
mplemented for a highly-coupled twin rotor MIMO system showing improved performance [13].

The main contribution of this paper is the proposal of a novel nonlinear PID controller that provides an effective control scheme
ith the following specifications:

1. Gains are described by a new set of nonlinear functions that follow a clear strategy for improving the simultaneous set-point
tracking and disturbance rejection.

2. It has comparable input energy which is an advantage taken into consideration its strong robustness properties.
3. It achieves low rise-time with no overshoot for any step set-point function.
4. The control is robust against a range of uncertainties.

In this paper, the authors aim to answer the question of whether there is such a nonlinear PID controller that can work for
general class of systems, focusing on the most commonly seen type in industry, the FOPTD systems. In addition, nonlinear

ID controllers that use Popov criterion indicate stability, however oscillatory type responses remain and overshoots persist.
any nonlinear PID controllers also have limitations of performance depending also on the set-point, where in this paper the

roposed controller aims at maintaining its performance for any step-type set-point function. The proposed nonlinear PID controller
s also addressing the limitations of the PID controller and establishes an improved response that can only be achieved by a
2

wo-degree-of-freedom system.
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In the efforts to provide evidence of stability for the controller a Simulation-based Extensive Testing (SET) method has been

onducted with input and output disturbances applied to the feedback system to show internal stability, using the 𝐿2 norm. Finally,
different types of uncertainty is conducted, such as parametric uncertainty, additive uncertainty, and multiplicative uncertainty to
provide evidence that the controller will work for a broader class of FOPTD type systems without losing stability.

In the sections that follow, the novel NLPID controller proposed in this paper is presented in Section 2. Then, the tuning
methodology and the particle swarm optimization algorithm used for the proposed controller is also shown in Section 3. Section 4
shows the results from the bench-marking of the controller against the PID, 2D_PID, and Smith Predictor PID controllers in a widely
used industrial system. Section 5 shows the robustness of the proposed NLPID controller under a variety types of uncertainty. Finally,
in Section 6 the conclusions and further work are presented to summarize the results found within this research and propose future
directions.

2. Novel NLPID controller

In this paper, a novel nonlinear controller is proposed. The gains of the controller are time varying and their values depend on
the magnitude of the error and the error rate. These gains are defined using a set of nonlinear functions that are defined to improve
transient response and maintain robustness. The equation of the proposed NLPID controller follows a similar format to that of a
parallel linear PID controller. The time-domain NLPID controller equation is given by:

𝑢𝑁𝐿𝑃𝐼𝐷(𝜖(𝑡), �̇�(𝑡), 𝑟(𝑡)) =𝑘p(𝜖(𝑡), 𝑟(𝑡))𝜖(𝑡)+

+ 𝑘i(𝜖(𝑡), 𝑟(𝑡))∫

𝑡f

0
𝜖(𝑡) d𝑡 + 𝑘d(�̇�(𝑡), 𝑟(𝑡))�̇�(𝑡) (2)

The proposed NLPID controller is developed to generate fast set-point tracking, with no overshoot and a fast disturbance rejection.
Under these requirements, the PID gains which most influence the overshoot negatively are the proportional and integral gains. When
large proportional and integral gains are used, the controller generates an oscillatory response with a large overshoot. However,
this also provides a fast response and fast disturbance rejection. As a result, in order to remove the overshoot, one can generate a
large proportional signal at large error with a small integral signal at large error. This provides the fast tuning that is required, and
then once the output reaches close to steady-state, the proportional gain must rapidly decrease and the integral gain must rapidly
increase to correct for any steady-state errors. The derivative gain takes a similar form to the integral. However, in this case the
derivative gain considers the error rate, so that once the error rate becomes rapid, the gain becomes zero to eliminate noise and
derivative kicks. According to this knowledge of PID control behaviour, which is well known within the literature, the proposed
NLPID controller is designed with nonlinear functions that must have this property. The nonlinear function that processes such a
property is the mollifier function that originates from distribution theory and have not been used in the past within the NLPID
control literature. The mollifier takes the mathematical form of:

𝑀(𝑥(𝑡)) =

⎧

⎪

⎨

⎪

⎩

𝑒

[ 1

|𝑥(𝑡)|2 − 1

]

if |𝑥(𝑡)| < 1
0 if |𝑥(𝑡)| ≥ 1

(3)

Moreover, in this paper the mollifier is adopted such that the nonlinearity is applied at the transient response region, to maximize
the effect of the nonlinearity for the minimization of overshoot. The adopted nonlinear gains for the proposed NLPID controller are
hence described and shown as follows:

The proportional gain
The proportional nonlinear gain is represented by the following function:

𝑘𝑝(𝜖(𝑡), 𝑟(𝑡)) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑎𝑘0 − 𝑘0𝑒

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

|

|

|

|

𝜖(𝑡)
𝑟(𝑡)

|

|

|

|

2
− 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦ if
|

|

|

|

𝜖(𝑡)
𝑟(𝑡)

|

|

|

|

< 1, 𝑟(𝑡) ≠ 0

𝑎𝑘0 if
|

|

|

|

𝜖(𝑡)
𝑟(𝑡)

|

|

|

|

≥ 1, 𝑟(𝑡) ≠ 0

𝑎𝑘0 − 𝑘0𝑒

⎡

⎢

⎢

⎢

⎣

1

|𝜖(𝑡)|2 − 1

⎤

⎥

⎥

⎥

⎦ if |𝜖(𝑡)| < 1, 𝑟(𝑡) = 0
𝑎𝑘0 if |𝜖(𝑡)| ≥ 1, 𝑟(𝑡) = 0

(4)

where 𝑘0 is the proportional constant gain, 𝑎 is the mean or shift value of the nonlinear function that places the higher gain bounds
at either higher or lower values directly related to 𝑎 and 𝑘0. The function is also dependent on the set-point function 𝑟(𝑡), which
enlarges and shrinks the non-linearity so that the controller behaves non-linearly in the appropriate error range. Fig. 1 shows an
example of a proportional gain 𝑘p that is constructed by this function and tuned for certain values of 𝑎, 𝑘0 and 𝑟(𝑡).

The proportional nonlinear gain is designed to produce the largest proportional signal at large errors, to compensate the error
3

with fast transient response. The value then rapidly decreases smoothly to avoid the overshoot as much as possible. This proportional
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Fig. 1. An example of tuned nonlinear proportional gain shown for a step set-point function 𝑟(𝑡) = 1, for values 𝑎 = 1 and 𝑘0 = 1.5.

ain then helps meet the criteria of fast transient response with no overshoot. This is then able to improve the limitation of the
onventional PID control.
The integral gain
The integral nonlinear gain is represented by the following function:

𝑘𝑖(𝜖(𝑡), 𝑟(𝑡)) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑘1𝑒

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

|

|

|

|

𝜖(𝑡)
𝑟(𝑡)

|

|

|

|

2
− 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦ if
|

|

|

|

𝜖(𝑡)
𝑟(𝑡)

|

|

|

|

< 1, 𝑟(𝑡) ≠ 0

0 if
|

|

|

|

𝜖(𝑡)
𝑟(𝑡)

|

|

|

|

≥ 1, 𝑟(𝑡) ≠ 0

𝑘1𝑒

⎡

⎢

⎢

⎢

⎣

1

|𝜖(𝑡)|2 − 1

⎤

⎥

⎥

⎥

⎦ if |𝜖(𝑡)| < 1, 𝑟(𝑡) = 0
0 if |𝜖(𝑡)| ≥ 1, 𝑟(𝑡) = 0

(5)

where 𝑘1 is the integral constant that determines the largest value of the integral nonlinear gain. In this case, the set-point function
𝑟(𝑡) also affects the gain where it enlarges and shrinks the integral non-linearity in order to adapt to the error range, so that the
non-linearity is active throughout the transient response.

The integral gain, shown in Fig. 2, is built according to Eq. (5) and it is designed so that it starts from a value of zero and increases
as the error approaches steady-state, approaching its maximal bounded value. This allows for the integral to error-correct the system
during steady-state while keeping a low integral value during the transient response, which helps maintain low overshoot.

The derivative gain
Finally, the derivative nonlinear gain is represented by the following function:

𝑘𝑑 (�̇�(𝑡), 𝑟(𝑡)) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑘2𝑒

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

|

|

|

|

�̇�(𝑡)
𝑟(𝑡)

|

|

|

|

2
− 𝑘23

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦ if
|

|

|

|

�̇�(𝑡)
𝑟(𝑡)

|

|

|

|

< 𝑘3, 𝑟(𝑡) ≠ 0

0 if
|

|

|

|

�̇�(𝑡)
𝑟(𝑡)

|

|

|

|

≥ 𝑘3, 𝑟(𝑡) ≠ 0

𝑘2𝑒

[ 1

|�̇�(𝑡)|2 − 𝑘23

]

if |�̇�(𝑡)| < 𝑘3, 𝑟(𝑡) = 0
0 if |�̇�(𝑡)| ≥ 𝑘3, 𝑟(𝑡) = 0

(6)

where 𝑘2 is the derivative constant that increases the maximum derivative value, 𝑟(𝑡) is the set-point function which can enlarge
and shrink the nonlinearity accordingly in a similar behaviour to the previous nonlinear gains. For the derivative gain, as it can be
noticed, the input to the nonlinear derivative function is the error rate instead of the error. This helps the controller to easily identify
4



Results in Control and Optimization 12 (2023) 100289S. Charkoutsis and M. Kara-Mohamed
Fig. 2. An example of tuned nonlinear integral gain shown for a step set-point function 𝑟(𝑡) = 1, for value 𝑘1 = 1.

Fig. 3. An example of tuned nonlinear derivative gain shown for a step set-point function 𝑟(𝑡) = 1, for values 𝑘2 = 1 and 𝑘3 = 0.5.

the point of steady-state, where the derivative gain is maximized for increased damping, minimizing overshoot, while becoming zero
at error rate values higher than the filter constant 𝑘3.

The constant 𝑘3 is the filtering constant which is a design value determined by the designer according to the amount of derivative
needed to be included in the controller. This constant is useful to overcome some of the well-known PID limitations. It reduces the
derivative kick and reduces the impact of high-frequency noise that might affect the controller input. It changes the range at which
the nonlinearity operates and defines the points of noise and derivative kick cancellation. This means that the control designer has
the ability to freely adjust the noise signals that one wants to eliminate.

An example of tuned derivative gain is shown in Fig. 3. It has similar shape to the integral gain, where the difference between
the two gains is controlled by the design filtering constant 𝑘3.

The nonlinear derivative gain is designed to minimize the effects of noise and derivative kicks in the feedback response of the
system. This improves on the common limitations of the conventional PID controller and improves the system input signal. Finally,
the derivative gain is maximized near steady-state to eliminate overshoot and improve the speed of the response, which enhances
transient performance.

The effect of a changing set-point to the proposed nonlinear proportional gain is shown in Fig. 4 where the larger the set-
point becomes, the wider the nonlinearities are, preserving the design constants, such as the maximum value of the gains, the
minimum value of the gains, and so that the nonlinearities are active within the range −𝜖𝑚𝑎𝑥 ≤ 𝜖 ≤ 𝜖𝑚𝑎𝑥. Similar impact also occurs
on the integral and derivative gains as discussed above. Having 𝑟(𝑡) in the definition of the three gains, makes them all work in
synchronization, according to the reference function. This activates the nonlinearities during the transient response, minimizing
5

overshoot, and allows for the gains to settle to a robust value at steady-state. This design produces the same transient response for
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Fig. 4. The tuned nonlinear proportional gain as it adapts to new step set-point values of 𝑟(𝑡) = 1, 2, and 5.

ny given set-point function, improves disturbance rejection, and improves the rejection of any unmodelled uncertainties, as shown
ater.

In the following section, the tuning methodology of the controllers is shown to ensure fair comparisons with established
ontrollers in literature so that the improvements are shown and are isolated to be due to the proposed nonlinear function gains.

. Tuning methodology

In this paper, the proposed NLPID controller is aimed at the practitioner to improve the response to commonly seen systems. PID
ontrol research has the difficulty and unfortunate disadvantage that many control comparisons are unfair and improved results can
e achieved by spending more effort on tuning [1,23]. In addition, control algorithms can possess different number of adjustable
arameters, making it difficult to make fair comparisons. Due to these issues, fair comparison of each controller is assured by using a
ommon set of control criteria. The control criteria that are considered in this paper for judging the control performance include both
ast set-point tracking with no overshoot, and robustness against disturbance and uncertainties. The controllers are compared based
n their ability to meet these criteria using the tools and techniques available to practitioners. MATLAB software is frequently used
n industry for the tuning and design of PID and 2D_PID controllers. As a result, this paper compares the proposed NLPID controller
gainst the conventional methods used by the practitioner, by tuning the conventional controllers using MATLAB. This is built on
he scope of improving upon the PID and 2D_PID control limitations. The difficulty being when a fair comparison is made, it must
e ensured that the right tuning approach is taken and is made transparent.

.1. Particle Swarm Optimization Algorithm

The Particle Swarm Optimization (PSO) algorithm is one of many evolutionary and stochastic optimization approaches that is
imple and effective in solving complex optimization problems. Although many optimization algorithms exist in literature, which
ave been used in specific applications, see for example [24,25], most engineers and control systems researchers use the particle
warm optimization algorithm for control tuning due to its effectiveness, simplicity, and fast convergence without the use of
erivatives [17,23,26,27]. For this reason, the PSO is used in this paper to tune the proposed NLPID controller. However, the
ownside is that it is easy for PSO to fall to a local minimum [17,28]. To overcome this challenge, two steps have been considered
o lower the possibility of such an occurrence. Firstly, the particles are limited within a range of specified values. Secondly, the
ersonal best value of each particle, also known as cognition, is not considered in this case. The global, also known as social
ntelligence, is used, taking the social best objective value to make it more difficult to fall at a local optimum.

The tuning of the proposed NLPID parameters 𝑘0, 𝑘1, 𝑘2, and 𝑎 are conducted using the objective function and optimization
problem designed with the Integral Time Absolute Error (ITAE) performance measure and the settling time of the system, which
can be mathematically expressed as:

minimize
𝑘0, 𝑘1, 𝑘2, 𝑎

𝑓 (𝑡, 𝜖(𝑡), 𝑡𝑠) = ∫

𝑡𝑓

0
𝑡|𝜖(𝑡)| d𝑡 + 𝑡𝑠

subject to 𝑘𝑚𝑖𝑛 ≤𝑘0, 𝑘1, 𝑘2 ≤ 𝑘𝑚𝑎𝑥,

𝑎𝑚𝑖𝑛 ≤𝑎 ≤ 𝑎𝑚𝑎𝑥

(7)

where 𝑡𝑠 is the settling time, 𝜖(𝑡) is the feedback error, and 𝑡𝑓 is the final time. The optimization problem is defined with the
6

parameter constraints within a specified range to ensure stability and to lower the chances of trapping inside local optima. The
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objective function is defined to reduce the feedback error in the shortest time possible, meaning minimization of rise-time and
overshoot. In addition, adding the settling time means approaching steady-state faster, which helps meet the proposed design criteria.
The parameter 𝑘3 is a filtering parameter and is determined by the designer according to the system and the amount of derivative
that is necessary. This means that it is not necessary to use the PSO algorithm for tuning this parameter as it can be adapted and
changed by the designer after the controller has been tuned.

The PSO algorithm iterates until the final iteration has been reached, with the following steps [28]:

1. Generate n number of random position particle vector 𝑋𝑛
0 in the range [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥] for 𝑘0, 𝑘1, 𝑘2 and [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥] for 𝑎.

2. Assume initial velocity vector 𝑉 𝑛
0 = 0.

3. Simulate the control system in Simulink.
4. Compute 𝑓 (𝑡, 𝜖(𝑡), 𝑡𝑠) = ∫ 𝑡𝑓

0 𝑡|𝜖(𝑡)| d𝑡 + 𝑡𝑠.
5. If values surpass the defined range, re-initialize a random number in range [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥] for 𝑘0, 𝑘1, 𝑘2 and re-initialize a random

number in range [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥] for 𝑎.
6. then compute the new velocity and position values, which are modified to be as:

𝑘𝑉
𝑗
𝑖+1 = |𝑘𝑉

𝑗
𝑖 +𝑘 𝑟

𝑗
𝑖 𝑐1(𝑘𝐺𝑏𝑒𝑠𝑡𝑖 −𝑘 𝑃

𝑗
𝑖 )| (8)

𝑘𝑋
𝑗
𝑖+1 = |𝑘𝑋

𝑗
𝑖 +𝑘 𝑉

𝑗
𝑖+1| (9)

7. Re-iterate.

where 𝑘 represents a natural number taking values 1 to 4, iterating between the 4 parameters in the parameter set, 𝑘𝑉
𝑗
𝑖 is the velocity

vector for each iteration 𝑖, particle 𝑗, and tuning parameter 𝑘, 𝑘𝑋
𝑗
𝑖 is the position vector for each iteration 𝑖 particle 𝑗, and tuning

parameter 𝑘, 𝑘𝑟
𝑗
𝑖 is the stochastic variable that changes for every iteration and lies in the range [0, 1], 𝐺𝑏𝑒𝑠𝑡 is the minimum value

of the objective function of all particles across iterations, each particle representing a specific tuning parameter set 𝑃 𝑗
𝑖 [𝑘0, 𝑘1, 𝑘2, 𝑎]

𝑗
𝑖 .

If the new position 𝑘𝑋
𝑗
𝑖+1 is outside the specified range of values, then these specific new particles are re-initialized within the

pre-specified range. The parameter 𝑐1 = 1.3 is a tuning parameter taken from research surveys on PSO [28].
This process is a modification of the particle swarm optimization, which included the history of the minimum objective value

for each particle, in this case only the social best values are considered. The modified PSO algorithm searched for the nonlinear
gain parameters 𝑘0, 𝑘1, 𝑘2, and 𝑎 that minimize settling time, overshoot, and transient response as per the design constraints.

In the following section an FOPTD simulation example is established. The benchmarking between PID, 2D_PID, and SP_PID
against the proposed NLPID controller is established for the set-point tracking and disturbance rejection criteria.

4. Simulation example

A commonly seen class of industrial nonlinear systems is the First Order Plus Time Delay (FOPTD) systems. For instance, FOPTD
models are used widely to represent plants in process and chemical engineering systems. For that reason, the FOPTD is commonly
used as a benchmark process for PID controllers and it can be described by the following transfer function [29]:

𝑃 (𝑠) = 𝑇 (𝑠)𝑒−𝑠, 𝑇 (𝑠) = 1
𝑠 + 1

(10)

The nominal plant represented by Eq. (10) is used for the control benchmarking and all controllers are designed with the
following control criteria:

• Minimization of overshoot ≤ 2%.
• Minimization of rise time and settling time.
• Fast Disturbance rejection to input and output disturbances.

Using these control criteria, all controllers have been tuned appropriately and are benchmarked against the proposed NLPID
controller. The conventional controllers are shown and designed using MATLAB tuning algorithm, which is also explicitly shown. The
simulation results from the benchmark tests is then shown for the response of each controller to set-point tracking and disturbance
rejection. Then, the 𝐿2 norm is computed at the system input signal, so that the energy and internal stability of the controllers is
explicitly shown. This process reassures the effectiveness of the results and the fair benchmark comparison against the conventional
controllers.

4.1. Controller benchmarking to set-point tracking and disturbance rejection

The proposed NLPID controller is focused on simultaneous set-point tracking and disturbance rejection. Hence, the benchmarking
is based on the claim that the proposed NLPID controller is providing an improvement when compared to the conventional controllers
in both set-point tracking and disturbance rejection. The proposed NLPID controller is benchmarked against the conventional and
state-of-the-art methods of controlling an FOPTD system as an example case, to create a comparison of the advantages provided by
the different methods in FOPTD systems. This claim is tested with both input and output disturbances, as shown by the schematic
block diagram in Fig. 5.
7
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Fig. 5. The schematic block diagram of the control system with both the input and output disturbances.

Table 1
Tuned values of the control parameters used for the benchmarking simulations.

Controller Tuning parameters

NLPID 𝑘0 = 1.9344, 𝑘1 = 1.7142, 𝑘2 = 1.2373, 𝑘3 = 0.5, 𝑎 = 0.6965

PID 𝑘p1 = 0.4458, 𝑘i1 = 0.4422, 𝑘d1 = 0, 𝑁1 = 0

2D_PID 𝑘p2 = 0.5308, 𝑘i2 = 0.4743, 𝑘d2 = 0, 𝑁2 = 0, 𝑏 = 0.9400, 𝑐 = 0

SP_PID 𝑘p3 = 1.4089, 𝑘i3 = 2.1239, 𝑘d3 = 0.4227, 𝑁3 = 2.4471

T2_PID 𝑘p4 = 0.6357, 𝑘i4 = 0.6306, 𝑘d4 = 0.0227, 𝑁4 = 0.5000

The tuning of the proposed NLPID controller is established using the proposed control criteria and the FOPTD process, represented
y Eq. (10). To find the appropriate tuning, the PSO optimization problem is first developed by identifying the appropriate parameter
onstraints. According to the FOPTD dynamics, the parameter constraints are determined based on the instability regions of the PID
ontroller and based on a series of PSO tuning trials to refine the constraints. The optimization problem is then defined as:

minimize
𝑘0, 𝑘1, 𝑘2, 𝑎

𝑓 (𝑡, 𝜖(𝑡), 𝑡𝑠) = ∫

𝑡𝑓

0
𝑡|𝜖(𝑡)| d𝑡 + 𝑡𝑠

subject to 0 ≤𝑘0, 𝑘1, 𝑘2 ≤ 2,

0.5 ≤𝑎 ≤ 2

(11)

where the range of values of [0, 2] for 𝑘0, 𝑘1, and 𝑘2 and the range [0.5, 2] for 𝑎 are specified to guarantee stability of the FOPTD
system Eq. (10) and to minimize the chances of falling into local optima. The parameter 𝑘3 = 0.5 is used, since FOPTD systems are
well-known to be adequately controlled by a PI controller. Hence, there is less need for a derivative action, which means a low
value of 𝑘3 can be used. The PSO algorithm determined the parameters of the nonlinear controller gains as shown in Table 1. The
tuned parameter values can be used to plot the nonlinear function gains and the same results with slightly shifted values will appear
as in Figs. 1, 2, and 3 from Section 2.

In this paper, MATLAB PID and 2D_PID control parallel structures are used, containing derivative filtering for reducing derivative
kick effects, improving control stability, and performance. The transfer function representations are described as:

𝐾PID(𝑠) = 𝑘p1 + 𝑘i1
1
𝑠
+

𝑘d1𝑁1

1 − 𝑁1
𝑠

(12)

𝐾2D_PID(𝑠) = 𝑘p2 (𝑏𝑟 − 𝑦) + 𝑘i2
1
𝑠
+

𝑘d2𝑁2

1 − 𝑁2
𝑠

(𝑐𝑟 − 𝑦) (13)

where 𝑘p1 , 𝑘i1 , and 𝑘d1 are the proportional, integral, and derivative gains of the PID controller respectively, 𝑁1,2 are the filtering
parameters, which represent the inverse of the time constant of the filter, and 𝑘p2 , 𝑘i2 , and 𝑘d2 are the proportional, integral, and
derivative gains of the two degree of freedom PID controller with 𝑏 and 𝑐 the set-point weightings, as a percentage of the set-point
that is contained within the error and error rate, respectively. These are the respective parameters to be tuned by MATLAB algorithm,
according to the performance criteria. As can be seen, the PID controller has 4 parameters to be tuned, including the filter, while
the 2D_PID controller has 6 parameters, which include the set-point weighting.

An alternative method for controlling FOPTD systems is the SP_PID control. SP_PID controllers provide an improvement of the
PID controller specific to delay systems, where the delay dynamics are predicted and then a PID controller is also used and tuned.
Research indicates that this method provides improved results as compared to PID control in delay systems [30,31]. It is used in
this paper as a fair comparison and extending the simulations to more complex and industry-used control systems. With the use of
the smith predictor one can achieve faster response with a minimal overshoot that can improve the PID controller with a time-delay
prediction step.

The SP_PID controller design is formulated using MATLAB PID controller described by Eq. (12) with the FOPTD plant model
−𝜏𝑠
8

described by Eq. (10). The Pade approximations are used to approximate the delay 𝑒 as a realizable transfer function 𝐺p(𝑠) used
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to design the SP_PID controller, as follows:

𝐺p(𝑠) =
𝜏2𝑠2 − 6𝜏𝑠 + 12
𝜏2𝑠2 + 6𝜏𝑠 + 12

(14)

ith the SP_PID control transfer function being:

𝐾SP_PID(𝑠) =
𝐾PID(𝑠)

1 +𝐾PID(𝑠)𝑇 (𝑠)(1 − 𝐺𝑝(𝑠))
(15)

The SP_PID controller is tuned in a separate attempt to control the FOPTD system using a state-of-the-art control system. There
is a plethora of tuning algorithms that exist within the literature to tune PID controllers for FOPTD systems, which can become
complex [2,6]. However, in this paper, the PID, 2D_PID, and SP_PID control algorithms are tuned using MATLAB tuning algorithm
as a simple and effective method of tuning, available to the practitioner.

MATLAB tuning algorithm works by parameterizing the controller based on the designer’s pre-specified value of the cross-
over frequency and the phase margin of the controller [32]. The cross-over frequency is directly related to the open-loop system
bandwidth, which is directly related to the speed of the response and uses the phase margin to design the robustness of the
controller [32]. In the case of a nonlinear plant, MATLAB PID tuning algorithm initially linearizes the system at the operating
point. Then it tunes the PID controller according to the linearized model, at that operating point.

The parameterization of the controller allows the designer to directly visualize the response according to the set design criteria,
which can be changed in real-time. Making it a simple, effective, and easy-to-learn method of tuning. The parameterization of the
controller used by the algorithm, can be written as [32]:

𝐶(𝑠) =
𝜔𝑐
𝑠

(

𝑠𝑖𝑛(𝜙𝑧)𝑠 + 𝜔𝑐𝑐𝑜𝑠(𝜙𝑧)
𝜔𝑐

)(

𝑠𝑖𝑛(𝛽)𝑠 + 𝜔𝑐𝑐𝑜𝑠(𝛽)
𝑠𝑖𝑛(𝛼)𝑠 + 𝜔𝑐𝑐𝑜𝑠(𝛼)

)

(16)

where 𝜔𝑐 is the frequency at which the magnitude of the open-loop response 𝑌 (𝑠) = 𝐾PID(𝑠)𝑃 (𝑠) first crosses the 0 dB line, and
ngles 𝜙𝑧, 𝛼, and 𝛽 vary between 0 and 90 degrees, with a total phase shift provided by the PID controller at frequency 𝜔𝑐 given
y [32]:

𝛥𝜙 = 𝜙𝑧 + 𝛽 − 𝛼 (17)

In addition, this tuning tool allows for prioritization in robustness, set-point tracking, or a balance of both, which is adopted
s the designer requires, and it is also applicable for tuning the 2D_PID control algorithm [32,33]. MATLAB tuner has also been
eported in research as an effective tuning method that can provide results for diverse problems, including nonlinear systems, systems
ith delays, systems with non-minimum phase dynamics, and any linear models [32–35]. This makes MATLAB tuning an easy and
vailable tuning tool for the practitioner, showing improved results when compared to Ziegler–Nichols or other classical tuning
ules used in industry [32–35]. As a result, the tuning of the PID, 2D_PID, and SP_PID has been conducted in MATLAB where the
uning is focused on providing a balance between tracking and robustness.

After extensive tuning trials using MATLAB tuning tool in the efforts to increase controller speed and minimize overshoot, the
uned parameters are selected for the benchmarked controllers and are shown in Table 1.

The conventional control methods are benchmarked against the proposed NLPID controller on set-point tracking. The computer
hat is used to conduct the research has a quadcore intel i7-6700HQ processor with 16 GB RAM memory and a 250 GB SSD memory
ard. The operating system of the computer is a 64-bit Windows 10. MATLAB/Simulink R2021a software version is installed under
he academic license, and is used to conduct the simulations. A variable step-size and solver are used so that they are automatically
elected by the software as is best fit for the problem. In the cases of the simulations the automatic solver selected the (Runge–Kutta)
de45 solver with a relative tolerance of 10−3.

It can be seen by Fig. 6(a) that the proposed NLPID controller outperforms all the conventional control methods and produces
o overshoot with the fastest settling time. It can be seen by the figure that the conventional controllers can produce a response
ith no overshoot, however, they have a significantly slower settling and rise time of approximately 2 s difference. Fig. 6(b) shows

he system inputs to the plant model for each of the benchmarked controllers. The NLPID controller shows low system input energy
ith bounded signals and cannot exceed that limiting value, which eliminates the derivative kicks. The SP_PID controller shows a

arge sharp input with large system input energy that deteriorates the controller performance and can degrade actuators. In contrast
he PID and 2D_PID controllers show a slow response with a smooth input to the process model.

Fig. 7 shows the time variation of the nonlinear gains. It is clear that the gains start from their steady-state values, since the
tep-function produces no signal until the 1 s time-mark. Then the proportional gain produces its maximum value where it then
apidly drops as it approaches the steady-state value again, converging to a specific gain value. The integral gain starts from steady-
tate, then goes to zero and increases rapidly during the transient response, settling to a converged value, as the system reaches
steady-state, providing error correction. It can be seen that the derivative also starts from its steady-state value. The derivative

ain then increases at the start, when the signal from the step function is produced at the 1 s time mark, but due to the delay
he controller receives no response for another second. It then reaches zero, eliminating any derivative kicks and noisy signals at
ransient response. As the system approaches steady-state, the error and error rate are zero and the derivative gain is increasing to its
aximum value. Once steady-state is reached it then increases providing the necessary speed of the system to eliminate overshoot.

To ensure a fair comparison of the controllers, once the proposed NLPID control gains reach the steady-state values, shown by
ig. 7 they are then instead used to tune a separate, second tuning trial PID controller (T2_PID), to ensure that even when the PID
9

ontroller is tuned with the proposed NLPID steady-state gains, the proposed NLPID still outperforms the PID controller. The filtering
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Fig. 6. Controller performance comparison of the set-point tracking of a step-function.

Fig. 7. Nonlinear gain values across the time-span of the simulation.
10
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Fig. 8. NLPID controller performance comparison against a second tuning case of a liner PID controller.

alue 𝑁4 is given the value of 0.5, in a similar fashion to the NLPID controller parameter 𝑘3, since there is no significant effect
rom the derivative, making filtering unnecessary. This can provide additional evidence that the suggested nonlinear functions are
roviding performance improvement, excluding the possibility that the nonlinearities can be replaced by a linear controller using
he gain values at steady-state as tuning. The tuning of a separate PID controller now becomes as shown in Table 1.

Fig. 8(a) shows that the T2_PID controller generates a large overshoot of approximately 15%. This also indicates the limitations
f PID control that when tuned for fast input disturbance rejection, an overshoot appears with a fast transient response. Fig. 8(b)
hows the system inputs to the plant for the proposed NLPID and T2_PID controllers. It can be seen that the T2_PID shows a slower
nput response with higher input energy than PID and 2D_PID.

Following from the set-point tracking response, the controllers are also benchmarked for disturbance rejection. The benchmark
esting is conducted using a step-function of final value 10% of the set-point, applied to the system input at 12 s time mark. In
ddition, a step-function 10% of the set-point has also been taken as the output disturbance at 22 s time mark, which represents a
ensor bias and deviation from the true value.

The response to disturbance rejection by the benchmarked controllers is shown in Fig. 9. The output shown in Fig. 9(a) indicates
he deviation of the steady-state value produced by the disturbances. The proposed NLPID controller outperforms the PID and
11

D_PID controllers in input disturbance rejection, apart from the SP_PID controller, which shows the fastest input disturbance
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Fig. 9. Controller performance comparison of the disturbance rejection showing both the output and system input responses.

rejection. The T2_PID controller shows similar input and output disturbance rejection response to the proposed NLPID controller.
The figure also indicates that the PID and 2D_PID controllers outperform the proposed NLPID, SP_PID, and T2_PID controllers in
output disturbance rejection, producing a faster settling time. Fig. 9(b) indicates that the SP_PID disturbance rejection comes with
a cost of overcompensating signal, as compared to the proposed NLPID control, while the conventional PID, T2_PID, and 2D_PID
controllers have a similar system input to the proposed NLPID controller.

The 𝐿2 norm of the system input is computed. This provides satisfactory evidence of internal stability, as well as energy usage.
The values below are the computed 𝐿2 norms using the following equation:

𝐿2(𝑢(𝑡)) =

√

√

√

√

√

𝑡𝑓
∑

𝑡0

(𝑢(𝑡)2) (18)

Using Eq. (18) the 𝐿2 norm of the system input signals, with the applied input and output disturbances, are computed with their
values shown in Table 2.

The proposed NLPID controller shows improvements in performance and maintains fast disturbance rejection, while having a
comparable 𝐿2 energy to that of the PID, 2D_PID, and SP_PID controllers. In addition, according to the Simulation-based Extensive
Testing (SET) the NLPID controller shows a finite 𝐿2 norm that indicates internal stability of the NLPID controller (see Table 2.)
In the following section the robustness of the NLPID controller is shown as part of the Simulation-based Extensive Testing (SET)
method. The stability testing that is conducted, is based on the ability of the proposed NLPID controller to maintain a stable feedback
system against different types of uncertainties in the system modelling of FOPTD plants.
12
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Table 2
𝐿2 gain values for each controller.
Controller 𝐿2

NLPID 10.8960
2D_PID 9.3657
PID 9.3036
SP_PID 10.5629
T2_PID 9.7813

5. Robustness of the proposed NLPID controller to uncertainty

Nonlinear controllers introduce additional nonlinearity into the system, and as a result robustness tests of the proposed controller
ust be conducted. Robustness tests are used as part of the SET method to show that the proposed NLPID controller has the properties

f robust stability and performance, in varying plant dynamics, in the case of inaccurate FOPTD models. The uncertainty is modelled
sing the general feedback system, without considering input or output disturbances.

The initial test shown is the parametric uncertainty of ±10% parameter variations, which are expected structured model
uncertainty. Then, general unstructured uncertainties have been considered, such as additive and multiplicative uncertainties.

5.1. Parametric uncertainty

The parametric uncertainty of the nominal FOPTD plant is modelled using Eq. (19) in the following transfer function format:

𝑃 (𝑠) = 𝑘𝑒𝜏𝑠

𝑡𝑝𝑠 + 1
(19)

where 0.9 ≤ 𝑘 ≤ 1.1, 0.9 ≤ 𝑡𝑝 ≤ 1.1, and 0.9 ≤ 𝜏 ≤ 1.1, which models a parameter change of ±10%.
Fig. 10, shows the gain, lag, and delay parametric uncertainty output and system input plots. Fig. 10(a) shows how the proposed

NLPID controller responds to a large set of ±10% variations in gain 𝑘, lag 𝑡𝑝, and delay parameter 𝜏. It can be seen that there are
no large variations of overshoot and no instabilities. In the case where the gain, lag, and delay parameters are underestimated,
the response shows a maximum overshoot of approximately 10% and a larger settling time. The figure also shows no effect on
stability, providing evidence of robust performance and robust stability for the proposed NLPID controller against gain, lag, and
delay variations.

According to the parametric uncertainty study, it can be seen that the proposed NLPID controller shows resilience to parameter
variations in a structured model uncertainty. The uncertainty tests indicate that internal stability is maintained across different types
of parameter variations with some changes in performance, showing slower settling time, extending from 4 s of the nominal plant,
up to a maximum of 10 s for the extreme variations.

5.2. Additive uncertainty

After conducting tests of the proposed controller against structured uncertainties the next step is to move into the unstructured
uncertainties to see whether the proposed controller maintains stability. The tests begin with additive uncertainty, which is modelled
using Eq. (20). The uncertainty plant 𝛥(𝑠) is designed to be additional lag dynamics into the plant model that may not be considered
in the modelling process.

𝑃 (𝑠) = 𝑃 (𝑠) + 𝛥(𝑠) (20)

The additive uncertainty has been considered to be an additional 50% of lag dynamics into the system in an unstructured form.
Assuming that 𝛥(𝑠) is any arbitrary transfer function, satisfying the condition ||𝛥(𝑠)||∞ ≤ 1 then an arbitrarily large variation of
uncertainty is chosen to be [36]:

𝛥(𝑠) = 1
𝑡𝑝𝑠 + 1

= 1
1.5𝑠 + 1

(21)

The simulation of the additive uncertainty is conducted under the developed uncertainty. The system is represented as a plant
ith a minimal realization that can be expressed in the additive form. The worst-case scenario is taken as the primary example for

he simulation, depicting the 50% unmodelled lag dynamics.
Fig. 11(a) shows that the proposed NLPID controller shows robust stability to the additional lag dynamics, with a fast settling

ime of approximately 6 s. Performance deterioration is observed as the plant damping is reduced. The performance of the proposed
LPID indicates that even after a large addition of lag into the system, the controller maintains stability with a slightly reduced
erformance, observing an overshoot of approximately 10%. Fig. 11(b) shows the system input due to the additive uncertainty.
ccording to the figure, it can be seen that the signal is bounded and hence internally stable.

The proposed NLPID controller can maintain its stability under large deviations in dynamics, which are often seen due to
naccurate modelling. Nonlinear controllers can sometimes have unpredictable outcomes and such interrogation of the controller to
13

arge uncertainty provides confidence in the capabilities of the proposed NLPID controller to perform consistently.
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Fig. 10. NLPID Controller response to gain, lag, and delay parametric uncertainty in FOPDT system, showing both output and system input responses.

5.3. Multiplicative uncertainty

In the effort to do extensive robustness tests, following from the parametric and additive uncertainty, is the multiplicative
ncertainty in the delay dynamics and observe the corresponding changes to the proposed NLPID controller response. The
ultiplicative uncertainty is modelled using Eq. (22) as follows:

𝑃 (𝑠) = 𝑃 (𝑠)[1 +𝑊 (𝑠)𝛥(𝑠)] (22)

where 𝛥(𝑠) being any arbitrary transfer function, satisfying the condition ||𝛥(𝑠)||∞ ≤ 1.
The following inequality must hold true for any multiplicative uncertainty, indicating a circle of radius equal to the magnitude

of 𝑊 (𝑠) that the system uncertainty must lie away from the −1 + 0𝑗 point of the Nyquist plot. The multiplicative uncertainty has
been considered to be an unstructured uncertainty of delay dynamics equivalent to 20% time delay from the nominal plant. From
the above condition, we can determine the weighting dynamics of the uncertainty as follows:
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Fig. 11. NLPID Controller response to unstructured additive uncertainty in FOPTD system, showing both output and system input responses.

for which when the maximum delay uncertainty of 20% occurs at the value of
[

𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥
]

= [0, 0.2] that makes the equation into:

|𝑒−0.2𝑠 − 1| ≤ |𝑊 (𝑠)| (23)

The weighting function 𝑊 (𝑠) is the transfer function that has been modelled to contain the worst case magnitude of the delay
ncertainty magnitude. The weighting function that is recommended to fit the uncertain lag dynamics to be modelled as [36]:

𝑊 (𝑠) =
𝜆𝑚𝑎𝑥𝑠

𝜆𝑚𝑎𝑥
2 𝑠 + 1

= 0.2𝑠
0.1𝑠 + 1

(24)

The magnitude plot can be shown by the red and blue plots, respectively, in Fig. 12, which shows 𝑊 (𝑠) estimating the distribution
f the worst-case delay uncertainty transfer function magnitude. This forms a more generic unstructured delay uncertainty that can
e implemented in more complex controllers to show extensive robustness to a larger set of uncertain dynamics. When compared to
arametric uncertainty, which only includes a certain range of values, the degree and structure of the plant dynamics are assumed to
e unknown. In this case, unstructured uncertainty allows some flexibility for ignorance in the degree and structure of the dynamics.

The uncertainty 𝛥(𝑠) is chosen to be a transfer function that contains the same poles as the nominal plant, the appropriate transfer
unction selection is modelled as [36]:

𝛥(𝑠) = 1
𝑡𝑝𝑠 + 1

(25)

As a result, the total uncertainty dynamics in the multiplicative form can be represented as:

𝑊 (𝑠) = 0.2𝑠 , 𝛥(𝑠) = 1 (26)
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Fig. 12. The bode magnitude response of the uncertainty weighting transfer function and the maximum delay deviation transfer function.

The uncertainty function 𝛥(𝑠) represents the uncertainty in the magnitude and phase dynamics and is implemented according to
the weighting function 𝑊 (𝑠), where ||𝛥(𝑠)||∞ ≤ 1, satisfying the 𝐻∞ condition.

The simulation of the multiplicative uncertainty is conducted under the developed uncertainty. The system is represented as a
plant with a minimal realization that can be expressed in the multiplicative form. The worst-case scenario is taken as the primary
example for the simulation, depicting the 20% unmodelled delay dynamics.

Fig. 13(a) shows the output response of the proposed NLPID controller, indicating robust stability within a large set of
unstructured dynamics of the plant model. It also indicates that the controller suffers from deteriorated performance with an
overshoot of less than 10% and a settling time of approximately 8 s. Fig. 13(b) shows the system input from the proposed NLPID
controller into the uncertain plant, indicating internal stability to the uncertainty.

The proposed NLPID controller shows robust stability to unstructured multiplicative uncertainty. This shows that with the
addition of time-delay uncertainty into the system the proposed controller maintains stability with a performance degradation,
as expected. This expands on the results and shows extensive robustness.

6. Conclusions and future work

The PID controller suffers from the limitations of a single-degree-of-freedom algorithm, where the tuning can only focus
on one issue, either set-point tracking or disturbance rejection. This requires design compromise and effective tuning methods,
which are hard to find, and it depends on the system dynamics. In this paper, this limitation is resolved by the proposed NLPID
controller that manages to improve the transient response speed while maintaining fast disturbance rejection of the system. In
the benchmarking results, the proposed NLPID controller outperforms the conventional control systems in simultaneous transient
response and disturbance rejection for the case of FOPTD systems. The controller also shows robust stability and robust performance
to parametric uncertainty with no large variations. However, the main limitation of the proposed NLPID controller is that there
are yet no tools of analysis for its stability to allow the designer to compute its margins of stability and robustness. The authors
are working on this limitation with promising results that will be published in a separate article. As a result, this depends on
extensive simulation trials to different model uncertainties to reassure stability. To show its robustness, extensive tests have been
conducted for various plant uncertain models in additive and multiplicative forms. The proposed controller maintains robust stability
to large lag dynamics in additive uncertainty form and indicates fast rise time with 10% overshoot and large settling time, indicating
deterioration in performance. In the case of multiplicative uncertainty, the proposed controller also shows robust stability to a large
variety of delay uncertainty models of the unstructured multiplicative form, providing an extensive stability and robustness study,
through simulation.

As part of future work, the authors will work on applying the proposed NLPID controller to different plants with nonlinearities
and non-minimum phase characteristics. The authors will also work on a novel controller that will contain the proposed NLPID
control structure with an extended state observer, with the effect of improving robustness, disturbance rejection, and transient
response characteristics.
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Fig. 13. NLPID Controller response to multiplicative unstructured uncertainty in FOPTD system.
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