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Abstract 

The prediction by classification of side effects incidence in a given medical treatment is a common challenge in 
medical research. Machine Learning (ML) methods are widely used in the areas of risk prediction and 
classification. The primary objective of such algorithms is to use several features to predict dichotomous responses 
(e.g., disease positive/negative). Similar to statistical inference modelling, ML modelling is subject to the class 
imbalance problem and is affected by the majority class, increasing the false-negative rate. In this study, seventy-
nine ML models were built and evaluated to classify approximately 2000 participants from 26 hospitals in eight 
different countries into two groups of radiotherapy (RT) side effects incidence based on recorded observations 
from the international study of RT related toxicity “REQUITE”. We also examined the effect of sampling 
techniques and cost-sensitive learning methods on the models when dealing with class imbalance. The 
combinations of such techniques used had a significant impact on the classification. They resulted in an 
improvement in incidence status prediction by shifting classifiers’ attention to the minority group. The best 
classification model for RT acute toxicity prediction was identified based on domain experts' success criteria. The 
Area Under Receiver Operator Characteristic curve of the models tested with an isolated dataset ranged between 



0.50 and 0.77. The scale of improved results is promising and will guide further development of models to predict 
RT acute toxicities. One model was optimised and found to be beneficial to identify patients who are at risk of 
developing acute RT early-stage toxicities as a result of undergoing breast RT ensuring relevant treatment 
interventions can be appropriately targeted. The design of the approach presented in this paper resulted in 
producing a preclinical-valid prediction model. The study was developed by a multi-disciplinary collaboration of 
data scientists, medical physicists, oncologists and surgeons in the UK Radiotherapy Machine Learning Network. 
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1. Introduction 

A common real-world problem facing Machine Learning (ML) is the lack of good data. While data preparation 
and modelling often consume most of the time of developing ML solutions, data quality is essential for the 
algorithms to function as intended. Noisy, dirty, and incomplete data are common obstacles to creating ML 
solutions [1]. For example, routinely collected health data are data collected without specific a priori research 
questions developed before collection [2]. Health data of this type are used widely for clinical, 
pharmacoepidemiologic and health services research. However, the quality of these data remains in question; 
hence data scientists often need a combination of domain knowledge and an in-depth understanding of ML to 
examine and cleanse such data. Such a process sheds light on the significance of interdisciplinary collaborations 
in this type of research.    

In ML modelling, the imbalance and lack of uniform distribution across patients’ groups in health data also form 
a challenge for both industrial and research domains [3]. There are multiple techniques to tackle class imbalance 
[4], of which data enrichment is the most straightforward. Other more sophisticated methods include varied 
sampling techniques [5], cost-sensitive learning [6], [7], feature selection; more complex strategies include meta-
learning [8], combining classifiers [9], and algorithmic modifications [10]. When models are built with such 
strategies, careful consideration of performance metrics assessment must be taken into account. The evaluation of 
the models’ performances is likely to require input from the domain experts.    

Resampling methods often raise questions over their suitability [11]. For example: is the new resampled dataset 
representative of the population in relation to the response variable? Is it acceptable to artificially generate 
synthetic data of class subjects when training ML classification models? It has been argued that by using sampling 
methods, the original class ratio is lost during the training process and that this affects the accuracy metrics [12]. 
Similarly, training ML models with synthetic data may compromise accuracy measures by deceiving the technique 
of cross-validation [13].  

While most learning algorithms train under the assumption that the cost of misclassification is identical across 
outcome groups [14], penalising classifiers with cost-sensitive classification for incorrect predictions is a practical 
solution to the problem in many fields, like the medical domain of our study. In the medical realm, defining such 
a cost is challenging [15]. For example, in treatment management scenarios, the cost of a false positive might be 
derived from the monetary cost of performing subsequent tests. In contrast, there is no monetary equivalent cost 
for administering treatment on a patient and getting further health complications.  

This paper presents a new comparative ML classification approach and new toxicity prediction models, including 
a simple clinically valid classification model assessed by a UK national collaboration of data scientists, medical 
physicists, oncologists, and surgeons in the UK Radiotherapy Machine Learning Network. The models predict 
breast cancer patients’ susceptibility to early-stage radiotherapy skin toxicity (acute desquamation). Findings in 
this study are considered confirmatory; hence carefully describes the data preprocessing techniques, algorithmic 
modifications, and evaluation metrics, including those to account for data quality and imbalance. The new models 
were built with both sampled and unsampled datasets using Random Under Sampled (RUS) [5], Synthetic 
Minority Over-sampling Technique (SMOTE) [5], Random Over-Sampling (ROS) [5] and Cost-Sensitive 
Classification techniques [6] [7] as well as the original highly imbalanced training data (ITD). The study then 
takes a systematic comparative approach to compare eighty-nine parametric and non-parametric models built with 
eight classification algorithms. Finally, this study suggests the most suitable model meeting the domain experts’ 
success criteria proven to be of particular interest to cancer radiotherapy clinicians. The data imbalance 
characteristic causing the transition in classifier training performance was captured visually by Adaptive 
Projection Analysis (APA) [16] and numerically via Information Gain (IG) attribute evaluation [17]. 

The deployment of ML modelling in this study aims to give researchers a new multi-stage approach to effectively 
compare a large number of prediction models’ performances and select the best-suited models when applying 
multiple imbalanced modelling remedies in a clinical setting. The newly developed models effectively tackle a 
real-world treatment management challenge by predicting acute desquamation, an early-stage RT toxicity. Early-
stage radiation toxicities occur during treatment or within ninety days of exposure to RT. The patient may have 
skin changes ranging from desquamation (peeling skin) to skin necrosis (death of skin cells) and ulceration. These 
changes imply that the skin integrity has been broken over the breast or in the inframammary fold. Patients with 
such toxicities experience irritation, pain and serious fluid buildup under the skin, impacting their Quality of Life 
(QoL) [18]. RT-treated patients’ QoL has become an increasingly important research priority [18]. RT reduces 



the rates of cancer recurrence and increases long-term survival. Hence over 70% of breast cancer patients receive 
RT during the course of their treatment [19]. Typically, the incidence rate of acute desquamation range between 
11% to 71% in breast cancer RT patients [18]. 

Our focus aims to identify patients’ susceptibility to severe complications that can interrupt RT or even a total 
dose reduction. Such an interruption or reduction can potentially increase the risk of local cancer recurrence. The 
risk of cancer recurrence could be reduced if a patient’s susceptibility to radiation toxicity was better known to 
allow treatment plans to be personalised. 

The latest strategies currently embedded within the treatment planning systems to determine the patient’s risk of 
radiation toxicity use mechanistic models [20]. Such models are based on a simplified characterization of the 
interaction between radiation and biological tissues to explain the underlying mechanisms with explicit 
algorithms. Unfortunately, these algorithms are based on handcrafted rules with complex exceptions that often 
fail to predict the actual complications induced by RT. 

The investigation of using ML in this field is still new. Recent studies used complex models to predict RT 
toxicities. One approach used radiomics data (thermal imaging data) on a small sample of patients [21]. Such an 
approach makes large scale analysis of RT toxicities limited due to the expense and time required to employ the 
requisite imaging techniques and the considerable variation between individual patients’ normal tissue reaction to 
RT and resultant toxicities [22]. A different approach utilized hundreds of clinical variables as model inputs raising 
an issue in interpretability [23].  

The REQUITE study provides a comprehensive means of assessing the relationship between the patients’ baseline 
characteristics, medical history, clinical, genomic, dosimetric and radiomic variables and RT range of toxicity 
outcomes in a large population-based cohort of breast cancer patients [24]. Having such a large dataset could 
increase the presence of a pattern in the data; without it, machine learning algorithm can’t sufficiently learn to 
produce effective results. 

The primary goal of this study is to identify a simple and clinically valid ML prediction model to predict the 
occurrence of acute desquamation in the REQUITE breast cancer cohort. REQUITE is an international 
prospective cohort study that recruited cancer patients in 26 hospitals in eight countries. This study uses collected 
data from patients who underwent breast RT. The multicenter breast cancer patients’ cohort was recruited 
prospectively in seven European countries and the US. All patients gave written informed consent [25]. The study 
was approved by local ethics committees in participating countries and registered at the ISRCTN registry [26] 
(ISRCTN98496463). The study is a cross-sectional assessment of 2069 patients from the REQUITE international 
multicenter cohort, aged 23-80 and treated with breast RT between April 2014 and March 2017. 

The paper is structured as follows: The methodology, techniques, algorithms and metrics of this study are 
presented in section 2. The results and analysis are documented in section 3, with the discussion and clinical next 
steps in sections 4 and 5, respectively. 

2. Methodology 

For RT complication prediction, binary-class ML classification models were applied to predict susceptibility to 
acute desquamation based on the outcome collected at the end of radiation treatment for REQUITE breast cancer 
patients. Out of the REQUITE cohort (n=2069, m>300), a final 2058 patients’ records and 123 variables were 
deemed viable for modelling by RTML experts, hence retained. A randomly class-stratified sample without 
replacement (n=1029) of patients was used to train eight ML algorithms using 10-fold cross-validation with two 
different strategies. Finally, all the trained models were tested with the same isolated remaining patients’ data 
(n=1029).  

The original REQUITE dataset underwent a rigorous data preparation and pre-processing phase by the RTML 
network specialists (See Fig.1), followed by the modelling, evaluation and simplification phase (See Fig.3). The 
imbalanced training dataset (ITD, n=1029, m=123) was used to train eight algorithms to establish the extent of 
the class imbalance modelling problem. Once verified, two different strategies were used to mitigate the issue. In 
one strategy, ITD (n=1029, m=123) was modified with sampling techniques, SMOTE (n=1866, m=123), ROS 
(n=1866, m=123) and RUS (n=192, m=123), and used for training eight ML algorithms (Naïve Bayes [27], 
Support Vector Machine [28], Logistic Regression [29], Artificial Neural Network [30], C4.5 Decision Tree [31], 
Logistic Model Tree [32], Random Forest [33] and K-Nearest Neighbour [35]). At a later strategy, ITD (n=1029, 



m=123) was used to train three systematically nominated ML algorithms with a cost-sensitive approach inducing 
multiple misclassification penalty matrices. All models were tested with the same isolated validation data (VD, 
n=1029, m=123). The models' selected performance metrics were compared after test to identify the model of 
interest to clinicians and oncologists. The chosen hero model interpretability was simplified and concluded as a 
final preclinical-valid model. IG was monitored for all predictor variables at every stage. The descriptive statistics 
of the REQUITE dataset variables are reported in a previous study [35]. 

Clinical ML studies are often criticised for the lack of transparency regarding the methods used to prepare and 
pre-process their data before modelling. Therefore, to uphold the clinical validity of our final model and the 
confirmatory nature of this study, the description of the data preparation and pre-processing procedures followed 
is presented with reasonable details [36]. 

2.1 Data preparation and pre-processing 

Fig.1 shows the sequence of data preparation and pre-processing tasks as they were deployed to this study. The 
raw REQUITE dataset (n = 2069) contained (m > 300) variables. The RTML clinicians manually labelled all 
records for acute desquamation outcome based on the CTCAE v4.0 endpoint definition: grade 1 ≥ ulceration or 
grade ≥ 3 erythema. All variables were nominated manually in modelling acute desquamation by clinicians and 
RT physicists. Only an initial set of m = 136 applicable variables and n = 2058 (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷+ = 192,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷− = 1866) 
records remained (Case-wise deletion (n=11 with missing class label). Finally, after the initial analysis, a highly 
imbalanced dataset (n=2058, m=123) was deemed viable for modelling and evaluation.  

The input variables used in this study are easily obtainable at the treatment planning phase. They consist of 
baseline characteristics, familial history, breast cancer staging information, chemotherapy regimens, lifestyle 
attributes, medical conditions, sociodemographic factors, medical operations, treatment history, female-specific 
factors, psychological health attributes, medications, breast RT dosimetry measurements such as normo-
fractionation procedure, and quality of life output. Radiomic data (imaging data) and genomics were not used in 
this study. 

In data preparation, Boundary Value Analysis (BVA) and Equivalence Class Partitioning (EPC) techniques [37] 
were used for detecting and correcting or removing corrupt or inaccurate records from the dataset. Also, 
missingness analysis was performed by cross-checking the data with the REQUITE study questionnaire design to 
ascertain the causes of incomplete records and deduce patterns. A combination of non-statistical and statistical 
imputation techniques was used, non-statistical methods were used to reduce uncertainty via logical rule 
imputation and variable dropping [38] (see Table 1). The investigation of missing data patterns [38] assisted in 
the non-statistical imputation of missing data with logical rule imputation, variable dropping (m=13 with > 37% 
missing values at random compared to observed values in the remaining variables to avoid introducing correlation 
bias when statistical imputation techniques are used). The retained dataset for feature engineering transformation 
and modelling finally had m=123 variables and n=2058 records.  

Fig. 1 Data preparation and pre-processing tasks used in this study 



The retained records n=2058 were shuffled with a randomisation algorithm. Following randomisation, a 50:50 
training-test dataset-split with class stratification was performed. The split formed the raw Imbalanced Training 
Dataset (raw ITD, n=1029) and the raw test Dataset (raw VD, n=1029). The process was followed by applying a 
state-of-the-art hybrid Expectation-Maximization (EM)-Decision Tree imputation for each set independently with 
Decision-Tree based Missing-Value Imputation (DMI) Algorithm [39] to enhance the best expectations of missing 
values. Datasets’ information levels were monitored in each set pre-imputation (raw(ITD), raw(VD)) and post-
imputation (DMI(ITD) and DMI(VD)) with Information Gain Attribute Evaluation [40]. The evaluation of 
information worth is highly affected by the number of records; hence, the 50:50 training-test split allows for a fair 
information bias comparison (see supplementary Information Gain Attribute Evaluation Table A). 

Table 1. Percentage of Imputed missing observations in breast RT cohort variables 

Breast RT cohort nominated raw data 
(m=136, n=2069) 

Breast RT cohort post case-wise 
deletion and logical rule imputation 

(m=136, n=2058) 

Breast RT cohort post variable 
dropping (m=123, n=2058) 

Variables 
Count 

Missing Observations 
Percentage  

Variables 
Count 

Missing Observations 
Percentage 

Variables 
Count Status 

21 90.01%- 100.00% 9 90.01% - 100.00% 9 Dropped 
4 75.01% - 90.00% 2 75.01% - 90.00% 2 Dropped 
5 50.01% - 75.00% 2 37.01% - 75.00% 2 Dropped 
3 35.01% - 50.00% 1 37.00% 1 Retained 
3 20.01% - 35.00% 4 20.01% - 35.00% 4 Retained 
9 5.01% - 20.00% 12 5.01% - 20.00% 12 Retained 
13 1.01% - 5.00%  23 1.01% - 5.00%  23 Retained 
18  0.05% - 1.00%  22 0.05% - 1.00%  22 Retained 
60  0.00% 61 0.00% 61 Retained 

 
The retained 123 variables for modelling consisted of 106 raw features and sixteen additional engineered features. 
Breast size measurements are calculated as a single continuous variable by adding bra cup and band sizes to 
represent ‘sister’ sizes equal to the same breast volume [41]. For instance, a UK size 34B bra holds an approximate 
breast volume equal to 32C, approximately 390 cc. With feature engineering, sixteen features were constructed. 
In many patients, the chemotherapy regimens consisted of a combination of cytotoxic agents. In order to account 
for the vast number of possible chemotherapeutic combinations that patients could be prescribed, the prescriptions 
were binarized [42] based on their generic chemical names (see Table 2). The chemotherapy drugs categorical 
values were converted to One-Hot Encoding, which is a format that could be provided to ML algorithms to 
improve prediction performance [43]. The categorical values represent the administered chemo-drug 
combinations in a chemotherapy regime. The combinations’ values start from zero goes all the way up to N-1 
categories. One-Hot encoding binarization is performed at a category level (single observation level per attribute), 
converting every chemo-drug used in a chemotherapy regime into a new feature. 

Table 2. Illustration examples of binarized chemotherapy regimens  

Binarized chemotherapeutic agents 
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 CAF 1 1 0 0 0 0 1 0 0 0 0 0 110000100000 

AC or CA 1 1 0 0 0 0 0 0 0 0 0 0 110000000000 
AC+T 1 1 0 0 0 0 0 0 0 1 0 0 110000000100 
TAC 1 1 0 1 0 0 0 0 0 0 0 0 110100000000 
CMF 0 1 0 0 0 0 1 0 1 0 0 0 010000101000 
CT or TC 0 1 0 1 0 0 0 0 0 0 0 0 010100000000 
CEF or FEC 0 1 0 0 1 0 1 0 0 0 0 0 010010100000 
EC 0 1 0 0 1 0 0 0 0 0 0 0 010010000000 
FEC+T 0 1 0 1 1 0 1 0 0 0 0 0 010110100000 
TCH 0 0 1 1 0 0 0 1 0 0 0 0 001100010000 
TCHP 0 0 1 1 0 0 0 1 0 0 0 1 001100010001 



Chemotherapy can be neoadjuvant and adjuvant. Neoadjuvant therapy is performed before the primary treatment 
to help reduce the size of a tumour or kill cancer cells that have spread, generally given before the surgical 
procedure. Adjuvant therapy is administered after the primary treatment to destroy remaining cancer cells to 
prevent a possible cancer recurrence. In many cases, chemotherapy drugs (agents) are administered in 
combinations, which means the patient receives two or three different medicines simultaneously. These 
combinations are known as chemotherapy regimens. Every cancer responds differently to chemotherapy. Standard 
breast cancer chemotherapy regimens include AT, AC, AC+T, CMF, CEF, CAF, TAC and others [44]. NHS UK 
published a wide range of chemotherapy side effects that may occur to breast cancer patients, some of whom may 
have plans to undergoing breast RT [45]. Therefore, including chemotherapy attributes in this study was 
recommended. 

To adjust for different RT regimens, the dose was calculated as the biologically effective dose (BED). BED is the 
product of the number of fractions (n), dose per fraction (d), and a factor determined by the dose and α/β ratio for 
acute effects (10 Gy), which is used in radiobiology to describe the slope of the cell survival curve for different 
irradiated tissues [46]. Three features were constructed by calculating the BED. 

𝐵𝐵𝐵𝐵𝐷𝐷 = 𝑛𝑛 𝑑𝑑 �1 +
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Out of all 123 variables, all numeric features (m=63) were normalised with 𝓩𝓩-score standardisation [47] to 
eliminate the impact of larger magnitudes variables when modelling with distance-based algorithms.   

The REQUITE dataset shows that in a breast radiation treatment, only a small portion of patients suffered from 
acute desquamation [48], raising a potential class imbalance problem. Class imbalance poses an additional barrier 
to using ML algorithms. These algorithms usually are optimised using loss functions that attribute the same 
importance to all samples in the training dataset regardless of its endpoint. Therefore, the trained ML model will 
include a strong bias towards the majority class. Class imbalance is a common challenge in ML modelling [4]. 
One strategy to tackle class imbalance in the training data is to apply three data resampling techniques to 
ITD≡DMI(ITD), by which the endpoint response classes of records become equal (see Fig.2); Random Under 
Sampling (RUS) (n=192, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷+ = 96,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷− = 96), Random Over Sampling (ROS) (n = 1866, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷+ =
933,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷− = 933) and Synthetic Minority Oversampling Technique (SMOTE) (n = 1866, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷+ =
933,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷− = 933). The effect of such resampling techniques on the training dataset was visualised with a multi-
dimensional Adaptive Projection Algorithm (APA) [16] into a 3D point cloud. 

 

Fig. 2 Visualisation of samples size for ITD, RUS, ROS, SMOTE training datasets and test dataset VD 



2.2 Modelling, evaluation and simplification 

In this second phase, we apply a complex mix of model building, evaluation and simplification tasks, which flow 
is shown in Fig.3. In order to verify the impact of the class imbalance on modelling, the training set (ITD) n=1029 
is used to train eight ML algorithms (each of a different learning scheme) with 10-Fold Cross-Validation [13] to 
avoid the problem of overfitting. In relation to their cohort, the trained models are tested on the isolated test dataset 
(VD) n=1029. Both ITD and VD are equally imbalanced (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷+ = 96,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷− = 933).  

The resampled datasets RUS, ROS, and SMOTE, are used to train each ML algorithm. These algorithms are 
Discretised Naïve Bayes (NB) [27], Logistic Regression with Ridge Estimator (LR) [29], Artificial Neural 
Networks (ANN) with a multi-layer perceptron architecture [30], Support Vector Machine (SVM) with 
polynomial kernel and Logistic calibrator [28], K-Nearest Neighbour (KNN) [34] with K={1,3,5,7,9}, Decision 
Trees (C4.5) [31], Logistic Model Tree (LMT) [32] and Random Forest (RF) [56]. An alternative strategy to 
overcome class imbalance known as Cost-Sensitive Classification (CS) [27] was used to impose penalties (costs) 
for the misclassification of the positive group (false negative prediction) only during the model training process 
with the imbalanced training dataset (ITD). Three ML algorithms out of the competing eight were systematically 
selected for Cost-Sensitive Learning modelling.  

A false negative prediction cost is not linked to a monetary value; instead, a ten-step Incremental Inverse Class 
Distribution cost was used [49]. ITD has a (96:933 ≅ 1:10) ratio of examples in the positive class to examples in 
the negative group. This ratio is inverted to penalise false negative (FN) with a ten-step incrementation at an initial 
cost 𝓍𝓍: 1 of 10:1, increasing to 100:1. The cost is applied in the form of Charles Elkan’s explicit cost matrix 
notation below [50]. 
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Fig. 3 Models Building, evaluation and simplification methodology used in this study 

All algorithms used for this study were implemented in the Waikato Environment for Knowledge Analysis 
(WEKA) 3.8.3 (with the default algorithm’s configuration settings), with the C4.5 decision tree using the J48 
implementation, KNN using the IBK implementation and SVM using SMO implementation. 

For models’ assessments, a two-stage performance evaluation was applied. At the first stage of evaluation, all 
eight algorithms were trained with ITD and tested with VD. We used three performance metrics: Accuracy, 
Balanced Accuracy and Youden’s index (𝛾𝛾) [51]. The measurements of these performance metrics show the most 
and the least class imbalance impact on all the eight classifiers. The top two severely impacted classifiers by class 
imbalance, and the bottom two affected the least were selected to undergo further improvement with cost-sensitive 
(CS) modelling. 



At the final evaluation stage, all models built by incorporating resampling and CS strategies to tackle the class 
imbalance problem were compared. Multiple metrics were used: The Area Under Receiver Operator Characteristic 
Curve (AUC-ROC) [52], All models with AUC scores below 0.70 were discarded, the remaining models were 
then ranked with their Geometric Mean (G-Mean) [51]. The G-Mean measures the classifier avoidance of 
overfitting the negative class and underfitting the positive labels [51]. The ranked models’ sensitivity (True 
Positive Rate TPR) and specificity (True Negative Rate TNR) were also compared, and the radiotherapy clinicians 
and physicists also determined a trade-off performance threshold. Models that met the TNR-TPR trade-off criteria 
were ranked based on their TPR performance, and a single model was nominated as a “Hero Model”. 

The clinical specialists made it clear that the requirement is to model with all carefully selected features to 
understand their impact and importance. Therefore, domain experts manually selected all the input variables to 
the models based on their empirical observations on patients who underwent radiotherapy and their correlation 
with acute desquamation occurrence in previously published studies (discussed in section 4).   

The Hero Model was simplified further by utilising a purity filter to reduce the number of features to produce a 
“Final Model” [53]. The final model performance was reported in terms of AUC-ROC score, Precision-Recall 
Curve (AUC-PR) score [54] and Matthew Correlation Coefficient (MCC) [52] while highlighting any 
improvement in TPR and TNR. 

 

3. Results analysis 

3.1 Datasets visualisation interpretation 

The APA visualisation [16] in Fig. 4 can indicate the classes that can be separated, the attribute combinations 
primarily associated with each group, the outliers, the sources of error in the classification algorithms, and the 
existence of clusters in the data. In this case, the APA shows a high degree of overlap of the variable’s values 
between patients with and without desquamation, suggesting that it could be difficult to differentiate these two 
classes using these variables. Additionally, the visualisation of the ITD highlights the imbalance in the data and 
how resampling techniques are addressing the balance. 

Fig. 4 APA visualisation of imputed ITD, RUS, ROS, SMOTE training datasets and test dataset 

ROS training dataset shows somewhat widely scattered positive class records since the ROS re-sampling 
technique randomly duplicated records from the positive class. While SMOTE resampling technique has 
intensified the existing positive class records by generating synthetic prototype records analogous to the positive 
class records, these records seem to cluster near the original positive records. The RUS visualisation depicts how 
a balanced dataset may expose divisions within the data more clearly, e.g. desquamation samples on top of the 
RUS visualisation seem to be easily separable. At the same time, in the ITD, ROS and SMOTE, it is difficult to 
observe a clear division between classes. Moreover, the APA analysis shows that the ITD and VD are similar, 
thus suggesting that the randomised data split did not introduce any major bias into either dataset and that the 
training dataset is representative of the whole data. 



3.2 The Information Gain (IG) evaluations  

The information Gain (IG) of each variable was also computed. The IG is the expected reduction of entropy when 
partitioning the data for a given variable. Entropy is related to how likely we are to predict the class labels of 
samples, i.e. when data has high entropy, it is difficult to predict the class label of an example, and when the 
entropy is low, the opposite is verified. So, IG provides a measure of how much the prediction of the class labels 
of samples would improve if the data was split using just one feature. IG was used to monitor any bias that occurs 
in either training or test datasets. Entropy and purity could vary due to data pre-processing techniques such as 
imputation and resampling with different numbers of records. The more plausible the conclusive pattern of IG 
among datasets, the less bias is introduced in modelling. By looking at both ITD and VD datasets in Fig. 5, it is 
notable that most of their features preserved close purity and entropy levels before and after imputation. Features 
that showed dominance in IG evaluation before DMI imputation have also maintained power after DMI 
imputation. Note that the imputation of ITD and VD separately removes the opportunity of both datasets sharing 
the same statistical parameter setting used by the imputation algorithm. This execution makes both the training 
and test datasets utterly independent from each other and entirely isolated. 

Fig. 5 IG evaluations of predictors in ITD, RUS, ROS, SMOTE training datasets and test dataset (VD) 

3.3 The imbalanced models’ results  

A single model was built with ITD and tested with VD for each of the eight ML algorithms. The KNN was an 
exception, for which five models were constructed with ITD and tested with VD to account for the different values 
of the K parameter, where K= {1,3,5,7,9} [55]. Table 3 shows the models’ Accuracy, Balanced Accuracy, 
Youden’s Index, AUC score, TPR and TNR performances for all twelve models in training and validation.  

The training and validation performance results (Table 3) confirm the problem of the class imbalance issue with 
a severe high accuracy bias towards the desquamation-negative group (majority class) by sacrificing the 
desquamation-positive records (minority class) as type II errors (FN) [52]. In terms of training accuracy, (K=9)NN 
ranked first, scoring 0.909, while NB, a popular algorithm in medical research, came last with 0.776. Similar 
behaviour of accuracy performances ranking was observed after test.  

The balanced accuracy metric exposes classifiers that take advantage of the majority class to boost their overall 
accuracy. Conversely, the lower the balanced accuracy, the least a classifier takes advantage of the distribution of 
the majority class. Youden’s index (𝛾𝛾) evaluates the ability of a classifier to avoid misclassifications in both 
classes. A higher value of 𝛾𝛾 indicates a good performing classifier.  

When analysing the training performances in Table 3, NB scored the highest in both balanced accuracy and 
Youden’s index (γ) to be considered the least susceptible classifier to accuracy bias towards the majority class 
and the best in avoiding misclassification. On the other hand, despite the high accuracy of the LMT model of 
0.904, both balanced accuracy and Youden’s index (γ) metrics agreed to rank it last. The low ranking indicates 



that the LMT model mainly took advantage of the majority class distribution to boost its accuracy score with a 
TNR of 0.996. The worst in misclassification avoidance in both classes proved with the lowest TPR of 0.01. RF, 
a famous ensemble algorithm in the data science community for its accomplishments, missed the lowest 
performance on both balanced accuracy metric and Youden’s index (γ) and ranked just before LMT with 0.10 and 
0.019, respectively, showing its severe bias towards the majority class.  

Table 3. Imbalanced ML models’ training and test performances

 
By analysing the training performances of the classifiers with ITD in table 3, the question of class importance in 
this particular domain problem arises when selecting algorithms for seeking further improvement with a CS 
strategy. The higher the balanced accuracy and Youden’s index (γ), the higher degree of discrimination between 
both classes in the imbalanced setting. In contrast, the lowest measurements on both same two metrics indicate 
the lowest degree of discrimination of the minority group. In severe binary imbalanced learning, typically, a cost 
matrix in a CS approach penalises misclassifications of the minority group members to seek an improved TPR. 
Selecting the NB algorithm for CS modelling based on its balanced accuracy training performance with ITD may 
favour the minority group over the majority class. It allows its TNR performance to worsen from the lowest level 
of 0.810 among all classifiers to produce a higher TPR. 

On the other hand, selecting the worst-performing algorithm on both balanced accuracy and Youden’s index (γ) 
in training, i.e. LMT or RF, for CS modelling, may indicate caring about both classes equally. Since any 
improvement to their TPR may decrease the highest level of TNR from 0.995 and 1.000, respectively. The 
previous assumption can be valid if all learners in this study are to show the same depth of improvement to (TPR) 
and deterioration of (TNR) when presented with the exact cost (penalty) combinations in an explicit cost matrix 
penalising misclassification in the desquamation-positive minority group. 

The RT potential benefits have to be weighed against the possibilities of causing damage to the healthy tissue, 
with the final aim of maximizing curative response while minimizing the probability of complications [56]. Hence, 
the RTML domain experts noted that favouring the minority group over the majority class could prevent patients 
from benefiting from the treatment and being shifted to other alternatives. However, caring about both groups 



equally may lead to increased false negatives (FN) as more patients are likely to develop acute desquamation due 
to undergoing radiotherapy, which in turn compromises patients QoL and runs the risk of local cancer recurrence 
in the event of RT interruption.   

Experts confirmed that the sensitivity achieved was insufficient for all ITD models in both training and test without 
mitigating the class imbalance problem, ranging from 0.01 to 0.44 in training and from 0.04 to 0.5 in test for LMT 
and NB, respectively. Hence all ITD models are considered not effective at predicting acute desquamation.  

Domain experts decided to examine both scenarios by seeking an improvement with CS classification for the top 
two performing classifiers, NB and ANN, and the bottom two, RF and LMT, in terms of their balanced accuracy 
and Youden’s index (γ) scores in training. Finally, the TPR-TNR trade-off evaluation occurs when comparing all 
tested models having applied both strategies, CS classification and resampling, to mitigate the imbalanced learning 
issue. The confusion matrices for the four selected models in Table 4 describe the numeric count of correctly 
classified patients, FP (type I) and FN (type II) errors misclassifications. 

Table 4. Training and test confusion matrices of LMT, RF, ANN and NB imbalanced ML models

 

3.4 The Cost-Sensitive (CS) classification results  

The expected improvement to the four selected algorithms NB, ANN, RF and LMT with CS classification is 
achieved with an incremental inverse-class distribution cost matrix to penalise the classifier for the 
misclassification of FN records. The incremental penalty is expected to skew the correct classification towards 
the positive group as there are no further improvements required for the negative class. Forty models were built 
with ITD accompanied by a defined cost matrix then tested with VD. In order to evaluate such an improvement, 
four metrics measurements in test were reported: the AUC-ROC, G-mean, TPR and TNR. (See table 5). 

It is sufficient to report and analyse only the test results with VD than the training with ITD for all CS models to 
allow for a fair comparison later with other models built with resampling techniques. Resample models used 
training datasets of different sizes (samples of ITD).  

From table 5, the CS classification showed a consistent deterioration of TNR for all models across all four 
algorithms. ANN impacted by the highest level of TNR deterioration (∆TNR = – 0.953) when compared to its 
original ITD test result at an FN penalty of 10, CS-ANN TNR deterioration was preceded by the LMT model at 
an FN cost of 100 with a ∆TNR of – 0.466. For NB, the maximum TNR loss was – 0.274, and for RF was – 0.393.  

A consistent TPR improvement is also observed when examining the TPR for LMT, RF and NB CS models. 
Initially, ANN showed a slight loss until an FN cost of 60, where gains started to show. Then, ANN achieved the 
most TPR improvement with ∆TPR = 0.823 at FN penalties of 70, 80, 90 and 100. ANN’s massive improvement 
resulted in a total misclassification of all the desquamation-negative patients (majority class). The TPR gains as a 
result of CS classifications were in the range from 0.343 to 0.604 in LMT models, 0.004 to 0.692 in RF models, 
and NB models showed gains between 0.063 and 0.271. The impact of incremental FN penalty in the cost matrix 
on each of the four selected classifiers can be observed in Fig. 6. The shift in classifier attention is quantified by 
computing the absolute change in TNR and TPR for each model after applying a specific FN penalty. 



Table 5. Selected ITD algorithms Test performance with CS classification strategy

 

Fig. 6 – A shows that the change rate for TPR was greater in LMT and RF models at every FN penalty. However, 
NB models showed almost a similar rate of change in classifier TNR and TPR. ANN maintained a similar 
behaviour to NB for the initial six steps of incremental FN cost, then a constant massive change rate for both TNR 
and TPR occurs. Fig. 6 – B shows that the shift of CS classification with incremental FN costs is linear on both 
TNR and TPR. However, the impact varied among different classifiers for the same FN penalty values. 

 
Fig. 6 Absolute change in TNR and TPR test performance per FN penalty in LMT, RF, NB and ANN models  

In Fig. 6 – B, for FN penalties from 10 to 60,  the change in TPR performance for LMT was 0.521 for FN cost of 
60, followed by RF with a change rate of 0.473 and 0.198 in the NB case. Nevertheless, the ANN classifier ranked 
last, showing strong resistance to budge with FN penalties; its change fluctuated lightly between 0.021 and 0.042. 



for the same range of FN penalties 10 to 60. The TNR change also showed a direct linear rise. LMT had a steep 
|∆TNR| elevating higher than all other classifiers ranging from 0.0340 to 0.188. NB presented a less elevated 
absolute TNR change and very close to the absolute change in its TPR with FN penalties {10,20,30, 40,50,60}, 
with RF not far behind at FN penalty of 60. ANN maintained its resistance to change, with FN penalties showing 
a slight change compared to its ITD model with an FN cost of 1.  

For FN penalties from 70 to 100 (Fig. 6 – B), a sudden step-change in ANN classifier TNR and TPR occurred 
with |∆TNR| = 0.953 and |∆TPR| = 0.823 across all FN penalties {70, 80, 90, 100}. This sharp constant rise in 
ANN’s |∆TNR| and |∆TPR| compared to its TNR and TPR at each penalty indicates a catastrophic impact of 
completely overfitting the negative class with a TPR of 1.000 and fully underfitting the majority group with a 
TNR of 0.000. At the FN penalty of 80, the absolute TPR change in the RF classifier overtook its opponent in the 
prior LMT models, and both maintained a larger change above NB but below ANN models.  

The average CS impact on the absolute change in TPR and TNR for both NB and ANN models was very close at 
all FN penalties. The average |∆TPR| was 0.191 and 0.346 compared to the |∆TNR| average of 0.197 and 0.390, 
respectively. LMT and RF average |∆TPR| was 0.527 and 0.400 compared to an average |∆TNR| of 0.341 and 
0.190, respectively. 

Fig. 7 shows the AUC, G-Mean, TPR and TNR performance combinations for LMT, RF, NB and ANN for all 
incremental FN penalties. Fig. 7 – (A, B, C and D) demonstrate the AUC-ROC vulnerability to the class imbalance 
problem by achieving a reasonably good score > 0.70  despite the models’ poor power of discrimination towards 
the minority positive class [54], in the case of LMT, RF and ANN at an FN cost equal to an FP of 1 in the ITD 
models. When applying incremental penalties to FN misclassifications, the AUC-ROC performance continues to 
retain its score for all CS-models within a margin of 8% in the case of LMT, 3% for RF and 2% for NB. ANN 
initially tries to retain its AUC performance within a margin of 3% until its sudden drop to its minimum of 0.50 
for all FN costs above 60, at which the ANN classifier loses its ability to classify all patients in the majority group. 

 
Fig. 7 TNR, TPR, G-Mean and AUC computations per FN penalty in LMT, RF, NB and ANN models 

The G-Mean score is proven to be more robust than the AUC – ROC when assessing the ability of classifiers to 
avoid overfitting and underfitting the classes; the greater the G-Mean, the better. When examining the G-Mean 
evaluations for LMT, RF and ANN ITD Models (FN penalty = 1), the G-Mean evaluations were small, 0.204, 



0.100 and 0.411, respectively, indicating poor classification performance. In Fig. 7 – D, the ANN’s G-Mean values 
dropped to zero when the model completely overfitted the positive class and misclassified all the negative class 
labels. NB in Fig. 7 – C presented a greater G-Mean for its ITD model of 0.645, indicating better discrimination 
between both classes at an FN cost of 1. NB maintained a consistent G-Mean with a minimal change margin of 
2% across all CS models ranging between 0.663 and 0.669. 

By examining the G-Mean for all CS-models in Fig.7 and table 5, it is observed that CS-RF and CS-NB models 
reserved the top ten ranks in the G-Mean evaluation. The top five places were for RF CS-models at FN costs {50, 
60, 70, 80, 90, 100}, the bottom five ranks were occupied by NB CS-models at FN costs {20, 30, 40, 60, 70}. 

3.5 Resampling models results 

Table 6 shows the TNR, TPR, TN change rate (∆TNR), TP change rate (∆TPR), G-Mean and AUC test 
performances of resampling techniques RUS, ROS and SMOTE for RF, LMT, NB, C4.5, ANN, KNN, SVM and 
LR classifiers. By analysing the effect of resampling techniques on both TNR and TPR in Fig. 8, it is clear that 
the resampling techniques improved the TPR across all classifiers while the TNR deteriorated across all classifiers 
for all resampling techniques from the original ITD-based state. 

Table 6. Models test performances with data resampling strategy

 

 
Fig. 8 TN and TP change rates in test per classifier in RUS, ROS and SMOTE models 

Fig .9 shows the depth of impact (absolute change in TPR and TNR ) of the resampling techniques. In RUS-based 
models, the TPR change was greater than TNR across almost all classifiers except for NB. The largest (TPR, 



TNR) change is observed in the RF model (0.730, 0.348). In the ROS-based models, the impact of resampling 
was greater on TNR for all models but LR and NB models; however, the depth of effect (TPR, TNR) is small 
(0.105, 0.144) and (0.021, 0.068), respectively. SMOTE-based models also show that TPR was impacted higher 
than TNR except in ANN, C4.5 and NB. 

 
Fig. 9 Absolute TN and TP change rates in test per classifier in RUS, ROS and SMOTE models 

Fig. 10 shows the evaluation of the G-Mean and AUC-ROC in relation to the balance between TPR and TNR. In 
RUS-based models, it is observed that the TPR is overtaking the TNR in all models. Larger G-Mean values 
indicate that the classifier is not overfitting or underfitting any of the classes. The evaluation of the G-Mean and 
AUC-ROC are harmonised across all RUS-based models (Fig. 10 – A). The lowest G-Mean and AUC-ROC 
measurements are observed for the C4.5 model at 0.555 and 0.576, respectively. The highest G-mean evaluation 
was 0.695 achieved by the RF model, with the highest AUC of 0.742.  

Unlike the RUS-based models, the ROS models (Fig. 10 – B) experienced a frequent disagreement between the 
AUC-ROC and the G-mean scores. While the G-mean score was small, indicating there is a large bias of accuracy 
towards one of the classes in the case of (K=1)NN,  ANN, LMT, LR, NB and RF, the AUC-ROC seems to have 
shown a deceiving high evaluation for such models, for instance, 0.746 for RF and 0.722 for NB. 

Fig. 10 TNR, TPR, G-Mean and AUC test performances per classifier in RUS, ROS and SMOTE models 

In SMOTE-based models, the AUC-ROC again can show misleading high evaluations for models with inflated class accuracy 
in either class, specifically in the cases of ANN, LMT, LR, NB and RF. For example, RF achieved a good AUC-ROC score 
of 0.746 with a poor TPR of 0.198 and an excessive TNR of  0.937. However, examining the G-Mean for all SMOTE models 
cuts through the deception of the inflated AUC-ROC scores; therefore, the RF G-Mean score is 0.441, which is relatively low. 
A similar case is observed in the ANN SMOTE-based model; the AUC-ROC is 0.699 while the G-Mean is 0.428. 

 



3.6 Model’s selection and simplification 

In clinical trials, it is known that the AUC-ROC metric preserves the discriminant validity in treatment 
comparisons in balanced data [57] or where a suitable compensating method is applied to overcome the class 
imbalance. Hence clinicians rely on such a measure as a critical evaluator in judging the performance of a 
prediction model. In the previous results sub-sections, we demonstrated that a model’s AUC-ROC score in some 
instances could be deceiving. Therefore, additional metrics such as the G-Mean was nominated to reveal such 
cases and provide a less biased assessment. In other cases, where different models are deemed suitable, choosing 
a single model as a Hero model becomes challenging. Hence, domain experts should set an additional success 
criterion to define an acceptable level of TPR-TNR trade-off.  

To select best performing models out of 76 models built with either of the used imbalanced learning in this paper 
to predict the occurrence of acute desquamation, clinicians called for filtering out all models with an AUC-ROC 
score below 0.700. Models with good discriminatory powers between the positive and the negative groups must 
have a minimum AUC-ROC of 0.700. Twenty-seven prediction models with AUC-ROC ≥ 0.700 remained (see 
Fig. 11). Seven models with a high AUC-ROC associated with a low G-Mean indicated overfitting of the majority 
negative class and underfitting the minority positive class were also dropped out. 

 

Fig. 11 Filtered models and their associated TNR, TPR, G-Mean and AUC-ROC test performances 

Based on all models’ validation TPR and TNR evaluations and the clinicians’ trade-off between TPR and TNR in 
Fig. 12, RTML experts agreed on two trade-off conditions that all models compete towards, based on lower and 
upper threshold values of 0.630 and 0.700, respectively. These conditions are (TPR ≥ 0.630 & TNR ≥ 0.700) and 
(TNR ≥ 0.630 & TPR ≥ 0.700). Three models met both conditions. They are CS-RF(FN:FP=90:1, TNR=0.645, 
TPR=0.771, AUC=0.762, G-Mean=0.705), RUS-RF(TNR=0.652, TPR=0.740, AUC=0.742, G-Mean=0.695), 
CS-RF(FN:FP=80:1, and TNR=0.702, TPR=0.646, AUC=0.751, G-Mean=0.673). The confusion matrices for the 
compliant three tested models are found in Table 7. Maximising TPs is essential; therefore, specialists’ consensus 
concluded that the best performing model (Hero Model) was CS-RF(FN:FP = 90:1) for exceeding all other 
models’ sensitivity, AUC and G-Mean performances while maintaining a competitive specificity. The calculated 
balanced accuracy and Youden’s index for the hero model were 0.249 and 0.416, respectively. It is found that 
these values were also the highest among all models in this paper. 



Fig. 12 True Positive Rate (TPR) and True Negative Rate (TNR) trade-offs threshold lines for all tested models with VD. 
FN prediction costs refer to Penalty values in the explicit cost-sensitive models. While FP predictions costs are kept at a 

value of 1, both TP and TN predictions costs always remained at the value of zero 
 

Table 7. Performance ranking of the compliant three tested models with VD

 
 

3.7 Model’s simplification 

The hero model has many predictors M=122, which makes its interpretability quite complicated. Feature 
importance in RF was calculated with Mean Decrease Impurity [53]. Eight features were estimated to have zero 
importance for the model CS-RF(FN:FP = 90:1). In order to simplify the hero model, these features were removed, 
and a final model was rebuilt and tested. As a result, the simplified model performance slightly improved its 
specificity to 0.658, AUC to 0.771 and G-Mean to 0.712, while its sensitivity remained unchanged. Feature 



importance is described in supplementary material tables B and C. The final simplified model’s performance is 
described in Table 8. 

Table 8. Simplified hero and final simplified models’ test confusion matrices and performances

 

Two additional metrics were also calculated for the final model, Matthew Correlation Coefficient (MCC) and the 
Area Under the Precision-Recall Curve (AUC-PR) score; their values are 0.251 and 0.902, respectively. MCC 
describes the correlation coefficient between the observed and predicted classifications. An MCC of 0.251 shows 
that the final model predictions are not random and leaning towards strong predictions. The AUC-PR of the final 
model was 0.902 indicates a good detection of positive outcomes and a strong prediction performance on the final 
model. 

4. Discussion 

The overall goal of this study was to predict radiation therapy acute toxicity desquamation in breast cancer 
patient's participants from the REQUITE cohort and to apply ML methods to classify these subjects into 
susceptibility to toxicity occurrence or non-occurrence categories. The ability to predict and classify this variable 
using simple clinical routinely collected data will significantly impact the identification of subjects likely to avoid 
QoL deterioration during radiation therapy. The models tested here input features that include baseline 
characteristics, familial data, breast cancer staging records, chemotherapy-regimen drugs, lifestyle observations, 
medical conditions, sociodemographic factors, medical operations, treatment history, female-specific factors, 
mental and behavioural disorders, medications, quality of life and breast RT procedure measurements such as 
normo-fractionation procedure. The features also included reported RT toxicities risk factors which previously 
demonstrated to correlate with acute desquamation significantly. Imaging and genomic risk factors were excluded. 
[58] 

Our models initially used 122 input features (attributes) to predict a binary acute desquamation endpoint. The 
models were built with eight ML algorithms, NB, LR, ANN, SVM, KNN, C4.5, LMT and RF; each has a different 
learning scheme. A purity based ranking technique, IG was calculated to evaluate the worth of each input feature 
independently. When observing IG evaluation after the randomised and stratified training/test data split, it was 
noted that few variables in the test dataset (VD) contained a different worth of information as compared to the 
training set (ITD). A way to interpret the calculated IG values is the possible presence of associations between 
each feature and the class labels in each training dataset. This purity measure differs from correlation association, 
and it is not utilised as a feature selection in this study. Observed IG evaluation also showed that some variables 
in the VD contained a higher worth of information as compared to the ITD. In ITD, it was observed that 
“radio_skin_max_dose_Gy”, “BED_Breast_Gy”, “radio_breast_fractions_dose_per_fraction_Gy”, “ra-
dio_breast_ct_volume_cm3” and “radio_photon_2nd_fractions” dominated the top five ranks in purity values in 
relation to the class variable (acute desquamation endpoint). After balancing the two classes with RUS resampling 
technique, "radio_skin_max_dose_Gy" still reserved the highest IG evaluation, and 
"radio_breast_fractions_dose_per_fraction_Gy" slipped to sixth place while "BED_Breast_Gy" remained in the 
top five; other new predictors sored to the top five IG ranks: those are "radio_type_imrt", "radio_boost_type" and 
"radio_photon_energy_MV or kV". In the oversampled dataset (ROS), similar to ITD, 
“radio_breast_ct_volume_cm3” and “radio_skin_max_dose_Gy” were in the top five places, while three new 
predictors joined the top five ranks - “BED_Total_Gy”, “weight_at_cancer_diagnosis_kg” and 



“radio_photon_boost_volume_cm3”. Unlike all training sets, in SMOTE synthetic oversampled dataset, five new 
predictors occupied the top five ranks, those being "breast_separation_cm", "band_size_UK_inch", 
"bra_cup_size", "household_members" and "height_cm". This information theory approach into the models' 
features based on domain experts advice adds a layer of details to the observed correlations in previous studies by 
describing the strength of each feature to discriminate between the positive and negative classes [59 – 65]. 

Furthermore, when considering the ITD, RUS, ROS and SMOTE datasets, some variables showed no purity 
towards the class: ITD had 42 predictors with zero IG, RUS had 59 predictor variables (the highest), and ROS 
and SMOTE had the least predictors with zero IG of 11 and 12 respectively. Zero IG does not negate the potential 
relevance of these predictors to the predictive models as they may climb up the ranking if additional records are 
added to the same dataset. They simply mean that based on purity and entropy in these training datasets, they do 
not distinguish between both class labels at the endpoint. Some ML models may still calculate otherwise and 
utilise them in building the predictive models depending on the learning mechanism. Hence all 122 predictors 
were included in the modelling process. 

For ML modelling, tackling the imbalanced class problem has a significant impact on the performance of standard 
parametric and non-parametric ML algorithms. Also, the classification modelling performance in the training 
phase is severely impacted by class separability. The training of the standard ML algorithms with highly 
imbalanced classes without adjusting the training set results in an accuracy bias towards the majority class. In this 
study, we tackled that bias by applying two approaches. In one approach, resampling techniques (RUS, ROS and 
SMOTE) were used to adjust the class imbalance in the classification training phase at the dataset level, which 
amplified the IG in many input features. The other approach (a cost-sensitive approach) awarded incremental 
higher weights for the records in the minority class while maintaining unchanged levels of information in the input 
features.  

It was observed that the cost-sensitive approach achieved the highest ranks in the models' evaluation. It remains 
unclear as to whether other remedies for imbalanced data classifications, such as Ensembles Learning (which are 
implemented at the algorithmic level), could result in better performances [8][9][10]. The advantages of 
resampling techniques evaluated here, however, include simplicity and transportability. Nevertheless, they are 
limited by the amount of IG manipulation because of their application resulting in biased predictions towards the 
minority class. The excessive use of such techniques could result in overfitting, as seen in the ROS and SMOTE 
models. In this study, the original REQUITE cohort dataset was highly imbalanced. Traditional ML algorithms 
were sensitive to higher information gains. They tended to produce superb performance results in training for 
ROS and SMOTE datasets, but when testing the models, the overall model performance often dropped below the 
training phase performance. Unlike resampling techniques, cost-sensitive classification is proven complex to 
determine the exact penalty for minority records misclassification. Also, as observed in the results, the complexity 
dramatically increases since the attention (depth of impact) to the minority records of different ML classifiers of 
various learning schemes is shifted differently for the same misclassification penalty when building predictive 
models. Adding to the mixture of complexity, a good choice of evaluation metrics become curtail. As previously 
described, some metrics despite how popular they are in a research area, i.e. Accuracy and AUC-ROC, produced 
deceiving good measurement evaluations. Therefore, more imbalanced modelling-focussed metrics were chosen, 
such as Balanced Accuracy, Youden’s Index, the G-Mean and AUC-PR.   

This study showed that applying the correct level of resampling without disrupting the original data distribution 
in the RUS-based method, together with the desired choice of performance metrics and slight manipulation of IG 
levels, produced a good prediction solution [66]. The RF-RUS model competed with further developed models 
with algorithmic modifications in the case of cost-sensitive classification. Among all 89 models reported in this 
study, three models satisfied the trade-off threshold conditions (see table 7). However, one "hero" model was 
selected for this specific domain problem: a cost-sensitive RF model with FN:FP misclassification penalty ratio 
of 90:1. Nevertheless, the effect of the classifier's learning scheme becomes highly noticeable in imbalanced 
datasets when the minority classes prediction accuracies (TPR) are compared. The results also showed that 
improving the ITD models TPR with CS-classification does not massively impact the positive group by putting 
the majority group at a higher disadvantage of deteriorating its TNR, i.e. the NB case. It is observed that some 
algorithms are highly resistant towards higher misclassification costs to improve their original TPR in the 
imbalanced data setting, i.e. in the case of ANN. 

 



In the resampled models' results analysis, the learning scheme's impact decreased with the class imbalance severity 
in datasets compared to balanced datasets. Classifiers behaved very differently for the same cost matrix in cost-
sensitive classification when trained on the same dataset. 

Our "hero" model was further simplified by discarding eight features. According to RF model-based feature 
selection method Mean Decrease Impurity (MDI), these features were deemed unimportant of zero value. The 
"hero" classifier is rebuilt with the remaining 114 features. The performance of the "hero" model continued to 
show a slight improvement in TNR. The MDI feature selection is biased towards preferring variables with more 
categories [67]. This bias is not a problem in our study since MDI was only used to optimise (simplify) a model 
with known performance. However, suppose the dataset contains two (or more) correlated features from the 
model's point of view. In that case, any of these correlated features can be used as a top predictor without preferring 
one over the others. Once one of them is used, the importance of the others is significantly reduced since the 
impurity they can eliminate is already removed by the first selected feature. Therefore, they will have lower 
reported importance. This reduction of importance is not an issue when we want to use this feature selection 
technique to simplify the model since it is desired to remove mostly unimportant features. 

Nevertheless, it can provide a misleading perception that one of the variables is a strong predictor when 
interpreting the model. In contrast, the others in the same group are unimportant, while in fact, they are very 
closely associated with the response endpoint (See Fig. 5 ). The misinterpretation of unimportant features 
removals is somewhat reduced thanks to random feature selection at each node in Random Forests. However, the 
generalised effect within the averaged model is not entirely eliminated. The difficulty of interpreting the ranking 
of associated variables is not Random Forest specific; it applies to most model-based feature selection methods 
[68]. 

Like most biomedical case studies, when biochemical tests are performance assessed, in our study, the data 
obtained is heavily skewed (imbalanced). Typical disease prevalence is in the range of ~10% for those with the 
disease, and ~90% do not have that disease. It is common to use the AUC-ROC curve to evaluate the clinical 
performance validity of a biochemical test. The AUC-ROC curve is a graphical representation of the trade-off 
between TPR and FPR for every possible cut-off for a test or a combination of tests. The AUC- ROC gives an 
idea about the benefit of using the test in question. However, the highly imbalanced datasets tend to provide a 
much better ROC curve; therefore, visual interpretation and comparisons of AUC-ROC for ML models trained 
with imbalanced datasets can be misleading [69] as observed in all ITD-based models in Table 3. Therefore, 
additional performance metrics are required to provide a more accurate representation of the models' validity. The 
TPR and TNR are used less frequently than ROC curves, but as we examined the models, assessing additional 
performance metrics is proven to be a better choice for imbalanced datasets. Setting a graphical TPR-TNR trade-
off threshold that maximises correct classifications gains and minimises misclassification losses indicates each 
class's importance in the domain experts view and allows for a pragmatic final model selection.    

Currently, mechanistic models are embedded within the treatment planning systems to predict RT complications, 
these are Lyman–Kutcher–Burman models [70][71]. These models allow for effective biological optimization of 
the delivered radiation dose among competing treatment strategies; however, the handmade exceptions in their 
algorithms means that they often fail to predict the actual side effects induced by RT. 

In PubMed/Medline database, the current available studies indicate only two are viable  [56][21][23] that produced 
clinically valid ML models for detecting acute side effects of breast RT. In one study [21], models were built 
based on the detection of body-surface temperature increase. Thermal images of the irradiated breast were taken 
from a small population of 90 patients at four consecutive time points. The caveat for this approach remains to be 
the large-scale analysis of RT toxicities at the expense of time required to obtain the imaging data and accounting 
for the considerable variation between individual patients’ normal tissue reaction to RT and the resultant toxicities. 
The other is a comparative study [23] trained a group of ML algorithms on a large population of 2277 patients 
from 5 clinical centres. And it achieved a good AUC-ROC performance. The prediction models are complex, as 
they used more than 300 input variables. Using such a large number of variables makes it hard to follow and 
interpret the model’s output. The final and recent study [72] attempted to create simpler toxicity prediction models 
that excluded dosimetry and radiomic data. The model did not clinically validate in the REQUITE cohort.  

Unlike the previous studies, our study accounts for less and easy to obtain variables in the course of the RT 
treatment planning phase, incorporating the largest cohort among other studies and our model is considered 
clinically valid. Data-driven studies often lack reporting the data preparation and pre-processing techniques 



involved to build their ML prediction models. By reporting the full methodology designed and delivered by an 
interdisciplinary team of experts, we build researchers confidence in our findings. Our approach equips 
researchers with a new pragmatic domain-driven approach highlighting concerns when applying data imbalance 
strategies and assessing multiple models for similar real-world clinical problems.     

Limitations of this and many other ML papers used in radiation oncology are the number of variables used 
compared to routine practice and the different toxicity scales and grades for an acute skin reaction and ulceration 
defining the class end point.  

Real-world applicability is also reduced due to unrealistic datasets. However, the volume and variety of data 
routinely collected on patients will only increase over time. Indeed, many of the variables currently collected in 
routine practice are not fully utilised. For example, past medical history, drug history and family history form a 
large number of binary variables in the REQUITE dataset but at present are often recorded as free text on the first 
encounter between patient and oncologist. Regardless, similar models using more limited datasets should be 
developed and tested before an ML approach to predict RT toxicities can move beyond the research setting into 
clinical practice.  

Despite a good amount of research in ML methods for toxicity assessment, to the best of our knowledge, this is 
the first effort to summarize the field's current state and produce the simplest clinically valid prediction model. 

5. Clinical implication and next steps 

Our study shows that applying traditional ML algorithms to datasets of phenotype and clinical variables offers a 
fast and inexpensive solution to predict acute toxicities (moist desquamation) for breast cancer RT patients. This 
was done by aligning the classification task to predict specific adverse skin effects based on Common 
Terminology Criteria for Adverse Events. This study's selection of a binary-class prediction task is strategic to 
include patients classed within severe, life-threatening and death criteria. It identifies patients at higher risk of 
developing acute desquamation conditions and are more likely to benefit from treatment plans to be personalised 
and trigger discussions about treatment risks and benefits with patients. The process of training various ML 
algorithms with 10-Fold Cross-Validation and testing the models with an isolated group of patients of a similar 
ratio to the training data makes this study suitable for follow-up research in medical screening to identify subjects 
that may require treatment intervention.  

Our successful final ML model has the potential to aid clinical facilities and practitioners in minimizing side 
effects and increasing the chance of RT positive outcomes. Before being embedded into applications, the model 
can undergo further clinical assessment in line with the optimised radiation dose output obtained from the current 
mechanistic models. The final model can utilise the treatment dosimetry measurements obtained from the current 
treatment planning system to predict acute desquamation accurately. Decisions obtained from the legacy system 
and the new model are recorded and compared. 

This domain problem is the first to use the clinical features only at a CTCAE >3 setting to predict acute toxicities 
with ML. This study has the largest number of patients in modelling and validation, among other known studies. 
This study could be used as a benchmark for future studies to compare its results to other research from the same 
domain. Nevertheless, further analyses will be followed where additional methods to improve the outcomes will 
be investigated. 
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Supplementary material  

Table A. Information Gain Attribute Evaluation. 

Information and entropy levels within independent variables were monitored using an Information Gain Attribute 
Evaluator (IG) Algorithm. This algorithm evaluates the worth of each attribute by measuring information (purity) 
with respect to the class in combination with a ranker algorithm that ranks the attributes by their influence on the 
class. IG assisted in spotting and removing variables duplications but mainly helped to monitor and report any 
information bias introduced as a result of data splitting, imputation and resampling. This supplementary table 
shows the information gain evaluation for each predictor per data set. 

Variable Name Data 
Type 

Imbalanced Training Data 
(ITD) N=1029 

RUS Training 
Data N=192 

ROS Training 
Data N=1866 

SMOTE Training 
Data N=1866 

Validation Data (VD) 
N=1029 

IG(Raw) IG(Imputed) ∆IG IG(RUS) IG(ROS) IG(SMOTE) IG(Raw) IG(Imputed) ∆IG 

5-fluorouracil (5-FU) _chemo_drug CAT 0.00186 0.00186 0.00000 0.03211 0.01134 0.02820 0.00074 0.00074 0.00000 

ace_inhibitor  CAT 0.00002 0.00002 0.00000 0.00330 0.00001 0.01242 0.00039 0.00039 0.00000 

ace_inhibitor_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00646 0.00000 0.00000 0.00000 0.00000 

age_at_radiotherapy_start_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.06043 0.28719 0.00000 0.00000 0.00000 

alcohol_current_consumption NUM 0.00000 0.00000 0.00000 0.00000 0.04980 0.39272 0.00000 0.00000 0.00000 

alcohol_intake  CAT 0.00092 0.00111 0.00019 0.01246 0.00144 0.02850 0.00155 0.00185 0.00031 

alcohol_previous_consumption NUM 0.00000 0.00000 0.00000 0.00000 0.04232 0.41889 0.00000 0.00000 0.00000 

amiodarone  CAT 0.00041 0.00041 0.00000 0.00000 0.00107 0.00161 0.00059 0.00059 0.00000 

amiodarone_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

analgesics  CAT 0.00025 0.00025 0.00000 0.00084 0.00076 0.03930 0.00079 0.00079 0.00000 

analgesics_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.02784 0.00000 0.00000 0.00000 0.00000 

antidepressant  CAT 0.00050 0.00050 0.00000 0.00084 0.00242 0.01402 0.00071 0.00071 0.00000 

antidepressant_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.03538 0.00707 0.00000 0.00000 0.00000 

antidiabetic  CAT 0.00005 0.00005 0.00000 0.00000 0.00031 0.01662 0.00661 0.00661 0.00000 

antidiabetic_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

band_size_UK_inch NUM 0.00000 0.00000 0.00000 0.00000 0.02131 0.50857 0.00000 0.00000 0.00000 

BED_boost_Gy NUM 0.00000 0.00000 0.00000 0.00000 0.02415 0.04063 0.00000 0.00000 0.00000 

BED_Breast_Gy NUM 0.02970 0.02970 0.00000 0.07932 0.12273 0.25004 0.04354 0.04354 0.00000 

BED_total_Gy NUM 0.01495 0.01495 0.00000 0.05387 0.17604 0.23385 0.01529 0.01529 0.00000 

blood_pressure  CAT 0.00132 0.00132 0.00000 0.01372 0.00086 0.05213 0.00002 0.00002 0.00000 

boost  CAT 0.00262 0.00262 0.00000 0.00778 0.00226 0.00611 0.00357 0.00357 0.00000 

boost_frac NUM 0.00737 0.00000 -0.00737 0.00000 0.07024 0.14193 0.01035 0.01527 0.00492 

bra_cup_size NUM 0.01383 0.01406 0.00024 0.00000 0.05494 0.46227 0.00000 0.00000 0.00000 

breast_cancer_family_history_1st_degree  CAT 0.00001 0.00001 0.00000 0.00012 0.00013 0.04822 0.00347 0.00345 -0.00001 

breast_separation_cm NUM 0.00903 0.00903 0.00000 0.00000 0.03786 0.51206 0.00000 0.00000 0.00000 

carboplatin_chemo_drug CAT 0.00031 0.00031 0.00000 0.00000 0.00098 0.00721 0.00008 0.00008 0.00000 

chemotherapy_performed   CAT 0.00005 0.00005 0.00000 0.00621 0.00003 0.03693 0.00020 0.00020 0.00000 

combined_chemo_drugs  CAT 0.01366 0.01366 0.00000 0.05236 0.05304 0.09239 0.02102 0.02102 0.00000 

cyclophosphamide_chemo_drug CAT 0.00031 0.00031 0.00000 0.00838 0.00047 0.02510 0.00000 0.00000 0.00000 



depression  CAT 0.00046 0.00046 0.00000 0.00181 0.00283 0.01370 0.00024 0.00024 0.00000 

depression_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.03309 0.00000 0.00000 0.00000 0.00000 

diabetes  CAT 0.00001 0.00001 0.00000 0.00103 0.00003 0.02156 0.00763 0.00762 -0.00001 

diabetes_duration_yrs NUM 0.01067 0.00000 -0.01067 0.00000 0.00646 0.00000 0.00610 0.00763 0.00152 

docetaxel_chemo_drug CAT 0.00064 0.00064 0.00000 0.01099 0.00328 0.00682 0.00037 0.00037 0.00000 

doxorubicin_chemo_drug CAT 0.00252 0.00252 0.00000 0.00000 0.00753 0.03255 0.00043 0.00043 0.00000 

education_profession  CAT 0.00215 0.00391 0.00176 0.03741 0.01803 0.01005 0.00175 0.00463 0.00288 

epirubicin_chemo_drug CAT 0.00106 0.00106 0.00000 0.01359 0.00177 0.02509 0.00069 0.00069 0.00000 

eribulin_chemo_drug CAT 0.00055 0.00055 0.00000 0.00000 0.00161 0.00215 0.00152 0.00152 0.00000 

ethnicity  CAT 0.00571 0.00570 0.00000 0.03271 0.02589 0.02189 0.00509 0.00508 -0.00001 

grade_invasive  CAT 0.00187 0.00228 0.00041 0.00971 0.01402 0.02199 0.00246 0.00226 -0.00020 

height_cm NUM 0.00000 0.00000 0.00000 0.00000 0.08316 0.44196 0.00000 0.00000 0.00000 

histology  CAT 0.00234 0.00237 0.00003 0.01183 0.01176 0.08485 0.00057 0.00060 0.00003 

history_of_heart_disease  CAT 0.00354 0.00353 -0.00001 0.01157 0.00952 0.03197 0.00127 0.00127 0.00000 

history_of_heart_disease_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.02948 0.03102 0.00000 0.00000 0.00000 

hormone_replacement_therapy  CAT 0.00029 0.00066 0.00037 0.00910 0.00257 0.05089 0.00037 0.00029 -0.00008 

household_income  CAT 0.00356 0.00703 0.00347 0.04210 0.01992 0.06340 0.00351 0.00408 0.00057 

household_members NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.44358 0.00000 0.00000 0.00000 

hypertension  CAT 0.00132 0.00132 0.00000 0.01372 0.00086 0.05213 0.00002 0.00002 0.00000 

hypertension_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.17291 0.00509 0.00000 -0.00509 

menopausal_status  CAT 0.00237 0.00231 -0.00006 0.01637 0.01302 0.03152 0.00246 0.00138 -0.00108 

methotrexate _chemo_drug CAT 0.00025 0.00025 0.00000 0.00130 0.00479 0.00308 0.00074 0.00008 -0.00066 

monopause_age_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.03857 0.41090 0.00010 0.00000 -0.00010 

n_stage  CAT 0.00525 0.00545 0.00020 0.02052 0.02645 0.05619 0.00000 0.00059 0.00059 

on_statin  CAT 0.00644 0.00644 0.00000 0.00691 0.01914 0.06728 0.00057 0.00602 0.00545 

on_statin_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.06413 0.04844 0.00127 0.00000 -0.00127 

other_antihypertensive_drug  CAT 0.00145 0.00145 0.00000 0.01611 0.00160 0.03251 0.00000 0.00000 0.00000 

other_antihypertensive_drug_duration_yr
s NUM 0.00000 0.00000 0.00000 0.00000 0.01555 0.15670 0.00037 0.00000 -0.00037 

other_collagen_vascular_disease  CAT 0.00096 0.00096 0.00000 0.00000 0.00430 0.00376 0.00351 0.00013 -0.00338 

other_collagen_vascular_disease_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00430 0.00376 0.00000 0.00000 0.00000 

other_lipid_lowering_drugs  CAT 0.00104 0.00104 0.00000 0.00742 0.00124 0.00045 0.00002 0.00277 0.00276 

other_lipid_lowering_drugs_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.01449 0.00811 0.00000 0.00000 0.00000 

paclitaxel_chemo_drug CAT 0.00006 0.00006 0.00000 0.00056 0.00336 0.05403 0.00015 0.00015 0.00000 

pegfilgrastim_chemo_drug CAT 0.00055 0.00055 0.00000 0.00523 0.00322 0.00215 0.00008 0.00027 0.00020 

Pertuzumab_chemo_drug CAT 0.00027 0.00027 0.00000 0.00000 0.00000 0.00107 0.00144 0.00037 -0.00107 

radio_axillary_levels NUM 0.00000 0.00000 0.00000 0.00000 0.04207 0.05464 0.00000 0.00000 0.00000 

radio_axillary_other NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

radio_bolus  CAT 0.00001 0.00001 0.00000 0.00078 0.00001 0.00575 0.00000 0.00000 0.00000 

radio_boost_diameter_cm NUM 0.00774 0.00918 0.00143 0.00000 0.03798 0.09225 0.00000 0.00000 0.00000 

radio_boost_fractions NUM 0.00000 0.00824 0.00824 0.06593 0.04896 0.15592 0.00000 0.01748 0.01748 

radio_boost_sequence  CAT 0.00857 0.00857 0.00000 0.01071 0.01516 0.07039 0.00436 0.00436 0.00000 

radio_boost_type CAT 0.01700 0.01700 0.00000 0.08043 0.04059 0.06648 0.01575 0.01575 0.00000 

radio_breast_ct_volume_cm3 NUM 0.02000 0.02047 0.00048 0.06228 0.19793 0.10627 0.00000 0.00000 0.00000 

radio_breast_delineation  CAT 0.00027 0.00027 0.00000 0.00000 0.00107 0.00107 0.00059 0.00059 0.00000 

radio_breast_dose_Gy NUM 0.01966 0.01966 0.00000 0.07054 0.08518 0.28445 0.02210 0.02210 0.00000 

radio_breast_fractions NUM 0.01813 0.01813 0.00000 0.06984 0.07038 0.31260 0.02926 0.02926 0.00000 

radio_breast_fractions_dose_per_fract_G
y NUM 0.02204 0.02204 0.00000 0.07547 0.10130 0.26556 0.02415 0.02415 0.00000 

radio_breast_fractions_per_week NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.01054 0.00000 0.00000 0.00000 



 

 

radio_elec_boost_dose_Gy NUM 0.00000 0.00000 0.00000 0.00000 0.02557 0.08132 0.00000 0.00000 0.00000 

radio_elec_boost_field_x_cm NUM 0.00000 0.00000 0.00000 0.00000 0.04908 0.16020 0.00000 0.00000 0.00000 

radio_elec_boost_field_y_cm NUM 0.00000 0.00000 0.00000 0.00000 0.02164 0.16766 0.00000 0.00000 0.00000 

radio_elec_energy_MeV NUM 0.01686 0.01686 0.00000 0.00000 0.04548 0.08072 0.00000 0.00000 0.00000 

radio_heart_mean_dose_Gy NUM 0.00000 0.00000 0.00000 0.00000 0.07873 0.09566 0.00000 0.00000 0.00000 

radio_hot_spots CAT 0.00211 0.00214 0.00003 0.00152 0.00515 0.00655 0.00009 0.00010 0.00001 

radio_imrt  CAT 0.00848 0.00843 -0.00005 0.04575 0.02009 0.08996 0.02141 0.02127 -0.00014 

radio_interrupted  CAT 0.00002 0.00002 0.00000 0.01050 0.00017 0.00762 0.00057 0.00057 0.00000 

radio_interrupted_days NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

radio_ipsilateral_lung_mean_Gy NUM 0.00000 0.00000 0.00000 0.00000 0.10337 0.05360 0.00000 0.00000 0.00000 

radio_photon_2nd  CAT 0.01060 0.01060 0.00000 0.01690 0.02592 0.01454 0.01341 0.01341 0.00000 

radio_photon_2nd_dose_fract_per_wk NUM 0.01127 0.01127 0.00000 0.00000 0.03197 0.03582 0.01363 0.01363 0.00000 

radio_photon_2nd_dose_MV NUM 0.01843 0.01843 0.00000 0.05581 0.06771 0.12095 0.02328 0.02328 0.00000 

radio_photon_2nd_dose_per_fract_Gy NUM 0.01228 0.01228 0.00000 0.00000 0.09747 0.05150 0.01629 0.01629 0.00000 

radio_photon_2nd_fractions NUM 0.02037 0.02037 0.00000 0.00000 0.06359 0.07346 0.02186 0.02186 0.00000 

radio_photon_boost_dose_per_fract_Gy NUM 0.00000 0.00000 0.00000 0.04376 0.02956 0.15682 0.00000 0.00000 0.00000 

radio_photon_boost_fractions NUM 0.00737 0.00000 -0.00737 0.00000 0.07024 0.20287 0.01035 0.01527 0.00492 

radio_photon_boost_fractions_per_week NUM 0.00800 0.01066 0.00267 0.05360 0.02002 0.06328 0.01042 0.01330 0.00287 

radio_photon_boost_volume_cm3 NUM 0.01033 0.01574 0.00541 0.05411 0.13251 0.12075 0.00000 0.00000 0.00000 

radio_photon_boostdose_Gy NUM 0.00000 0.00000 0.00000 0.00000 0.05234 0.13049 0.00000 0.00000 0.00000 

radio_photon_boostdose_precise_Gy NUM 0.00000 0.00000 0.00000 0.00000 0.02963 0.14553 0.00991 0.01182 0.00191 

radio_photon_dose_MV NUM 0.00000 0.00000 0.00000 0.00000 0.01107 0.00000 0.00000 0.00000 0.00000 

radio_photon_energy_MV or kV NUM 0.00970 0.00965 -0.00006 0.07597 0.02628 0.12818 0.02097 0.02097 0.00000 

radio_skin_max_dose_Gy  NUM 0.03073 0.03088 0.00015 0.14315 0.19629 0.12209 0.02948 0.02912 -0.00035 

radio_supraclavicular_fossa  CAT 0.00027 0.00027 0.00000 0.00020 0.00368 0.04354 0.00115 0.00115 0.00000 

radio_treated_breast  CAT 0.00159 0.00159 0.00000 0.01542 0.00618 0.10882 0.00023 0.00023 0.00000 

radio_treatment_pos  CAT 0.00396 0.00396 0.00000 0.01001 0.01182 0.06438 0.00094 0.00093 -0.00001 

radio_type_imrt  CAT 0.01754 0.01749 -0.00005 0.08163 0.04062 0.12413 0.02651 0.02637 -0.00014 

radiotherapy_toxicity_family_history  CAT 0.00047 0.00045 -0.00002 0.00078 0.00505 0.01303 0.00001 0.00002 0.00002 

rheumatoid arthritis CAT 0.00007 0.00007 0.00000 0.00742 0.00127 0.01021 0.00002 0.00002 0.00000 

rheumatoid arthritis_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00918 0.00000 0.00000 0.00000 0.00000 

smoker  CAT 0.00145 0.00132 -0.00013 0.00239 0.00650 0.09127 0.00140 0.00146 0.00006 

smoking_status CAT 0.00059 0.00059 0.00000 0.00204 0.00364 0.04721 0.00015 0.00015 0.00000 

smoking_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.01408 0.01982 0.00000 0.00000 0.00000 

smoking_time_since_quitting_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.13645 0.00000 0.00000 0.00000 

surgery_type  CAT 0.00105 0.00105 0.00000 0.00000 0.00574 0.00344 0.00155 0.00155 0.00000 

systemic_lupus_erythematosus  CAT 0.00027 0.00027 0.00000 0.00000 0.00000 0.00107 0.00027 0.00027 0.00000 

systemic_lupus_erythematosus_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

t_stage  CAT 0.00454 0.00446 -0.00008 0.01970 0.01723 0.12975 0.00806 0.00815 0.00008 

TAM  CAT 0.00118 0.00108 -0.00010 0.00661 0.00000 0.07888 0.00291 0.00269 -0.00022 

tobacco_product  CAT 0.00764 0.00030 -0.00734 0.00074 0.00145 0.03533 0.00061 0.00072 0.00011 

tobacco_products_per_day NUM 0.00000 0.00000 0.00000 0.00000 0.05251 0.00000 0.00000 0.00000 0.00000 

trastuzumab_chemo_drug CAT 0.00166 0.00166 0.00000 0.00000 0.00700 0.00646 0.00010 0.00010 0.00000 

tumour_size_mm NUM 0.00000 0.00000 0.00000 0.00000 0.04472 0.02545 0.00000 0.00000 0.00000 

weight_at_cancer_diagnosis_kg NUM 0.01264 0.01382 0.00117 0.06476 0.13548 0.13946 0.00000 0.00000 0.00000 



Table B. Feature Importance of Cost-Sensitive RF Model's with MDI (Pre-simplification) 

Model's Features MDI Model's Features MDI 

5-fluorouracil (5-FU)_chemo_drug 0.37 radio_photon_2nd_dose_MV 0.19 

radio_imrt  0.35 analgesics  0.19 

ace_inhibitor  0.34 radio_photon_2nd_dose_fractions_per_week 0.19 

Smoking  0.32 radio_interrupted_days 0.19 

chemotherapy_performed 0.32 surgery_type  0.19 

docetaxel_chemo_drug 0.32 radio_breast_fractions_dose_per_fraction_Gy 0.18 

other_antihypertensive_drug  0.31 alcohol_intake  0.18 

tumour_size_mm 0.30 radio_photon_boostdose_precise_Gy 0.18 

radio_treated_breast  0.30 radio_elec_boost_dose_Gy 0.18 

grade_invasive  0.29 tobacco_product  0.18 

histology  0.28 radio_treatment_pos  0.18 

tobacco_products_per_day 0.28 radio_photon_2nd  0.18 

Band_size_UK 0.27 combined_chemo_drugs 0.17 

monopause_age_yrs 0.27 household_income 0.17 

boost  0.27 radio_elec_boost_field_y_cm 0.17 

epirubicin_chemo_drug 0.27 radio_photon_boost_fractions 0.17 

radio_axillary_other 0.27 radio_boost_diameter_cm 0.17 

radio_breast_ct_volume_cm3 0.26 radio_supraclavicular_fossa  0.17 

radio_heart_mean_dose_Gy 0.26 antidepressant  0.17 

BED_breast 0.26 radio_breast_fractions 0.16 

TAM  0.26 radio_elec_boost_field_x_cm 0.16 

radio_hot_spots_107  0.26 doxorubicin_chemo_drug 0.16 

breast_separation 0.25 radio_boost_type  0.15 

t_stage  0.25 radio_elec_energy_MeV 0.15 

smoking_time_since_quitting_yrs 0.25 radio_photon_energy_MV or kV 0.15 

blood_pressure  0.25 diabetes  0.15 

cyclophosphamide_chemo_drug 0.25 carboplatin_chemo_drug 0.15 

rheumatoid_arthritis_duration_yrs 0.25 depression_duration_yrs 0.14 

methotrexate_chemo_drug 0.25 depression  0.13 

boost_fractions 0.24 ace_inhibitor_duration_yrs 0.13 

alcohol_previous_consumption 0.24 radiotherapy_toxicity_family_history  0.13 

radio_skin_max_dose_Gy 0.23 other_lipid_lowering_drugs  0.13 

radio_ipsilateral_lung_mean_Gy 0.23 antidiabetic  0.13 

height_cm 0.23 radio_axillary_levels 0.12 

alcohol_current_consumption 0.23 Ethnicity 0.12 

radio_photon_boost_volume_cm3 0.23 radio_photon_2nd_fractions 0.12 

n_stage 0.23 analgesics_duration_yrs 0.11 

BED_boost 0.23 on_statin  0.11 

radio_photon_boostdose_Gy 0.23 radio_photon_boost_fractions_per_week 0.11 

hypertension_duration_yrs 0.23 diabetes_duration_yrs 0.11 

smoker  0.22 trastuzumab  0.11 



menopausal_status 0.22 radio_photon_2nd_dose_per_fraction_Gy 0.10 

BED_total 0.21 antidepressant_duration_yrs 0.10 

smoking_duration_yrs 0.21 radio_breast_fractions_per_week 0.10 

radio_type_imrt  0.21 radio_boost_sequence  0.08 

radio_boost_fractions 0.21 on_statin_duration_yrs 0.08 

hypertension  0.21 history_of_heart_disease_duration_yrs 0.07 

paclitaxel  0.21 radio_bolus  0.07 

hormone_replacement_therapy 0.21 radio_interrupted  0.07 

weight_at_cancer_diagnosis_kg 0.20 history_of_heart_disease  0.06 

age_at_radiotherapy_start_yrs 0.20 antidiabetic_duration_yrs 0.04 

bra_cup_size 0.20 pegfilgrastim  0.03 

education_profession 0.20 other_collagen_vascular_disease  0.02 

breast_cancer_family_history_1st_degree  0.20 systemic_lupus_erythematosus_duration_yrs 0.00 

radio_photon_dose_MV 0.20 systemic_lupus_erythematosus  0.00 

other_lipid_lowering_drugs_duration_yrs 0.20 radio_breast_delineation  0.00 

rheumatoid_arthritis 0.20 pertuzumab_chemo_drug 0.00 

radio_breast_dose_Gy 0.19 other_collagen_vascular_disease_duration_yrs 0.00 

household_members 0.19 eribulin_chemo_drug 0.00 

other_antihypertensive_drug_duration_yrs 0.19 amiodarone_duration_yrs 0.00 

radio_photon_boost_dose_per_fraction_Gy 0.19 amiodarone  0.00 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table C. Feature Importance of the simplified cost-sensitive RF model with MDI 

Model's Feature MDI Model's Feature MDI 

other_lipid_lowering_drugs_duration_yrs 0.52 alcohol_current_consumption 0.20 
surgery_type  0.41 smoking_time_since_quitting_yrs 0.20 
radio_bolus  0.40 radio_imrt  0.19 
chemotherapy_performed  0.36 radio_photon_boostdose_Gy 0.19 
boost  0.35 other_antihypertensive_drug  0.19 
radio_photon_dose_MV 0.34 household_members 0.19 
epirubicin_chemo_drug 0.34 radio_breast_fractions_dose_per_fraction_Gy 0.19 
blood_pressure  0.33 radio_elec_boost_field_y_cm 0.19 
band_size_UK 0.30 radio_photon_2nd  0.19 
radio_treated_breast  0.30 bra_cup_size 0.19 
tumour_size_mm 0.29 radio_breast_fractions 0.19 
paclitaxel_chemo_drug 0.29 n_stage  0.18 
grade_invasive  0.28 hypertension_duration_yrs 0.18 
breast_separation 0.28 radio_supraclavicular_fossa  0.18 
smoking  0.27 education_profession  0.18 
radio_elec_energy_MeV 0.27 radio_axillary_levels 0.18 
BED_boost 0.27 hypertension  0.18 
docetaxel_chemo_drug 0.27 radio_photon_boost_fractions_per_week 0.17 
BED_Total 0.27 smoker  0.17 
radio_elec_boost_dose_Gy 0.27 depression  0.17 
TAM  0.26 menopausal_status  0.17 
radio_heart_mean_dose_Gy 0.26 radio_boost_diameter_cm 0.16 
t_stage  0.26 5-fluorouracil (5-FU)_chemo_drug 0.16 
radio_hot_spots_107  0.25 radio_photon_boost_dose_per_fraction_Gy 0.16 
BED_Breast 0.25 antidepressant_duration_yrs 0.16 
tobacco_products_per_day 0.25 radio_breast_fractions_per_week 0.15 
age_at_radiotherapy_start_yrs 0.25 radio_boost_type  0.15 
radio_breast_ct_volume_cm3 0.25 Carboplatin_chemo_drug 0.15 
hormone_replacement_therapy  0.24 radio_boost_sequence  0.15 
radio_photon_boost_volume_cm3 0.24 radio_photon_boost_fractions 0.15 
antidepressant  0.24 household_income  0.15 
height_cm 0.24 methotrexate_chemo_drug 0.15 
radio_photon_2nd_dose_MV 0.24 other_lipid_lowering_drugs  0.14 
radio_ipsilateral_lung_mean_Gy 0.24 radio_photon_energy_MV or kV 0.14 
alcohol_previous_consumption 0.24 ace_inhibitor  0.13 
radio_photon_2nd_dose_fractions_per_week 0.23 analgesics_duration_yrs 0.13 
radio_skin_max_dose_Gy 0.23 radio_photon_2nd_dose_per_fraction_Gy 0.13 
histology  0.23 antidiabetic_duration_yrs 0.13 
monopause_age_yrs 0.23 depression_duration_yrs 0.13 
other_antihypertensive_drug_duration_yrs 0.23 on_statin_duration_yrs 0.12 
weight_at_cancer_diagnosis_kg 0.23 antidiabetic  0.12 
tobacco_product  0.23 diabetes  0.11 
cyclophosphamide_chemo_drug 0.22 ace_inhibitor_duration_yrs 0.11 
combined_chemo_drugs  0.22 on_statin  0.11 



boost_frac 0.22 doxorubicin_chemo_drug 0.11 
analgesics  0.22 history_of_heart_disease  0.09 
breast_cancer_family_history_1st_degree  0.22 radio_axillary_other 0.09 
smoking_duration_yrs 0.21 ethnicity  0.09 
radio_photon_boostdose_precise_Gy 0.21 radio_interrupted  0.08 
radio_elec_boost_field_x_cm 0.21 pegfilgrastim_chemo_drug 0.07 
radio_photon_2nd_fractions 0.21 history_of_heart_disease_duration_yrs 0.06 
radio_boost_fractions 0.21 radiotherapy_toxicity_family_history  0.06 
alcohol_intake  0.21 diabetes_duration_yrs 0.05 
radio_type_imrt  0.21 radio_interrupted_days 0.05 
radio_treatment_pos  0.21 trastuzumab_chemo_drug 0.04 
radio_breast_dose_Gy 0.20 other_collagen_vascular_disease  0.03 
rheumatoid arthritis_duration_yrs 0.20 rheumatoid arthritis  0.02 
    

 

 

 


