
Alevizos, L, Thong Ta, V and Hashem Eiza, M

 A Novel Efficient Dynamic Throttling Strategy for Block-chain-Based Intrusion
Detection Systems in 6G-Enabled VSNs

http://researchonline.ljmu.ac.uk/id/eprint/21522/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Alevizos, L, Thong Ta, V and Hashem Eiza, M (2023) A Novel Efficient
Dynamic Throttling Strategy for Block-chain-Based Intrusion Detection
Systems in 6G-Enabled VSNs. Sensors, 23 (18). ISSN 1424-8220

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Citation: Alevizos, L.; Ta, V.T.; Eiza,

M.H. A Novel Efficient Dynamic

Throttling Strategy for

Blockchain-Based Intrusion Detection

Systems in 6G-Enabled VSNs. Sensors

2023, 23, 8006. https://doi.org/

10.3390/s23188006

Academic Editor: GP

Received: 21 July 2023

Revised: 12 September 2023

Accepted: 18 September 2023

Published: 21 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Efficient Dynamic Throttling Strategy for
Blockchain-Based Intrusion Detection Systems in
6G-Enabled VSNs
Lampis Alevizos 1,* , Vinh Thong Ta 2 and Max Hashem Eiza 3

1 School of Psychology and Computer Science, University of Central Lancashire (UCLan),
Preston PR1 2HE, UK

2 Department of Computer Science, Edge Hill University, Ormskirk L39 4QP, UK; tav@edgehill.ac.uk
3 School of Computer Science and Mathematics, Liverpool John Moores University (LJMU),

Liverpool L3 3AF, UK; m.hashemeiza@ljmu.ac.uk
* Correspondence: lampis@redisni.org or calevizos@uclan.ac.uk

Abstract: Vehicular Social Networks (VSNs) have emerged as a new social interaction paradigm,
where vehicles can form social networks on the roads to improve the convenience/safety of passen-
gers. VSNs are part of Vehicle to Everything (V2X) services, which is one of the industrial verticals
in the coming sixth generation (6G) networks. The lower latency, higher connection density, and
near-100% coverage envisaged in 6G will enable more efficient implementation of VSNs applications.
The purpose of this study is to address the problem of lateral movements of attackers who could
compromise one device in a VSN, given the large number of connected devices and services in VSNs
and attack other devices and vehicles. This challenge is addressed via our proposed Blockchain-based
Collaborative Distributed Intrusion Detection (BCDID) system with a novel Dynamic Throttling
Strategy (DTS) to detect and prevent attackers’ lateral movements in VSNs. Our experiments showed
how the proposed DTS improve the effectiveness of the BCDID system in terms of detection capabili-
ties and handling queries three times faster than the default strategy with 350k queries tested. We
concluded that our DTS strategy can increase transaction processing capacity in the BCDID system
and improve its performance while maintaining the integrity of data on-chain.

Keywords: vehicular social networks; 6G technology; blockchain; intrusion detection

1. Introduction

Vehicular Social Networks (VSNs) represent a unique form of localised mobile social
networks that exploit vehicular communication links and offer travellers the opportunity
to engage in social activities along the road. Direct inquiry from others with a similar
experience in proximity over social networks tends to be the most convenient and efficient
approach to acquiring up-to-date, specialised, and domain-specific information for trav-
ellers [1]. Moreover, a TripAdvisor survey showed that 76% of travellers share their travel
experience including photos and clips via social networks and 52% do that while on the
road [2]. Based on the physical and social distances of users, many applications have been
proposed in the context of VSNs such as UberPool [3] and Verse [4]. VSNs can be formed
using different approaches such as the use of infrastructure, through an Internet connection,
or in an ad hoc manner via vehicle-to-vehicle communication [5].

By the year 2030, the official roll out of the sixth generation (6G) networks is expected
to meet the demands of mobile communications, when the current 5G networks will have
reached their limit [6]. The 6G networks are envisaged to provide global coverage and
Tbps-level transmission data rates for applications such as Virtual Reality (VR), 3D videos,
and Augmented Reality (AR). Besides higher data rates, 6G should provide lower latency,
higher connection density, and near-100% global coverage in comparison to 5G. This has

Sensors 2023, 23, 8006. https://doi.org/10.3390/s23188006 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23188006
https://doi.org/10.3390/s23188006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5891-1718
https://orcid.org/0000-0001-9114-8577
https://doi.org/10.3390/s23188006
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23188006?type=check_update&version=1

Sensors 2023, 23, 8006 2 of 17

the potential to revolutionise VSNs by providing enhanced connectivity, ultra-low latency,
and enormous data capacity. The ultra-low latency communications would enable real-time
interactions between vehicles in a VSN, which can facilitate various safety applications
such as collision avoidance systems, cooperative adaptive cruise control, and emergency
notifications. In addition, the high data transfer speeds can support high-resolution video
streaming, AR, and VR applications in vehicles. With 6G, passengers in VSNs can have an
enhanced experience in social interactions and gaming.

Unfortunately, besides these benefits, the fact that vehicles and their embedded devices
in a VSN are connected through many social applications would increase the risk of lateral
movement by attackers who can start compromising a single vehicle or device (i.e., the
weakest link) in a VSN as a starting point and then extend the attack to other vehicles
and devices. Furthermore, if there is an opportunity for different VSNs to connect to each
other, the extent of lateral movement can be even greater. This is the case in “corporate”
VSNs, for instance, when public transport buses, operated by a bus company, form VSNs
on the road and the passengers can use social apps installed in the tablet attached to the
back of their seats. Passengers can interact and play with fellow passengers on the same
bus or other buses in the same VSN. Drivers and vehicles can interact with others and
the stations to obtain real-time information about the routes. If the attacker manages to
compromise and control a social app, the attacker can extend the attack to the other apps in
the device and other devices via lateral movement. The effect of lateral movement can be
more devastating in the case of ad hoc VSNs, where a compromised vehicle can leave one
VSN and join another on the road.

In the face of this problem, Distributed Intrusion Detection Systems (IDSs) have been
proposed for the Internet of Vehicles (IoV), Vehicular Ad hoc Networks (VANETs), and
Internet of Things (IoT) to cope with their dynamic nature. In these approaches, instead
of centralised detection servers or cloud, the vehicles and the roadside units function as
intrusion detection sensors (e.g., through the standalone IDSs installed in them). This
enables the concept of collaborative distributed intrusion detection (CID) when anomalies
can be detected based on the logs and network data shared by the vehicles and roadside
units. For example, in the case of Sybil attacks, vehicles monitor the network and share
information about observed vehicle identities, communication patterns, and message
content. If a vehicle detects multiple identities associated with a single vehicle, it flags
the vehicle as suspicious, and this information is disseminated to other vehicles. When
multiple vehicles report the same vehicle as a potential Sybil node, a consensus is reached,
and appropriate countermeasures can be taken (e.g., isolating/ignoring the Sybil node).
However, despite the benefits of collaborative distributed intrusion detection, it only
works well if all vehicles are honest, unselfish, and benign. Selfish vehicles can refuse
to share information with others, while dishonest and malicious vehicles or roadside
units (e.g., controlled by the attacker via malware infection) can intentionally disseminate
incorrect or incomplete information.

1.1. Main Scope and Contributions

To rectify the problem above, we propose a Blockchain-based Collaborative Distributed
Intrusion Detection (BCDID) system in the context of VSNs, which provides data integrity
and immutability for the shared information among vehicles and roadside units. The
scope of our study assumes a corporate VSN where vehicles in the same company form
the network. These companies can be, for example, taxi, travel agency, or bus companies.
Each VSN maintains a permissioned or corporate blockchain that contains a whitelist of
the cryptographic hashes of benign social applications running in the devices attached to
the back of the passengers’ seats as well as in front of the drivers. Whenever a new social
application is installed or changes have been made to an existing one, the system calculates
the cryptographic hash of the new or modified application. The newly calculated hash will
be committed to the blockchain for whitelisting. Note that this blockchain-based intrusion
detection concept is based on the approach proposed in our previous work [7] that detects

Sensors 2023, 23, 8006 3 of 17

and prevents malicious applications on endpoints. The main contributions of this paper
are as follows:

1. We propose a novel ledger-query strategy, named “Dynamic Throttling Strategy”, that
not only works best for the BCDID use case but can be leveraged widely by blockchain
networks when simple key–value queries with substantial amounts of data and users
are the basic characteristics of these networks.

2. We show that the proposed BCDID can be applied in the new VSN context with some
modifications to deal with the large number of nodes since the approach proposed
in [7] was only tested in a small-scale network. Hence, we address the performance
limitations in large-scale application contexts like VSNs and conduct performance
analysis to show how our proposed solution can cope and excel in the case of a large
number of endpoints in VSNs.

1.2. Literature Review—Collaborative Intrusion Detection Systems

Deploying Intrusion Detection Systems (IDSs) is a well-known approach to effectively
detect intrusions based on the anomaly caused by malicious or compromised devices.
Hence, it is one of the most promising solutions for the problem in discussion. However,
implementing a standalone IDS is often insufficient in the case of large networks due to
the substantial number of false positives and negatives. Shortcomings of standalone IDS
systems have been studied by Fung et al. [8], Duma et al. [9], and Weizhi et al. [10]. As a
result, DCIDSs have been proposed to improve the efficiency and availability of standalone
IDSs. Collaborative Intrusion Detection Systems (CIDSs) overcome the limitations of
standalone IDSs mentioned in [11], where IDS nodes can be installed in the network but
do not share information with each other, and therefore their detection capability is more
limited compared to that of CIDSs. On the other hand, CIDSs are usually a network of
cooperative IDSs that leverage collective knowledge to achieve improved accuracy in
detecting intrusions. Furthermore, Distributed CIDS (DCIDSs) are implemented to deal
with attacks such as Distributed Denial of Service (DDoS) attacks which traditional IDSs
cannot tackle effectively. Wu et al. [12] showed that in practice, compared to a standalone
IDS setting, CIDSs can reduce the number of missed alarms to one from seven cases, and
the number of false alarms were also reduced in their test system.

For these reasons, DCIDSs can be seen as one promising approach to detecting anoma-
lies in IoVs, VANETs, and IoT. The authors in [13] presented a CIDS designed specifically
for VANETs. The proposed system employs a trust-based approach and utilises vehicle-
to-vehicle communication to detect and mitigate various attacks in VANETs, such as Sybil
attacks and black hole attacks. Experimental results demonstrated the effectiveness of the
CIDS in improving intrusion detection accuracy. Zhou et al. [14] proposed a DCIDS based
on invariants to identify betrayal attacks in VANETs. Their approach is a reputation-based
cooperative communication method and a so-called cluster head vehicle selection method
based on the global reputation state, traffic density, and link life. Zhang et al. [15] presented
a machine learning-based privacy-preserving DCIDS for VANETs. To detect intrusion in
VANETs, the authors introduced an approach based on the alternating direction method of
multipliers (ADMM) to a class of empirical risk minimisation and proposed a method of
dual variable perturbation to provide dynamic differential privacy.

In [16], the authors proposed a data-driven IDS for IoV by analysing the link load
behaviours of the Roadside Unit (RSU) against various attacks causing fluctuations in
traffic flows. The detection approach is based on a Convolutional Neural Network (CNN)
with the features such as link loads, and it detects the intrusion aimed at RSUs. Anzel
et al. [17] proposed a multilayer perceptron (MLP) neural network to detect intruders or
attackers on an IoV network. In addition to these, many other AI-based intrusion detection
methods have been proposed in the literature as discussed by Man et al. [18].

Intrusion detection approaches have also been widely proposed for Internet of Things
applications (e.g., [19–21]). Alshahrani [22] proposed a collaborative intruder detection
system that detects malicious activities in IoT devices. The framework gathers information

Sensors 2023, 23, 8006 4 of 17

from four main layers, namely, the IoT layer, network layer, fog layer, and cloud layer
to monitor and analyse the network traffic among IoT devices. The authors in [23,24]
proposed blockchain-based solutions to detect malicious vehicles and IoT devices. The
main difference between our work and the work proposed in [23] is that in the latter case, the
malicious behaviour of the vehicles is detected using machine learning (neural networks),
while in our case we focus on the lateral movement among the endpoints installed inside
the vehicles. The authors in [24] addressed the problem of indoor navigation and proposed
a new secure communication approach based on blockchain, which is different from the
objective of our paper.

1.2.1. CIDSs Architectures

While CIDSs and DCIDS can reduce the rate of false negatives and positives because
of the network data shared among the IDS nodes, they also have some limitations such
as (1) the increased attack surface as now the attacker may target more IDS nodes, and
effectively protecting all the nodes is a challenging task; (2) the data shared among IDS
nodes may be inconsistent or incomplete due to lack of trust among the nodes, as well as
selfish or compromised nodes.

In general, CIDSs can follow a centralised, hierarchical, or peer-to-peer architecture.
In the first case, decision-making is made by a central server which collects and processes
data sent from all IDS sensor nodes. Intrusion detection is based on algorithms that use
aggregated information and correlated events. In hierarchical architectures, IDS sensor
nodes are organised in multiple tiers, and local data processing and analysis are completed
in each tier. The analysis results of each tier are forwarded to the higher-level tiers until
they reach the top tier. The main advantages of this architecture include better scalability
and load distribution. Compared to the centralised case, depending on the number of tiers,
we may expect some delay with intrusion detection. Finally, in the case of peer-to-peer
architecture, IDS sensor nodes share data directly with each other to collectively make
decisions. This architecture facilitates decentralised intrusion detection based on correlated
alerts and avoids the single-point-of-failure problem in the centralised case.

1.2.2. Alert Correlation

In the hierarchical and peer-to-peer architectures, alert propagation and correlation
follow different approaches. For example, Garcia et al. [25] proposed a hierarchical CIDS
architecture that correlates alerts from IDS nodes using secure multicast. In their approach,
local IDS, called “prevention cells”, detect and record attacks locally, which are then
exchanged between the local IDSs. In addition, Dash et al. [26] proposed a collaborative
host-based IDS approach which detects network intrusion using distributed probabilistic
inference. Dain et al. [27] proposed a scenario-based probabilistic approach using three
variations of Bayesian networks. In this method, the detected events and anomalies are
categorised into attack scenarios. Cuppens et al. [28] introduced Language to Model a
Database for Detection of Attacks, an attack description language aiming to correlate
alerts based on the specification of the pre-and post-condition of a target system. Cheung
et al. [29] proposed Correlated Attack Modelling Language, which allows lower-level
specification of attack scenarios and anomalies. Templeton and Levitt [30] proposed an
attack specification language JIGSAW for DCIDSs, which specifies attacks on the threat
event-type level rather than attack scenarios.

1.2.3. Alert Trustworthiness

Besides the effectiveness of sharing data with each other, the quality and completeness
of the exchanged information are crucial. Solutions to tackle this problem have been
proposed in the literature. For example, to detect message tampering and forging, the
authors in [31] proposed a digital signature and cryptographic hash-based authentication
solution for alert messages in a peer-to-peer CIDS architecture. In addition, to detect selfish
IDS nodes sending incomplete/incorrect information, Chen et al. [32] proposed the use

Sensors 2023, 23, 8006 5 of 17

of a “Web of Trust” between participating nodes, in which the quality of the exchanged
information can be measured by the reputation of the nodes.

Blockchain-enabled IDSs can be used to ensure the integrity and trustworthiness
of alert messages, and several works can be found in the literature as discussed in the
review paper [33]; however, these are mostly theoretical concepts without extensive real-
life experiments and/or implementation. For example, the authors in [34] proposed a
CIDS concept based on a permissioned blockchain concept, where a set of alert messages
are defined as transactions within the blockchain. Li et al. [20] presented the so-called
Collaborative Blockchained Signature-Based Intrusion Detection System (CBSigIDS) for
trust management. The authors in [35] proposed a Collaborative IoT Anomaly Detection
(CIoTA) framework. To make the concept suitable for IoT devices, the authors designed a
lightweight approach and demonstrated it using a testbed of 48 Raspberry Pi’s.

2. Blockchain-Based Collaborative Distributed Intrusion Detection (BCDID) System

In this section, we present our blockchain’s building blocks and elements and discuss
the steps and intrusion detection mechanism. Again, note that the system presented in this
section is based on our previous work in [7], but we show how the BCDID system improves
upon our previous work, and it can be applied in the new VSN context. The main novelty
and contribution of this work is the new proposed mechanism to improve the effectiveness
of the blockchain-based IDS in case of many endpoints, which is relevant in the VSN context.
The proposed BCDID system uses a private and permissioned blockchain architecture
where each company builds and maintains its own private blockchain to detect intrusion or
anomalies in its VSN. This approach preserves the privacy and confidentiality of corporate
data and controls the access of the participating nodes, users, and administrators. For
evaluation in this study, we selected the Hyperledger Fabric (HLF) blockchain platform.

2.1. Building Blocks and System Model

Each corporation has a fleet of vehicles that can be buses, cars, trains, or even planes.
We assume that the endpoints are the devices mounted into the seats of the passengers
for entertainment during their journeys. The endpoints for passengers have a set of
social and game applications installed, which are regularly updated, and applications
are also added or removed to meet the budget of the corporation but at the same time
provide up-to-date entertainment opportunities for the passengers. The applications can
run on Windows, Linux, Android, or iOS platforms, depending on the specific device the
corporation installs. We present the architecture of the proposed BCDID system below,
assuming each corporation has a headquarters, different divisions or branches, and a fleet
of vehicles with endpoints installed in them.

Organisations and Peers: For simplicity, we explain our system with a corporation
with a headquarters and one branch, for which we define two organisational elements in
the blockchain architecture, OrgHQ and OrgBR. This concept can be extended straight-
forwardly to a corporation with multiple branches and multiple corporations. OrgHQ
represents the headquarters and OrgBR represents a single branch of it. Each organisational
OrgHQ and OrgBR runs its own peer OrgHQ Peer (which is owned and operated by the
headquarters) and OrgBR Peer (operated by the branch), respectively. Both peers host
their own ledger alongside their Smart Contracts, also known as Chaincode. Their ledger
immutably records all transactions generated by smart contracts.

Ledger: In our proposed concept, the ledger stores the current hashes of the endpoints
mounted in the vehicles. The ledger also stores the past hashes as a history of transactions
that eventually resulted in the current values, providing a reliable source of the chain
of events in case of a required software update on an endpoint. The ledger comprises
two separate segments, namely, the world state database and the blockchain. On one
hand, the world state database contains the current values of the hashes produced from the
endpoint. On the other hand, the blockchain records all changes leading up to and including
the current value of the world state database, in the form of transactions. Afterwards,

Sensors 2023, 23, 8006 6 of 17

transactions are “placed” inside blocks and ultimately appended on the blockchain which
enables better understanding of historical changes that led to the current value in the world
state database. Blocks enclose ordered transactions and are bounded cryptographically
with the previous and next block, ultimately forming a chain of transaction logs in the form
of chained blocks of transactions.

Orderer: The Orderer is a special node responsible for ordering transactions, creating
a new block of ordered transactions, and distributing the newly created block to all peers on
the communication channel, thus always keeping ledgers on “OrgHQ Peer” and “OrgBR
Peer” consistent.

Channel: Within the corporate blockchain network, channels are communication
mediums for OrgHQ and OrgBR (and their components). For the two peers of each
organisation to respectively join the channel, an identity is required. For every transaction
that is executed via the channel, the peers and entities must first acquire authentication and
gain authorisation.

Consensus: Our proposed BCDID architecture is based on Hyperledger Fabric, thus
inherently relying on a deterministic consensus algorithm. Determinism in the context
of blockchains means that if one enacts the same steps in a pre-defined order, the same
results as anybody else who follows the exact process should be achieved. This eventually
provides a guarantee that any block validated by peers is correct and final. The consensus
mechanism in our case can be divided into the following three phases: (A) endorsement,
(B) ordering, (C) validation and commitment.

Client: The client is the actual application (or even a set of applications) that interacts
with the blockchain network.

Certificate Authorities: CAs are responsible for managing user certificates such as
user registration, user enrolment, and user revocation. X.509 standard certificates can be
used. The network setup is based on a permissioned blockchain network; therefore, only
permitted users can:

1. query peer ledgers and access information, or
2. invoke, namely, create new transactions.

Transaction proposal: An administrator or user proposes a transaction to submit a
new executable’s hash for whitelisting through the “Client” which is signed by the user’s
or administrator’s certificate. Next, the proposal is sent to the pre-defined endorsing peers
“OrgHQ Peer” and “OrgBR Peer” through the channel. Endorsing peers perform a sequence
of verification checks such as whether the proposed transaction has not been submitted in
the past, the validity of digital signatures, as well conformance with the communication
channel writer’s policy.

Generalising to multiple organisations: In this case, more peers can join the channel,
and the single orderer would most likely get overburdened with tasks such as distributing
blocks of transactions. However, a secondary orderer can always be added or even a
cluster of orderer nodes ideally. Regarding the possible network congestion due to block
distribution overhead, the concept of leading peers is utilised as a mitigating measure. For
this concept to be triggered an organisation (e.g., “OrgHQ”) would need more than one
peer, and as such, for example, one peer would take the leading role while the other would
function as an endorsing peer.

Operation Processes

The goal of the BCDID system is to effectively detect, and prevent where possible,
attacks on the endpoints. To achieve this, the main processes are defined as follows (see
Figure 1):

• Process 1—New endpoint enrolment: At the beginning and whenever the installation
of new media devices in the vehicles happens, these new endpoints are enrolled.

• Process 2—Import new apps on-chain: This process utilises the so-called “Create-
Asset” app function and chain code, which enables newly hashed social application
information to be transferred and recorded on-chain, providing immutability.

Sensors 2023, 23, 8006 7 of 17

• Process 3—Verify existing apps on-chain: This is the core element of whitelisting the
“benign” applications, where the presence of an app’s information on the chain is
verified, and the execution of the app can be denied if the information is not on the
chain. For this, we define the so-called “AssetExists” app function.

• Process 4—Query for a specific app(s): To manually verify the on-chain presence of
applications or request certain information for incident triaging, we define “GetAllAs-
sets” or “ReadAsset” apps functions and chaincodes. These allow an administrator to
query the ledger for specific information.

• Process 5—Update existing app(s) information: To update certain information fields
of applications on-chain, we define the app function and chaincode called “UpdateAsset”.

• Process 6—Detection and prevention triggers: If an app is trying to execute without
the relevant data being present on-chain, then an alert is generated. We generate two
types of alerts: (1) when an app is trying to execute without the relevant data being
present on-chain, and (2) when an admin-owned app (see Process 7 below) is trying to
execute. Both cases indicate a potential intrusion. Nonetheless, alerts and rules can be
configured and further refined at a later stage to include countless cases.

• Process 7—Transfer app(s) ownership: To transfer the ownership of apps on-chain,
we define the app function and chaincode called “TransferAsset”, which creates a
sequence and reference in the form of transactions.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 18

Operation Processes
The goal of the BCDID system is to effectively detect, and prevent where possible,

attacks on the endpoints. To achieve this, the main processes are defined as follows (see
Figure 1):
• Process 1—New endpoint enrolment: At the beginning and whenever the installa-

tion of new media devices in the vehicles happens, these new endpoints are enrolled.
• Process 2—Import new apps on-chain: This process utilises the so-called “Create-

Asset” app function and chain code, which enables newly hashed social application
information to be transferred and recorded on-chain, providing immutability.

• Process 3—Verify existing apps on-chain: This is the core element of whitelisting
the “benign” applications, where the presence of an app’s information on the chain
is verified, and the execution of the app can be denied if the information is not on the
chain. For this, we define the so-called “AssetExists” app function.

• Process 4—Query for a specific app(s): To manually verify the on-chain presence of
applications or request certain information for incident triaging, we define “GetAl-
lAssets” or “ReadAsset” apps functions and chaincodes. These allow an administra-
tor to query the ledger for specific information.

• Process 5—Update existing app(s) information: To update certain information fields
of applications on-chain, we define the app function and chaincode called “Update-
Asset”.

• Process 6—Detection and prevention triggers: If an app is trying to execute without
the relevant data being present on-chain, then an alert is generated. We generate two
types of alerts: (1) when an app is trying to execute without the relevant data being
present on-chain, and (2) when an admin-owned app (see Process 7 below) is trying
to execute. Both cases indicate a potential intrusion. Nonetheless, alerts and rules can
be configured and further refined at a later stage to include countless cases.

• Process 7—Transfer app(s) ownership: To transfer the ownership of apps on-chain,
we define the app function and chaincode called “TransferAsset”, which creates a
sequence and reference in the form of transactions.

Figure 1. Operation processes blueprint.

Figure 1. Operation processes blueprint.

2.2. Blockchain-Based Collaborative Distributed Intrusion Detection Mechanism

To detect and block attackers from lateral movement as early as possible, the proposed
intrusion detection mechanism is based on hash-based Blockchain-enabled whitelisting.
Each endpoint (tablet, media device, or computer) has a set of social applications installed
in them, and the newly installed or approved versions of the applications are hashed
beforehand. For security reasons, SHA-256 or SHA-512 can be used for file hashing
purposes. Depending on the specific operating system platform these apps run on, the
apps can have the “.apk” extension (in the case of Android) and “.ipa” (iOS), and in the
case of Windows, they can be “.exe”, “.bin”, “.msi”, etc.

The precision of our proposed approach is based on the detection accuracy, namely,
how likely compromised apps/malware are not detected but are allowed to run in an
endpoint. To examine this, we built a testbed and considered 31% of the attack techniques
in the MITRE based on the ATT&CK adversary tactics (https://attack.mitre.org/) to launch
file-based and fileless attacks against an endpoint. We showed that for the file-based

https://attack.mitre.org/

Sensors 2023, 23, 8006 8 of 17

attacks, unlike a machine learning IDS-based approach, our BCDID method achieved 100%
correctness for both detection and prevention for each attack. However, for the fileless
attacks, the accuracy rate is around 63% as 17 out of the 46 examined attacks were able to
carry out the injection of apps/tools directly into the memory, bypassing detection.

2.3. Performance Issues

In this section, we discuss the main problems and challenges related to performance
when implementing the proposed BCDID in practice. Then, in Section 2.4 we discuss
the related works that address Hyperledger Fabric performance problems, followed by
our proposed novel method to overcome this performance issue in Sections 2.5 and 2.6.
Several essential functions take place within the BCDID ecosystem. Processes 1 and 2 do
not have a time constraint attached to them. The blockchain network administrator(s)
per organisation can build the necessary application whitelist before allowing access to
the corporate resources in advance. The BCDID prototype can onboard 200 users within
approximately 75 min, generating 1 million successful transactions in total, with a rate
of 220 Transactions Per Second (TPS). Therefore, user onboarding, firstly, is usually not
a time-bounded task, and secondly, even if an organisation has hard deadlines on user
onboarding, with an extremely limited resourced prototype like ours, it could onboard
1300 new endpoints per working day (assuming 8 h equal a working day).

Thus, our first performance evaluation workload generation and measurement are
focused on Process 3. Process 3 is where the decision-making on whether an application is
allowed to be executed or not transpires. Consequently, this is also a key point for Process
6, whereas if an application is not allowed to execute, a potential intrusion detection alert
needs to be raised. On the contrary, if the outcome of Process 3 is positive, namely, the
query returns the required value, then the application will be allowed execution. This is
likely the first potential performance bottleneck, as hundreds or even thousands of users
are anticipated to execute applications simultaneously, thus translating into hundreds or
thousands of transactions on the backend system. Before diving into system bottleneck
analysis, it is imperative to understand the two BCDID application-peer interactions,
namely ledger-update versus ledger-query transactions. Table 1 summarises the individual
consensus-related actions while showing where the invoke or query is required.

Table 1. Invoke versus Query.

Action vs. Transaction Method Invoke Query

Results in the update of world-state DB Yes No
Transaction data saved on-chain Yes No

Requires responses from multiple peers Yes No
Triggers ordering service and block creation Yes No

A ledger query transaction is far more lightweight than ledger-update (invoke) since
it does not need to engage multiple peers nor the ordering service. Therefore, it is best
suited for low-latency read-only activities, without the necessity to record data on-chain.
So, to answer the question “what happens when hundreds or thousands of users try to execute an
application and thereby start a ledger-query transaction simultaneously”, we need to breakdown
the exact steps of a ledger-query transaction. In the case of a ledger-query transaction, the
transaction proposal and endorsement consist of three discrete steps. These are part of the
client application and peer interaction. Specifically, in our BCDID ecosystem, the client
application represents the user. Thus, the sequence for an endpoint with a user having a
valid identity is as follows:

1. Transaction proposal: A user belonging to OrgHQ executes a single application
chrome.exe, which automatically triggers the “AssetExists” chaincode and therefore
submits a signed response with the user’s certificate-transaction proposal to the
endorsing organisation OrgHQ peer(s).

Sensors 2023, 23, 8006 9 of 17

2. Transaction execution: peer0 belonging to OrgHQ executes the chaincode “ReadAs-
set” specified in the proposal and generates a proposal response which contains the
read-write set. The response is signed by peer0 and is sent back to the user.

a. In case the output matches the input, namely, the current hash of chrome.exe is
identical to the one existing on-chain, chrome.exe will be allowed execution.

b. In case the output of “ReadAsset” returns a hash mismatch, chrome.exe will be
denied execution.

c. Additionally, an intrusion alert will be triggered, and Process 6 will begin (see
Figure 1).

3. Transaction endorsement: the transaction will be executed repeatedly for each or-
ganisation required by the chaincode endorsement policy. Responses are collected
and signed.

We measured the performance of the above-mentioned ledger-query Step 2, assum-
ing a group of 100 up to 1000 users attempt a simultaneous execution of the Chrome
web browser. Chrome requires 350 different executables to be queried prior to allowing
execution, which we measured on the user endpoint. Our observations are shown in
Figure 2a,b.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 18

A ledger query transaction is far more lightweight than ledger-update (invoke) since
it does not need to engage multiple peers nor the ordering service. Therefore, it is best
suited for low-latency read-only activities, without the necessity to record data on-chain.
So, to answer the question “what happens when hundreds or thousands of users try to execute
an application and thereby start a ledger-query transaction simultaneously”, we need to break-
down the exact steps of a ledger-query transaction. In the case of a ledger-query transac-
tion, the transaction proposal and endorsement consist of three discrete steps. These are
part of the client application and peer interaction. Specifically, in our BCDID ecosystem,
the client application represents the user. Thus, the sequence for an endpoint with a user
having a valid identity is as follows:
1. Transaction proposal: A user belonging to OrgHQ executes a single application

chrome.exe, which automatically triggers the “AssetExists” chaincode and therefore
submits a signed response with the user’s certificate-transaction proposal to the en-
dorsing organisation OrgHQ peer(s).

2. Transaction execution: peer0 belonging to OrgHQ executes the chaincode “ReadAs-
set” specified in the proposal and generates a proposal response which contains the
read-write set. The response is signed by peer0 and is sent back to the user.
a. In case the output matches the input, namely, the current hash of chrome.exe is

identical to the one existing on-chain, chrome.exe will be allowed execution.
b. In case the output of “ReadAsset” returns a hash mismatch, chrome.exe will be

denied execution.
c. Additionally, an intrusion alert will be triggered, and Process 6 will begin (see

Figure 1).
3. Transaction endorsement: the transaction will be executed repeatedly for each organ-

isation required by the chaincode endorsement policy. Responses are collected and
signed.
We measured the performance of the above-mentioned ledger-query Step 2, assuming

a group of 100 up to 1000 users attempt a simultaneous execution of the Chrome web
browser. Chrome requires 350 different executables to be queried prior to allowing execu-
tion, which we measured on the user endpoint. Our observations are shown in Figure 2a,b.

(a) (b)

Figure 2. (a) CPU and memory performance; (b) Time to complete and TPS per user group.

The BCDID’s CPU and memory resources are quickly depleted as transactions (Tx)
increase per user group. Notably, for the first 300 users, the resources seem to be enough;
however, when we add 100 more users (400 in total), the TPS and the resources overall
reach their limit. From that point onwards, TPS decreases while the time to complete sig-
nificantly increases. The BCDID’s CPU and memory resources are quickly depleted as
transactions (Tx) increases per user group.

Figure 2. (a) CPU and memory performance; (b) Time to complete and TPS per user group.

The BCDID’s CPU and memory resources are quickly depleted as transactions (Tx)
increase per user group. Notably, for the first 300 users, the resources seem to be enough;
however, when we add 100 more users (400 in total), the TPS and the resources overall
reach their limit. From that point onwards, TPS decreases while the time to complete
significantly increases. The BCDID’s CPU and memory resources are quickly depleted as
transactions (Tx) increases per user group.

• Observation 1: a performance bottleneck occurs when 400 or more users attempt
simultaneous execution, which hinders user experience by significantly increasing the
launch time of an application, and thereby the waiting time.

• Observation 2: even before the 400-user threshold, the CPU already operates at 90%
usage on average, while the more load we add, the faster it reaches 100% of usage.
This causes a resource utilisation problem that ultimately adds up to Observation 1.

Although the BCDID provides a great intrusion detection and prevention ratio against
APTs, as demonstrated in [7], its performance is of utmost importance as it is directly con-
nected with the user experience. Namely, the more time a ledger-query transaction takes to
complete, the more equal the amount of time a user will have to wait for the requested ap-
plication to execute. Thus, not only does this hinder user experience, but it also potentially
affects business operations as well. Therefore, it is imperative to improve the performance

Sensors 2023, 23, 8006 10 of 17

of the BCDID ledger-query transaction, achieving the optimal peer specifications usage
while minimising the time to respond.

2.4. Hyperledger Fabric Performance Related Work

To understand the related work and existing solutions to the performance problem,
we review the work of other scholars on the subject. The first version of Hyperledger
Fabric v0.6 achieved less than 1k TPS [36,37] due to its core components architecture.
In continuation, significant performance improvements and changes in core architectural
components were introduced that achieved far better TPS. The membership service provider
(MSP) caching was one of them. The MSP allows for deserialised certificate storage to
reduce the overhead for crypto operations [38]. A second one is the parallel validation
system chaincode (VSCC) which reduces the time for crypto operations by validating block
signatures in parallel [39]. The TPS was improved even further by eliminating the lock
contentions to access the cache, an improvement related to MSP caching, and thus TPS
increased up to 2.5k [40]. Androulaki et al. [41] used SSDs for databases and block-file
storages and achieved 4k TPS using Hyperledger Fabric v1.0. Gorenflo et al. [42] introduced
four main architecture optimisations in Hyperledger Fabric v1.4, namely, separating data
from metadata, parallelism and caching transaction data, memory hierarchy exploitation
for faster data access, and resource separation for peers, to eventually achieve 20k TPS.
Sousa et al. [43] designed, implemented, and evaluated a Byzantine Fault Tolerance (BFT)
ordering service, ultimately reaching up to 10k TPS while writing time on-chain was
measured to half a second with peers being distributed across continents.

Innovation through optimisation, rearchitecting of components, the combination
of software and hardware configurations, and other methodologies have been studied
extensively in the category of ledger-update transactions. The same does not apply to the
ledger-query transactions, however. Although there are several studies on the subject, they
focus on or around the same improvements but with different approaches. For example,
Gupta et al. [44] presented two models with variations to create temporal indexes on
the fabric.

Yongqiang Lu et al. [45] proposed two different index building methods. These
methods called temporal index based on state databases (TISD) and temporal index based
on files (TIF). Both works seem promising; however, there are two drawbacks specific to our
use case. Firstly, their experiments used a small number of entities (Yongqiang Lu et al. [45]
being the largest one used 520, specifically), yet the maintenance and production of the
mentioned indexes proved to be a rather complex methodology. In our case, we assume at
least 50 million entities. Thus, the production and maintenance of indexes throughout state,
history, and index databases would require significant effort to always keep up-to-date.
Moreover, indexing approaches would introduce a security gap in our BCDID, namely, a
potential breach of the index would compromise the entire notion of the BCDID integrity.
Other relevant studies have performed measurements on the validation phase with either
GolevelDB or CouchDB and a combination of the two (as being native choices of HLF),
and even some have proposed the introduction of an entirely different database other than
the two natively available in Hyperledger Fabric and moving the querying function off-
chain [39,46,47]. Such approaches might offer some improvements on the query response;
however, they would defeat two of the core BCDID’s notions, namely, remove trust from
the endpoint and place it on-chain. Additionally, the performance of GolevelDB versus that
of CouchDB, when it comes to simple key–value pair queries, has been extensively studied,
and GolevelDB offers the best performance. In the case of BCDID, we use simple key–value
pairs, where complex queries are not the case as well; thus, other databases would only
increase complexity and cost without significant performance benefits [48].

2.5. A Novel Dynamic Throttling Approach to Enhance the BCDID’s Performance

The relevant literature and our observations provide a clear research direction. We
first analyse how Hyperledger Fabric assigns peers for transaction execution. Second, we

Sensors 2023, 23, 8006 11 of 17

propose a novel ledger-query strategy named “Dynamic Throttling Strategy”, which not
only works best for the BCDID use case but can also be leveraged widely when simple
key–value queries with substantial amounts of data and users are the basic characteristics
of a blockchain network.

Peer selection is governed by HLF’s query strategies. The SDK provides 2 native strate-
gies to evaluate transactions. Once defined through “DefaultQueryHandlerStrategies”,
it is used for all transaction evaluations. If no strategy is defined, the default option of
“PREFER_MSPID_SCOPE_SINGLE” is applied. The 2 native strategies with a variation in
the fall-back method for each are described below:

• PREFER_MSPID_SCOPE_SINGLE: evaluates all transactions using the first peer of
an organisation that can provide a response. It only switches to another peer if the
first peer fails to provide a response for any reason. If the organisation has no peers,
then it falls back to all peers specified in the network configuration file.

MSPID_SCOPE_SINGLE: follows similar principles as per the above strat-
egy; however, in case of no available peers or no peers at all, the fall-back
strategy is to fail exit rather than falling back to all peers within the network
configuration file.

• PREFER_MSPID_SCOPE_ROUND_ROBIN: evaluates a transaction based on the
list of peers, starting with the first on that list. Peers will be engaged in order until
a response is received or until all peers have been engaged. On the next query, the
second peer on the list will be engaged first, and then continue in the list of peers until
a response is received. This is an incremental loading strategy that distributes the
workload among all responding peers.

MSPID_SCOPE_ROUND_ROBIN: follows similar principles as per the above
strategy; however, it will fail exit when there are no peers available on the
organisation’s list, rather than falling back to all peers within the network
configuration file.

2.6. Dynamic Throttling Strategy (DTS)

To overcome the difficulties with the existing strategies and based on Observations 1
and 2 in Section 2.3, we propose a novel dynamic throttling strategy. The strategy is based
on two pillars: (1) the peer environment indexing and monitoring and (2) an algorithm.

1. The peer environment indexing and monitoring is as shown in Figure 3. We de-
fine three peer status tags based on our previous observations and measurements of
100–1000 users and up to 350k Tx’s. The peer status definition allows for a generalisa-
tion at this point based on the observed loading pattern of a single peer. Nonetheless,
a 10% safety threshold for peers tagged as “available” is added. This means that
peers in the mentioned state will still be able to manage queries without failures, as a
single request will never consume more than 10% of a single peer resource. We also
introduce a separate VM that hosts the index of peers’ reports of their CPU and RAM
consumption in real-time to the peer index. Peers report in real-time their CPU and
RAM consumption; therefore, the index controls the query distribution based on the
algorithm. The response is sent directly back to the user.

2. The dynamic throttling algorithm, as shown in Figure 4 above, is embedded in
the blockchain network operating as our own query strategy. The users perform a
substantial number of queries in parallel using the “D_THROTTLE” strategy, which
triggers the dynamic throttling algorithm. Upon the successful identification of the
first available node in a ready state, the index will assign the query to a subject node,
while the node id will be registered, and the index will be updated (update +). Once
the query is executed, results are returned directly to the user, and the node sends a
cooldown signal updating the index (update −) with the current resource status. In
the case that a node in a ready state is not available, the same flow will occur, but the
index will search for the first available node this time. Conversely, if there is no node

Sensors 2023, 23, 8006 12 of 17

in an available state, the index returns error code −1, and the auto scale-up procedure
begins to add resources to nodes currently marked as overloaded and updates the
index accordingly.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 18

request will never consume more than 10% of a single peer resource. We also
introduce a separate VM that hosts the index of peers’ reports of their CPU and RAM
consumption in real-time to the peer index. Peers report in real-time their CPU and
RAM consumption; therefore, the index controls the query distribution based on the
algorithm. The response is sent directly back to the user.

Figure 3. Peer environment indexing and monitoring.

2. The dynamic throttling algorithm, as shown in Figure 4 above, is embedded in the
blockchain network operating as our own query strategy. The users perform a sub-
stantial number of queries in parallel using the “D_THROTTLE” strategy, which trig-
gers the dynamic throttling algorithm. Upon the successful identification of the first
available node in a ready state, the index will assign the query to a subject node,
while the node id will be registered, and the index will be updated (update +). Once
the query is executed, results are returned directly to the user, and the node sends a
cooldown signal updating the index (update −) with the current resource status. In
the case that a node in a ready state is not available, the same flow will occur, but the
index will search for the first available node this time. Conversely, if there is no node
in an available state, the index returns error code −1, and the auto scale-up procedure
begins to add resources to nodes currently marked as overloaded and updates the
index accordingly.

Figure 4. Dynamic throttling algorithm flowchart.

Figure 3. Peer environment indexing and monitoring.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 18

request will never consume more than 10% of a single peer resource. We also
introduce a separate VM that hosts the index of peers’ reports of their CPU and RAM
consumption in real-time to the peer index. Peers report in real-time their CPU and
RAM consumption; therefore, the index controls the query distribution based on the
algorithm. The response is sent directly back to the user.

Figure 3. Peer environment indexing and monitoring.

2. The dynamic throttling algorithm, as shown in Figure 4 above, is embedded in the
blockchain network operating as our own query strategy. The users perform a sub-
stantial number of queries in parallel using the “D_THROTTLE” strategy, which trig-
gers the dynamic throttling algorithm. Upon the successful identification of the first
available node in a ready state, the index will assign the query to a subject node,
while the node id will be registered, and the index will be updated (update +). Once
the query is executed, results are returned directly to the user, and the node sends a
cooldown signal updating the index (update −) with the current resource status. In
the case that a node in a ready state is not available, the same flow will occur, but the
index will search for the first available node this time. Conversely, if there is no node
in an available state, the index returns error code −1, and the auto scale-up procedure
begins to add resources to nodes currently marked as overloaded and updates the
index accordingly.

Figure 4. Dynamic throttling algorithm flowchart.

Figure 4. Dynamic throttling algorithm flowchart.

3. Results and Discussion

We set up a test environment using the following machines and parameters detailed in
Table 2. To begin with, both variations of the two core strategies are automatically descoped
since within a private permissioned blockchain-based ecosystem, the parties (organisations)
do not inherently trust each other. Equally, the peers of another organisation are not to be
trusted and queried unless explicitly stated through an endorsement policy. In Section 2.3.
Performance Problem Statement, we evaluated the performance of the BCDID based on

Sensors 2023, 23, 8006 13 of 17

the first and default strategy “PREFER_MSPID_SCOPE_SINGLE”. The results show that a
single peer strategy is not suitable for the BCDID use case.

Table 2. Blockchain Lab Specifications.

Operating System Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-27-generic x86_64)
Hard Disk Drives 25 GB

Central Processing Unit 2.22 GHz Quad Core Intel Core i7-4770HQ
Random Access Memory 6 GB

Software
Git, cURL, Docker, JQ, GO, Hyperledger Fabric 2.3, Ubuntu
20x basic installation with advanced package tool (APT) and

APT essentials

The last available native strategy is “PREFER_MSPID_SCOPE_ROUND_ROBIN”.
Round Robin is a static algorithm that works in a circular and ordered manner. Each peer
is assigned a query without any form of prioritisation. Furthermore, assuming 100 users
query peer0 and peer1 of Org1 through the chaincode to evaluate Chrome’s hash presence
on-chain (transaction), the algorithm distributes the load equally to both peers. In the
meantime, we assume that a third peer is added on OrgHQ (peer3—OrgHQ) and another
50 users try to query the ledger against another application (e.g., outlook.exe). In this case,
since the Round Robin algorithm works in a cyclic manner, we will have peer1 and peer2
managing the initial 100 requests, while peer3 will manage 50 requests. Hence, Round
Robin fails to distribute the query load in an efficient routine. This is visualised in Figure 5.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 18

3. Results and Discussion
We set up a test environment using the following machines and parameters detailed

in Table 2. To begin with, both variations of the two core strategies are automatically
descoped since within a private permissioned blockchain-based ecosystem, the parties
(organisations) do not inherently trust each other. Equally, the peers of another
organisation are not to be trusted and queried unless explicitly stated through an
endorsement policy. In Section 2.3. Performance Problem Statement, we evaluated the
performance of the BCDID based on the first and default strategy
“PREFER_MSPID_SCOPE_SINGLE”. The results show that a single peer strategy is not
suitable for the BCDID use case.

Table 2. Blockchain Lab Specifications.

Operating System Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-27-generic x86_64)
Hard Disk Drives 25 GB

Central Processing Unit 2.22 GHz Quad Core Intel Core i7-4770HQ
Random Access

Memory
6 GB

Software
Git, cURL, Docker, JQ, GO, Hyperledger Fabric 2.3, Ubuntu

20x basic installation with advanced package tool (APT)
and APT essentials

The last available native strategy is “PREFER_MSPID_SCOPE_ROUND_ROBIN”.
Round Robin is a static algorithm that works in a circular and ordered manner. Each peer is
assigned a query without any form of prioritisation. Furthermore, assuming 100 users query
peer0 and peer1 of Org1 through the chaincode to evaluate Chrome’s hash presence on-
chain (transaction), the algorithm distributes the load equally to both peers. In the
meantime, we assume that a third peer is added on OrgHQ (peer3—OrgHQ) and another
50 users try to query the ledger against another application (e.g., outlook.exe). In this case,
since the Round Robin algorithm works in a cyclic manner, we will have peer1 and peer2
managing the initial 100 requests, while peer3 will manage 50 requests. Hence, Round Robin
fails to distribute the query load in an efficient routine. This is visualised in Figure 5.

Figure 5. PREFER_MSPID_SCOPE_ROUND_ROBIN drawback. Figure 5. PREFER_MSPID_SCOPE_ROUND_ROBIN drawback.

As a result, we will always have the capacity to execute queries; however, this will
be without unnecessarily overspending computing or money resources. Our strategy
prioritises nodes in ready state first, progressively loading the cluster of nodes which
eventually solves the problem identified during our first workload performance test. To
verify this claim, we conducted the same initial experiment with the same parameters (viz.
same number of users and applications in use), However, we utilised our “D_THROTTLE”
algorithm and query strategy this time and we observed the following:

Sensors 2023, 23, 8006 14 of 17

• Observation 1: by adding more nodes and using the “D_THROTTLE” algorithm, we
managed to increase considerably the number of Transactions Per Second (TPS) up to
1991, which is double that of the default strategy; see Figure 6b.

• Observation 2: CPU and memory performance on all peers showed a declining
trendline for all four peers. Moreover, none of the peers exceeded the 80% threshold to
be marked as overloaded, while the average CPU usage for all peers ranged between
40% to 46%. This demonstrates a significant improvement in resource handling
compared to the default strategy; see Figure 6a.

• Observation 3: the overall time to completion comparison chart highlights (1) that the
dynamic throttling strategy is significantly faster than without it, and (2) that the more
transactions received, a much smoother increase in time is anticipated, compared to
the default query strategy; see Figure 7b.

• Observation 4: the time to completion per additional 50k queries is a steady line rang-
ing between 17 to 18 s while using dynamic throttling, proving effective and efficient
load balancing. While using the default strategy, however, the time to completion for
the first 100 users measured up to 50 s, and it is evident that the peer is quickly allocat-
ing resources to complete the transactions but while reaching its threshold the time
increases drastically beyond 60 s. Furthermore, once the peer finalises several trans-
actions and frees some resources, there is a slight improvement in performance, yet
again allocating all resources and quickly reaching the threshold, eventually leading
to delays, as the pattern suggests; see Figure 7a.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 18

As a result, we will always have the capacity to execute queries; however, this will
be without unnecessarily overspending computing or money resources. Our strategy pri-
oritises nodes in ready state first, progressively loading the cluster of nodes which even-
tually solves the problem identified during our first workload performance test. To verify
this claim, we conducted the same initial experiment with the same parameters (viz. same
number of users and applications in use), However, we utilised our “D_THROTTLE” al-
gorithm and query strategy this time and we observed the following:
• Observation 1: by adding more nodes and using the “D_THROTTLE” algorithm, we

managed to increase considerably the number of Transactions Per Second (TPS) up
to 1991, which is double that of the default strategy; see Figure 6b.

• Observation 2: CPU and memory performance on all peers showed a declining
trendline for all four peers. Moreover, none of the peers exceeded the 80% threshold
to be marked as overloaded, while the average CPU usage for all peers ranged be-
tween 40% to 46%. This demonstrates a significant improvement in resource han-
dling compared to the default strategy; see Figure 6a.

(a) (b)

Figure 6. (a) CPU and memory performance using D_THROTTLE besides the percentage between 0
and 60; (b) Time to complete and TPS per user group using D_THROTTLE. We considered the user
numbers from 100 till 1000, the TPS from 0 to 2200, and the transaction numbers from 0 to 400 K.

• Observation 3: the overall time to completion comparison chart highlights (1) that
the dynamic throttling strategy is significantly faster than without it, and (2) that the
more transactions received, a much smoother increase in time is anticipated, com-
pared to the default query strategy; see Figure 7b.

• Observation 4: the time to completion per additional 50k queries is a steady line
ranging between 17 to 18 s while using dynamic throttling, proving effective and
efficient load balancing. While using the default strategy, however, the time to com-
pletion for the first 100 users measured up to 50 s, and it is evident that the peer is
quickly allocating resources to complete the transactions but while reaching its
threshold the time increases drastically beyond 60 s. Furthermore, once the peer fi-
nalises several transactions and frees some resources, there is a slight improvement
in performance, yet again allocating all resources and quickly reaching the threshold,
eventually leading to delays, as the pattern suggests; see Figure 7a.

Figure 6. (a) CPU and memory performance using D_THROTTLE besides the percentage between 0
and 60; (b) Time to complete and TPS per user group using D_THROTTLE. We considered the user
numbers from 100 till 1000, the TPS from 0 to 2200, and the transaction numbers from 0 to 400 K.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 18

(a) (b)

Figure 7. (a) Overall time to completion—seconds vs. transactions split; (b) Time to completion per
transaction group—seconds vs. transactions split. The horizontal lines show the number of transac-
tions we ran in each case, while the vertical lines show the times in seconds.

4. Conclusions
In this paper, we proposed a novel efficient Dynamic Throttling Strategy (DTS) to

improve the effectiveness and performance of Blockchain-based Collaborative Distrib-
uted Intrusion Detection (BCDID) systems in 6G-enabled VSNs. The developed BCDID
can detect lateral movements and prevent attackers from compromising other devices if
they were successful on a single device in the network. To show the performance problem
of BCDID, we conducted an experiment to identify and set the baseline metrics to show
how the existing ledger query strategies are not suitable. Therefore, our DTS was pro-
posed to overcome this problem and implemented in the “D THROTTLE” algorithm. The
evaluation results showed that the transaction processing capacity significantly increased,
with a maximum of 1991 Transactions Per Second (TPS) achieved. CPU and memory per-
formance on all peers showed a declining trend line, indicating improved resource han-
dling. The overall time-to-completion comparison chart demonstrated that the DTS was
significantly faster than the default query strategy. As more transactions were received,
the increase in processing time was much smoother with the DTS. When comparing the
time to completion per additional 50k queries, the DTS showed a steady line ranging be-
tween 17s and 18s, indicating effective and efficient load balancing.

Considering the contribution of the DTS to BCDID performance, there are several
potential future directions for further research and development. First, enhancing the
scalability of the system is crucial, particularly as the number of transactions and users
increases. Additionally, investigating the integration of advanced machine learning algo-
rithms for anomaly detection and threat intelligence can enhance the system’s ability to
detect and prevent sophisticated attacks. Furthermore, exploring interoperability with
other security systems and protocols can facilitate seamless integration and information
sharing between different security components. Finally, conducting real-world deploy-
ment and testing of the BCDID in diverse organisational settings would provide valuable
insights into its practical effectiveness and potential areas for further improvement.

Author Contributions: Conceptualization, L.A.; Investigation, V.T.T.; Writing—original draft, L.A.
and V.T.T.; Writing—review & editing, M.H.E.; Supervision, M.H.E. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data for this research is available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 7. (a) Overall time to completion—seconds vs. transactions split; (b) Time to completion
per transaction group—seconds vs. transactions split. The horizontal lines show the number of
transactions we ran in each case, while the vertical lines show the times in seconds.

Sensors 2023, 23, 8006 15 of 17

4. Conclusions

In this paper, we proposed a novel efficient Dynamic Throttling Strategy (DTS) to
improve the effectiveness and performance of Blockchain-based Collaborative Distributed
Intrusion Detection (BCDID) systems in 6G-enabled VSNs. The developed BCDID can
detect lateral movements and prevent attackers from compromising other devices if they
were successful on a single device in the network. To show the performance problem of
BCDID, we conducted an experiment to identify and set the baseline metrics to show how
the existing ledger query strategies are not suitable. Therefore, our DTS was proposed to
overcome this problem and implemented in the “D THROTTLE” algorithm. The evaluation
results showed that the transaction processing capacity significantly increased, with a
maximum of 1991 Transactions Per Second (TPS) achieved. CPU and memory performance
on all peers showed a declining trend line, indicating improved resource handling. The
overall time-to-completion comparison chart demonstrated that the DTS was significantly
faster than the default query strategy. As more transactions were received, the increase in
processing time was much smoother with the DTS. When comparing the time to completion
per additional 50k queries, the DTS showed a steady line ranging between 17s and 18s,
indicating effective and efficient load balancing.

Considering the contribution of the DTS to BCDID performance, there are several
potential future directions for further research and development. First, enhancing the scala-
bility of the system is crucial, particularly as the number of transactions and users increases.
Additionally, investigating the integration of advanced machine learning algorithms for
anomaly detection and threat intelligence can enhance the system’s ability to detect and
prevent sophisticated attacks. Furthermore, exploring interoperability with other security
systems and protocols can facilitate seamless integration and information sharing between
different security components. Finally, conducting real-world deployment and testing
of the BCDID in diverse organisational settings would provide valuable insights into its
practical effectiveness and potential areas for further improvement.

Author Contributions: Conceptualization, L.A.; Investigation, V.T.T.; Writing—original draft, L.A.
and V.T.T.; Writing—review & editing, M.H.E.; Supervision, M.H.E. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data for this research is available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Luan, T.H.; Lu, R.; Shen, X.; Bai, F. Social on the road: Enabling secure and efficient social networking on highways. IEEE Wirel.

Commun. 2015, 22, 44–51. [CrossRef]
2. TripAdvisor Inc. TripAdvisor Survey Reveals Three Quarters of U.S. Travelers Sharing Trip Experiences on Social Networks. Avail-

able online: https://tripadvisor.mediaroom.com/2012-09-20-TripAdvisor-Survey-Reveals-Three-Quarters-Of-U-S-Travelers-
Sharing-Trip-Experiences-On-Social-Networks (accessed on 20 September 2012).

3. Helling, B. UberPool: How It Works, Cost, Pricing & More. Available online: https://www.ridester.com/uberpool/ (accessed on
7 April 2023).

4. Luan, T.H.; Shen, X.; Bai, F.; Sun, L. Feel bored? Join Verse! Engineering vehicular proximity social networks. IEEE Trans. Veh.
Technol. 2015, 64, 1120–1131. [CrossRef]

5. Eiza, M.; Shi, Q. Social Evolving Graph-Based Connectivity Model for Vehicular Social Networks. In Vehicular Social Networks;
CRC Press: Boca Raton, FL, USA, 2017; pp. 41–56.

6. Eiza, M.; Raschellà, A. A Hybrid SDN-based Architecture for Secure and QoS aware Routing in Space-Air-Ground Integrated
Networks (SAGINs). In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2023), Glasgow,
UK, 26–29 March 2023.

7. Alevizos, L.; Eiza, M.H.; Ta, V.T.; Shi, Q.; Janet, R. Blockchain-Enabled Intrusion Detection and Prevention System of APTs Within
Zero Trust Architecture. IEEE Access 2022, 10, 89270–89288. [CrossRef]

https://doi.org/10.1109/MWC.2015.7054718
https://tripadvisor.mediaroom.com/2012-09-20-TripAdvisor-Survey-Reveals-Three-Quarters-Of-U-S-Travelers-Sharing-Trip-Experiences-On-Social-Networks
https://tripadvisor.mediaroom.com/2012-09-20-TripAdvisor-Survey-Reveals-Three-Quarters-Of-U-S-Travelers-Sharing-Trip-Experiences-On-Social-Networks
https://www.ridester.com/uberpool/
https://doi.org/10.1109/TVT.2014.2329481
https://doi.org/10.1109/ACCESS.2022.3200165

Sensors 2023, 23, 8006 16 of 17

8. Fung, C.J.; Baysal, O.; Jie, Z.; Aib, I.; Boutaba, R. Trust Management for Host-Based Collaborative Intrusion Detection. In
Proceedings of the Managing Large-Scale Service Deployment: 19th IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management, DSOM 2008, Samos Island, Greece, 22–26 September 2008.

9. Duma, C.; Karresand, M.; Shahmehri, N.; Caronni, G. A Trust-Aware, P2P-Based Overlay for Intrusion Detection. In Proceedings of
the 17th International Workshop on Database and Expert Systems Applications (DEXA’06), Krakow, Poland, 4–8 September 2006.

10. Weizhi, M.; Wenjuan, L.; Lam-For, K. Design of intelligent KNN-based alarm filter using knowledge-based alert verification in
intrusion detection. Secur. Commun. Netw. 2015, 8, 3883–3895.

11. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.
Cybersecurity 2019, 20, 50–62. [CrossRef]

12. Wu, Y.-S.; Foo, B.; Mei, Y.; Bagchi, S. Collaborative Intrusion Detection System (CIDS): A Framework for Accurate and Efficient
IDS. In Proceedings of the 19th Annual Computer Security Applications Conference, Las Vegas, NV, USA, 8–12 December 2003.

13. Nandy, T.; Noor, R.M.; Yamani, I.B.I.; Bhattacharyya, S. T-BCIDS: Trust-Based Collaborative Intrusion Detection System for
VANET. In Proceedings of the 2020 National Conference on Emerging Trends on Sustainable Technology and Engineering
Applications (NCETSTEA), Durgapur, India, 7–8 February 2020.

14. Zhou, M.; Han, L.; Lu, H.; Fu, C. Distributed collaborative intrusion detection system for vehicular Ad Hoc networks based on
invariant. Comput. Netw. 2020, 172, 122–143. [CrossRef]

15. Zhang, T.; Zhu, Q. Distributed Privacy-Preserving Collaborative Intrusion Detection Systems for VANETs. IEEE Trans. Signal Inf.
Process. Over Netw. 2018, 4, 148–161. [CrossRef]

16. Nie, L.; Ning, Z.; Wang, X.; Hu, X.; Cheng, J.; Li, Y. Data-Driven Intrusion Detection for Intelligent Internet of Vehicles: A Deep
Convolutional Neural Network-Based Method. IEEE Trans. Netw. Sci. Eng. 2020, 7, 2219–2230. [CrossRef]

17. Anzer, A.; Elhadef, M. A Multilayer Perceptron-Based Distributed Intrusion Detection System for Internet of Vehicles. In
Proceedings of the IEEE 4th International Conference on Collaboration and Internet Computing (CIC), Philadelphia, PA, USA,
18–20 October 2018.

18. Man, D.; Zeng, F.; Lv, J.; Xuan, S.; Yang, W.; Guizani, M. AI-based Intrusion Detection for Intelligence Internet of Vehicles. IEEE
Consum. Electron. Mag. 2023, 12, 109–116. [CrossRef]

19. Benaddi, H.; Ibrahimi, K. A Review: Collaborative Intrusion Detection for IoT integrating the Blockchain technologies. In
Proceedings of the 8th International Conference on Wireless Networks and Mobile Communications (WINCOM), Reims, France,
27–29 October 2020.

20. Li, W.; Tug, S.; Meng, W.; Wang, Y. Designing collaborative blockchained signature-based intrusion detection in IoT environments.
Future Gener. Comput. Syst. 2019, 96, 481–489. [CrossRef]

21. Li, W.; Meng, W. Collaborative Intrusion Detection in the Era of IoT: Recent Advances and Challenges. In Security and Privacy in
the Internet of Things; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 123–149.

22. Alshahrani, H.M. CoLL-IoT: A Collaborative Intruder Detection System for Internet of Things Devices. Electronics 2021, 10, 848.
[CrossRef]

23. Razaque, A.; Bektemyssova, G.; Yoo, J.; Alotaibi, A.; Ali, M.; Amsaad, F.; Amanzholova, S.; Alshammari, M. Malicious Vehicle
Detection Using Layer-Based Paradigm and the Internet of Things. Sensors 2023, 23, 6554. [CrossRef] [PubMed]

24. Shakerian, A.; Eghmazi, A.; Goasdoué, J.; Landry, R. A Secure ZUPT-Aided Indoor Navigation System Using Blockchain in
GNSS-Denied Environments. Sensors 2023, 23, 6393. [CrossRef]

25. Garcia, J.; Autrel, F.; Borrell, J.; Castillo, S.; Cuppens, F.; Navarro, G. Decentralized publish-subscribe system to prevent coordinated
attacks via alert correlation. In Proceedings of the Sixth International Conference on Information and Communications Security,
Berlin/Heidelberg, Germany, 27–29 October 2004.

26. Dash, D.; Kveton, B.; Agosta, J.M.; Schooler, E.; Chandrashekar, J.; Bachrach, A.; Newman, A. When Gossip is Good: Distributed
Probabilistic Inference for Detection of Slow Network Intrusions. In Proceedings of the Twenty-First National Conference on
Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, Boston, MA, USA, 16–20
July 2006.

27. Dain, O.; Cunningham, R.K. Fusing A Heterogeneous Alert Stream into Scenarios. In Applications of Data Mining in Computer
Security; Springer: Berlin/Heidelberg, Germany, 2002; pp. 103–122.

28. Cuppens, F.; Ortalo, R. LAMBDA: A Language to Model a Database for Detection of Attacks. In Proceedings of the International
Workshop on Recent Advances in Intrusion Detection, Toulouse, France, 2–4 October 2000.

29. Cheung, S.; Lindqvist, U.; Fong, M. Modeling multistep cyber attacks for scenario recognition. In Proceedings of the DARPA
Information Survivability Conference and Exposition, Washington, DC, USA, 22–24 April 2003.

30. Templeton, S.J.; Levitt, K. A requires/provides model for computer attacks. In Proceedings of the New Security Paradigms
Workshop, Ballycotton, Ireland, 18–21 September 2000.

31. Janakiraman, R.; Waldvogel, M.; Zhang, Q. Indra: A peer-to-peer approach to network intrusion detection and prevention. In
Proceedings of the WET ICE 2003 Proceedings—Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, Linz, Austria, 9–11 June 2003.

32. Chen, R.; Yeager, W. Poblano A Distributed Trust Model for Peer-to-Peer Networks; IEEE: New York, NY, USA, 2001.
33. Meng, W.; Tischhauser, E.W.; Wang, Q.; Wang, Y.; Han, J. When Intrusion Detection Meets Blockchain Technology: A Review.

IEEE Access 2018, 6, 10179–10188. [CrossRef]

https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1016/j.comnet.2020.107174
https://doi.org/10.1109/TSIPN.2018.2801622
https://doi.org/10.1109/TNSE.2020.2990984
https://doi.org/10.1109/MCE.2021.3137790
https://doi.org/10.1016/j.future.2019.02.064
https://doi.org/10.3390/electronics10070848
https://doi.org/10.3390/s23146554
https://www.ncbi.nlm.nih.gov/pubmed/37514847
https://doi.org/10.3390/s23146393
https://doi.org/10.1109/ACCESS.2018.2799854

Sensors 2023, 23, 8006 17 of 17

34. Alexopoulos, N.; Vasilomanolakis, E.; Ivánkó, N.R.; Mühlhäuser, M. Towards Blockchain-Based Collaborative Intrusion Detection
Systems. In Proceedings of the International Conference on Critical Information Infrastructures Security, Kaunas, Lithuania,
24–26 September 2018.

35. Golomb, T.; Mirsky, Y.; Elovici, Y. CIoTA: Collaborative IoT Anomaly Detection via Blockchain. In Proceedings of the Workshop
on Decentralized IoT Security and Standards (DISS), San Diego, CA, USA, 18 February 2018.

36. Baliga, A.; Solanki, N.; Verekar, S.; Pednekar, A.; Kamat, P.; Chatterjee, S. Performance Characterization of Hyperledger Fabric. In
Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), Zug, Switzerland, 20–22 June 2018.

37. Pongnumkul, S.; Siripanpornchana, C.; Thajchayapong, S. Performance Analysis of Private Blockchain Platforms in Varying
Workloads. In Proceedings of the 26th International Conference on Computer Communication and Networks (ICCCN), Vancouver,
BC, Canada, 31 July–3 August 2017.

38. Thakkar, P.; Nathan, S.; Vishwanathan, B. Performance Benchmarking and Optimizing Hyperledger Fabric Blockchain Platform.
arXiv 2018, arXiv:1805.11390.

39. Javaid, H.; Hu, C.; Brebner, G. Optimizing Validation Phase of Hyperledger Fabric. In Proceedings of the IEEE 27th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), Rennes, France,
21–25 October 2019.

40. Inagaki, T.; Ueda, Y.; Nakaike, T.; Ohara, M. Profile-based Detection of Layered Bottlenecks. In Proceedings of the 2019
ACM/SPEC International Conference on Performance Engineering, New York, NY, USA, 7–11 April 2019.

41. Androulaki, E.B.A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich, Y.;
Muralidharan, S.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the
EuroSys ′18: Proceedings of the Thirteenth EuroSys Conference, Porto, Portugal, 23–26 April 2018.

42. Gorenflo, C.; Lee, S.; Golab, L.; Keshav, S. FastFabric: Scaling Hyperledger Fabric to 20,000 Transactions per Second. arXiv 2019,
arXiv:1901.00910.

43. Sousa, J.; Bessani, A.; Vukolic, M. A Byzantine Fault-Tolerant Ordering Service for the Hyperledger Fabric Blockchain Platform. In
Proceedings of the 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Luxembourg,
25–28 June 2018.

44. Gupta, H.; Hans, S.; Mehta, S.; Jayachandran, P. On Building Efficient Temporal Indexes on Hyperledger Fabric. In Proceedings of
the IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2–7 July 2018.

45. Lu, Y.; Liu, Z.; Wang, S.; Li, Z.; Liu, W.; Chen, X. Temporal Index Scheme of Hyperledger Fabric System in IoT. Wirel. Commun.
Mob. Comput. 2021, 2021, 2–13. [CrossRef]

46. Foschini, L.; Gavagna, A.; Martuscelli, G.; Montanari, R. Hyperledger Fabric Blockchain: Chaincode Performance Analysis. In
Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020.

47. Yan, T.; Chen, W.; Zhao, P.; Li, Z.; Liu, A.; Zhao, L. Handling conditional queries and data storage on Hyperledger Fabric
efficiently. World Wide Web 2020, 24, 441–461. [CrossRef]

48. Sukhwani, H.; Wang, N.; Trivedi, K.S.; Rindos, A. Performance Modeling of Hyperledger Fabric (Permissioned Blockchain
Network). In Proceedings of the 17th International Symposium on Network Computing and Applications (NCA), Cambridge,
MA, USA, 1–3 November 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2021/9945530
https://doi.org/10.1007/s11280-020-00844-5

	Introduction
	Main Scope and Contributions
	Literature Review—Collaborative Intrusion Detection Systems
	CIDSs Architectures
	Alert Correlation
	Alert Trustworthiness

	Blockchain-Based Collaborative Distributed Intrusion Detection (BCDID) System
	Building Blocks and System Model
	Blockchain-Based Collaborative Distributed Intrusion Detection Mechanism
	Performance Issues
	Hyperledger Fabric Performance Related Work
	A Novel Dynamic Throttling Approach to Enhance the BCDID’s Performance
	Dynamic Throttling Strategy (DTS)

	Results and Discussion
	Conclusions
	References

