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ABSTRACT
The accurate automated classification of variable stars into their respective subtypes is difficult.
Machine learning–based solutions often fall foul of the imbalanced learning problem, which
causes poor generalization performance in practice, especially on rare variable star subtypes.
In previous work, we attempted to overcome such deficiencies via the development of a
hierarchical machine learning classifier. This ‘algorithm-level’ approach to tackling imbalance
yielded promising results on Catalina Real-Time Survey (CRTS) data, outperforming the
binary and multiclass classification schemes previously applied in this area. In this work, we
attempt to further improve hierarchical classification performance by applying ‘data-level’
approaches to directly augment the training data so that they better describe underrepresented
classes. We apply and report results for three data augmentation methods in particular:
Randomly Augmented Sampled Light curves from magnitude Error (RASLE), augmenting light
curves with Gaussian Process modelling (GpFit) and the Synthetic Minority Oversampling
Technique (SMOTE). When combining the ‘algorithm-level’ (i.e. the hierarchical scheme)
together with the ‘data-level’ approach, we further improve variable star classification accuracy
by 1–4 per cent. We found that a higher classification rate is obtained when using GpFit in
the hierarchical model. Further improvement of the metric scores requires a better standard
set of correctly identified variable stars, and perhaps enhanced features are needed.

Key words: methods: data analysis – stars: variables: general.

1 IN T RO D U C T I O N

Astronomy is now in an era dominated by an explosion of big data,
produced with current and future surveys, such as OGLE (Udalski
et al. 2008; Udalski, Szymański & Szymański 2015), CRTS (Drake
et al. 2017), and Kepler (Koch et al. 2010) among others; thus,
relying solely on visual inspection for classification is becoming
impractical. Therefore, automatic classification pipelines are re-
quired to categorize an unprecedented amount of variable star light
curves into known or unknown classes for various astrophysical ap-
plications. Accordingly, Machine Learning (ML) has heavily been
studied to solve classification problems, for instance, uncovering
aberrant phenomena encountered in observations, also known as
unsupervised anomaly detection (Chen et al. 2018; Zong et al.
2018) and automatic classification of variable stars (Kim & Bailer-
Jones 2016; Benavente, Protopapas & Pichara 2017; Mahabal et al.
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2017; Narayan et al. 2018; Pashchenko, Sokolovsky & Gavras 2018;
Tsang & Schultz 2019; Zorich, Pichara & Protopapas 2020).

However, a major issue that impedes the successful automated
classification of astronomical data is known as the imbalanced
learning problem. This occurs when we wish to organize data
into distinct groups known as ‘classes’, using examples to guide
a process known as ‘classification’. When there is a large distri-
butional difference between the number of examples belonging to
each class, minority, and majority classes form. When the imbalance
between the minority and majority classes is large, problems
can arise when attempting to build standard machine learning
classification algorithms, ultimately resulting in poor categorization
performance. This happens as such algorithms are usually optimized
to achieve maximum accuracy. However, this is trivially achievable
in imbalanced data sets by always assigning the majority class label
when making predictions. This leads to biased classifiers that obtain
high predictive accuracy for majority class, but poor predictive
accuracy for minority classes, which are more often than not, the
focus of our interest.
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Imbalanced learning problems occur in many domains, for
instance in fraudulent phone call identification (few calls are
fraudulent, Fawcett & Provost 1996), or text classification (in cases
where there is either more positive or more negative sentiments).
In astronomy, this issue becomes acute, given that data sets must
often be searched for rare or unusual phenomena that may not be
accurately defined in advance. This problem impacts the classifi-
cation of variable stars in particular, as some types of variable star
are uncommon, making it difficult to build systems to be able to
recognize them. In astronomy, several works have tried to address
the problem of class imbalance to date (Hoyle et al. 2015; Lochner
et al. 2016; Narayan et al. 2018; Revsbech, Trotta & van Dyk 2018;
Agarwal et al. 2019).

There are two approaches for dealing with class imbalance
problems (He & Garcia 2008). The first are generally known as
‘algorithm level’ approaches. These seek to modify classification
algorithms directly to better accommodate imbalanced class dis-
tributions. This can involve, for example, adapting the learning
function at the heart of the algorithm to favour metrics other than
accuracy during training and also applying hyperparameter tuning
while training the algorithm (see Section 4.4). Algorithm level
approaches make an implicit assumption – that is, the data are
sufficiently descriptive and statistically characteristic of the classes
under consideration, and changes to the algorithm alone will enable
this data to yield good classification performance.

Alternatively, ‘data level’ approaches seek to modify the data
given to a classification algorithm, with the aim of improving
classification performance. Data level approaches can be as simple
as balancing training data artificially via an appropriate sampling
method, or as complex as generating artificial samples to balance
the training set. Data level approaches assume that classification
algorithms will be capable of separating the classes under considera-
tion, given appropriate training data. Hybrid approaches mix the two
techniques when faced with difficult problems. For instance, in some
cases modifying an algorithm will not produce the improvement
expected, if the classification problem at hand exhibits excessive
class overlap, disjuncts, or is affected by small sample sizes (i.e.
some classes are genuinely rare). Whilst in some cases trying to
balance training sets will not work if the information content of the
training samples is too low to allow a classifier to delineate effective
class boundaries.

In previous work, we attempted to develop a variable star
classifier together with various techniques of feature selection and
feature importance, and ran into the imbalanced learning problem.
To overcome this, we attempted to modify the algorithms used
for classification, and ultimately proposed a successful hierarchical
classification system. We compared the hierarchical system (using
seven features) with the UPSILON package (Kim & Bailer-Jones
2016) (using 16 features). Whilst hierarchical system was effective,
recall on minority classes could be stubbornly low relative to
majority classes. In other domains, such problems are overcome by
balancing the training distribution directly. This approach implies
the minority class is sufficiently described in the training data
to solve the imbalance, and further that the classifier used is
sensitive to the class size. We believe this to be the case, thus
we proceed similarly. We present a hybrid approach to overcoming
imbalances, which represents a principled and pragmatic approach
to this problem. Thus in this work, we improve the Hosenie et al.
(2019, hereafter H19) classification scheme by adding a sufficient
amount of data, such that each class has an equal amount of
training examples. This can be achieved by simulating more data or
gathering more real data (which is often difficult).

Table 1. Sample size of classes in CRTS data. The class distribution is
extremely imbalanced, such as Ecl are overrepresented.

Types of variable stars NObjects

RRab (fundamental mode) 4325
RRc (first overtone mode) 3752
RRd (multimode) 502
Blazhko (long-term modulation) 171
Contact and semidetached binary: Ecl 18803
Detached binary: EA 4509
Rotational: Rot 3636
Long period variable: LPV 1286
δ-Scuti 147
Anomalous Cepheids: ACEP 153
Type-II Cepheids: Cep-II 153

Balancing training sets directly can be difficult. Fortunately,
techniques such as Synthetic Minority Oversampling Technique
(SMOTE; Chawla et al. 2002), random values drawn from the
Gaussian distribution (Peterson et al. 1998), and Gaussian Processes
(GPs; Rasmussen & Williams 2005) modelling (GpFit) can
simplify the problem to a large extent by simulating light curves.
GPs have been used in several works to synthetically augment biased
supernova training sets (Lochner et al. 2016; Narayan et al. 2018;
Revsbech et al. 2018), variable stars (Faraway et al. 2016; Castro,
Protopapas & Pichara 2018; Martı́nez-Palomera et al. 2018), and
light-curve detrending (Aigrain, Parviainen & Pope 2016).

In this work, we are concerned only with periodic variable
star classification and we present GPs for augmenting periodic
variable star data using folded light curves. Secondly, we pro-
pose a new method, Randomly Augmented Sampled Light curves
from magnitude Error (RASLE1) to periodic variable star data
for the first time, which synthetically augments the training set
by sampling from the magnitude errors. We then compare the
three data augmentation methods (SMOTE, GpFit, & RASLE) and
their utility for improving variable star classification, trained with
either a Random Forest (RF; Breiman 2001) classifier or eXtreme
Gradient Boosting (XGBoost; Chen & Guestrin 2016) classifier.
Finally, we incorporate a Bayesian optimization approach to find
the best hyperparameters for the RF and XGBoost in the hierarchical
classification (HC) scheme. We achieve an improvement of 1–
4 per cent in terms of balanced-accuracy and G-mean scores at
all levels in the HC, compared to the results of H19.

The structure of the paper is as follows. In Section 2, we describe
the data set used in our analysis, while in Section 3, the three data
augmentation algorithms used are explored. In Section 4, we provide
a description of the various stages in the hierarchical classification
pipeline; in Section 5, we present the classification results, and
finally, we conclude in Section 6.

2 DATA

The Catalina Real-Time Transient Survey (CRTS; Drake et al. 2017)
has produced a catalogue of periodic variable stars from 6 yr of
optical photometry from the Siding Spring Survey. We consider
only 11 classes from the CSDR22 data set as presented in Table 1

1After the preparation of this manuscript, we learnt that another team
Gabruseva, Zlobin & Wang (2019) has come up with a similar method
independently.
2Catalina Surveys Data Release 2.
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6052 Z. Hosenie et al.

Figure 1. Hierarchical Tree classification with automated light curves augmentation for CRTS Data. The number of training examples (real LCs) is represented
by Tr, the number of training examples after augmentation (both real and synthetic LCs) is represented by A.Tr and the number of test examples (real LCs) is
represented by Te. At level 1, the real LCs in the training set are augmented and the dotted square represents a trained model (RF/XGBoost classifier). During
testing phase, the classified examples in the test set move down the hierarchy at level 2. Afterwards, real LCs in the training set in level 1 moves to their
respective branches at level 2. The real LCs are augmented and features are extracted. This process is repeated until it reaches all leaves in the hierarchy.

for our analysis. From Table 1, we observe that the data are heavily
imbalanced. Thus to simplify our experimentation, we reduced the
size of the largest class (Ecl) via random undersampling. We down-
sample this class to 4509 (this makes the number of Ecl examples
comparable to the next biggest class, EA) and the remaining Ecl
light curves (LCs) are then used for prediction. This is why the
number of samples available for testing exceeds those for training
as shown in Fig. 1.

3 DATA AU G M E N TAT I O N

While the undersampling methods (i.e. downsample Ecl and devel-
oping the hierarchical system) help to address some of the class
imbalance issues, they are themselves insufficient, as minority
class performance was not good enough for our purposes. We
therefore provide three ways to oversample the data, a form of
data augmentation necessary as some of the classes still outnumber
other classes (see Tr values in Fig. 1). We augment the data via
the generation of artificial data in order to increase the number of
training samples by generating similar but not identical examples.
In principal, the more data we have, the better our ML models will
be as this technique helps to reduce overfitting. In this work, we
consider three methods of augmentation: (i) SMOTE, (ii) RASLE,
and (iii) GpFit.

3.1 Synthetic minority oversampling technique

The Synthetic Minority Oversampling Technique (SMOTE) inserts
artificially generated minority class examples into a data set by
operating in ‘feature space’ rather than ‘data space’. This technique
helps to balance the overall class distribution. The standard im-
plementation of SMOTE utilizes k-nearest neighbours (Buturovic
1993) to group similar class objects and to determine which class
categories are in the minority class and need oversampling. To
generate a new synthetic example, the k-nearest neighbour method
is further used by first selecting an example in the minority class.

The collection of feature values describing this example, it’s feature
vector, is then combined with the feature vectors of one of its
k-nearest neighbours chosen at random. The difference between
the vectors of these two examples is computed and subsequently
multiplied by a random number drawn between 0 and 1. This
produces an entirely new synthetic feature vector. This process
is repeated until enough synthetic examples have been created.
Finally, the new augmented training set is comprised of both the
synthetic examples and the real minority examples. In our pipeline,
we utilize the ‘regular-SMOTE’ algorithm from the imbalanced-
learn3 (Lemaı̂tre, Nogueira & Aridas 2017) package.

3.2 Randomly Augmented Sampled Light curves from
magnitude Errors

The artificial examples generated by standard SMOTEmay not truly
represent data recorded during observations. One way around this
is to generate artificial samples from existing data points in a more
scientifically valid way. That is we randomly sample a selection of
rare class examples, take their primary characteristics, and generate
new examples from them by perturbing them in a principled way.
We do this using the Randomly Augmented Sampled Light curves
from magnitude Errors (RASLE) method.

The application of RASLE is employed on unfolded-LCs; that is,
each variable star is described by its time, magnitude, and error in
magnitude. Using this information, we generate new light curves in
the following way. Let us consider a probability distribution that can
be concisely represented by a normal distribution. The probability
distribution function (pdf) can be interpreted as going over the
magnitude space vertically with the horizontal axis showing the
probability that some value will occur. To construct the pdf, we make
an assumption that the magnitude follows a normal distribution
with mean, μ, to be equal to the true magnitude and the standard

3https://imbalanced-learn.readthedocs.io/en/stable/index.html
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Figure 2. Generating new light curves by random sampling from a normal
distribution. The true magnitude along with its error bars is shown in black
and yellow. We assume a normal distribution with mean equal to the true
magnitude and with sigma equal to the error in magnitude. We randomly
draw one sample (red-dashed line) from each normal distribution to produce
a completely new light curve.

deviation, σ , to be equal to the error in magnitude. For each data
point at a specific time, we sample a single magnitude from the
pdf. Each sampled magnitude is assigned the same time as in the
original data. Fig. 2 shows an example of a light curve with the
magnitude and error bars drawn for three specific times. The pdf
of the magnitude is shown in blue and one magnitude is sampled
randomly from the pdf shown in dotted red lines. The generated
light curve is given the new (random) sampled magnitude with the
same time value as in the original data.

3.3 Modelling light curves with GP

An ideal case for data augmentation is to use a well-defined model
of the classes under consideration to create synthetic data. However,
there is no available model valid for all the different variable stars
considered. We therefore build a model describing variable stars
using GPs (Rasmussen & Williams 2005) applied to CRTS data. We
then use this model to generate artificial light curves, allowing us
to augment our training data through the addition of new examples
in a principled way, using the distributions of existing data to create
them.

A GP is a distribution over functions. It is defined by a mean μ(t)
and a covariance (kernel) function c(t, t

′
) and is given as

f (t) ∼ GP(μ(t), c(t, t ′)). (1)

When the function f is computed at points t, the marginal distribution
follows a multivariate normal distribution (Rasmussen & Williams
2005). The kernel function, c, takes two inputs and shows the
similarity between them. When evaluating Bayesian inference,
having the set of known function values for the training sets fx , and
the set of known function values for the test sets f y, are normally
distributed and is given as follows:[

fx

f y

]
= N

([
μfx

μfy

]
,

[
Cfxfx

Cfxfy

Cfxfy
Cfyfy

])
, (2)

where the means of the training and test set are denoted by μfx

and μfy
, respectively, and likewise Cfxfx

, Cfyfy
, Cfxfy

represent
the training, test, and train-test covariances/kernels. The conditional
distribution, fx | f y = P , is given by

P ∼ N
(

Cfxfy
C−1

fyfy

(
f y − μy

)
+ μfx

, Cfxfx
− Cfxfy

C−1
fyfy

Cᵀ
fxfy

)
. (3)

For a specific set of testing samples, equation (3) represents the
posterior distribution. For a set of training examplesD, the posterior
distribution is described by Rasmussen & Williams (2005)

fy | D ∼ GP(μD, cD),

μD(t) = μ(t) + cT
Tst

C−1(fy − μ),

cD(t, t ′) = c(t, t ′) − cT
Tst

C−1cT
Tst ′ , (4)

where the covariance vector between every training sample, Ts

and t, is cTs t = c(Ts, t). The choice of the covariance function
is established, based on the knowledge of the domain. In our case,
we want to model light curves, so we require a kernel that can
demonstrate both small fluctuations and smooth variations. Given
the different characteristics of the various stars, an appropriate
choice of the kernel in this work is the Matern 5/2 kernel given
by

CMatern52(ϒ) =
(

1 +
√

5ϒ

�
+ 5ϒ2

3�

)
exp

(
−

√
5ϒ

�

)
, (5)

where ϒ and � are the kernel hyperparameters; that is, ϒ controls
the degree of smoothness and � is the characteristic length scale.
We employ the GP regression using George (Ambikasaran et al.
2014) with kernel hyperparameters randomly initialized. Using our
data and these randomly initialized hyperparameters, the negative
log likelihood is calculated. Afterwards, these hyperparameters
for the kernel are optimized (i.e. finding the best values for
these parameters) using the Limited memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS; Fletcher 1987) optimization algorithm
by minimizing the negative log likelihood.

The kernel with the optimized parameters is then used to fit
the GP from which we sample synthetic light curves to augment
our training set. Before fitting a GP to our data, we first convert
the LCs from time distribution to phase distribution (folded-light
curves) where the data is at the detected period for each variable
star. We then randomly sampled synthetic LCs from the GP model
to form the augmented training set. We show an example of GpFit
on the folded-LCs for the different variable stars in Fig. 3 and
the bottom plot illustrates 3 synthetic LCs randomly drawn from
GpFit. We then unfolded the phases back into time space and used
those synthetic LCs together with the original LCs as the training
set.

4 M E T H O D D E S C R I P T I O N

Drawing heavily from H19, we outline the general approach used
to classify variable stars. In this study, we use RF and XGBoost
classifiers. We use these classifiers for two reasons. Firstly, to
ensure that results presented here are comparable with previous
work. Secondly, because they have proven to be robust against the
issues associated with class imbalance (Chen et al. 2004; Wang,
Deng & Wang 2019). We then provide an overview of the HC
scheme, together with the various stages we adopt to build the
ML pipeline. Similar to H19, we pre-processed the light curves by
applying a sigma-clipping method prior to any analysis.

4.1 Stage 1: hierarchical tree classifiers

H19’s HC uses the astrophysical properties of the various sources
to construct a tree-based structure to represent the different classes
(Fig. 1). Each node/leaf represents a class – identified by the label
inside the node/leaf – and the edges represent the relationship

MNRAS 493, 6050–6059 (2020)
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6054 Z. Hosenie et al.

Figure 3. GPs offer a flexible approach to produce a smooth model of periodic light curves reported in magnitudes as a function of phase. This is demonstrated
with model fits for each example of variable stars considered in the CRTS data set. The data points are illustrated in black-rounded dots along with the error
bars. The mean of the GP fit is shown in brown with three standard deviation away from the mean, shown in shaded pale brown. In the bottom panel, the black
lines represent three randomly drawn samples from the GP fit. These randomly sampled light curves, also known as synthetic LCs together with real LCs, are
used in the training set.

between the superclass and subclass. For the HC, we use XGBoost
and RF and then report the one that provides the best classification
performance. XGBoost is a boosting algorithm and is a tree-
based model which became popular since its inception in the
ML community in 2016. XGBoost works in the same way as
Gradient Boosting Decision Tree (GBDT, Friedman 2001). GBDT
is an ensemble classification system that iteratively adds simple
decision tree classifiers. The first classifier of the ensemble system
is trained on the data, while the successive classifiers are trained
on the errors of the predecessor classifiers. Unlike, in GBDT,
XGBoost parallelizes this process/task and gives a substantial boost
in speed. In addition, this classifier controls overfitting by using the
regularization techniques, L1-norm (Tibshirani 1996) and L2-norm
(Ng 2004). While a RF is simply an addition of decision trees that
aggregate tree decisions. In astronomy, XGBoost has recently been
used by Mirabal et al. (2016) who implemented this classifier for
unknown point source classification in the Fermi-LAT catalogue and
for the separation of pulsar signals from noise (Bethapudi & Desai
2018). In addition, XGBoost has also been applied for variable star

classification (Sesar et al. 2017; Pashchenko et al. 2018; Kgoadi
et al. 2019).

4.2 Stage 2: level-wise data augmentation in HC

Since the training set is still imbalanced after aggregating subclasses
into superclasses, we use the three data augmentation techniques
described in Section 3. Each technique is applied and tested
independently in our HC based ML pipeline. For the SMOTE
approach, features (the mean magnitude, standard deviation, skew-
ness, kurtosis, mean-variance, amplitude and period) described in
H19 are extracted from the real LCs. Then, SMOTE automatically
balances the class distribution via the creation of synthetic examples
sampled over the feature space, such that the size of the minority
class equals the size of the majority class, cancelling the imbalance
out. For example, considering level 1 in Fig. 1, the majority class
is Pulsating, consisting of 7338 examples. Therefore, SMOTE adds
new examples of the other two minority classes (eclipsing 6312 and
rotational 2545) ensuring they both contain 7338 examples. This

MNRAS 493, 6050–6059 (2020)
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Figure 4. Period versus Skew distribution for real and synthetic LCs
generated using GpFit.

process is repeated for each branch and level in the HC, where the
training set is directly balanced according to the size of the majority
class prior to data augmentation.

While for the GpFit and RASLE cases, we are generating new
light curves based on real LCs, thus generating new synthetic
LC examples. Therefore, our training set will consist of both real
and synthetic LCs, whilst we test our ML pipeline with only real
LCs. These two techniques can be used to oversample both the
majority and minority class. The number of training examples after
augmentation, A.Tr used for each level is given in Fig. 1. Afterwards,
features are extracted from these LCs as discussed below.

4.3 Stage 3: feature extraction

In this work, similarly to H19, our features are based on 6
intrinsic statistical properties relating to location (mean magnitude),
scale (standard deviation), variability (mean variance), morphology
(skew, kurtosis, amplitude), and time (period). These features are
highly interpretable, and robust against bias (Hosenie et al. 2019).
For the GpFit and RASLE approach, the first six features are
extracted directly from the augmented training set (containing both
real and synthetic LCs) using the FATS library (Nun et al. 2015).
Whilst for the period feature, the real LCs in the training set are
assigned their respective period from the ascii-catalogue (Drake
et al. 2017) and the synthetic LCs are assigned a period calculated
by the method discussed in Section 4.3.1. For the test set we use
only real LCs, hence the six features are extracted directly from the
LCs and their period is obtained from the data catalogue. Therefore,
we have 7 features that describe each variable star. Fig. 4 shows the
distribution of the two most important features as investigated in
H19 (period and skew) for real and synthetic LCs. We observe that
the synthetic LCs show similar characteristics compared to the real
LCs.

4.3.1 Period for augmented LCs

A synthetic LC is given a period based on the uncertainty in the
estimated period of the real LC. In this case, the estimated period,
T, is obtained from Drake et al. (2017). The associated uncertainty,
σ T for a given period is calculated as follows. A periodic signal is
detected in a periodogram by the presence of a peak with a certain
width and height. In Fourier perspective, we assume that there is
a direct relationship between the precision with which a peak’s

frequency can be detected and the width of this peak; often known
as the half-width at half-maximum (VanderPlas 2018) and is given
by

υ 1
2

≈ 1

T
. (6)

This can be viewed as interpreting the periodogram with the
least-square method; that is, the inverse of the curvature of the
peak is determined with the uncertainty (Ishak 2017). In the
Bayesian perspective, this translates to a Gaussian curve fit to the
exponentiated peak (Smith & Erickson 2012; Bretthorst 2013). Let
us consider a periodogram with maximum value Pmax = P(υmax),
such that

P (υmax ± υ 1
2
) = Pmax

2
. (7)

Hence, the Bayesian uncertainty is calculated by approximating the
exponentiated peak as a Gaussian, that is,

exp [P (υmax ± δυ)] ∝ exp

[
−δυ2(
2σ 2

υ

)
]

. (8)

The above equation can then be written as follows, and we obtain
the uncertainty in frequency in equation (9).

Pmax

2
≈ Pmax −

υ2
1
2(

2σ 2
υ

) ;
υ2

1
2

2σ 2
υ

≈ Pmax

2
;

συ ≈
υ 1

2√
Pmax

, (9)

where δυ ≈ υ 1
2
. Considering the signal-to-noise ratio ϕ =

rms[ yn−μ

σn
], where μ is the mean magnitude, yn and σ n is the

magnitude and error in magnitude for each data point, respectively.
We can then write the following equation for a well-fitted model:

Pmax ≈ ϕ2N

2
. (10)

We then substitute equation (10) in equation (9) and the uncertainty
in frequency can be written as:

συ ≈ υ 1
2

√
2

ϕ2N
, (11)

where υ 1
2

≈ 1
T
, N is the number of data points and ϕ is the signal

to noise. We now compute the uncertainty in period by taking the
derivative of συ ,

∂υ

∂T
≈ − 1

T 2
; ∂T = −T 2συ ; σ 2

T = T 4σ 2
υ .

Hence, the uncertainty in period is then obtained using equation
(12).

σT = T 2συ (12)

where σ T will be Gaussian if συ is very small. A period value
is given to each synthetic LC (generated either with GpFit or
RASLE), by randomly sampling from a normal distribution with
mean, T (the true period of the real LC from which the synthetic LCs
are generated) and within 1σ -confidence interval, being σ T using
equation (12). An example of associating a period to an augmented
LC is shown in Fig. 5.

4.4 Stage 4: training with Bayesian optimization

We first randomly split our data into training (70 per cent) and testing
sets (30 per cent). The training set moves through the first level in
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Figure 5. For each synthetic LC, a period value (red vertical line) is
randomly sampled from a normal distribution, with mean T being the true
period of the real LC and σ T being the computed uncertainty of the period,
T.

the HC scheme discussed in Section 4.1. The training examples are
then augmented using one of the three data augmentation techniques
and features are extracted where appropriate. Afterwards, the
model (see dotted square at level 1 in Fig. 1) is trained using
either the RF or XGBoost classifier, as required. We then use a
Bayesian optimization approach to find the best hyperparameters
for the ML algorithm. It has been demonstrated for large parameter
spaces that Bayesian optimization, also known as sequential model-
based optimization (SMBO; Hutter, Hoos & Leyton-Brown 2011)
performs better than either manual or randomized grid searches
(Bergstra, Yamins & Cox 2013). It is one of the most efficient
techniques for hyperparameter optimization of ML algorithms.

In this work, we used SMBO techniques compared to H19, who
used a randomized grid-search for hyperparameter optimization.
Before applying the above methods, we perform a stratified cross
validation. The training data is split into fivefolds, where four
different folds are kept for training each time and an independent
fold is used for validation. We then use the SMBO method,
HyperOpt (Bergstra et al. 2013) to find the best hyperparameters
on the fourfolds and validated the model on the independent fold.
We then evaluate our trained model based on balanced-accuracy,
G-mean, precision, recall, and F1-scores, on real LCs in the test set.

5 A NA LY SIS AND RESULTS

This paper is mostly concerned with learning from an imbalanced
class distribution. The problem is typically addressed using the
following approaches.

(i) Data level: We employ three approaches to the HC scheme
in such a way that the class distributions are rebalanced directly;
that is, it is a first proof of principle application of a level-wise
augmentation in Hierarchical taxonomy, where we resample the
original data set to achieve a desired balancing.

(ii) Algorithm level: We focus on using two different algorithms
(RF and XGBoost), together with a Bayesian optimization algo-
rithm for hyperparameter tuning, to achieve improved performance
on the minority class examples.

The HC algorithm is trained on both real and artificially aug-
mented data and tested on real data. We show the results of the
three data augmentation techniques in Table 2. We assess the
consistency of the results based on balanced-accuracy and G-

mean scores. The shaded blue colour represents the augmentation
methods, which when applied together with the HC classifier,
yielded improved results over H19. We found that GpFit achieves
the best performance measures compared to H19 at all levels in
the HC. When using the GpFit method, we found that our RF
implementation performs best at all HC levels when compared to
H19 and we highlight this result in grey. In addition, we found
that XGBoost, similarly to the RF, provides good performance
for variable star classification. Moreover, in H19, we show that
the HC model is neither underfitting nor overfitting by plotting
precision-recall curves at different levels. In this paper, we assess
the consistency of the results using GpFit and RF by plotting
the Receiver Operator Characteristic (ROC) curve for each class
(see Fig. 6). We note that classification performance is very good.
The area under the ROC curve (AUC) values are greater than
0.95 for several classes, except for Rotational, RRd, and Blazhko.
The reasons for these misclassification are further discussed in
Section 5.1.

We improve upon the result obtained in H19. For instance, the
balanced-accuracy increases from 61 to 65 per cent in level 1, from
86 to 88 per cent at level 2 for the eclipsing node, from 86 to
87 per cent for subclasses of RR Lyrae at level 3, and finally from
81 to 83 per cent for Cepheids at level 3. To check the consistency
and robustness of our new approach, we perform an additional step.
We use different splits (K = 5, 6, ...,10) during cross-validation
and predict on the 30 per cent test set. With these analyses, we
obtain an uncertainty on the metric scores considered, for example
for Cepheids at level 3, a 0.83 ± 0.02 balanced-accuracy and
0.91 ± 0.01 G-mean score are obtained. We obtain similar results at
different levels in the hierarchy. In these analyses, we observe that
we have not made a huge improvement to H19, in terms of minority
classes and we explain the various reasons that might lead to this
outcome in Section 5.1.

5.1 Impact of imbalance on classification performance

Training a classifier upon imbalanced data does not guarantee
poor generalization performance (Galar et al. 2011). Regardless
of imbalance, if the features or the training data themselves
are discriminative enough to provide a clear separation between
the different classes, then classifiers will likely generalize well.
However, there are three main characteristics of imbalanced data
sets that make it hard for a classifier to discriminate the minority
from the majority classes. These are as follows:

(i) Small sample sizes (He & Garcia 2008; Galar et al. 2011)
(ii) Class inseparability (Japkowicz & Stephen 2002; Galar et al.

2011; see Figs 7a and 8)
(iii) Small disjuncts (see Fig. 7b)

Ultimately, the training data showing these characteristics con-
spire to make it hard for any classifier to build an optimal decision
boundary, leading to suboptimal classifier performance. These
characteristics are seen at some levels in the HC. In this section, we
illustrate these effects at level 3 using the subclasses of RR Lyrae.
Fig. 7(a) shows that some classes have overlapping characteristics,
which leads to poor performance. We observe similar characteristics
(class-overlapping) for the subclasses of RR Lyrae in Fig. 8(a), even
after balancing the classes in the training set. These overlapping
characteristics are due to the fact that there are no physical
distinction between some of the subclasses. As can be seen in
Fig. 8(a), RRab and RRc classes can reasonably be separated
based on their period alone. RRab are variable stars pulsating in
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Table 2. Evaluation metrics used to summarize the HC pipeline with the application of three methods of data
augmentation. We present the balanced-accuracy and G-mean scores level-wise to evaluate our model. H19 results
are presented in bold text in the table. It is seen that the HC pipeline performs fairly well with data augmentation,
achieving G-mean scores above ∼80 per cent at all levels. The shaded blue represents the augmentation methods that
outperform H19. We observe that at all levels, GpFit together with RF, performs better than H19 and it is represented
in shaded grey. The ‘∼’ represents a single value for the computed average metrics by taking into consideration the
overall classes.

Augmentation techniques Classifiers G Mean Balanced-accuracy

First level: eclipsing, rotational, and pulsating classification
H19 (no augmentation) RF 0.78/0.78/0.86 (∼0.79) 0.59/0.60/0.75 (∼0.61)

XGBoost 0.80/0.77/0.89 (∼0.81) 0.63/0.59/0.80 (∼0.65)
SMOTE RF 0.80/0.78/0.89 (∼0.81) 0.63/0.60/0.79 (∼0.65)

XGBoost 0.82/0.76/0.89 (∼0.83) 0.66/0.57/0.79 (∼0.68)
RASLE RF 0.82/0.77/0.89 (∼0.83) 0.66/0.58/0.79 (∼0.68)

XGBoost 0.80/0.75/0.89 (∼0.81) 0.63/0.56/0.79 (∼0.65)
GpFit RF 0.80/0.75/0.89 (∼0.81) 0.63/0.56/0.78 (∼0.65)

Second level: RR Lyrae, LPV, Cepheids, and δ-Scuti
H19 (no augmentation) RF 0.99/1.00/0.97/1.00 (∼0.99) 0.98/0.99/0.93/1.00 (∼0.98)
SMOTE XGBoost 0.99/1.00/1.00/0.95 (∼0.99) 0.97/0.99/1.00/0.90 (∼0.97)

RF 0.99/1.00/1.00/0.96 (∼0.99) 0.97/0.99/1.00/0.92 (∼0.97)
XGBoost 0.99/1.00/0.99/0.93 (∼0.99) 0.98/1.00/0.98/0.85 (∼0.98)

RASLE RF 0.99/1.00/1.00/0.94 (∼0.99) 0.98/0.98/1.00/0.88 (∼0.98)
XGBoost 0.99/1.00/0.99/0.95 (∼0.99) 0.97/0.99/0.97/0.99 (∼0.98)

GpFit RF 0.99/1.00/1.00/0.97 (∼0.99) 0.97/0.99/1.00/0.93 (∼0.98)

Second level: Ecl and EA
H19 (no augmentation) RF 0.93/0.93 (∼0.93) 0.86/0.86 (∼0.86)

XGBoost 0.94/0.94 (∼0.94) 0.88/0.88 (∼0.88)
SMOTE RF 0.94/0.94 (∼0.94) 0.88/0.88 (∼0.88)
RASLE XGBoost 0.93/0.93 (∼0.93) 0.85/0.85 (∼0.85)

RF 0.93/0.93 (∼0.93) 0.85/0.86 (∼0.86)
XGBoost 0.93/0.93 (∼0.93) 0.88/0.88 (∼0.88)

GpFit RF 0.94/0.94 (∼0.94) 0.87/0.88 (∼0.88)

Third level: RRab, RRc, RRd, and Blazhko
H19 (no augmentation) RF 0.97/0.92/0.65/0.44 (∼0.92) 0.94/0.85/0.40/0.18 (∼0.86)
SMOTE XGBoost 0.95/0.92/0.67/0.58 (∼0.91) 0.91/0.83/0.42/0.31 (∼0.83)

RF 0.95/0.82/0.47/0.33 (∼0.91) 0.91/0.82/0.47/0.33 (∼0.83)
XGBoost 0.96/0.95/0.56/0.53 (∼0.92) 0.93/0.89/0.30/0.26 (∼0.87)

RASLE RF 0.97/0.95/0.52/0.52 (∼0.92) 0.94/0.90/0.25/0.25 (∼0.87)
XGBoost 0.97/0.93/0.57/0.44 (∼0.92) 0.94/0.86/0.30/0.17 (∼0.85)

GpFit RF 0.97/0.93/0.56/0.41 (∼0.92) 0.94/0.87/0.32/0.26 (∼0.87)

Third level: ACEP and Cep-II
H19 (no augmentation) RF 0.90/0.90 (∼0.90) 0.82/0.80 (∼0.81)
SMOTE XGBoost 0.88/0.88 (∼0.88) 0.78/0.76 (∼0.77)

RF 0.88/0.88 (∼0.88) 0.78/0.76 (∼0.77)
XGBoost 0.88/0.88 (∼0.88) 0.77/0.78 (∼0.77)

RASLE RF 0.88/0.88 (∼0.88) 0.77/0.78 (∼0.78)
XGBoost 0.88/0.88 (∼0.88) 0.78/0.78 (∼0.78)

GpFit RF 0.91/0.91 (∼0.91) 0.84/0.82 (∼0.83)

fundamental mode, RRc stars pulsate in the first overtone while RRd
stars simultaneously pulsate in the fundamental and first overtone.
Therefore, RRd’s form part of both RRab and RRc variable stars at
the same time. In addition, Blazhko stars are found among RRab
stars (Jurcsik et al. 2009), RRc stars (Netzel et al. 2018), and even
RRd stars (Jurcsik et al. 2015). This explains the poor performance
of the classifier for separating RRd and Blazhko stars, even after
balancing the classes. In addition, we also present a t-distributed
stochastic neighbour embedding (t-SNE; van der Maaten & Hinton
2008) of the minority classes (Blazhko, δ-Scuti, ACEP & Cep-II)
in Fig. 8(b) after augmenting them using the GpFit method. The
result shown in Fig. 8(a) does not differ when we perform multiple
runs with different parameters. Each time we find small disjuncts

in the feature space, showing characteristics similar to those shown
in Fig. 7(b), thus making it difficult for the classifier to construct a
decision boundary.

In this paper, we found that training the HC with class-balanced
data has the effect of improving balanced-accuracy and G-mean
scores. However, the minority classes are still misclassified. Al-
though these results suggest that balancing the class distribution is
not sufficient for classifying the minority classes, their capacity
to prevent overfitting and increase the recall rate makes them
appealing.

Another reason that leads to misclassification – the lack of a
standard set of correctly classified (i.e. where the ground truth is
certain) variable star example useful for training. Drake et al. (2017)
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Figure 6. Receiver operating characteristic (ROC) curves for each node in
the hierarchical model. Each curve represents a different variable star class
with the area under the ROC curve (AUC) score in brackets. This metric is
computed on the 30 per cent of the data set used for testing.

Figure 7. Demonstration of (a) class inseparability and (b) small disjuncts
in feature space.

investigated the level of agreement of their classifications with the
International Variable Star Index (VSX; Watson, Henden & Price
2006). They found that

(i) VSX has not classified any of their Blazhko stars, but instead
simply classify them as RRab stars,

(ii) VSX classified many of their contact binaries as detached
and semi-detached binaries,

(iii) most of their rotational stars (spotted or ellipsoidal variables)
have been classified as contact binaries, and

(iv) most of their RRd stars have been misclassified as other stars
(RRab, RRc) by VSX.

We observe similar misclassifications when using our automated
HC pipeline, even after balancing the classes. With the presence
of so many misclassified objects, we can plausibly say neither
Drake et al. (2017) or VSX can be considered as providing ground
truth. Therefore, there is a real need to have a standard set of
correctly identified variable stars that can be utilized for training
automated machine learning methods. It is imperative to train
these sophisticated ML-based algorithms with accurately calibrated
priors in order to obtain reliable classification outputs.

6 C O N C L U S I O N

In this paper, we present a new approach for tackling the problem
of imbalanced data: a level-wise data augmentation in a hierar-
chical classification framework. Our code is publicly available
at https://github.com/Zafiirah13/Imbalance-Learning-for-Variable-
Star-Classification-using-Machine-Learning. Through an empirical
investigation, we demonstrate three techniques for augmenting data;
that is, SMOTE, RASLE, and GpFit are applied to variable star
data. We show that using RF and GpFit together can effectively
improve recall rates, hence increasing the balanced-accuracy and
G-mean scores by 1–4 per cent. Although, the results show that
even after balancing the training set level-wise, such approaches
do not prevent the misclassification of the minority class, though
their capacity to increase other metrics (e.g. recall) still makes
their application appealing. Perhaps, the misclassification occurs
because these objects are just not easily separable and we observe
similar misclassifications in this paper as determined by Drake et al.
(2017) when they compared their results with VSX. Therefore, it
is imperative to have correctly labelled data that can accurately be
used to train automated ML pipeline in order to output reliable
classification performance.

Figure 8. (a) Shows the Period-Skew distribution of RRab, RRc, RRd, and Blazhko after augmenting each respective class to 10 000 examples. We note that
the classes are still overlapping in the feature space, even after the augmentation process. (b) Illustrates small disjoints in feature space using t-distributed
stochastic neighbour embedding (t-SNE) visualization in the small sample size data (Blazhko, δ-Scuti, ACEP, and Cep-II), after augmentation. No distinct
separation is seen within the feature space.
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Netzel H., Smolec R., Soszyński I., Udalski A., 2018, MNRAS, 480, 1229
Ng A. Y., 2004, Proceedings of the Twenty-First International Conference

on Machine Learning. p. 78
Nun I., Protopapas P., Sim B., Zhu M., Dave R., Castro N., Pichara K., 2015,

preprint (arXiv:1506.00010)
Pashchenko I. N., Sokolovsky K. V., Gavras P., 2018, MNRAS, 475, 2326
Peterson B. M., Wanders I., Horne K., Collier S., Alexander T., Kaspi S.,

Maoz D., 1998, PASP, 110, 660
Rasmussen C. E., Williams C. K. I., 2005, Gaussian processes for machine

learning. The MIT Press
Revsbech E. A., Trotta R., van Dyk D. A., 2018, MNRAS, 473, 3969
Sesar B. et al., 2017, AJ, 153, 204
Smith C. R., Erickson G., 2012, Maximum-Entropy and Bayesian Spectral

Analysis and Estimation Problems: Proceedings of the Third Workshop
on Maximum Entropy and Bayesian Methods in Applied Statistics,
August 1–4, Vol. 21, 1983. Springer Science & Business Media,
Wyoming, USA

Tibshirani R., 1996, J. R. Stat. Soc. Ser. B (Methodol.), 58, 267
Tsang B. T.-H., Schultz W. C., 2019, ApJ, 877, L14
Udalski A., Szymanski M., Soszynski I., Poleski R., 2008, preprint (arXiv:

0807.3884)
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