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Abstract

Historically, asteroids have been characterised by features of their reflectance spectra

in the optical and near-infrared (NIR) as well as their albedos. The Bus-DeMeo aster-

oid taxonomy and its closely-related predecessor (Bus-Binzel) both have their roots in

spectrophotometric work from the 1970s based on principal component analysis (PCA)

and clustering of small (few hundred) asteroid samples. The known asteroid population

has grown exponentially since those times, and the taxonomies have been applied to

as many as one million asteroids in the Sloan Digital Sky Survey (SDSS). Whether the

classes they describe remain valid in a contemporary context is the topic of this thesis.

I used a range of machine learning techniques to investigate the robustness of asteroid

classes in approximately two thousand reflectance spectra as well as in the photometric

colour data available in three published catalogs extracted from the SDSS Moving Object

Catalog. Beginning with spectra in the wavelength range 0.5 − 0.9 µm I found that a

support vector machine (SVM) classifier can identify 85% of asteroids correctly when

considering the major classes (A, B, C, D, K, L, Q, S, V, X), but subclasses are not

distinguishable from one another and/or their parent classes. Furthermore, the 15%

of wrongly-classified objects include a high proportion of classes B, K, and Q being

assigned to neighbouring classes in feature-space. The SVM performs better on the full

161 spectral wavelength points than on data that have been transformed with PCA,

indicating that there is no need to reduce the dimensions before training.

In order to test an SVM on the large SDSS asteroid datasets, I generated a ‘pseudo-

broadband’ training set by taking the average reflectance values of the spectra over a

range corresponding to SDSS r, i, and z-bands. After training the SVM on this low-

resolution data, classification accuracy was diminished by only 5%, but every A, B, K,
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and Q object was assigned to a neighbouring class. In the transition to broadband

photometry these classes ceased to exist as far as the SVM was concerned.

For each dataset used, catalog classes had already been assigned according to either the

Bus-Binzel (for spectra) or Carvano or DeMeo (for SDSS, respectively) systems. Objects

having data in both SDSS and spectrum catalogs had been assigned to different classes

in ∼ 30% of cases, creating a challenging situation for the SVM since it cannot match

to a conflicting label. In examining the SDSS datasets (one classified by the Bus-Binzel

system and the other two by the Bus-DeMeo system) I discovered that the mean SDSS

broadband values in each of bands r, i, z were brighter than pseudo-broadband values

for the same object. After correcting for the difference in each band, the SVM was able

to predict with 85% accuracy on the Carvano dataset and 74% on the DeMeo data.

However, classes A, B, K, L, and Q were not verifiable by the SVM.

Since the above classes have small populations relative to the S-class, I set about increas-

ing the sample size of the smaller classes. I did this using two augmentation methods:

Synthetic Minority Oversampling Technique with Edited Nearest Neighbours (SMOTE-

ENN) and a variational autoencoder (VAE). SMOTE-ENN interpolates between existing

datapoints when resampling, whereas the VAE learns from existing samples and pro-

duces new spectra by sampling from a Gaussian distribution around each dimension of

the data. After the SVM was trained on SMOTE-ENN, it was able to classify to 91%

accuracy on the spectrum test set and 88% on pseudo-broadband. VAE achieved 92%

accuracy at spectrum level and 90% at pseudo-broadband. Both augmentation methods

recovered all of the ‘missing’ classes, but to poor accuracy.

I found that performance of augmented models fell by 30− 40% when testing on SDSS

data. SMOTE-ENN’s method of interpolation altered the distribution of data within

class boundaries in a non-random way, effectively introducing artificial substructure in

feature-space. The result was highly overfitted class boundaries that became obvious

when examining plots of SMOTE-ENN’s predicted classes on SDSS data. The VAE

model was able to correct for some class imbalance, especially in the C-complex, but

its accuracy results ran to 58% at best. The reason for much lower accuracy scores

comes from the increased population of classes that are poorly-defined in the first place.

Rather than improving the classifier, augmentation by the VAE exposes the weakness

in claiming that classes A, B, K, L and Q exist at all in the SDSS.
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Finally, I used unsupervised learning to search for evidence of asteroid classes in unla-

belled data using K-Means, Gaussian mixture model (GMM) and Hierarchical Density-

Based Spatial Clustering of Applications with Noise (HDBSCAN). After training and

testing on spectra, PCA of spectra, and spectra augmented with both SMOTE-ENN

and VAE, I found no evidence of ‘real’ classes apart from the C-complex and S-complex

cores, which have been known since the 1970s. HDBSCAN characterises a large fraction

of the data as noise.

I conclude that the variational autoencoder is a viable method to correct bias in the

classification model without introducing new biases, and that SMOTE-ENN produces

data prone to overfitting. With the VAE model in the 0.5 − 0.9 µm regime, classes

A, B, K, L, and Q are ambiguous at pseudo-broadband resolution and therefore their

application to SDSS data is unreliable.

Tricia Sullivan September 2023
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Chapter 1

The historical context of asteroid

classification

1.1 Reflection on the project

Asteroids are a sensational topic. When they are in the news, it’s usually because an

asteroid big enough to cause impact damage has made a close pass to Earth. At the other

extreme, they are seen as sources of great wealth for extractive hypercapitalist industry

– after all, a few may contain rare metals in mind-boggling concentrations. People even

view asteroids as humanity’s bridge to space colonisation (Elvis, 2012). With all of this

going on it is easy to forget that asteroids are also repositories of information about

the history of the Solar System, from primordial times to the more recent delivery of

water and organic molecules to Earth. In this chapter I will briefly outline the history

of asteroid classification as well as what we know about the role of asteroids in the

developing Solar System. But first, a few words about the project itself.

This work came about as a result of an industrial placement with the Asteroid Mining

Corporation (AMC) that I undertook in late 2019 as part of the LIV.DAT doctoral

training programme in data-intensive science. As a newcomer to data science, I was

meant to acquire hands-on experience with real-world machine learning before return-

ing to study optical variability of active galactic nuclei (AGN) light curves. The AMC

is a start-up dedicated to mining asteroids for betterment of life on Earth; it has en-

gineering and business experts on staff, but its contact with astronomers is through a

relationship with the Liverpool Telescope via my primary supervisor, Professor Iain A.

Steele. Because of this, my work at AMC was largely self-directed. AMC were planning

to launch a CubeSat (miniature satellite) to record asteroid data from low Earth orbit;

one question that had arisen was whether to mount a spectrograph or a photometric

1
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filter wheel on the cubesat. In order to estimate how effectively two different proposed

instruments could pick out the commercially valuable (metallic) X-types from the aster-

oid population in general, I compared results of machine learning classifiers on each type

of data. The results showed that when training algorithms to identify X-type asteroids,

low-resolution multi-filter photometry performed as accurately as detailed reflectance

spectra. This was rather surprising and made me wonder what would happen if the

method were extended to other classes—and furthermore, which of the many asteroid

types are ‘real’ from the point of view of an algorithm. Around the same time that I was

thinking about this, COVID-19 began to cause difficulties in my personal life. Faced

with an indefinite period of disruption, I took a parsimonious approach to both time and

energy and decided to continue my work with asteroids instead of returning to AGN.

The questions I address are: When we look at optical asteroid reflectance spectra through

the lens of statistics, are the asteroid classes ‘real’? Are they real when we reduce

resolution to a few bands? What about when we introduce large numbers of new objects

without spectroscopy — do the classes still mean anything? As I shall show later in this

chapter, it turns out that the asteroid science community has already accepted that

asteroid classes do not equal mineralogical types and that they do not live in discrete

clumps in colour-space, so why am I tilting at windmills? It is true that I do not

undertake this work because there is a burning curiosity in the scientific community

to reify asteroid classes, but rather because I am interested in what happens when the

rubber of machine learning hits the road of nature. As a beginner in both machine

learning and astronomy, I want to find out how these sophisticated statistical tools can

be used to understand asteroid classification—and how they can’t be used.

This thesis documents my learning process. It sits on the boundary between astro-

physics and machine learning, and it probably embodies the bumpiness of the transition

between the older analytical/small data approach to astronomy and the rising wave of

today’s big data approach in which so-called artificial intelligence is central. I have tried

to present enough astrophysical context to explain the science, together with enough

statistical/computational context to explain the machine learning. Of course, breadth

comes at the expense of depth. Additionally, I must point out that my machine learning

is not baked from scratch; I use tools that are available in Python packages without the

need to write one’s own implementations. These tools have enabled me to punch above

my weight as a programmer, but they also occasionally permitted me to do stupid things

without knowing it until I found myself deep in some rabbit-hole of wrong conclusions.

Yet it is because I am limited to user-friendly tools that this work has relatively broad

implications for other astronomers exploring this liminal space. I hope that my findings

may offer some insight to both the challenges and the promise of applying garden-variety

machine learning techniques to astrophysical questions.
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The rest of this chapter is an introduction to asteroid science. Section 1.2 covers the

fundamentals of asteroid measurements. In section 1.3 I outline the history of aster-

oid classification systems and briefly introduce those used in this project. Section 1.4

presents a very simplified set of possible Solar System histories that could result in the

asteroid belt seen today. In 1.5 I touch on the relationship between meteorite classifica-

tions and the evolution of asteroids. Section 1.6 describes the processses that are known

to alter asteroid surfaces and, in turn, their spectra. Section 1.7 summarises the above,

while in Section 1.8 I outline the structure of the remainder of this thesis.

1.2 Fundamentals of observational physics

Asteroid knowledge comes from a wide range of observational techniques and their asso-

ciated models. These include optical photometric lightcurves, thermal lightcurves, radar

interferometry, reflectance spectra, multi-band photometry, and polarimetry. Physical

characteristics can be derived from observations using thermophysical models (TPMs).

In this section I outline how asteroids are measured.

1.2.1 Photometric light curves

Photometric lightcurves provide the angular positions that are used to derive the six

orbital parameters necessary to solve the equations of motion for a small body orbiting

the Sun (Collins, 2004).

Asteroid orbits are implicitly linked to their origins. Most asteroids live in the Main Belt,

a region between Mars and Jupiter that represents the residue of the disk that formed

the Solar System. The Main Belt is only slightly elliptical; however, gravitational ef-

fects, collisions, and the Yarkovsky effect can all alter the orbits of Main-Belt Asteroids

(MBAs). Jupiter’s strong gravitation has captured two groups of asteroids called the

Trojans, which orbit the Sun at Jupiter’s stables Lagrange points L4 and L5. Jupiter

is also implicated in collisions that resulted in detectable asteroid dynamical families.

For some asteroids, perturbations and collisions have changed orbital inclination above

and below the plane of the Solar system. Increases in eccentricity resulted in aster-

oids crossing the orbits of Mars and Earth, leading to the populations of Mars-crossers

and Near-Earth asteroids (NEAs) (Nesvorný, 2018). Classification systems recognise V-

types, which are orbitally associated with the asteroid Vesta, and T-types (connected to

Jupiter Trojans); however, these families have distinct spectral characteristics that per-

mit this distinction. Otherwise, orbital families are not included in current classification

systems.
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Photometric light curves are valuable beyond orbital calculations. Good light curves also

enable asteroid shape, rotation, and pole direction to be modelled through the method

of light curve inversion Kaasalainen & Torppa (2001); Kaasalainen et al. (2001).

1.2.2 Asteroid size measurement

An asteroid’s size is key to determining both its albedo and its thermal properties.

In some cases, size can be calculated using stellar occultation, in which the asteroid

is recorded transiting a star along the line of sight of the telescope (Ferreira, J. F.

et al., 2022). The most accurate measurements of asteroid size and shape come from

high-resolution delay-Doppler radar, which can produce detailed imaging of an asteroid

surface, provided that the object is close enough to return a strong signal. Spin vectors

can be estimated from the radar speckle technique, in which a monochromatic coherent

radar signal is aimed at the asteroid by a transmitter such as Arecibo and received by

an array system such as the Very Long Baseline Array (VLBA). The returning signal

consists of high-and-low-intensity interference patterns called ‘speckles’ whose length

scale depends on the distance to the object and its diameter; because speckles move

with the surface, they also provide pole rotation sense/rate and pole direction (Benner,

2015). Due to its very high resolution, radar provides excellent astrometry that has been

used to measure the Yarkovsky and Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP)

effects, which in turn have the potential to inform on the thermal inertia of the object

(D. Vokrouhlicky, 2015), a proxy for its surface composition.

1.2.3 Thermophysical models

TPMs relate emitted energy (absorbed incoming Solar radiation plus scattered light from

the asteroid’s surface plus re-absorbed thermal self-emissions) to the thermal energy

radiated into space (including heat conducted from deeper layers). The models rely

on thermal infrared (IR) measurements taken from space with thermal noise controlled

by cryogenic cooling. The Infrared Astronomical Satellite (IRAS), the Spitzer Space

Telescope, AKARI, the Wide-field Infrared Survey Explorer (WISE) and its successor the

Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE), and the Herschel

Space Observatory have produced among them a large pool of asteroid data in thermal

wavebands (λ > 4µm).

As described in Delbo’ et al. (2015), TPMs break up the surface of the asteroid into

triangular facets rotating about a spin vector to derive a temperature map across the

surface of an asteroid. When the facets are summed, the spectral energy distribution at

a given wavelength can be found from the Planck function, with the central wavelength
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being a function of distance to the Sun and the object’s thermal properties (Mainzer

et al., 2015). With phase angle and a thermal IR lightcurve, TPMs can be used to derive

a size, shape, and albedo as well as rotation information. Rotation involves day/night

temperature variation at the asteroid surface, the physics of which can result in the

Yarkovsky and YORP effects. In these related phenomena, thermal emission from the

cool side acts as a small thrust that can disturb the orbit and spin of a small asteroid

(D. Vokrouhlicky, 2015). The Yarkovsky effect is thought to be an important mechanism

in the migration of the NEA population from the Main Belt.

1.2.4 Albedo

Geometric albedo is defined as the radiation of an object relative to a Lambertian source

(i.e., with uniform emission across a surface). Albedo measurements involve comparing

the physical size of the object to its reflective brightness. Radiometry is a widely-used

method for determining albedo, not least because it is suitable for large suites of objects.

In broad terms, radiometry uses simultaneous visible and infrared measurements and

performs a calibration to determine the relationship between size and brightness. Figure

1.1 illustrates how this works: dim asteroids radiate relatively more in the infrared than

in the optical, so if an object is bright in both wavebands then it is large with a low

albedo; but if it is bright in the optical and dim in the infrared, then the object is small

with a high albedo.

Albedo was used in the Tholen classification system in the 1970s but in the twenty years

between the introduction of the SMASS system Bus & Binzel (2002b) and the recent

publication of Mahlke, M. et al. (2022) it was sidelined as the field focused on reconciling

optical and Near-infrared NIR spectra with large broadband surveys such as SDSS.

If the object is bright enough, albedo can also be obtained from the degree of linear

polarisation of light reflected from the asteroid surface. This is not a method suited to

large surveys.

1.2.5 Reflectance spectra

When broadband light strikes a material, its constituent wavelengths are reflected or

absorbed in a spectrum that is characteristic of the material’s chemical makeup. Asteroid

reflectance spectra are obtained from a telescope equipped with a spectrograph, an

instrument that splits reflected sunlight into narrow wavelength ranges and measures the

intensity at each wavelength. After removing the Solar contribution to each wavelength,
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Figure 1.1: Illustration of how infrared emissions can tell us the albedo of an
asteroid. From NASA/JPL-Caltech https://www.nasa.gov/mission_pages/WISE/

multimedia/gallery/neowise/pia14732.html

intensity is plotted from short to long wavelength, and the features that remain offer

insight as to the materials on the asteroid surface.

Much of we know about asteroid composition is based on comparing reflectance spectra

to laboratory mineral spectra, especially from meteorites; this process has been shown

to work well so far, at least in terms of surface properties. For example, reflectance

spectra did a good job of predicting the surface composition of S-type asteroid Itokawa

when compared to regolith samples collected by the Hayabusa mission and analyzed in

the lab (Nakamura et al., 2011).

Most asteroid spectra have a positive slope1. The most common near-Earth asteroids,

the SMASS S-group (which includes K, L, Q and R-types in addition to S-types) (Bus

& Binzel, 2002a), have a strongly positive slope with an absorption feature around 1

µm associated with the presence of silicates (stony material). This means that their

optical peak occurs at around 0.70 µm. In contrast, C-types (carbonaceous chondrites)

and X-types (metallic) have a relatively flat, unpeaked slope in the optical, and are

more difficult to separate from one another. Optical slope together with gross spectral

features (e.g., bumps/absorption regions) have historically been treated as parameters

for asteroid classification. See Figure 1.9 for an illustration of the variation of asteroid

spectral types according to the major taxonomies.

1Sometimes called ‘reddening’ because the surface reflects more strongly at longer ‘redder’ wave-
lengths

https://www.nasa.gov/mission_pages/WISE/multimedia/gallery/neowise/pia14732.html
https://www.nasa.gov/mission_pages/WISE/multimedia/gallery/neowise/pia14732.html
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The use of broadband colour photometry is an low-resolution extension of reflectance

spectra that allows some measurement of asteroid colours, leading to statistical studies

of asteroid populations. In both detailed spectra and broadband colour photometry, the

flux measurement does not inform on the reflectivity of the asteroid; i.e., its albedo,

which must be obtained independently.

1.3 The development of asteroid classification

The early history of asteroid classification is described engagingly in the PhD thesis of

Tholen (1984), from which I have constructed this summary. A graphic summarising

asteroid classes, their spectra, and their mineral associations is also given in Figure 1.8

for context.

While asteroids have been observed as far back as Herschel’s 1801 observation of Ceres,

asteroid classification as we now know it first began to take shape in the 1970s. First

Chapman et al. (1971) found that asteroids measured in UVB filters had colour indices

that clustered naturally into two groups. Zellner et al. (1974) later associated the groups

with meteorite types. The first had absorption features in the NIR consistent with the

silicates olivine and pyroxine and a red slope typical of iron, so they were associated

with stony-iron meteorites and later labelled S-types. The second group were low-albedo

objects with flat slopes, presumed carbonaceous (because of the abundance of carbon in

the Solar System) and accordingly labelled C-types.

Over the next several years different research groups added more classes using a variety

of measurements (multi-wavelength photometry, polarimetric light curves, radiometric

albedo). The high albedo E-type (‘enstatite’) and mid-albedo M-type (‘metallic’) were

found in 1976, followed by O (‘ordinary chondrite’), T (‘Trojan’), and R (‘reddest’) in

the next few years. In the early 1980s D (‘reddish dark’ shortened to D for ‘dark’), F

(‘flat’), ‘A ’(a separation of two R-type objects from the rest based on distinct albedo vs.

infrared JHK relations (Veeder et al., 1983)), and P (‘pseudo-M’) were found. At this

point the lack of consistency in the parameters used to determine classes was becoming

a problem (Tholen, 1984).

A more consistent and mathematically rigorous classification system emerged from

Tholen and co-authors in 1984 (Zellner et al., 1985). They used eight-colour photo-

metric observations of 589 asteroids between roughly 0.34 - 1.0 µ m and performed

principal component analysis (PCA) to reduce dimensions from eight to two (see 2.3 for

a full description of this method), then clustered the data using a hierarchical (minimum

tree) method to derive spectral classes. Finally, albedo was used to remove degeneracies;
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Figure 1.2: Connected graph of 405 asteroids from (Tholen, 1984) in principal com-
ponent space. The graph is ‘cut’ at appropriate points to establish taxonomic types.

for example, E, M, and P (collectively the X type) are separated only by albedo. This

resulted in classes A, B, C, D, E, F, G, M, P, Q, R, S, T, X 2. Continuing in the vein

of small populations, three of these classes were first created to account for individual

asteroids: Q (Apollo), V (Vesta), and R (Dembrowska).

Central in Tholen’s system is the ability of principal component analysis to capture 95%

of the variance of the data within two principal components. This meant that he could

plot the data in two dimensions and then construct a graph of relationships between

points in order to separate clusters of similar objects (see Figure 1.2. Tholen’s classes

were eventually used as a basis for the Bus & Binzel (2002b) system based on SMASS

optical spectra.

The Bus-Binzel taxonomic system forms the basis for the Bus-DeMeo taxonomy as well

as the means by which Carvano et al. (2010) constructed a colour-based classification

of asteroids in the Sloan Digital Sky Survey (sdss), so it underpins most of my work

here. Example spectra for each taxonomic class are shown in Figure 1.3. The taxonomy

is based on a sample around twice the size of Tholen’s with wavelength range 0.435 -

0.925 µm, but it does not explicitly include albedo. The data are normalized at 0.55 µm

and then fitted to a ‘spline’, which is a piecewise function that can fit different orders

of polynomial to different regions of a curve (Subbotin, 2022), to produce datapoints at

intervals of 0.05 µ. Slope is removed between 0.4 - 0.7 µm and PCA performed on the

residuals, then boundaries are established on plots between slope and the first principal

component.

Most classes seen before are here: A, B, C, D, K, O, Q, R, S, T, V, X. Classes F

and G are not found because they depend on albedo, and the L class is introduced

2Here, X is used for E/M/P in the absence of albedo
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as an intermediate between S and K. Additionally, a large number of subclasses are

added, especially in the S-complex, for a total of 26. The handling of X-class is worth

noting. In the absence of albedo, not only are E/M/P folded together as X, but also

there is difficulty in differentiating X and C. The Bus system handles this by identifying

spectral features in existing X-types (where albedo is known) and incorporating those

features in identifying new X-types and at the same time articulating sub-classes of X

based on detailed features only visible with the advent of CCDs. However, to achieve

separation of X-types, PCA had to be performed a second time on X-types alone and in

the shortest wavelength regime. This implies a fine distinction between these sub-classes;

it is tempting to argue that some force-fitting has gone on.

Figure 1.4 illustrates the clumping of asteroids into two camps in PC space, denoted

by ovals for C- and S-complexes, with a line drawn between C and X. Several capital

letter sub-classes live within S-complex, and those outside it have the appearance of

outliers rather than groups. Notably, V-class (associated with Vesta) has a very large

scatter. It is already difficult to answer the question ‘what is a class?’ when asteroids

believed to have the same parent body do not plot in a clump when compared to the

rest of the population. We now see the other side of the problem faced by Tholen: he

pointed out that naming classes based on different types of measurements led to potential

inconsistencies. But when we restrict parameters to optical reflectance, dividing the

asteroids into meaningful groups becomes much harder. The vagueness of many classes

implicit in figure 1.4 is an issue that will become a theme as this thesis develops.

Figure 1.3: From (Bus & Binzel, 2002b), the taxonomy resulting from the SMASS
survey showing an average spectrum from each Bus-Binzel class on a common scaling.
The wavelength range is 0.435 - 0.925 µm and the horizontal line indicates normalised

reflectance of 1.0.
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Figure 1.4: From Bus’s paper Bus & Binzel (2002b), the main divisions of the Bus-
Binzel classification are shown. The second principal component is plotted against
slope (which is a proxy for first principal component). The rather arbitrary boundary
imposed between C and X is based on features of known X-types (from albedo). Several
other classes are determined from this plot (my notations in purple), whilst subclass B
(in C-complex) is determined by the second principal component. The V- and A-type
objects can be seen to have a large scatter. Viewed in terms of their numerical variance,
V-types appear to have less in common with one another than, for example, any given
X with any given K. For that matter, most ‘capital letter’ classes are subclasses of

S-complex because they live inside its boundaries.

Successor to Bus-Binzel is the Bus-DeMeo (DeMeo et al., 2009) system, which extends

the taxonomy into the NIR. The system is built around 321 objects with visible and

NIR spectra that were already classified by Bus-Binzel, with most of the visible spectra

coming from SMASS and the NIR coming from the SpeX medium-resolution 0.8–5.5

µm spectrograph instrument on the 3.2 m Nasa Infrared Telescope Facility (IRTF)

on Mauna Kea. This taxonomy is constructed in the same manner as Bus-Binzel, with

normalisation at 0.55 µm, splining at intervals of 0.05 µm, and removal of optical regime

slope prior to PCA. In these data, a ‘Grand Divide’ between spectra is found when

plotting PC2 against PC1. The Grand Divide corresponds to whether or not spectra

have an absorption feature at 2 µm (see figure 1.5). (Because of this NIR feature,

the Bus-DeMeo system has been adapted for NIR-only classification.) The rest of the

divisions are artificial and comply with the Bus-Binzel system in that the authors add

only 50 new spectra to the ones whose classes they already knew. They remove Sk, Sl,

and Ld but add Sv.

The availability of a large asteroid dataset from the SDSS Moving Object Catalogue

(MOC) led people to find ways to apply spectral classes to broadband photometric
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data. The SDSS data comprise five photometric bands (u, g, r, i, z) around effective

wavelengths λeff as shown in Figure 3.6. In this thesis I work with data published by

Carvano et al. (2010), DeMeo & Carry (2013), and Sergeyev, Alexey V. & Carry, Benoit

(2021).

Carvano et al. (2010) use both the Tholen system and the Bus-Binzel system to arrive

at nine photometric classes (Ap, Cp, Dp, Lp, Op, Qp, Sp, Vp, Xp)
3 They omit classes which

their data is unsuitable to discern and merge L, Ld, and K into a single Lp class.

The Carvano system is probabilistic and accounts for overlaps in waveband ranges for

each class. It avoids various problems associated with choice of normalisation wavelength

for reflectance R by working in terms of the log reflectance colour defined as:

Cλj
= −2.5(log10Rλj

− log10Rλref
)

A colour gradient is the important parameter here. Where Cj is the colour difference in

band j relative to the g reference band and λ is the band centre, the colour gradient in

band j is defined as:

γj = −0.4
Cλj+1

− Cλj

λj+1 − λj

First the authors parametrized each observation in each filter by its colour gradient.

Then each spectral class was assigned limits for the four colour gradients in the following

3The subscript indicates a photometric (as opposed to spectroscopic) derivation for the class, but I
generally omit the distinction in this thesis as it should be clear from context when I am talking about
SDSS classes.

Figure 1.5: From (DeMeo et al., 2009), the ‘Grand Divide’ in asteroids plotted in
principal component space. The split in data can be traced back to the 2 µm absorption
band. Asteroids to the left of the divide do not have this feature; to the right, they do.
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Figure 1.6: Median reflectance spectra for Carvano SDSS-MOC classification system.
The subscript ‘p’ refers to photometric class to distinguish it from previous (spectral)
taxonomies. Lp represents a fusion of L, Ld, and K classes unique to this system.

Figure from Carvano et al. (2010).

manner. Previously-classified objects from SMASS and Small Solar System Objects

Spectroscopic Survey (S3OS2) (Bus & Binzel, 2002b; Lazzaro et al., 2004) were used for

most classes. For O and Q the authors used meteorite spectra of ordinary chondrites

that matched class templates from Bus; for A they generated synthetic spectra based

using the few known observations available. Spectra were convolved with SDSS filters

and for each waveband they set a normal distribution around a mean γ with standard

deviation defined by the measurement uncertainty. For any given observation, they

measured its probability density according to the class distribution, one band at a time.

The probabilities of all four bands were multiplied to give an overall result for each class.

If a given class had a result greater than 60% of the sum of results for all classes, then

that class was assigned to the object together with its final probability. If no class made

the cut, then all classes having more than 30% of the sum were assigned (in no particular

order) to indicate multiple classes.

This method of articulating class probability is advantageous for data analysis because

subsets of the Carvano data can be used according to how strongly the classifier connects

the object with the assigned class. The median reflectances for each Carvano class are

shown in Figure 1.6.
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DeMeo & Carry (2013) adapt the Bus-DeMeo system for SDSS and use the classifier to

produce on a larger SDSS asteroid catalogue than Carvano (see 3.4.2 for details). The

authors avoid using the noisy u band. They use two parameters: slope over g−r−i bands

and the z−i colour (a proxy for band depth at 1 µm). They define their class boundaries

using class centres and standard deviations from the Bus DeMeo taxonomy for spectra,

which runs into the NIR and allows them to confidently use z-band SDSS. They convolve

a set of reference spectra with SDSS filters and convert to SDSS colours. No information

is offered as to how they convolve with SDSS g-band spectra that almost invariably run

no shorter than 0.435 µm in wavelength. Then they calculate the distance between each

observation and each class centre, and fix class boundaries accordingly. They do some

manual ‘tweaking’ based on their knowledge of individual objects. Example spectra for

each class are shown in Figure 1.7, and the boundaries for classes in parameter space

are shown in Figure 1.8.

Figure 1.7: Representation of Bus-DeMeo classification system depicting average
spectra for each class in the range 0.45 - 2.45 µm, with normalised reflectance of 1.0
indicated by a horizontal line for each spectrum. Classes are arranged roughly accord-
ing to position in principal-component space (DeMeo et al., 2009). When comparing to
the analogous Figure 1.3 from the Bus-Binzel system, classes A, S, V, and Q become
easier to distinguish from one another given their different features to the right of the

spectra.

The above describes the situation when I began working on asteroids. Given that quite

a few classes have been assigned based on the unusual nature of a single object, one

might wonder whether this is reasonable or whether a more statistical approach should

be taken. Indeed, earlier this year a clustering study of mixed visible and NIR spectra

together with albedo was published by Mahlke, M. et al. (2022) in which asteroids

were clustered and reclassified according to a modified taxonomy, so clearly the field is

moving in this direction. In my own work, I do not intend to obviate the need for detailed

domain knowledge that underpins any classification scheme. Whatever the unanswered

questions about the history of the asteroids (and there are many, as will be explained

in the rest of this chapter), we know that many of them must have been subject to
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Figure 1.8: Boundaries for DeMeo & Carry (2013) SDSS classification system in their
parameter-space (z-i colour vs. gri slope). Coloured points come from data having
spectra and classified by DeMeo et al. (2009). Here they retain B and K classes in
addition to the classes found by Carvano et al. (2010). Once again, the scattered and

outlying position of V-types is notable.

.

collision, impact-melting, space-weathering, and differentiation, so it is sensible to think

in terms of parent-and-child objects. For example, although I have remarked that there

is a large scatter in the V-type classification in Bus-Binzel, the objects used to create

the class are orbitally related to Vesta. I am not going to address orbital behaviour —

the existence of asteroid families — but presumably it meaningfully relates to events

that formed the asteroid belt. The larger context of Solar System formation is the topic

of the next section.

1.4 Asteroids and Solar System formation

The Solar System’s planets formed from a disk of gas and dust in which the dust initially

coagulated to become mm- to cm-sized grains. To explain the evolution of grains to peb-

bles of around cm to meter radius, the streaming instability is invoked; here, simulations

show that differential rates of movement between gas and grains lead to rapid growth

of dense filaments in the disk (Youdin & Goodman, 2005) that eventually collapse to

form planetismals. The terrestrial planets could have started with a ‘pebble pile-up’ in
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Figure 1.9: Summary table of asteroids by type in different classification systems
with possible meteorite links included. Figure by DeMeo et al. (2015).

an annulus starting at 0.3 – 1 AU and ending anywhere between 0.6 – 3 AU (Drakowska

et al., 2016). When planetismals reach the size of around 100 kilometers, they continue

to grow by colliding with one another (as in the inner disk) and/or by accreting from

a flow of available ‘pebbles’ of centimetre to meter size drifting inward, slowed by the

drag force of disk gas. (Johansen & Lambrechts, 2017).

Because disk temperature decreases with radius, the concept of a ‘snow line’ is key to

separating the terrestrial planets from the gas and ice giants. Above the snow line, the

presence of ice in pebbles allows for much ‘stickier’ accretion than that possible for the

interior silicate materials (which tend to bounce on collision), leading to the collapse of
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larger planetisimals (Johansen & Lambrechts, 2017) and hence earlier commencement

of pebble accretion. The gas giant Jupiter is thought to have formed more or less on the

snow line (Morbidelli, 2015) and at a radius where simulations show that large initial

planetisimals can form, enabling highly efficient pebble accretion (Coleman, 2021); some

re-condensation of water vapour could also boost the pebble population at the snow line

(Liu et al., 2019). In any case, the growth of Jupiter would have depleted the gas disk

locally and implanted (carbonaceous chondrite) planetismals from its neighbourhood

inward, towards the asteroid belt (Raymond & Izidoro, 2017).

Once a planetisimal has reached about ten Earth masses, pebble accretion is exhausted,

but large planetismals can then attract a gaseous envelope. The timings and efficiencies

of these processes lead to a plausible formation pathway for the giant planets within the

timescale of the gas disk (Johansen & Lambrechts, 2017). As the gaseous component

of the disk dissipated from the Sun outward, the dynamics of the orbiting bodies –

especially the largest, Jupiter and Saturn – would have evolved in relation to one another

and to the changing fraction of gas remaining. At some point, the reached a state

that includes several inter-related structures apart from planets: the icy Kuiper Belt

(beginning around 30 AU at Neptune’s orbit); the scattered disk of highly inclined

objects just outside the main Kuiper Belt; and the Oort Cloud, which begins at a few

thousand AU and may stretch up to 100,000 AU from the Sun (Carroll & Ostlie, 2014).

Of particular importance for this thesis is the region between the orbits of Mars and

Jupiter: the asteroid Main Belt.

The Main Belt acts as a record of the thermal, dynamical, and collisional events that

led to the configuration of bodies observed today. Its dynamical and mineralogical

characteristics (the latter inferred from analysis of meteorite samples) have been used

as constraints in modelling formation. No single model yet has adequately explained all

the unusual qualities of the asteroid belt, but several have successfully addressed parts of

the problem. These include the Wetherill model, the Grand Tack model, the Nice Model

(all as described in Morbidelli 2015), the Jumping Jupiter addition to Nice (Nesvorný,

2018), and the newer ‘partitioning’ model of (Brasser & Mojzsis, 2020), which proposes

ring formation in the Solar System.

So, what exactly is it about the Main Belt that needs explaining? According to Mor-

bidelli (2015), there are multiple lines of evidence that it has been dynamically disturbed

after its initial formation:

1. Its current mass is 4.5×10−4 Earth masses, but interpolation of the mass densities

needed to form the terrestrial planets and Jupiter (Weidenschilling, 1977) predicts



Chapter 1 — Introduction 17

one Earth mass for the asteroid belt (given a uniform disk). Something must have

happened to 99% of the asteroid belt.

2. MBAs have orbital inclinations of 0− 30 deg (average 11 deg) and eccentricities of

0− 30 (average 0.145) in contrast to the average planetary inclination of 1.85 and

eccentricity of 0.060, implying disruption to asteroid orbits.

3. Since temperature varied radially in the gas/dust disk, similar minerals are ex-

pected to form at similar radial distances from the Sun. Yet there is considerable

mixing of mineralogical types (ordinary vs. carbonaceous chondrites (see 1.5)) at

the same radial distance from the Sun despite similar accretion ages (see (Vil-

leneuve et al., 2009) and (Morbidelli, 2015)).

All these factors act as conditions that must be met by models. Additionally, the

fact that nearby planet Mars is lighter than its expected mass has multiple explanations

that lack consensus. A small Mars may be the result of a radially less-efficient streaming

instability in a planetisimal-forming annulus in the inner Solar System, as predicted by

modelling of dust accretion (Drazkowska et al., 2016). Or, since the asteroid belt lies

outward to Mars, it may be that Mars was also affected by whatever event(s) depleted

the asteroid belt (Walsh et al., 2011; Brasser & Mojzsis, 2020).

It appears generally accepted that any depletion event must have happened early in the

history of the Solar System. By simulating the behaviour of the current Main Belt as

well as a version with 1000 times as much mass (as predicted for a primordial asteroid

belt based on disk constraints), Bottke et al. (2012) found that the belt must have been

disturbed early in its history to get where it is today, suggesting that most asteroids’

orbits were changed so much that they were kicked out of the system. This would result

in a residue of objects that act as tracers of the extrema of possible stable orbits in the

Main Belt (Morbidelli, 2015).

The 1992 Wetherill model (Wetherill, 1992) says that at the time of gas dissipation there

was a mix of planetisimals and planetary embryos inside the orbit of Jupiter. If their

growth was ‘oligarchic’ (i.e., the big get bigger fastest (Mandell, 2014)), then once the

first planetismals became large enough to overcome the damping of smaller bodies on

their eccentrities, those inside 2 AU would collide and form planets. However, in the

Main Belt the effects of Jupiter and other planetary embryos would cause the ejection of

most planetisimals and explain the belt’s mass depletion. Simulations by O’Brien et al.

(2006) cited in Morbidelli (2015) indicate that Main Belt orbits could be achieved by

these disruptions (which could also reproduce the mixing of chondrite types after their

respective origins at 2 AU and 3 AU). However, this would only work if the Nice model

(see below) is added on as well.
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A more recent alternative to Wetherill is the Grand Tack model (Walsh et al., 2011). The

Grand Tack addresses both the size of Mars and the question of why Jupiter orbits so far

from the Sun when planets tend to migrate inward across the disk; but it has important

implications for the asteroid belt, too. In hydrodynamical simulations, Jupiter is shown

to migrate towards the Sun if alone in the disk, and away from the Sun if paired with

Saturn. The model finds that Jupiter formed first around 3.5 AU before migrating

inward to 1.5 AU, at which point changes in torque due to the influence of a migrating

Saturn caused it to change ‘tack’ and reverse direction until the gas disk was fully

dissipated. During this process the asteroid belt would have been disturbed twice. As

Jupiter drifted in, it pushed dry/pre-Terrestrial/ordinary chondrite (see section 1.5)

material inward, adding to the mass inside 1 AU and kicking about 10% of the belt

out of the system at the same time–this would reduce the material available to form

Mars. As Jupiter and Saturn drifted out, they would again cross the snow line, hitting

the ordinary chondrites first, followed by the carbonaceous chondrites. Their passage

would have excited asteroid orbits with respect to eccentricities and inclinations such

that most of the Main Belt would be kicked out altogether. The remainder would have

re-formed with the inner belt dominated by inner-Solar-System material and the outer

belt dominated by material from beyond the snow line (consistent with the prevalence

of S-type and C-type asteroids in the inner and outer Main Belt, respectively–see Figure

1.10). One reason for the attraction to this model seems to be the need to reconcile the

Solar System’s distribution of planets with the then-recent discoveries of hot Jupiters

in other systems. The model relies on complicated changes in torque involving the

relationship between the disk and Saturn and Jupiter as they migrate either separately

or together. The Grand Tack model is a poor predictor for the formation of the other

planets, but it does deplete the Main Belt rapidly, as required.

The 2005 Nice model can be treated as an addition to either of the previous two. It

consists of three interlinked papers (Gomes et al., 2005; Tsiganis et al., 2005; Morbidelli

et al., 2005) that propose a disruption around 400 million years after gas dissipation. In

simulations of the migration of Jupiter and Saturn, the authors show that an exchange of

angular momentum with Main Belt bodies was involved in the two giant planets passing

in and out of mean orbital resonance with one another (Fernández & Ip, 1984) — an

event that led to instability in the whole system. The Nice model accounts for the Late

Heavy Bombardment, the capture of the Trojan asteroids by Jupiter, and a final orbital-

excitation/mass-depletion of the asteroid belt (in which Earth’s water may have been

delivered from carbonaceous chondrites from the outer Solar System (Trigo-Rodriguez

et al., 2019)).

A variation to the Nice model is the ‘Jumping Jupiter’ model as described by Nesvorný

(2018). Here, a primordial close encounter between Jupiter and an ice giant is posited, in
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which the ice giant was ejected while causing Jupiter to ‘jump’ inward by some fraction

of an AU. Simulations by (Fernández & Ip, 1984) appear to support the inward motion

of Jupiter due to interactions with planetisimals between Jupiter and Saturn. The

change in orbital resonances would have been enough to excite both the inclination of

Jupiter (which does not match the other planets well) and the asteroid belt (Raymond

& Nesvorný, 2022).

However, there is a relatively simple version of events in which it is not necessary to

deplete the asteroid belt because none of the Main Belt mass is missing in the first place.

The invocation of annuli in the protoplanetary disk (as in the pebble pile-up simulations

by Drazkowska et al. (2016) means that the mass projections for the Main Belt region

of a uniform disk no longer apply. A 2020 model by Brasser & Mojzsis (2020) applies

insights gained from observations by the Atacama Large Millimeter/Submillimeter Array

(ALMA) in which planets are seen forming in annuli of high density in the gas/dusk disk.

Addressing the need for ordinary and carbonaceous chondrites to form from separate

reservoirs, their simulations show that Jupiter’s formation by accretion would have been

too slow to achieve this in a uniform disk. They propose instead a ‘partitioning’ of the

disk in which a pressure maximum at ∼ 5 AU led to pebble pile-up in a dense ringed

Figure 1.10: Distribution of asteroid types by orbital distance in AU according to
types C, D, K, L, S, V, X by (Roh et al., 2022) for 4213 objects from the SDSS. The
outer main belt is dominated by C-types, whilst S-complex make up a large fraction of

the inner and middle main belt.
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structure that both enabled the rapid formation of Jupiter and Saturn and stopped the

infall of material towards the Sun (robbing Mars of mass). This assertion is supported

with evidence from isotopes in materials from the inner and outer Solar System that

shows a clearly bimodal distribution with carbonaceous chondrites (associated with giant

planets) in one camp and the minerals of terrestrial planets and ordinary chondrites in

the other (see Figure 1.11). The authors also find that a disk wind could explain the

orbital excitation of the asteroid belt and that turbulent diffusion could have carried

carbonaceous material inward without resorting to giant planet migration.

While there is some overlap in the different asteroid formation scenarios proposed so

far, it is apparent that a single likely pathway to the existing orbital and chemical

configurations has not yet been agreed. Moreover, the Yarkovsky effect is an important

and ongoing mechanism in delivering asteroids from the Main Belt to the inner Solar

System independently of formation model. Equally, the role of isotope information in the

Brasser & Mojzsis (2020) new theory of formation must remind us of the importance of

aspects of composition not found in reflectance spectra. The information about isotopes

comes from meteorite science; in the next section I will sketch the basics of how meteorite

analysis applies to history and asteroid type.

1.5 From meteorites to asteroids

Meteorite classification has its own nomenclature and conventions, central to which

are the features of the specimen when viewed under an electron microscope—quite the

opposite situation to observations of sunlight reflected hundreds of millions of kilometers

away. When considering meteorites, it is important to realise that samples are biased

in favour of NEAs, which are necessarily dynamically disparate to MBAs and may not

be representative of the bulk of the asteroid population, especially when considering the

role of past impacts in changing both orbital dynamics and physical characteristics in

a single stroke. Then there are the (rare) cases of iron meteorites, where an unknown

fraction of the meteor has burnt off in the atmosphere, meaning that any outer shell

is lost. Yet drawing connections between meteorites and their Main Belt counterparts

is the only available option, given that only a small amount of asteroid data can be

collected in situ. Encouragingly, samples from Itokawa, Bennu and Ryugu offered surface

grains associated with their types predicted from spectra (S, B, and C respectively), with

Ryugu classification adjusted from C to subtype Cb after mineral samples were obtained

(Nakamura et al., 2011; Lauretta et al., 2019; Vilas, 2008).

Asteroid taxonomy does not claim that membership in a class implies that a body has

the same mineralogical composition as other members (DeMeo et al., 2015). Naturally
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Figure 1.11: Evidence of bimodality in meteorite composition based on isotope ratios
from Warren (2011), who argues that the primary taxonomic division lies between

carbonaceous chondrites and all others.

it is tempting to map the one to the other, but we must be very careful about this. One

reason for caution is that the picture within meteorite science itself is rather complex.

On the one hand, samples have petrological (formation history) features that have been

assembled into a taxonomy (see figure 1.12). Many efforts have been made to interpret

this information in the context of Solar System formation physics. On the other hand,

the isotope background of meteorites suggests a different taxonomy with different prior-

ities and hierarchies (Warren, 2011) as shown in figure 1.13. A second reason for caution

arises from specific cases where asteroid type and presumed meteorite type are obviously

inconsistent. It is beyond the scope of this work to untangle the details required to state

coherently exactly where the field stands today, but I will lay out the situation in broad

strokes to give the reader a snapshot of the main issues that may be relevant to asteroid

classification.

The most abundant meteorites are chondrites, including ordinary, carbonaceous, and

enstatic chondrites. In general, ordinary chondrites (OCs) are silicates associated with

S-type asteroids. Carbonaceous chondrites (CCs) are associated with both C-class (low

Figure 1.12: Schematic of classical meteorite classification system without consid-
eration to isotope ratios, from (Glavin et al., 2018). Carbonaceous chondrites are

highlighted.
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albedo) and X-class (metallic) asteroids (DeMeo et al., 2015). Enstatic chondrites (ECs)

are rare and have evolved more than OCs or CCs (Ridpath, 2016).

The oldest components of chondrites are tiny amounts (up to hundreds of parts per

million) of presolar grains such as diamond, graphite, and silicon carbide, which became

trapped in a fine silicate-rich dust matrix as it condensed and accreted in the Solar

nebula. Matrix acts as a cement for chrondrules and other mineral inclusions (Zolensky

et al., 2018). Isotopes in some presolar grains date them to as far back as 1 Gyr before

the birth of the Sun. The apparent origins of presolar grains in asymptotic giant branch

AGB stars, Type II supernovae shock ejecta, and winds from Wolf-Rayet stars offer

information about the nature of the molecular clouds that collapsed to form the Sun

(Jones, 2003).

The basic building blocks of chondrites are chondrules: small (usually ∼ 1 mm) globules

of melted dust grains, the first of which formed in the Solar nebula’s first few million

years before condensing. Chondrules’ composition is dominated by silicates: olivine (a

mixed crystal of Mg2SiO4 and Fe2SiO2 in varying proportions) and pyroxine (a crys-

talline structure found in basalt and containing oxygen in combination with various other

metals and small ions) (Jones, 2003). Chondrules can be primordial or the complicated

result of multiple generations with successive meltings. OC meteorites are always un-

differentiated; i.e., there has been no melting in which heavier elements sink to the core

of the parent body, meaning that they must have formed discretely in the early Solar

System. The matrix of OCs is subject to some aqueous effects but otherwise in many

cases is virtually unchanged since formation (Zolensky et al., 2018). Due to the ab-

sence/sparsity of organic molecules and water in the OCs’ matrix, they are thought to

have originated in the inner belt, where volatiles would have burnt off (and where most

S-types still reside) (Morbidelli, 2015). Their chondrules have an oxygen isotope ratio

that is distinct from ECs and CCs, pointing to a different origin to these other types

(Jones, 2003) and leading to a proposed new taxonomy (Warren, 2011).

Carbonaceous chondrites are misleadingly named; they are not necessarily particularly

high in carbon (Warren, 2011). CCs represent a small fraction of meteorites but have

disproportionate importance in Solar System formation history due to their partial pen-

etration of the asteroid belt from an origin above the snow line. They are also believed

to have delivered organics and water to the Earth. CCs are easily distinguished from

OCs by isotope ratios (see Figure 1.11), and under the microscope they show evidence of

evolution after chondrule accretion (Zolensky et al., 2018). This diverse group of objects

are sub-divided into eight petrological categories according to the degree of thermal and

aqueous effects evident in their composition. Besides olivine, other silicates, and sulfides,

the matrix of CCs contains up to 5% carbon in the form of graphite, carbonates, and
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organic compounds including amino acids, as well as water and evidence of its effects

(Jones, 2003). The presence of volatile organic compounds implies formation above the

snow line, although in cases where the object has been transformed by shock-heating

of the parent body no volatiles are present. Some CCs contain presolar materials and

calcium-rich inclusions (CAIs) that were early condensates of the cooling Solar nebula

even prior to the first chondrule formation (Jones, 2003), all found in quantities well

above the small traces that sometimes appear in ordinary chondrites (Zolensky et al.,

2018).

Figure 1.13: Proposed change in meteorite taxonomy from previous versions to one
derived from isotope ratios (Warren, 2011). In the new version, differentiation (or
not) and other aspects of petrologic type are subordinate to the sample’s origin in the
primordial disk. The ‘carbonaceous vs. others’ principle has been accepted but does
not seem to be reflected in the nomenclature of the taxonomy itself (Krot et al., 2014).

Enstatite has chemical formula Mg2Si2O6, but enstatite chondrite meteorites can include

up to 35% iron-nickel content and their densities and grain sizes vary widely (Zolensky

et al., 2018), with relatively little matrix. These rare objects are among those associated

with X-type asteroids and may contain valuable Cr, Mn, and Ti (Hutson & Lewis, 1991).

They are thought to have formed inside 1.4 AU (Keil, 2010) and their isotope profile

is similar to Earth’s, leading to the idea that enstatic material was involved in Earth’s

formation (e.g. Javoy et al. (2010); Piani et al. (2020); Lin (2022)).

Non-chondrites (or achondrites) are igneous and sometimes metamorphic meteorites

characterised by formation in a reducing (oxygen-poor) environment and in which a

degree of melting (likely due to radioactive decay) destroyed the chondrules. For exam-

ple, enstatic achrondites are likely the result of melting in enstatic chondrites (DeMeo

et al., 2015). Achondrites can be primitive or differentiated. Differentiation occurs when
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the meteorite parent body experiences enough heat and/or self-gravity to allow dense

materials to sink to the core while silicates float to the surface. One group of basaltic

achondrites are the howardites, eucrites, and diagenites, collectively called HED achon-

drites, likely originating in the crust of Vesta (making them V-types) (Jones, 2003).4

A-type asteroids are believed to be examples of the mantles of differentiated achondrites

for which the iron-nickel meteorites are supposed to be the cores (Reddy et al., 2005).

The relationship between meteorite and taxonomic types is neither simple nor clear-cut.

It is acknowledged in asteroid science that types C, X and S each include a range of

compositions (DeMeo et al., 2015); C and X spectra may be indicative of CCs, iron

meteorites, enstatite, and some achondrites (Burbine, 2000). Among X-types, high-

albedo examples (formerly type M) are thought to have iron-nickel composition; yet

some examples have 3 µm hydration bands that would not be possible at the high

temperatures needed to form such a differentiated body (Rivkin et al., 2000) cited in

(Carvano et al., 2010). Differentiation has been posited as a contributing factor to the

wide range of mineralogical features associated with S-types, notably the work of Gaffey

et al. (1993) on partial differentiation within planetesimals. The authors grouped a

sample of S-types into four subtypes according to mineralogical features (visible slope

and relative band depths and ratios at 1 and 2 µm). Partial differentiation means that

the asteroid may have fully melted but not fully crystallized into core/mantle/crust

layers; or, given different melting points of iron, silicates, and other components, it may

have only partially melted. Size of the body affects its differentiation through gravity,

implying that different-sized segments of the same parent body could have different

spectra even if they were severed before or during differentiation.

There is certainly evidence of mixing of minerals in meteorites. A simple example is

pallasite, in which an iron matrix contains and connects a silicate crystal in a web-like

structure (see figure 1.14). Despite the strikingly visible presence of iron (Buseck, 2022),

pallasite is associated with S-types due to its silicate reflectance spectrum (DeMeo et al.,

2015). When it comes to the iron meteorites, they are sub-divided into no less than 14

groups, of which one type is magmatic and associated with the cores of differentiated

objects, whilst another is nonmagmatic, contains silicates, and is associated loosely with

impact melts. More generally, when Carvano et al. (2010) applied their classification

system to the RELAB spectroscopic database (Pieters & Hiroi, 2004) they found a wide

distribution of meteorite classes for each asteroid class. The extremely low resolution of

their reflectance data may well be to blame; taken in context of this brief review of the

4Spectrally, V-types are close to S-types and bear no resemblance to C-types; nevertheless, some
C-type asteroids are thought to result from shock-melting during impacts between chondrites and HED
achondrites (DeMeo et al., 2015)
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literature, their findings suggest that it would be better to take meteorite/asteroid class

correspondences with a grain of salt.

1.6 The changing appearance of asteroid spectra

Asteroid spectral slope and features, especially in the NIR, can change due to environ-

mental conditions as well as observational phase angle. The latter is the angle between

the observer, the Sun, and the moving asteroid. For MBAs, phase angle is typically

no greater than 30–40 degrees, but NEA phase angle can change by as much as 100

degrees. A high phase angle can produce ‘phase reddening’; i.e., spectral slope in the

visible-NIR that increases with phase angle, attributed to surface roughness and scat-

tering processes. Different surfaces are associated with different reddening behaviours,

but these trends do not necessarily correspond to asteroid spectral class (Popescu M.,

2019).

Environmental processes that alter surfaces include space weathering, collisional effects,

and resurfacing. Modelling the effects of known processes and studying the effects of

laser irradiation and ablation on meteorites in the laboratory has offered insight into

competing processes that can both alter an asteroid’s surface and refresh it. Space

weathering can refer to micrometeorite bombardment and UV, X- and cosmic-ray irra-

diation, but the dominant process is the solar wind, which can increase spectral slope

and sometimes darken the spectrum in the visible-NIR. However, asteroids can also be

resurfaced in various ways: by gravitational encounters or YORP-effect spin changes

that stir up dust, by collisions that expose fresh surfaces, by the influx of interplanetary

medium particles, and by thermal changes at close perihelion, all of which tend to reduce

spectral slope in opposition to space weathering (Graves et al., 2019; Brunetto et al.,

Figure 1.14: Example of stony-iron pallasite meteorite with an iron matrix surround-
ing silicate material. Pallasite is associated with S-types despite its iron content (Aero-

lite, 2022).
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2015). The end result is an asteroid population whose spectral class may result as much

from a range of events in its history as from some set of intrinsic physical characteristics.

1.7 The starting point of this work

In this chapter I have sketched the history of asteroid classification. I also explained the

important role that asteroid types play in unravelling the history of the Solar System,

including how difficult it can be to match reflectance-spectrum type to mineralogical type

despite the rich and complex knowledge base surrounding the latter. I have introduced

some models that govern how asteroid sizes (and albedo) are estimated and discussed

some ways in which the physical properties of asteroid surfaces can change. These

complexities indicate that asteroid classification is not as absolute as it might appear on

first glance.

The contemporary Bus-DeMeo system builds directly on Tholen’s work in the early

1970s, which used a combination of optical reflectance and albedo to cluster a few

hundred asteroids into classes. Notably, virtually every time new data are collected

there has been an increase in the number of subclasses identified, begging the question:

are the original class labels still relevant? Similarly, the SDSS taxonomies not only have

the same small-sample foundation but also carry the additional burden of low resolution,

making class separation much more challenging. In the following chapters, I shall explore

the robustness of the asteroid classes with machine-learning techniques.

1.8 How this thesis is structured

In this work I evaluate asteroid classification with a minimum of assumptions, using

machine learning (ML) as a check on the internal consistency of human-made asteroid

classes. In Chapter 2 I introduce the concepts behind ML in general and the methods

I use. Chapter 3 introduces the various datasets and their preparation. I then proceed

in Chapter 4 to establish a baseline for how well an ML algorithm can learn asteroid

classes from spectra, with and without PCA. In Chapter 5 I compare this result to

the result of classifying low-resolution broadband data, while in Chapter 6 I compare

various methods of increasing the sample size to balance the numbers of objects in each

class. Once classes are balanced I apply unsupervised learning, which is a way to group

asteroid data without teaching the algorithm anything about the classes, in Chapter 7.

I summarise my conclusions and briefly remark on possible future work in Chapter 8.
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Machine Learning Methods

2.1 Introduction

In this chapter I discuss the machine learning methods used in this thesis. Section

2.2 introduces some of the fundamental concepts underpinning machine learning. I

list the metrics and visualisations used to assess the success of any given algorithm as

well as the methods for classification and clustering that I have selected. Subsequent

sections address each of the methods used in the thesis, beginning with dimensionality

reduction using principal component analysis in Section 2.3 and the support vector

machine classifier in Section 2.4, both used in Chapters 4 and 5 In Section 2.6 I then

describe the augmentation algorithms from Chapter 6, including a breakdown of how

the variational autoencoder works. Finally, in Section 2.7 I detail the methods used in

Chapter 7 to determine the optimal number of clusters as well as algorithm stability,

before describing each of the clustering algorithms in turn.

2.2 Fundamental concepts in machine learning

All machine learning involves training and validating a mathematical model using data.

Models vary widely in scope, construction, and purpose, but common to the process

is the division of data into a training set (to train the algorithm), a validation set (to

tune the hyperparameters), and a test set (to evaluate the performance of the model on

unseen data). A typical division of the data would be 70-20-10. Within the training set

there may be nested a validation set, which works to set the model’s hyperparameters.

The training set alone determines the configuration of the final model, and it is always

kept strictly separate from the test set or the entire process is invalid. Once a model is

built, its trained weights can be saved for re-use with new data.

27
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Figure 2.1: Example ROC-AUC plot for a classifier trained on all classes of spectra
in this project, representing the true positive rate vs. false positive rate. The closer the
lines are to the upper left corner, the better the model. This type of plot works well
for binary classifiers but is very hard to read as multiple classes are introduced, so I do

not include these plots.

I use three basic types of machine learning: supervised, self-supervised, and unsuper-

vised. (Other types such as semi-supervised and reinforcement learning exist, but they

are not relevant to the context here.) Supervised learning tries to match its outcomes

to a target whereas unsupervised learning is a process of assigning labels from charac-

teristics inherent in the data. For an asteroid classifier, the features are floating point

decimals representing normalised reflectance flux values either by ascending wavelength

or by broadband mean flux value, and the labels are asteroid classes. The model ‘learns’

to predict the best label according to features it has ‘seen’ during training.

After testing, a set of performance metrics is produced, which represent the performance

of the model. Because an accuracy score (simply the fraction of correct classifications

in the dataset) alone can mislead by obscuring important details, it is good practice
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to use additional metrix such as Sensitivity, Recall, Specificity, F1-score/mean-squared-

error (MSE), and a precision-recall curve (or Receiver Operating Characteristic – Area

Under the Curve (ROC-AUC) for binary classification problems (see figure 2.1)). I have

used confusion matrices instead of ROC-AUC plots in this thesis because when there

are multiple possible classes, the confusion matrix allows us to see not only correct and

incorrect classifications, but the class where the model ‘thinks’ a given object belongs.

The horizontal axis of the confusion matrix represents the predicted class, while the

vertical axis represents the ‘true’ or ‘actual’ (i.e., previously recorded class); correct

classifications then sit on the diagonal (see Figure 2.2).

Figure 2.2: Example confusion matrix showing predicted classes on the horizontal
axis and recorded classes on the vertical; anything on the diagonal is correctly classified.
Instead of displaying actual numbers of objects in cells, this example shows fraction of

objects by cell. The darker the cell, the higher the fraction.

Classification is an example of supervised learning. There are many models to choose

from. I initially classified the asteroid datasets using a suite of four classifiers (random

forest, support vector machine (SVM), multi-layer perceptron (MLP), and extreme gra-

dient boost (XGB)). All the models performed well, but for simplicity I report only on

the SVM because its results were the most consistently strong. The other methods are

briefly outlined in Section 2.5.

Self-supervised learning means that the model is trying to reach a target, but because

the data are unlabelled, the data themselves are also the target. In this work I use a

variational autoencoder (VAE) to generate new samples of classes of reflectance spectra

where there is a lack of data. A VAE is a deep learning method where a neural network

learns a compressed representation of the data by encoding it in a ‘latent space’ and

then resampling a new representation from the latent space to generate a similar, but

non-identical, new sample.
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Unsupervised learning is characterised by an absence of labels. Typically, it is used for

grouping data into so-called ‘clusters’ of objects that are near to one another in some

desired feature space according to a chosen metric. The method is exploratory; as part of

problem-solving, often clustering is done first in order to loosely understand how many

groups are in the data and how they may relate to one another. However, in this work

I use unsupervised learning to explore the robustness of human-assigned classes.

Whether the model is supervised or not, for best performance some degree of hyper-

parameter tuning needs to be performed. A hyperparameter is a parameter that is

controlled by the user and fixed before training begins; it affects how the model learns

from the data. I have chosen to tune hyperparameters using a combination of trial-and-

error and cross-validation.

In cross-validation, each time the model is run a different portion or ‘fold’ (usually

around 20% the training set) is set aside as a validation set, and results are compared

across the different combinations to obtain a more robust result than would be possible

with a single validation set. Using a pipeline construction to permit scaling, the model

is run iteratively on the training set, executing one stage of the pipeline at a time and

tracking the score. In this case, the support vector machine is run and scored multiple

times using the validation set as a mock test set. In cases where this process would be too

computationally expensive, it is also possible to perform a randomised search in which

combinations of parameters and folds are run at random. Here, models were tested

using an exhaustive search for a range of parameter values that have been narrowed

down manually to begin with and then refined through cross-validation. I note that

folds were ‘stratified’; that is, selected to reflect the class balance of the original data.

When it comes to unsupervised learning the most important hyperparameter is usually

the number of clusters. There are a few techniques to help make a best guess as to how

many clusters are inherent in a dataset; unfortunately, they are not always in agreement

with one another! The methods used here are the elbow (with distortion and Calinski-

Harabsz Index), the Davies-Bouldin index, and the silhouette method. Each of these

will be described later in this section.

To ensure reproducibility, classification models are equipped with a ‘random state’ hy-

perparameter that allows one to initialize the algorithm using the same values with every

run. Random state is also important in the division of training and test sets. In this

work I have ensured that wherever appropriate, the random state has been fixed across

all iterations and permutations. In some cases, I have repeated entire processes using

multiple random states to ensure that results are generally sound.
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Finally, a word about features and feature-space. The data are said to have ‘features’

or ‘dimensions’, which are simply columns of a matrix in which each row is a data sam-

ple. Features can be categorical variables having discrete labels (e.g., animal species)

or continuous numerical variables that represent measurements of some quantity (e.g.,

mass). All features in this project are continuous variables expressed as floating-point

decimals that measure sunlight reflected from the surface of asteroids. It is conven-

tional to refer to features as ‘dimensions’; appropriately, they are often used as plot

axes when analysing data. But machine learning is typically required to work with far

more dimensions than one can visualise, and often the user doesn’t know which dimen-

sions are the most important for a given task. Also, as the number of dimensions D

increases, the volume of feature-space increases to the power of D. Unless the number

of samples is astronomically large, the data will be sparsely distributed across this very

large feature-space. Outside of deep-learning models, classifiers cannot do very much

with a feature-space that is mostly empty. Another complication is the fact that many

classifiers (including the support vector machine used here) measure similarity using a

distance metric. The higher the dimension, the greater the pairwise distance between

any two points, so that the difference between similar and dissimilar pairs is no longer

significant. These problems, together with other statistical effects as described in Alt-

man & Krzywinski (2018), are collectively called the ‘curse of dimensionality’ and have

given rise to the development of dimensionality-reduction techniques. The next section

describes the most prominent of these: principal component analysis.

2.3 Principal component analysis

Reflectance spectra consist of many dimensions (in this case, wavelengths) that tend

to be correlated. Some of the information fed to a classifier is redundant, making

for inefficient learning, whereas the large number of dimensions invokes the curse of

dimensionality. Principal component analysis (PCA) is a linear transformation of the

data into a feature space with a small number of new axes in which the covariance

between features has been removed while the variance between datapoints has been

maximized. Figure 2.4 shows a simple plot of features from the Iris dataset before and

after PCA, illustrating the ability of PCA to tease apart different classes of data in

which classes overlap in feature-space. This tool is available is available in Pedregosa

et al. (2011b). 1

The following breakdown is based on a description from the Open University text Math-

ematical Methods and Models (Open University, 2008) and lecture notes by Siekmann

1https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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(2021). If we treat each datapoint as a vector X of dimensions X1, X2, ...Xp, then

the data have a mean E[X] and a variance V ar(X) = E[(X − E[X])2]. The covari-

ance expresses how much each of the independent variables in X varies with respect to

each of the others and takes the form of a symmetric, positive, semi-definite matrix:

Σ = E[(X− E[(X])(X− E[(X])T ]

PCA is performed as follows:

1. Obtain the covariance matrix for the data.

2. Calculate the eigenvalues of the covariance matrix via solving the equation det(Σ−
λI) = 0 where I is the identity matrix and the eigenvalues are λ1, ...λP .

3. Place the eigenvalues in descending order by size.

4. Solve the set of eigenvector equations (Σ − λi)I)ai = 0 where a are the p eigen-

vectors a1...ap

5. Subtract the mean vectors from the data to normalise around zero

6. Take the dot product of the normalised data with the eigenvectors to obtain the

principal components:

U =


a1
...

aP

 · (X− µ)

The matrix U is ordered from largest to smallest eigenvalue and therefore from largest

to smallest variance along each axis in principal component space. It is common for only

two or three PCs to be used. (In this work I use three.)

Because PCA is a linear transformation, the eigenvectors act as weights applied to each

dimension of the data individually in order to transform the axes. These weights, or

‘loadings’ can be examined to find out which dimensions of the data are contributing

most to the variance. An example of eigenvectors from the SMASS2 survey is shown in

the paper by Bus & Binzel (2002b) to elucidate which spectral features are associated

with the greatest variance of their data. Their first principal component is roughly

equivalent to slope, whilst the second shows up in an absorption band around 1 µm and

the third PC impacts both in short wavelengths and as a feature around 0.7 µm. It is

upon these variations in behaviour that the Bus-Binzel classification system is based.

In this work, PCA was used to check differences between datasets with respect to their

variances, and as a pre-processing step before classification. Prior to performing PCA I

scaled the data as described in the next subsection.
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Figure 2.3: Eigenvalues by wavelength for SMASS classification system from Bus &
Binzel (2002a).

.

2.3.1 Scaling for PCA

Usually in ML the reason for scaling is to ensure that each feature of the data is con-

sidered on equal footing with the others; for example, if one feature runs on a scale of

0–1000 and another runs from 0.001–0.010 then the variance in the second feature will

be washed out by the variance in the first feature. In PCA it is therefore conventional

to scale data before performing the analysis. For the spectra in this project it turns out

that the original features are already on a scale that is close enough to one another, and

scaling has a negligible effect on classifier accuracy. Nevertheless, at points in my work-

flow specified in the relevant text I preprocess data with RobustScaler, which removes

the median and scales the data according to the range between the 1st quartile and 3rd

quartile so as to reduce the impact of outliers (Pedregosa et al., 2011b). When running a

support vector machine (see section 2.4) with cross-validation to tune hyperparameters,

I scale in a pipeline that ensures the independent scaling of training and test sets in

each fold of the cross-validation; otherwise, the classifier could ‘see’ the scaling from the

entire training set during cross-validation, which would bias the result.
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Figure 2.4: Example of the four-dimensional Iris dataset showing the first three
dimensions on the left, and all the data after being recast into principal component
space on the right. The PCA axis shift allows the data to be better separated, and
reducing the dimensions from four to three facilitates visualisation. Example from

scikitlearn documentation (Varoquaux, 2022).

2.4 Support Vector Machine Classifier

The support vector machine model is available in Pedregosa et al. (2011a) 2. A detailed

description of the mathematical and computational details of the support vector machine

(SVM) can be found in Smola, Alex J. & Schölkopf, Bernhard (2004). In the simplest

sense, the SVM looks for the optimal boundary between classes in feature-space. The

easiest example of a boundary is a straight line in a plane that divides two classes of data.

In figure 2.5 there are many different possible lines that separate the data perfectly. To

find the optimal boundary, the algorithm selects the pair of datapoints that are closest

to one another but opposite in class—these are the ‘support vectors’—and selects the

boundary that maximises the distance between them, called the margin. This principle

extends to as many dimensions and classes as required, with boundaries consisting of

n− 1 dimensional hyperplanes embedded in n-dimensional space.

In cases where the data are not perfectly separable, a ‘soft’ margin may be used. This

is a region either side of the decision boundary into which the model admits members

of the opposite class, making it possible to build a model even though some of the data

overlap.

Despite this concession, many datasets do not lend themselves to being separated lin-

early. In these cases, data may be transformed by a function called a kernel that maps

it to n+ 1 dimensional space such that classes become linearly separable.

The calculations involved in transforming data in this manner rapidly become compu-

tationally expensive as dimensions are added. In two dimensions, for variables x1, x2

to transform by squaring the data requires computing the terms x1, x2, x12, x22, x1x2.

2https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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Figure 2.5: Most basic example of a linear decision boundary between two classes.
Figure from Koo & Liew (2013)

Generalising, for the number of features k and degree of polynomial d, the number of

computations can be described as (k+d+1)!
k! which is exponential in degree d. However,

the only information that is really needed is the spatial relationship between the vectors,

and their distance from one another is the same irrespective of the number of dimensions

in the hyperspace. This distance is expressed by the dot product of the vectors, which is

invariant under translation. The following example from Wilimitis (2018) demonstrates

how this works for two vectors a and b, but it applies to any number of dimensions. The

function ϕ refers to the kernel, in this case a second-degree polynomial for simplicity:

Figure 2.6: Illustration of the kernel trick for the polynomial kernel. Left: data in two
dimensions, linearly inseparable. Right: After transformation into three dimensions via
a quadratic kernel, data can be separated with a hyperplane. Example from Wilimitis

(2018).
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ϕ(aT ) · ϕ(b) =


a21√
2a1a2

a21

 ·


b21√
2b1b2

b21

 = a21b
2
1 + 2a1b1a2b2 + a22b

2
2

= (a1b1 + a2b2)
2 =

(a1
a2

)T

·

(
b1

b2

)2

= (aT · b)2
(2.1)

This simplification is called the kernel trick, and it means that instead of working out

all the dot products in higher-dimensional space, one can merely take the dot product of

the vectors of interest in the original space and apply the kernel to the result. Instead of

scaling exponentially, the process goes like k+log(d). The quadratic kernel is illustrated

in Figure2.6.

The kernel most widely used in a support vector machine is the radial basis function

(RBF), which is a Gaussian kernel defined as:

K(x, l) =
e(−||x2−l2||)

2γ2
(2.2)

where l is a support vector and x is the vector being measured. Here the γ hyperpa-

rameter determines the sharpness of the peak of the distribution, with a small value

indicating a narrow region, steeply peaking, and a large value the opposite. The SVM

decision boundary depends on the cost, a hyperparameter called C, which acts as a

penalty applied to wrong classifications. Essentially C is what determines the softness

of the margin (its values usually range from 10−4−10 depending on context). The same

cost is applied across all data points unless otherwise specified. In cases where data

is imbalanced, the cost function can be multiplied by a weight for each class, so that

there is a higher cost per data point for minority classes. Weighting the cost attempts

to equalise the impacts of the classes on the shape of the decision boundary without re-

sorting to oversampling. The downside to a weighted approach is the risk of overfitting

when basing a decision boundary on a small number of points in a minority class.

In broad terms, this phenomenon is known as the ‘bias-variance trade-off’, where bias in

this context refers to the crudeness of the boundary; i.e., the boundary is biased against

the correct classification of some objects. Variance in this context refers to the detail

of the boundary. In the bias-variance trade-off, one can either have a simple (but not

very good) boundary, or a perfect (but overfitted) one. Even with the benefit of cross

validation to select hyperparameters, there are judgement calls to be made in light of

the fact that new data are almost certainly going to make a mess of an overfitted model.
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The other important hyperparameter is γ, which determines the sharpness of the Gaus-

sian peak in the radial basis function kernel that determines the region of influence

governed by a support vector. It usually ranges between 0.1 − 100 and like C can be

optimised with cross-validation in a pipeline over a range of values.

2.5 Alternative classifiers

The other classifiers explored during the course of this project are described below. I

have selected them because they each use different methods to arrive at their results

(only random forest and XGB are related) and because they are easy to implement from

Python libraries.

2.5.1 Random Forest

The random forest classification method is based on the fundamental unit of a classifica-

tion and regression tree () more commonly known as a decision tree (Breiman & Stone,

1984). When classifying data, a decision tree will split the data according to a hierar-

chical series of features (e.g., color, size). Each feature implies a question that the input

data must answer, travelling down branches and sub-branches until finally the leaves on

the tree form the output classes. The tree is grown (and pruned) using relatively simple

machine learning optimization methods.

Figure 2.7: Simple decision tree. Image from Mikulski (2006)

The problem with decision trees is that they depend sensitively on the data used to

construct them. There is a tendency for the individual tree to become too specialized,

and as in the case of high variance for the SVM, specialization leads to overfitting. A



Chapter 2 — Machine learning methods 38

process called ‘regularization’ (which effectively prunes branches relating to features of

less importance) can address overfitting to some extent, but at the price of less accuracy.

Random forests are a very successful answer to overfitting that can greatly improve

flexibility and performance of decision trees. A random forest is a group of decision trees

constructed in such a manner that the trees are relatively uncorrelated to one another.

The trees are grown from data that has been bootstrapped and bagged. Bootstrapping

means that many copies of the original data have been made in which the data is

randomly ‘messed up’ a little, so that each decision tree will be slightly different. Once

the bootstrapped decision trees have been grown, they are grouped together, or ‘bagged,’

and the majority output class is chosen as ‘correct’. In the example in Figure 2.7, if

a bag of five trees produced ‘lime’, ‘lemon’, ‘lemon’, ‘lemon’, ‘lime’, the class ‘lemon’

would be chosen.

Bagging is an example of ensemble learning, and it increases the robustness of predic-

tions. Crucially, when growing the individual trees, the random forest method doesn’t

allow the machine to ‘see’ all of the features (or levels) as it is growing; instead, the

tree is made of a random sampling of decision branches. Because of this randomness,

the correlation between individual trees is reduced; i.e., they are less likely to behave in

similar ways, and less likely to overfit (Brownlee, 2019).

2.5.2 Extreme Gradient Boost (XGB)

Extreme Gradient Boosting (XGB) is a random forest algorithm that employs a tech-

nique known as ‘gradient boosting’ introduced by Friedman (2001). The gradient here

refers to the cost (or loss) function that characterises the difference between the true

data and the model’s approximation of it. We are always trying to find the lowest error

by getting to the bottom of the loss function, which we do by moving ‘down’ its gradient

(see stochastic gradient descent in Figure 2.8).

Just as random forest uses ensemble learning by taking the majority ‘vote’ from multiple

decorrelated models (trees), gradient boosting also uses ensemble learning, but in a

sequential way. The key to this method lies in using individual models with high bias

(these are called ‘weak learners’) to train one another in sequence. Each new model uses

gradient descent to add a function of the residuals from the first model such that variance

is reduced. The new model remains simple with low bias, but it because its variance

is reduced, the method avoids the bias-variance trade-off. Effectively we end up with

the best of both worlds. XGB in particular uses parallel processing at the node level to

speed up learning, and flexible regularization to reduce overfitting (XGBoostDevelopers,
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Figure 2.8: Intuition for stochastic gradient descent. The optimiser updates each
weight to travel ‘down’ the gradient to get closer to the (local) minimum using a
stochastic process to set the step size toward each new weight. Adam (‘adaptive mo-
ment estimation’) is a type of stochastic gradient descent. Figure from Kapil (2019)

2022). A large number of hyperparameters need to be tuned using cross-validation as

described for SVMs.

2.5.3 Multi-layer perceptron (MLP)

In classification tests I also used the multi-layer perceptron (MLP) algorithm in Scikit-

learn (Pedregosa et al., 2007). MLP is an implementation of an artificial neural network

(), described in Section 2.6.2.1.

2.6 Interpolation vs. self-supervised learning for data aug-

mentation

One of the characteristics of asteroid data is the predominance of S-types and, to a lesser

extent, C-types in the data. This phenomenon is known as data imbalance, and it is

problematic for machine learning. When a person is assigning a linear boundary ‘by eye’

it may not matter if different groups of data in feature-space have different sizes, but it

can be a severe problem for machine learning classification. One reason for this is that

many models learn by accumulating examples of characteristics, and the characteristics

of a minority class example are easily swamped by the majority class. Even in PCA we

can envisage how overall data variance can be more heavily affected by the features that

characterise many samples at the expense of features present in only a few samples.
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I have stated that the use of cost weighting with the SVM as described in the previous

section runs a risk of overfitting to a small number of minority-class datapoints. On

the other hand, the generation of synthetic data is always speculative. If the synthetic

data are too similar to the source data, overfitting is ensured; but if they are too dif-

ferent, there is no guarantee that the class of the new sample would be the same as its

parent object. Additionally, since the true underlying distribution of data is unknown,

we cannot know which points in our sample are outliers and which are central to the

distribution; we risk oversampling points that are actually noise.

To deal with this problem, we could cut the sample size of the larger classes down, but

the disadvantages of this are obvious. We want to keep the data that we have. We

could repeatedly draw more samples from the minority class population, replicating the

minority data that we already have; but this risks the classifier overfitting to the specific

features. So instead, the approach is to augment the data by generating some form of

synthetic samples that are similar but not identical to what we already have.

I have sought to balance these concerns by choosing one augmentation method that is

conservative in that it uses datapoints within the spatial confines of existing classes, and

a second method that is speculative because it introduces noise to existing classes. The

methods are, respectively, synthetic minority oversampling with edited nearest neigh-

bours, and the variational autoencoder.

2.6.1 Synthetic minority oversampling with edited nearest neighbours

(SMOTE)

In synthetic minority oversampling (SMOTE-ENN), the algorithm leaves the majority

class alone. For each minority class, it generates new samples in the neighbourhood of

existing datapoints. This is done feature by feature. For each point x in the sample,

SMOTE finds a set of nearest neighbours (usually five) by measuring the Euclidean

distance between x and every other datapoint. It randomly selects one neighbour. For

every feature, it then takes the difference between the datapoint and the neighbour and

multiplies that value by a random number between 0 and 1. The new value is now a

feature in a new vector. The process is repeated for all features until a synthetic sample

has been generated Chawla et al. (2002). The number of nearest neighbours (kneighbours)

is the only real tunable hyperparameter here.

In order to reduce the risk of introducing new samples that fall in a different class to

the parent object, the Edited Nearest Neighbours (ENN) algorithm is added to the mix.

ENN only allows SMOTE to resample on data that has the same class as at least two
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of its three nearest neighbours (Wilson, 1972). I have used SMOTE-ENN from scikit-

learn’s imblearn package (Lemâıtre et al., 2017), which is fast and easy. An example of

the result on spectra can be seen in Figure 6.2. The new data are confined to the original

class boundaries, but the linear nature of the interpolation is noticeable, especially in

the sparser classes like A and V. The repercussions of this effect are a tendency to leave

an artificial spiderweb-style substructure in the n-dimensional space of the data. Neural

networks, described in the next section, are primed to detect substructure of this kind

in the data, and there is a risk of overfitting to the substructure.

2.6.2 Variational autoencoder (VAE)

The variational autoencoder VAE is a type of ANN designed specifically to generate

new samples. I will first address the basic features of an ANN before explaining what a

variational autoencoder specifically does.

2.6.2.1 Artificial neural network (ANN)

The simplest unit of the network, the artificial neuron, is a mathematical simplification

of a biological neuron. As shown in Figure 2.9, in the brain a neuron receives multiple

neurotransmitter inputs from neighbouring neurons via thousands of dendrites. When

the strength of a chemical signal exceeds a fixed threshold (‘action potential’), the neuron

fires and delivers neurotransmitter to the next neuron in the network via its axon. If

the action potential threshold isn’t reached, then the neuron does not fire (Newman &

Han, 2017).

The first artificial neuron was called the perceptron, developed by Rosenblatt (1958)

and subsequently Minsky & Papert (1969). The perceptron remains the fundamental

unit of current ANNs. In a network, the neuron takes as input the output of all neurons

connected to it on the input side. Each neuron has a set of associated weights–which

refer to how much importance it attaches to the input it receives from every other neuron

on the input side—as well as a bias that is specific to the neuron itself. The neuron

Figure 2.9: Cartoon of a biological neuron (left) and the perceptron it inspired (right).
Figure from Roberts (2022)

.
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calculates a weighted sum of inputs with bias and applies an activation function, so

named because the outcome determines whether the artificial neuron is ‘activated’ and

subsequently fires.

output = a(

i∑
i=0

xiwi + b)

The output of the activation function is a number between zero and one. This value

becomes the input to the next neuron in the array.

Figure 2.10 shows the difference between four different activation functions, each of which

will ‘fire’ when the output exceeds zero. The simplest activation function is the step

function, which feeds forward nothing unless the output is greater than zero, in which

case it always delivers one. The sigmoid, tanh, and rectified linear unit () functions

are more nuanced in their output. In this work, I used a grid search to choose the

ReLU activation function, defined as a(x) = max(0, x). In a deep network, when the

maximum that can be returned by each neuron is unity, then after many multiplications

the signal becomes smaller and smaller until finally the network cannot learn. This is

called the ‘vanishing gradient problem’ where the gradient refers to the gradient of the

loss function (explained below).

ANNs are constructed in layers. Each layer represents a parallel set of neurons (some-

times called ’filters’) that receives input from the preceding layer and delivers output

to the subsequent layer but does not interact with its own layer (see Figure 2.11. The

input layer has as many neurons as there are dimensions in the data, whereas the size

of the output layer varies according to the number of classes described in the problem

space. For a binary classifier, there are only two outputs. Only the input and output

Figure 2.10: Illustration of four different activation functions: step, sigmoid, tanh,
and relu. Relative strength of input signal is shown on the x-axis and of output on the
y-axis. The neuron will always feed forward when the output of the activation function
exceeds zero, but the weight to be fed forward depends on the nature of the activation

function itself.



Chapter 2 — Machine learning methods 43

layers are seen by the user. All others are ‘hidden layers’ and in this case the process

is described as ‘deep learning’. In a deep network, ‘forward propagation’ refers to the

flow of information from the input side through the hidden layers of the network to the

output side.

An ANN is a sophisticated trial and error machine. It starts out knowing nothing: all

weights and biases are assigned randomly to values between zero and one at the start.

The network adjusts these parameters individually during training as it ‘learns’ until it

reaches the optimum weights and biases required to produce the target output. To do

this, an algorithm must compare the outcome of each iteration of forward propagation

to a desired target and calculate the error (or cost). The error used in the variational

autoencoder is the Kullback-Leibler (KL) divergence (see 2.7.4.5 for details), which is a

method to quantify the difference between two probability distributions,the known data

P and the hidden distribution Q in a probability space χ:

DKL(P ||Q) = −
∑
xϵχ

P (x) log

(
Q(x)

P (x)

)

The output of this function is both positive and differentiable, which is important con-

sidering the role that the cost function plays in training the network. Training involves

a process of repeatedly running the data through the network, updating weights and

biases each time, for a set number of repetitions called ‘epochs’. The idea is to converge

on the best parameters possible for the data.

Figure 2.11: Cartoon of an ANN with three inputs and two outputs. There can be
any number of filters in the hidden layers of the network, and any number of layers.

Figure from Cburnett (2022).
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2.6.2.2 Backpropagation

Optimization of the ANN’s weights and biases occurs through a process called gradient

descent with backpropagation. Gradient descent is the optimization itself, which is

performed by an algorithm that seeks to reach the global minimum of the KL loss

function as quickly as possible. To do this, weights are updated to move the output in

the opposite direction to the gradient of the loss function at that point; i.e., to move

‘downhill’ towards the smallest error. (For an intuitive view of gradient descent, see

Figure 2.8.) The method that facilitates this ‘learning’ is backpropagation.

Backpropagation is an algorithm that takes the partial derivatives of the KL divergence

for successive hidden layers using the chain rule. It is applied backward from the output

side of the network to the input side. In this way, every weight and bias is updated in

such a fashion that KL divergence becomes smaller in the subsequent epochs. There are

various ways to customize how far and how fast a parameter moves down the gradient

to enable the optimisation to happen more efficiently as well as to avoid getting ‘stuck’

in a local minimum of the error function. For the variational autoencoder in this work,

I use the Adaptive Moment (Adam) optimizer (Kingma & Ba, 2015), described below

based on material from (Jiang, 2020) and (Brownlee, 2021)

This walk-through of Adam considers only a single parameter (e.g., a single weight)

denoted x; in reality, the computations would be done on a vector. As its name suggests,

Adam uses the moments of the KL divergence work with momentum, allowing it to

converge more quickly on a global (rather than local) minimum. To do this, Adam

computes the exponential moving average of the first and second moments of the loss, and

it also contains decay terms that are analogous to friction, helping to prevent oscillation

around a minimum.

The first moment (derivative) of x is denoted m and the second moment (derivative of

the square, or ‘uncentered variance’) is denoted ν. The variance here refers to how much

oscillation there is as we descend to the lowest value of the KL divergence. There are

two hyperparameters β1(t) and β2(t) that work as decay terms for the first and second

moments, set at 0.9 and 0.99 respectively, as well as ϵ, set to a small number such as 10−8

to prevent a division by zero error (if a number gets too small, the compiler will round

it to zero otherwise). The step size α is set here at 0.001. all these are typical/default

values. Since we are moving through the network in epochs, we start the time at t = 1

and increment it by one for each training epoch. We then compute the gradient and

first and second moments.

∇(t) = f ′(x(t− 1))
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m(t) = β1 ∗m(t− 1) + (1− β1) ∗ ∇(t)

ν(t) = β2 ∗ ν(t− 1) + (1− β2) ∗ ∇(t)2

The use of the decay parameters here means that both the gradient of x and the rate of

change of x are adaptive, so that the descent is as fast as possible but also as smooth as

possible. We do not know the initial m and ν, but they are initialized to zero. Because

this choice creates a bias in the initial moments, a correction is introduced:

m̂(t) =
m(t)

1− β1(t)

and

ν̂(t) =
ν(t)

1− β2(t)

In order to nudge the weight in the opposite direction to the gradient of the loss function,

the updating of a single weight then looks like this:

x(t) = x(t− 1)− α ∗ m̂(t)

(
√
ν̂(t) + ϵ)

One of the reasons why Adam is so widely used is because it is very effective at optimising

‘mini-batches’ of data, which is necessary when dealing with big data, especially image

processing. In hindsight, for a relatively small and shallow neural network like the one

I use here, a simpler stochastic gradient descent probably would have worked fine.

The ANN, then, consists of an input layer, some hidden layers of neurons that apply

weights and biases to the data and pass it on, and an output layer. A loss function is

used to compare the output to some target value (maybe a class, if the network is a

classifier) and optimise the way that the weights are adjusted. Adjustment of weights

proceeds backward through the system, and the data are run through the network again.

This process repeats for a set number of epochs. Once the network has been trained,

new data can be run through it with the expectation that the network will (for example)

classify it accurately. However, in this project I use ANNs not for classification, but for

generating new spectra of various classes to augment the data. Specifically, I use a pair

of one-dimensional convolutional networks arranged as a variational autoencoder.

2.6.2.3 Autoencoders

Before describing the variational autoencoder I will introduce the architecture of an

autoencoder (AE). I rely heavily on blog articles by Rocca (2019) and Chollet (2016)
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for the explanation of both autoencoders and of variational autoencoders (in the next

subsection). For the work in this thesis I use the Chollet et al. (2015) package and I

base my code on the example by Chaudhary (2020).

An autoencoder is a self-supervised method comprised of two convolutional neural net-

works that mirror one another’s architecture. The first network is an encoder that com-

presses large numbers of input features into a small set of encoded features called the

latent state. The second is a decoder that reverses this process, taking the latent state

variables and deconvolving them through the network to generate a full-dimensional

output that acts as an approximation of the input. Figure 2.12 illustrates the generic

architecture for an autoencoder. Just as an ANN uses gradient descent and backpropaga-

tion to set weights to differentiate between target classes (for example), the autoencoder

backpropagates errors through both encoder and decoder to compress and decompress

a sample as accurately as possible. This process is determined entirely by the data.

Figure 2.12: Illustration of a vanilla autoencoder structure. This example shows a
reconstruction of the handwritten number 4 from the MNIST dataset using a trained

autoencoder. Image from Saikia (2019).

A typical application is the denoising autoencoder, where noisy input is presented to-

gether with a clean target. The model would learn how to extract the characteristic

noise of that dataset, so that subsequent noisy samples could be cleaned automatically.

Another use is dimensionality reduction. Like any neural network, a trained autoencoder

has a set of weights for both encoder and decoder, and it has a ‘bottleneck’, or the latent

state, where all features are encoded in a compressed manner. The process is similar to

principal component analysis, and the latent state would be an analogous representation

of the data if there were only one layer in the model and no convolutions were used.

Like PCA, a trained autoencoder allows one to extract the latent state and plot it in two

or three dimensions for the purposes of classification. However, unlike PCA, the latent

space of a deep convolutional model does not give access to eigenvalues that are in turn

traceable to the original features. In fact, if there are no constraints on what the latent
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space is, the model can create extremely complex encodings and decodings through the

layers even if the latent space is one-dimensional. I saw this when attempting to use an

autoencoder for dimensionality-reduction as an alternative to PCA. The autoencoder

produced a good reproduction of the spectra, but with a bothersome effect: due to the

stochastic nature of the model, on different runs identical data sometimes occupied two

dimensions of latent space, sometimes three, and sometimes only one dimension. When

all spectra are sitting on the same point, obviously it is not possible to use dimensionality

reduction to assist in classification.

This outcome points to a larger issue for autoencoders: lack of regularisation of the latent

space. As far as the autoencoder knows, the latent space has no existence independent

of the data on which it has been trained. This is a problem if one wishes to use the

autoencoder as a generative model. The use of the reconstruction loss (i.e., the loss

function on the reconstruction of the data vs. the original data) shapes the latent

space such that similar points are clustered near to one another but are separated from

dissimilar points with empty space that essentially has no meaning. People got the idea

of feeding in coordinates to the latent space that are close to the coordinates that the

model has learned, in hope of getting an output similar but non-identical to the training

example. However, selecting a latent space point that the decoder doesn’t ‘know’ would

generate a meaningless output because all weights and biases in the model are specific

to the training data; the network is grossly overfitted. For the same reason, the latent

space is not mathematically continuous. In a continuous space, points that are near to

one another are expected to represent similar objects and vice versa. This is not the

case for a vanilla autoencoder.

2.6.2.4 Variational autoencoders

The variational autoencoder was first proposed by Kingma & Welling (2014). It is

designed to answer the problem of lack of regularization of the latent state; i.e., lack

of completeness and lack of continuity. In doing so, it becomes capable of generating

outputs that are similar, but not identical, to the inputs that trained it. The VAE is

then a generative model with different capabilities to a classical autoencoder. While a

vanilla autoencoder encodes data as points in the latent space, the VAE encodes data as

samples from a distribution where the mean and variance are determined by the network

during training.

When the network is trained, not only is the reconstruction loss computed, but it is

added to the KL divergence between the Gaussian around the point in question and the

Gaussian defined by the latent space from which it was drawn. In practice, this means
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Figure 2.13: Illustration of a variational autoencoder structure. The reconstructed
sample is drawn from a latent space that has been forced into the shape of a Gaussian
distribution to ensure continuity and completeness. The encoder is described in the
illustration as an inference model because it is inferring the Gaussian underlying the

data on which it is trained. Image from Sharma (2022).

that the latent space is defined continuously and that all points in the latent space have

some meaning in terms of a Gaussian distribution. It now becomes possible to select a

new point in the space that is midway between two existing points, and the output will

be a blend of the characteristics of both.

With autoencoders the tuning of hyperparameters is not an issue in the same way as

for other models discussed. Rather, the details of the network such as number of layers

and dimensions of layers, need to be determined in a bespoke way by the user.

2.7 Unsupervised learning

In this section I will outline the workings of the three clustering algorithms used in this

work (K-means, Gaussian mixture model, and HDBSCAN). I then describe each of the

methods used to determine number of clusters and/or evaluate stability of the clustering.

2.7.1 K-means

This description of K-means is based on pp 424-425 in Bishop (2006) and the scikitlearn

sci-kit learn developers (2022) documentation. The algorithm can be treated as an

example of an Expectation Maximization (EM) problem, so named because it has an

expectation step and a maximization step that follow one another iteratively. The
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Figure 2.14: Plot of MNIST dataset of handwritten digits when transformed into two-
dimensional latent space at the bottleneck of an autoencoder. Some variation of this
plot is widely used to illustrate the difference between autoencoders and variational
autoencoders. On the left, the model is trained by a vanilla autoencoder (i.e., on
the reconstruction loss only) to reproduce the input samples exactly. On the right,
a variational autoencoder is trained on the reconstruction loss plus KL divergence to
generate a new sample midway between 1 and 2. By setting up a latent distribution and
computing both the difference between it and the output in addition to the difference
between input and output vectors, the algorithm maps the data as an overlapping set
of distributions rather than a set of discrete clusters, while still learning the features of
the input data. It is now possible to draw a sample from anywhere in the space and get
a result that resembles its neighbours even though the network has never ‘seen’ that

datapoint. Image from Shafkat (2018)).

expectation step makes an estimation for the expected values that we seek (in this case,

the best available cluster centroid for each datapoint). The maximization step takes

that result and alters it to maximize the output; here, this means minimizing the error

within each centroid.

Assuming a dataset of N observations in D dimensions {x1, ..,xN} we want to arrange

the data in K clusters such that the datapoints in each cluster are closer to one another

than to the data outside that cluster. Given a number of clusters K, the algorithm finds

a set of cluster means µk such that the sum of squared Euclidean distances between

the datapoints in the cluster and its mean (equivalent to sum of squared error, SSE,

also called ‘inertia’) is as small as possible. Cluster membership is set by an indicator

rnk ∈ {0, 1} where k represents a cluster number from 1 to K such that rnk = 1 if xn

belongs in cluster k, otherwise rnk = 0. The inertia between each point and its assigned

µk is then expressed by the quadratic function

J =

N∑
n=1

K∑
k=1

rnk ∥ xn − µk ∥2
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To begin with, a random vector µk is selected from among the datapoints. These are the

initial expectation values, or cluster centroids. Expectation and maximization proceed

as follows:

1. Expectation: For each xn, the algorithm measures the squared distance to each of

the µk, then sets rnk = 1 for the smallest value given the set of µk it started with.

Each point now has its best available expectation value.

2. Maximization: the algorithm finds the ‘best’ µk of the clusters that were assigned

in the prior step. For each point, the rnk chosen in the first step is held constant

and the algorithm measures inertia to find the smallest J . The minimum of a

quadratic function can be found by setting its derivative to zero, so

2

N∑
n=1

rnk(xn − µk) = 0

which rearranges to:

µk =
∑
n

rnkxn∑
n rnk

that represents the mean of datapoints assigned to a given cluster.

This process is repeated, with some points being re-assigned after the new means

have been computed, until convergence. The process is sensitive to the initial µk

chosen and may converge on a local minimum. To answer this, the scikitlearn

implementation will run the entire procedure ten times by default and choose the

best µk at the end.

K-means has several disadvantages. Because it measures distances between points,

in high-dimensional spaces the data become sparse (the curse of dimensionality).

The use of inertia also favours clusters whose members are isotropically distributed,

which is not realistic for most data (sci-kit learn developers, 2022).

The most important hyperparameter for K-means is the number of clusters, which

can either be known in advance or found automatically using methods such as

elbow, AIC, and silhouette method discussed in this chapter. If the number of

clusters is known, one can initialise with cluster centroids. Inertia can also be

fine-tuned if desired.

2.7.2 Gaussian mixture model

The equations and rationale in this sub-section have been assembled using pages

14-15, 78-94, 110-113, and 430-439 of Bishop (2006) to the best of my understand-

ing.
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Unlike K-means, which assigns each point definitively to a single ‘hard’ cluster, a

Gaussian mixture model (GMM) is a probabilistic model that uses ‘soft’ clustering.

The model assumes that the data are drawn from a set of K Gaussian distributions

whose means and variances are unknown. Like K-means, GMM initializes a set of

means µk before running the EM algorithm to find the the most likely component

(cluster) for each point and the best mean for each component. However, GMM

also involves calculating covariance matrices Σk in order to define the latent Gaus-

sians. Another difference is that the K-means binary variable rnk (which ensures

that each datapoint is assigned to only one cluster) will be replaced by a vector of

mixing coefficients πk that represents the probabilities of the point being assigned

to each Gaussian component.

I will explain the basis of the GMM model before laying out the optimisation

procedure for EM. Let’s first write down the univariate Gaussian.

N (x|µ, σ2) ≡ 1√
2πσ2

exp(− 1

2σ2
(x− µ)2)

For a D-dimensional vector x the multivariate Gaussian can be written as:

N (x|µ,Σ) =
1

2πD/2

1

|Σ|1/2
exp(−1/2(x− µ)T (x− µ))

Note that in both above equations π takes its usual meaning, but it is conventional

to repurpose the symbol as the mixing coefficient. To simplify notation, we will

write the probability distribution for the mixture as

p(x) =
K∑
k=1

πkN (x|µk,Σk))

in which there are K components and the mixing coefficients π represent percent-

age contributions; i.e., each element lies in the interval (0,1) and their values sum

to 1.

We can think of X as the observed data sampled from an unknown ‘true’ latent

mixture of Gaussians, and we will be evaluating the probabilities that each ob-

served datapoint belongs to each component k. We need to work out not ‘which

component does xn belong to’ but instead ‘to what degree does it belong to each

of these components?’ In order to deal with the latter question, we introduce a la-

tent binary variable vector z, for which zk can either be 0 or 1, meaning that there

are K possible permutations of z. By introducing z we invoke a joint probability

distribution.
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At this point we say, for a given component (that is, for the k in which zk = 1),

the probability of a datapoint being sampled from it is expressed by the mixture

coefficient πk

πk = p(zk = 1)

Eventually, πk is going to allow us to get a log-likelihood in terms of X only. To

start with, we are going to use z to find out how ‘responsible’ each Gaussian com-

ponent is for a given datapoint. Responsibility is defined in terms of z conditional

on x. For this we need Bayes’ Theorem

P (Y |X) =
p(X|Y )p(Y )

P (X)

where P (X) will be the sum of all possible components from the counter j = 1 to

K:

γ(zk) = p(zk = 1|x) = p(zk = 1)p(x|zk = 1∑K
j=1 p(zj = 1)p(x|zj = 1)

We can now replace these probabilities with πk and the normal distribution of x:

γ(zk) =
πkN (x|µk,Σk)∑

l N (x|µl,Σl)

Now that we have responsibility, we can use it to work out the average means,

covariances, and mixing coefficients. Once we have those, we need to get rid of

z, because ultimately we need our probabilities in terms of xn only. For this a

technique called marginalisation will be used. To marginalize (in this case) means

to sum over all possible values of z and so obtain a probability distribution for X

alone.

We treat every observed (feature) vector x as normally distributed in each com-

ponent zk:

p(x|zk = 1) = N (x|µ,Σ)

By the product rule of probabilities, the joint distribution is then:

p(z,x) = p(z|x)p(x)

By summing over all possible states of z, we can marginalize out the latent variable

and get back the distribution in x that we started with, noting that for every xn
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there is a corresponding latent vector zn as required. Marginalization looks like

this:

p(x) =
∑
z

p(z)p(x|z) =
K∑
k=1

πkN (x|µk,Σk))

Finally, we need to define the log-likelihood of our probability distribution. There

are several reasons for choosing the natural log of the distribution, the most obvious

of which is that products of logs can be transformed into sums. This is desirable

because when dealing with probabilities, products of small numbers can be lost

when they fall below the computational limits of floating-point decimals. The

log-likelihood over the entire dataset of length N is defined as:

ln(X|π,µ,Σ) =
N∑

n=1

ln

[
K∑
k=1

πkN (xn|µk,Σk)

]

To find the maximum, the derivative is set to zero with respect to the mean and

covariance in turn. In the case of the mean this is:

0 =

N∑
n=1

[
πkN (xn|µk,Σk)

ΣjπjN (xn|µj ,Σj)

]
Σ−1(xn − µk)

The term in brackets is the responsibility of zk, and with some manipulation

can be written as µk = 1
Nk

∑N
n=1 γ(znk)xn where Nk ≡

∑N
n=1 γ(znk) to indicate

the number of points assigned to component k. We are obtaining the average

responsibility for component k over all N datapoints.

All the components needed for EM are now in place. The algorithm flows as

described in Bishop (2006) p. 438-9:

• Initialize µk (cluster mean) and πk (cluster identity). Calculate the covariance

matrix Σk and get the log-likelihood for these values.

• Expectation step: Calculate every γ(znk) from current parameter values.

• Maximization step: Maximize the log-likelihood with respect to each variable:

– µnew
k = 1

Nk

∑N
n=1 γ(znk)xn

– Σnew
k = 1

Nk

∑N
n=1 γ(znk)(xn − µnew

k )(xn − µnew
k )T

– πnew
k = Nk

N where Nk =
∑N

n=1 γ(znk)

• Evaluate the log-likelihood and repeat the Expectation and Maximization

steps until convergence.
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The main hyperparameters for GMM are ncomponents, the number of Gaussians in

the mixture, and covariance type, which describes the form of covariance matrix

used. In scikit-learn developers (2022) there are a few ways to initialise the cen-

troids to fit the Gaussians. They are based on K-means and their main differences

are processing speed. Since GMM uses pairwise Euclidean distances anyway, the

curse of dimensionality is the same as for K-means, but the problem of cluster

shape that occurs with K-means does not happen with GMM as long as the spher-

ical version of the covariance is not chosen. I have set the model for full covariance

rather than the spherical, tied, or diagonal alternatives offered because full covari-

ance performed best in Bayesian Information Criterion (BIC) tests on the asteroid

data (method described in scikit-learn developers (2022)).

2.7.3 HDBSCAN

For most clustering methods it is necessary to input the number of clusters desired

before running the model. The notable exception is Hierarchical Density-Based

Spatial Clustering of Algorithms with Noise (HDBSCAN) (Campello et al., 2013).

HDBSCAN treats the data as a probability distribution but makes no assumptions

about cluster shapes, sizes, or even densities, and unlike other methods discussed

it makes allowance for both noise and outliers. It builds a hierarchical tree of

clusters under the basic principle that a cluster is a group of points that are close

together compared with the relative sparsity around them, like ‘islands in the sea’

(McInnes et al., 2016). Accordingly, the level of the ‘sea’ determines what gets

labelled as a cluster.

In order to recast the data as a probability distribution function (PDF), the al-

gorithm sets many sea levels for the data to find the optimal number of islands

(clusters). One way to do this is to pick a number K that represents how many

nearest neighbours to consider. A large K implies low sea level and vice versa.

As described in McInnes et al. (2016), for a given K, HDBSCAN performs the

following routine on every point:

• Find the smallest radial distance from the point that encloses K points. This

is called the ‘core distance’ and is inversely proportional to the probability

density function for that point.

• Compute the ‘mutual reachability distance’ to every pair of points (a, b),

defined as: dmreach−k(a, b) = max{corek(a), corek(b), d(a, b)} where d(a, b) is

the metric distance between a, b and the core distances refer to a particular

value of K. If either of the points lives in a sparse region (i.e., the sphere

drawn for that K is larger than the distance between (a, b)), their mutual
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reachability distance will be larger than their original distance. This means

that regions of low density become spread out even more under the metric

d(a, b).

• Now that data have been transformed into a minimum-reachability space,

the idea is to identify the islands. HDBSCAN finds the ‘minimum spanning

tree’ using Prim’s algorithm, a fast and efficient way to connect all vertices

of a graph. Prim’s algorithm begins with an arbitrary datapoint (vertex)

and picks the smallest possible weight (minimum reachability distance) on

the edge to a new vertex. The process repeats until the entire dataset is

connected (Prim, 1957). Figure 2.15 illustrates the outcome for some sample

data with K = 5, where colour-coding emphasizes the importance of mutual

reachability distance. Each ‘island’ has its own internal characteristics, and

they are joined by long ‘bridges.’

Once the above process is complete, HDBSCAN creates a hierarchy in the following

steps:

• Edges are sorted by ascending distance

• Treat each potential cluster as a set. Starting with the two smallest mutual

reachability distances, find the roots of the trees containing them, and if

the roots are different, subsume one of the sets into the other by the union-

find algorithm (see Galler & Fisher (1964) for details). The outcome can be

visualised as a dendrogram that looks like the left panel of Figure 2.16

• HDBSCAN employs a user-determined parameter for minimum cluster size.

If a split in the dendrogram leads to a cluster that is smaller than the min-

imum size, these datapoints are treated as noise/outliers and removed from

Figure 2.15: Illustration from McInnes et al. (2016) of the connected graph
of some data plotted by mutual reachability distance: dmreach−k(a, b) =
max{corek(a), corek(b), d(a, b)} where d(a, b) is the metric distance between a, b and
the core distances refer to a particular value of K. The graph starts at any point
(vertex) and agglomerates vertices where edges are weighted by mutual reachability
distances, starting with the closest pairs of points and adding according to Prim’s al-
gorithm as described in text. In this case K = 5 and mutual reachability distance is

encoded in the colour of the edges.
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consideration. The dendrogram is now condensed and simplified as per the

right panel of 2.16.

• In hierarchical clustering methods it is conventional to assign clusters by

cutting across the lines in the dendrogram (equivalent to setting a global sea

level). HDBSCAN departs from its predecessors by introducing the concept

of ‘persistence,’ which is found through determining ‘excess of mass’ in a

portion of a distribution, with area under a distribution analogous to mass

in a probability density scenario. Figure 2.17 is included to provide intuition.

Two distributions are shown, each with three peaks but of different shapes.

In one case, the sum of the areas under the (separate) blue and yellow shaded

regions is greater than the area under the shared green region, so blue and

Figure 2.16: Dendrogram of sample datapoints by mutual reachability distance (left)
and condensed version (right) from McInnes et al. (2016). To sever clusters from their
parent distributions, one would cut through the vertical lines at a suitable point. HDB-
SCAN allows for a bespoke cluster selection process that relies on ‘persistence’. Per-
sistence boils down to measuring the area under each hierarchical coloured region in
the right panel. If the child areas sum to more than their parent areas, the clusters are

retained. Otherwise, the parent is the final cluster on that branch.

Figure 2.17: Illustration of the intuition behind ‘persistence’ in HDBSCAN. Viewing
the data as a probability distribution, then one can compare the total area under each
of the blue and yellow clusters to the shared area (green). If the blue and yellow areas
are greater, these two clusters are said to have an ‘excess of mass’ and to be ‘persistent’
enough to constitute individual clusters (left); otherwise, they are both included in the
green cluster (right). Implicit in this approach is the appropriate initial setting of the

‘sea level’ (grey). Figure from Berba (2020)
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yellow are genuine clusters. In the other case, the opposite is true, so the entire

region is treated as a single green cluster. Through this method, clusters that

persist through having an excess of mass can have a variety of sizes, shapes,

and densities relative to the whole distribution.

Although the parameter-setting process in HDBSCAN is relatively simple, it is

very sensitive to minimum cluster size as an input parameter. When performing

HDBSCAN I have initialized from a range of minimum cluster sizes to minimize

the number of points assigned as noise. This process was manual and iterative.

No matter how sophisticated the algorithms used here, there is no getting around

manual fine-tuning.

2.7.4 Finding the number of clusters

2.7.4.1 Elbow plot

The elbow method (Yuan, 2019) is simple and can sometimes be judged ‘by eye’.

It runs K-means for a range of different cluster numbers (k) and computes the

mean sum-of-squares error SSE between data points and their assigned cluster

centres each time. A plot of the SSE (called ‘distortion’) against k will show

the error dropping as cluster number increases. The ‘elbow’ is judged as the

point of maximum curvature; that is, there are diminishing returns for increasing

the number of clusters beyond this. On a relatively smooth curve, there isn’t

necessarily an obvious elbow. In the left side of figure 7.1 the python library

Yellowbrick (scikit-yb developers, 2019) shows the distortion on K-means for SDSS

Figure 2.18: Example plots of SDSS asteroid data clustered with K-means. Left: el-
bow with distortion. In Yellowbrick (scikit-yb developers, 2019), the Kneedle algorithm
(Satopaa et al., 2011) determines the point of maximum curvature. Right: Calinski-

Harabsz index of the same data. In this case the two methods do not agree.

.



Chapter 2 — Machine learning methods 58

Carvano data. In this case the elbow, or point of maximum curvature, is found

automatically at k=5 using the Kneedle algorithm (Satopaa et al., 2011).

2.7.4.2 Silhouette method

The silhouette is also used to determine the optimal number of K-means or Gaus-

sian components in a dataset. It represents a measure of how tightly bound each

point is to its assigned cluster relative to the nearest neighbouring cluster (Yuan,

2019). Silhouette is defined as:

s(i) =
b(i)− a(i)

max[a(i), b(i)]

where a(i) is the average distance between each point i and all the other points in

its assigned cluster and b(i) is the average distance between i and all the points in

the nearest neighbouring cluster. The value of the silhouette ranges from -1 to 1,

with 1 representing an ideal member of a cluster and -1 representing a point that

fits perfectly to a different cluster.

Figure 2.19: Illustration of a silhouette plot for five k-means clusters showing the
relative sizes of clusters. The more distinct the cluster is from others, the higher its
co-efficient on the x-axis. A negative coefficient means that the object is closer to other
clusters than to its assigned cluster. The red line indicates the average silhouette score
for all data; if a cluster fails to achieve this or barely achieves it, the number of clusters
is not a good fit for the data. Here, Cluster 2 is not only much smaller than the others,
but it also has a number of points that are closer to neighbouring clusters, and it barely

reaches the red line. These data do not fit well with five k-means clusters

.
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The visual representation of the silhouette is its most useful aspect (code used to

generate silhouette plots for this project can be found at Drakos (2020)). Given

a clustering algorithm (here, K-means and GMM) one runs the model for a range

of cluster values, calculating the silhouettes each time. The silhouette score can

be plotted against the number of clusters and the maximum value chosen. Much

more information can be found by plotting a given set of clusters as an area. As

in figure 2.19 a plot of each cluster’s silhouette shows not only its height (whether

it is above or below zero, and by how much) but also its width; i.e., how many

points are contained in that cluster relative to the others. When used to find

the number of clusters in K-means, the intention is for all the silhouettes to have

similar widths, since K-means is optimised to find clusters of similar sizes. If

some of the clusters have very slender silhouettes relative to the others it is an

indication that K-means is not working well for the data. The silhouette also gives

some feeling for the distribution of data at a glance. The example in figure 2.19

depicts K-means run on nine clusters in the SDSS. Each cluster from 0−8 is shown

in a different colour, increasing from 0 to 1 on the x-axis. The red dotted line is

the average value of the silhouette. Clusters 2, 3, 4, 5 and 8 have some members

that are nearer (on average) to the neighbouring cluster than to their assigned

cluster, shown by their negative values of s. It is also evident that the cluster sizes

are asymmetric, with 2 and 5 being particularly low in population.

2.7.4.3 Calinski-Harabsz score

The Calinski-Harabasz score is a ratio of the dispersion within a cluster to the

average dispersion between clusters, so that a high score indicates good clustering

(at least for algorithms like K-means in which proximity is more important than

density or some other intra-cluster relationship). As described in Pyshark (2022),

the score sums the SSE of points from their respective cluster centres to calculate

a within-group sum-of-squares error for each cluster k over the number of points

in that cluster nk:

WGSSk =

nk∑
i=1

||Xik − Ck||2

where Ck is the centroid of cluster k of K and Xik is a point in that cluster.

The sum of squares of each point from the centre of the dataset C is summed

separately:

BGSSk =

K∑
k=1

nk × ||Ck − C||2



Chapter 2 — Machine learning methods 60

The above two quantities are treated as a ratio to obtain the Calinski-Harabsz

(CH) Index. If CH is high, the clustering is good.

CH =
BGSS
K−1

WGSS
N−K

=
BGSS

WGSS
× N −K

K − 1

An example is shown in the right-hand frame of Figure 2.18. Note that despite

Yellowbrick’s automatic (and misleading) title, the Calinski-Harabasz index does

not look like an elbow except by coincidence in this case; the best number of

clusters occurs at the point of highest value.

2.7.4.4 Davies-Bouldin Index

The Davies-Bouldin index is constructed from a cluster separation measure Rij ≡
Si+Sj

Mij
where Si, Sj are the respective dispersions of clusters i and j and Mij is

the distance between vectors that characterise clusters i and j (e.g., their centroid

vectors). For each cluster i one calculates a similarity measure Rij by iterating

over the other clusters (as indexed by j) and retaining the maximum value Ri as a

measure of the cluster’s similarity with its nearest neighbour. The Davies-Bouldin

index R consists of a system-wide average of maximum similarity: R ≡ 1
N

∑N
i=1Ri.

By minimising the index, one ensures that clusters are generally as different from

one another as possible (Davies & Bouldin, 1979).

Figure 2.20 shows the Davies-Bouldin index for SDSS Carvano data after applying

K-means. There is clearly a preference for two clusters; however, it also looks like

four would be better than three, at least by this metric.

Figure 2.20: Example plot of SDSS asteroid data clustered with K-means over a range
of clusters after evaluation of the Davies-Bouldin index. In this case the lowest value
indicates the number of clusters where each cluster is most distinct from the others;

i.e., two in this case.
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2.7.4.5 Kullbeck-Leibler divergence & the Jensen-Shannon distance

The Kullbeck-Leibler divergence between two distributions originates in informa-

tion theory and Shannon’s concept of entropy in which information is conceptu-

alised in terms of bits (Shannon, 1948). With respect to a randomly distributed

discrete variable X, the quantity called information conveys how ‘surprised’ we are

by a sample in terms of its probability distribution p(x). In turn, entropy is the

average information over the set X of all instances of X where every element lies

in [0,1]. For example, in a uniform distribution we are always going to be surprised

so entropy is high, but in a normal distribution there is less entropy because we

already expect more samples near the mean than at the tails (Carter, 2011).

Entropy for a probability distribution p(x) can be written as the expectation of

the negative log of the probability, i.e.,

H(p) = E(− log(p))

which is written for a discrete set of data as

H[X] = −
∑
x∈X

p(x) log p(x)

A related expression is the cross entropy, typically used to evaluate the information

loss (or error, or cost) between a datapoint and the distribution predicted by a

model. It refers to Shannon’s idea of the expected number of bits needed to encode

data drawn from distribution p(x) so as to decode it based on distribution q(x)

(Murphy, 2022). This invokes a joint probability.

H(p, q) = −
∑
x∈X

p(x) log(q(x))

The KL divergence also has to do with the change in entropy between one dis-

tribution and another. In information theory it is the difference between the

cross-entropy and the entropy of p(x) , or:

DKL(p∥q) = H(p, q)−H(p)

For a discrete dataset the KL divergence is written as:

DKL(p∥q) = −
∑
x∈X

p(x) log
(q(x)
p(x)

)
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The KL divergence is also called the relative entropy between the true probabil-

ity distribution p(x) and some model distribution q(x). It is used in variational

autoencoders to train the encoder and decoder based on Gaussian distributions

for the training data. KL divergence is not a true metric; for one thing, it is not

symmetric with respect to p and q. However, using the KL divergence together

with m, the pointwise mean between distributions p and q, the Jensen-Shannon

distance is defined as

JS =

√
KL(p||m) +KL(q||m)

2

Thanks to the square root, the Jensen-Shannon distance works as a true metric

that can quantify the difference between data drawn from two distributions. Here

I have used it to assess the stability of the Gaussian mixture model algorithm with

the method and code from Lavorini (2018). The basic idea is to divide the data in

half randomly, fit to a GMM on each half independently, and check the similarity

between the probability distributions of each half of the data. This is done multiple

times with different 50/50 splits each time, and for a range of cluster numbers,

always seeking a) the smallest Jensen-Shannon distance, and b) the smallest error

on the Jensen-Shannon distance between one run and the next. If the errors on

the Jensen-Shannon distance are high, then the GMM is unstable and the data

cannot be well-fitted by the model.

2.7.4.6 Akaike & Bayesian Information Criteria

In his paper Akaike (1974) named his measurement ‘AIC’ with the intention that

it would be the first of many versions in an alphabetical series (‘BIC’, ‘CIC’,

etc.), but the ‘A’ is now used to denote Akaike Information Criterion whereas BIC

stands for the related Bayesian Information criterion. Both are methods of model

selection rooted in Shannon’s theory of entropy in that they rely on the maximum

likelihood estimate, also called the log-likelihood, which is an expression referring

to optimization of the parameters θMLE of a model to maximize the probability of

generating the data given all possible parameters θ. From section 4.1 of Murphy

(2022), this optimisation boils down to minimizing the negative log likelihood for a

set of independently adjusted parameters θ, expressed over a dataset of N points:

θMLE = −
N∑

n=1

log(p(yn|xn,θ))

In AIC, the maximum likelihood is used to compute goodness of fit for a model:
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AIC(θ) = (−2) log(θMLE) + 2k

where k is the number of parameters θ.

In the context of this work (finding the optimal number of clusters) the parameters

are the components in a Gaussian mixture model with full covariance. The so-

called MAICE is a combination of AIC and ‘minimum estimate’, since the best

value for AIC is found for the parameters at which it is minimised.

The BIC (Schwarz, 1978) represents a variation to AIC that penalises models

having many parameters (to reduce overfitting) by altering the second term:

BIC(θ) = (−2) log(θMLE) + k ∗ log(N)

As before, for a good model fit we want a small value for the BIC, which means

that a smaller number of parameters k is favoured, leading to simpler models.

When selecting the number of clusters we are also looking for the change in AIC

or BIC between one value of k and another, similar to the idea behind an elbow

plot.

2.8 Summary of machine learning methods

In this chapter I have introduced the fundamental concepts in machine learning

that underpin the methods used in my work. These include the train/test split,

the meaning of an accuracy score, the ROC-AUC plot and confusion matrix plot,

and the difference between supervised, self-supervised, and unsupervised learning

as well the curse of dimensionality. I explained how principal component analysis

works to reduce dimensions and introduced the support vector machine classifier.

I outlined two different methods to augment the number of samples: SMOTE-

ENN and the variational autoencoder. I then moved on to unsupervised learning,

describing the K-means, Gaussian Mixture Model, and HDBSCAN algorithms.

Finally, I explained the workings of several methods used in unsupervised learning

to determine the number of clusters as well as the stability of the models. The

techniques described are by no means an exhaustive list of tools appropriate to the

tasks I undertake, but they represent the best methods of those that I was able to

test.
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Data

All data in this project come from public catalogs. Every object has been assigned

a classification according to either Bus-Binzel or Bus-DeMeo. Because there is

an abundance of sparsely populated subclasses in the spectral reflectance data, I

have had to make decisions about what to call a ‘basic’ class and what to call

a subclass. I take the näıve approach and treat everything with a single capital

letter as a full class and everything with a secondary letter as a subclass. When

training an algorithm on a basic class I fold all subclasses into that class.

The issue of imbalanced classes becomes evident as soon as we look at the dis-

tribution of classes in each dataset. As discussed in Chapter 2, the reliability of

some ML algorithms can be compromised by imbalanced classes and has a bear-

ing on clustering algorithms; hence the need for Chapter 6. But the reason for

the imbalance also needs to be considered. In the context of the Main Belt, the

nearer objects tend to be S-types, while the dimmer C-types tend to dominate

the outer Main Belt. With magnitude limits typically around 19, this leads to a

selection bias in favour of S-types. A similar bias will apply to the size of objects

that can be viewed; whether size and class could be correlated is an open ques-

tion. Higher-albedo objects are more likely to be observed for the same reason

(although albedo is not handled explicitly here, it plays a part in some subclasses

as well as the B/C separation). Additionally, some surveys deliberately set out

to observe Trojans (T), Hungarias, and other families of asteroids preferentially.

The MIT-Hawaii Near-Earth Object Spectroscopic Survey (mithneos) and Isaac

Newton Telescope (int) studies target NEAs, which have a different class balance

to MBAs. NEA spectra are therefore likely to have different class distributions to

photometric surveys.

64
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3.1 Reflectance spectra

3.1.1 SMASS

The Small Main Belt Asteroid Spectroscopic Survey II consists of 1447 asteroids,

including the objects that determine the Bus-Binzel taxonomy, observed by the

MDM Observatory at Kitt Peak. These data come from a public repository 1.

They form the bulk of the training sample of spectra used in this project and I

refer to them frequently, either as ‘SMASS2’ or simply ‘SMASS.’ The data span

the wavelength range 0.435-0.925 µm, and 1333 of the spectra were of sufficient

range and quality for inclusion here.

The distribution of classes and subclasses is shown in figure 3.1. S-types are seen

to greatly outnumber all other classes; even C-types, in which most of the mass of

the Main Belt is included, are underrepresented here compared to S.

Figure 3.1: Distribution of full classes and ‘basic’ classes in SMASS2 survey. S-class
dominates this sample even though C-type objects make up the greater mass of the
Main Belt. Some classes are too sparsely populated to use in training an algorithm.

1http://smass.mit.edu/smass.html

http://smass.mit.edu/smass.html
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3.1.2 MITHNEOS

The MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS) (Binzel

et al., 2019) has published a dataset2 in which observations come from the 0.8 −
2.5µm wavelength range from the SpeX instrument on the 3-meter NASA Infrared

Telescope Facility (IRTF) on Mauna Kea, Hawaii as well as the FIRE (Folded-port

InfraRed Echellette) instrument on MIT’s 6.5m Baade Telescope at the Magellan

Observatory in Las Campanas, Chile. Included are optical spectra compiled from

work by Lazzarin et al. (2005) and others in the community (not specified by the

authors). I have extracted 317 objects having visible-wavelength range spectra

for use here. Of these, the Lazzarin et al. objects were observed by the Telesco-

pio Nazionale Galileo (TNG) at La Palma with the Low-Resolution Spectrograph

(LRS) in the 0.5–0.95 µm range (Lazzarin et al., 2005). There are also spectra in

the range 0.435–0.925µm of unknown provenance, so I have divided the MITH-

NEOS data into two datasets: the ‘long’ one (188 spectra) and the ‘short’ one

(317 spectra). All are classified according to the Bus-Binzel taxonomy. As these

objects are Near Earth Asteroids (NEAs) the datasets include Q class, which is

not observed in the Main Belt. The distribution of classes and subclasses is shown

in Figure 3.2.

Figure 3.2: Distribution of full classes and ‘basic’ classes in MITHNEOS survey.

2available at http://smass.mit.edu/minuspubs.html

http://smass.mit.edu/minuspubs.html
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3.1.3 S3OS2

The Small Solar System Object Spectroscopic Survey (S3OS2) (Lazzaro et al.,

2004) is comprised of 820 asteroids observed by the European Space Observatory’s

1.52 m telescope at La Silla, Chile. Spectra are meant to cover the range 0.49 −
0.92µm but I was only able to get 719 objects with wavelength coverage from

0.5 - 0.9 µm for use here, of which 645 are unique to the dataset (others overlap

with either SMASS or MITHNEOS). These are MBAs, including some intentional

coverage of asteroid families, and all have been classified according to Bus-Binzel.

Data are available at (Lazzaro & Florczak, 2006). The distribution of classes and

subclasses is shown in figure 3.3.

Figure 3.3: Distribution of full classes and ‘basic’ classes in S3OS2 survey.

3.1.4 INT

The dataset denoted INT refers to the published data of Popescu et al. (2019)3 that

represent NEA spectra taken from the Isaac Newton Telescope (INT) with the IDS

spectrograph and then combined with NIR data from an (unpublished) SMASS

NIR database. This is a small dataset in which only 35 objects were suitable for use

in the 0.5 - 0.9 µm wavelength range. They have been classified according to the

Bus-DeMeo taxonomy, which is equipped to handle features that appear only in

the infrared (such as the 2 µm absorption band) even though the important new

observations reported here are only in the optical. I therefore suggest that the

3available from http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/627/A124
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recorded class is not guaranteed to match the classification that has been assigned

by the optical-only Bus-Binzel system. The distribution of classes and subclasses

is shown in figure 3.4. The fraction of Q-types is notably large here.

Figure 3.4: Distribution of full classes and ‘basic’ classes in INT survey.

3.2 Calibration of spectra at source

In this section I describe the approaches to calibration of spectra for each catalogue

used in this work. As described by the authors associated with each dataset, the

main potential sources of uncertainty for reflectance spectra are:

(a) Dispersion of some wavelengths outside the slit due to atmospheric refraction

(b) Loss of flux due to asteroid moving outside the slit

(c) Poor calibration of instrument

(d) Random colour changes, possibly due to cloud-cover-induced chromaticity

(e) Colour differences between standard stars used as solar analogues

(f) Lack of multiple observations for averaging

(g) Use of a mean extinction model (in SMASS2)

(h) High phase angle leading to phase reddening (if uncorrected)

(i) Different faces of asteroid showing different composition when rotating
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The partial loss of flux at long or short wavelengths due to the first effect is

probably the most problematic effect because it results in a change in slope from

one end of a spectrum to another. All authors took steps to avoid this pitfall, but

they took different steps.

The majority of spectra in this work come from SMASS2. The authors used the

Mark III spectrograph with a slit 5 arcmins long and 4.5 arcsec wide, oriented

North-South to ensure that any dispersion would fall within the slit and observ-

ing close to zenith to minimise atmospheric diffraction. They took Hg, Ar and

Xe spectral line images with the same instrument regularly for wavelength calibra-

tion. Most spectra were averaged across multiple observations. Occasional random

variations in slope up to ±0.15 occurred, usually when the object was observed

through cloud, suggesting that flux at the long or short end may have been lost

due to diffraction outside the slit. In cases where slope variations exceeded 0.03

(in dimensionless units of relative reflectance) the spectrum was discarded and

re-observed on a better night. The authors discovered that their use of a mean

extinction model was a major source of error, but applying mainly to the near-UV

range (used only in the early stages of this work) and limited to a maximum slope

variation of ±0.02 over the range 0.44 – 0.92 µm seen at the very highest airmasses

(Bus & Binzel, 2002a).

Other authors took different approaches. Lazzaro et al. (2004) oriented a 5 arcsec

slit East-West to handle asteroid motion because the ESO telescope did not permit

automatic tracking. They trusted the wide slit to capture full dispersion because

they observed close to zenith at low airmasses. They also recorded phase angles

(median 13.5 degrees) in case of phase reddening. They did not average spectra

taken on different nights, but selected the observation with lowest noise for each

object.

In contrast, INT observations were performed with differential tracking plus man-

ual adjustments, with a narrower 1.5 arcsec-wide slit oriented along the parallactic

angle taking 3–5 observations per object, always close to zenith. At least one solar

analogue close to the object was taken, with preference to the same solar analogues

as SMASS2 when possible (Popescu, M. et al., 2019).

The MITHNEOS objects come from a variety of sources, many unpublished; some

are associated with the SMASS2 survey, but information on observational condi-

tions and data reduction is unavailable for the others, except for 24 objects where

a 5 arcsec slit oriented on the parallactic was used (Lazzarin et al., 2005).

The heterogeneity of these data inevitably leads to fuzzy results. This is not

necessarily a bad thing. Training and testing on this diverse set of spectra helps

to characterise the robustness of the classification system when confronted with
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the variations that are expected in natural systems. Differences in surveys and

techniques act as a proxy for the random errors that are otherwise problematic to

incorporate within machine-learning models.

3.3 Preparation of spectra

The resolution at which reflectances were recorded varies from dataset to dataset

and object to object. Some spectra also have gaps of varying sizes and spectral

locations, necessitating some pre-processing to establish a consistent set of wave-

lengths at which to record reflectance. The Bus-Binzel taxonomy relies on data

splined at 0.01 µm. I used a similar method but as the data I use has more detail

available, I splined the spectra at intervals of 0.0025 µm using a the Scipy’s (Virta-

nen et al., 2020) cubic spline interpolation function as described in (Qingkai Kong,

2020). I then divided all spectra by their value at 0.55 µm in accordance with

the Bus-Binzel and Bus-DeMeo taxonomic convention. When gaps between data-

points are larger than a few hundredths of a micron, the splining process can make

wrong interpolations. Spectra were checked by eye and interpolated values were

adjusted manually as necessary.

When converting the spectra to their SDSS equivalents, I had to choose how to

approximate what each SDSS filter would pick up (see figures 3.6 and 3.5 from

3.4). To obtain correspondences between SDSS and optical/NIR spectra, the

DeMeo classification system (DeMeo & Carry, 2013) integrated spectra over the

SDSS filter curves. They do not report how they handled end values where short-

wavelength data were unavailable. My data are unsuitable for convolution with

SDSS filters due to lack of values at both the short at long end of the spectra. I

tried to approximate the flux expected from a filter by making pseudo-broadband

in two different ways:

(a) Take the full-width-half-maximum value for the SDSS filter and subtract half

of its value from the effective wavelength (band centre) to get the minimum

for the band, add half of its value to the effective wavelength to get the

maximum for the band, and then find the mean of the data between those

two values.

(b) Take the exact value at (or near) the effective wavelength.

I tested classifiers using both methods; the results were virtually indistinguishable.

In the thesis, I use the mean value over the filter. I note that SDSS z-band is

inaccurate, especially the short spectrum dataset; SDSS z peaks at 0.9132 µm

whilst my data stop at 0.9 µm.
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Once the pseudo-broadband values were obtained, I divided the results by the

spectrum value at (or near) the SDSS g-band band centre of 0.4774 µm so that

the pseudo-broadband data are all relative to the SDSS g-band as in the Carvano

et al. (2010) catalog.

3.4 SDSS photometry

Figure 3.5: Filter response curves for the SDSS bands g, r, i, and z (Mamoru, 2010)
used in this work. When converting spectra to pseudo-broadband, part of the SDSS
g-band is lost (below 4350 angstroms for long spectra and below 5000 for short). The
z-band is lost above 9250 angstroms in long spectra and above 9000 angstroms in short

spectra.

The SDSS Survey recorded CCD photometry using a 2.5 m wide-angle optical

telescope between 1998-2009. Data are recorded five filters u-g-r-i-z as shown in

figure 3.6.

3.4.1 Carvano catalog

The classification system by Carvano et al. (2010) has been applied to the fourth

release of the SDSS-MOC and is publicly available at Hasselmann et al. (2011). Of

the 107,360 asteroids available I have selected for use in this work 20,389 with no

flags for bad photometry. A large fraction of these objects were assigned multiple

classes, so I also use a subset of the data consisting of 10487 objects of unambiguous

class where classes are defined in SDSS r-i-z space according to the examples in

figure 3.7. I refer to this subset as the Carvano ‘pure’ data.
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Figure 3.6: Left:SDSS waveband centres and full width half maximum values used for
all SDSS data in this project. Waveband centres are used to calculate colour gradients
in Carvano et al. (2010). To generate a pseudo-broadband value from a spectrum, I
take the mean value across the waveband from minimum to maximum. Figure from

(Carvano et al., 2010)

. Right: Sky coverage map showing a large fraction of the Northern hemisphere sky
covered by the SDSS. Image from https://classic.sdss.org/dr7/coverage/

The data are expressed as solar corrected ‘log reflectances’ as described in section

1.3, which I have converted into reflectances by taking the antilog. The data are

already normalized to unity in g band.

3.4.2 DeMeo et al.

The dataset from DeMeo & Carry (2013) (available from Ivezic (2008)) has been

used to create and apply the DeMeo SDSS classification scheme. These data

originate in a later data release than the Carvano et al. (2010) and contain more

objects. There are 34148 asteroids, all classified according to the DeMeo system.

The mean error on r-band dimensionless relative flux is 0.0378. Figure 3.9 shows

the data in r-i-z space, but with K and L classes merged to match the SDSS Lp

class.

3.4.3 Sergeyev data

In addition to the previous catalog asteroids from DeMeo & Carry (2013), data

from Sergeyev, Alexey V. & Carry, Benoit (2021) comprise 1,040,690 SDSS objects

that were collected from the ‘trash’ of the SDSS after filtering out stars, galaxies,

and objects with spurious photometry. The authors then classified according to

the DeMeo SDSS taxonomy. By their nature the data are messy; I have trimmed

the according to magnitude error <= 0.05, of which 218515 are numbered and

the rest are unidentified. The ‘reflectance’ error on these objects is on average

0.0195 in dimensionless units of relative reflectance. They also spill out over a

wider wavelength range than the other two SDSS datasets.

https://classic.sdss.org/dr7/coverage/
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Figure 3.7: Recorded classes of Carvano et al. (2010) data in SDSS r-i-z space on
which spectrum classifiers will be tested. Mixed classifications have been removed.

Figure 3.8: Class distribution for the two main SDSS datasets in the project as
determined by their respective classification systems. Left: Carvano (pure), which
consists only of unambiguous classes (i.e. ≥ 60% probability of being in that class),

and right: DeMeo.

.
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Figure 3.9: Data from (DeMeo & Carry, 2013) in r-i-z space. I have grouped K and
L objects under the label Lp to match the Carvano et al. definition of L. There are no

O or Q objects in these data.
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Chapter 4

Supervised Learning with

Optical Spectra

4.1 Introduction

As described in Chapter 1.3 the Bus-Binzel classification system relies on PCA

to extract meaningful features from high-resolution spectra. In this chapter I will

use PCA to explore variability in reflectance spectra across multiple small datasets

(about 300 - 1300 objects each). The main objective of this chapter is to determine

whether PCA is still the most effective basis for classification given the ability of

machine learning to easily handle high-dimensional data. Along the way I will also

explore the implications of fitting PCA on one dataset and applying it to another.

By the end of this chapter, a baseline will have been established for the ability of

the spectra to be classified with machine learning.

4.2 About the data

The following datasets as described in 3 are used in this section:

(a) SMASS2 0.435 – 0.925 µm (1333 objects)

(b) SMASS2 + MITHNEOS 0.435 – 0.925 µm (1521 objects)

(c) SMASS2 + MITHNEOS 0.50 – 0.90 µm (1650 objects)

(d) SMASS2 + MITHNEOS + S3OS2 - 0.50 – 0.90 µm (2369 objects)

(e) INT 0.5 - 0.9 µm (35 objects)

Tensions between datasets affect this work in various ways. To begin with, around

27% of asteroids common to both S3OS2 and SMASS have been assigned different

76
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Figure 4.1: This chart roughly shows the hierarchy among spectrum classes. When
combining subclasses to establish basic classes, objects below the second row are ab-
sorbed into their parent classes above. The exceptions are O, R, and T (excluded).

Figure 4.2: Of the objects present in both SMASS and S3OS2, 27% of them have
different recorded classes. Here the classes are compared. B/C/X tend to be classified as
one another, as do K/L/S. We are seeing that although subtle features are identifiable,
there is some degree of reversion to the two fundamental complexes identified more

than 50 years ago.

classes in the Bus-Binzel system (see 4.2). Generally, these disagreements lie within

(not between) the two foundational groups, S-complex and C-complex. The S3OS2

authors ascribe this to the loss of the shorter wavelengths in S3SO2 as well as

differences in user judgement in the SMASS classifier itself, but they also note

that some spectra show up differently across surveys.

Examining these spectra reveals the latter to be true, e.g., 729 and 1139 (Figure

4.3). As will be seen throughout this work, the data do not necessarily behave

as expected. In many of the other cases, however, there is little visible difference

between the spectra, usually in the C/X complex (figure 4.4). Finally, figure 4.5
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suggests that noise in S3OS2 leads to a different classification than in cleaner

SMASS data taken of the same object.

Figure 4.3: Entirely believable change in class between S3OS2 and SMASS for aster-
oids 729 and 1139.

Figure 4.4: Specctra of asteroids 45 and 1936. Without albedo for an object there
can be very little to separate C from X-types.

Figure 4.5: Object 1747 is class L in S3OS2 and S in SMASS2. Apparently random
errors in S3SO2 scatter the spectrum. By tracing lower range of S3OS2 points, some-

thing very like the SMASS2 version would be achieved.

Differing distributions of classes within surveys presents some difficulties. SMASS

contains no B or Q. S3OS2 contains no Q. INT contains no D or K. MITHNEOS
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contains no A or K. Because of this, classifiers trained on any individual dataset

will automatically fail when presented with unfamiliar classes.

The range in dataset sizes complicates the training process. A classifier trained on

the SMASS with 1333 objects has an advantage over one trained on the smaller

S3OS2 or MITHNEOS data; as for INT, the data are too small to split into training

and test sets, with several classes containing only one specimen. For these reasons I

have not attempted to disentangle problems within a dataset from problems across

datasets. With only 688 objects, the maximum success that S3OS2 can achieve on

its own data is around 80%. Does this mean that the data are self-contradictory?

Maybe, but in the absence of a full analysis of individual objects I will also suppose

that the size of the data plays a part in this result.

Class imbalance is always a problem for machine learning, no matter the algorithm,

because the most populous class will be most heavily weighted in determining

decision boundaries and conversely the smaller classes are at risk of erasure. In

order for any classifier (human or otherwise) to discriminate between very small,

subtly different sub-classes, a degree of overfitting is unavoidable. Here, aside from

the obvious dominance of S across the board, there are a profusion of sub-classes

of S, each having few samples (see figures 3.1, 3.2,3.3, 3.4). I will show that in

general, these sub-classes do not hold up well in a machine-learning context.

A final caveat concerns the classes Q and A. The INT data are heavily populated

by Q, a class that is absent entirely from SMASS. Examination of plots in figure

4.6 suggests that Q is not well-defined, especially in S3OS2. The smallest class, A,

has only 24 objects in the combined dataset 0.5 – 0.9. Looking at the spectra in

figure 4.7, it is difficult to conclude that they are all members of the same group.

It is becoming obvious that even a ‘basic’ classification can be challenging in this

wavelength regime when moving between surveys.

4.3 Method

To standardize the spectrum binning across surveys, all spectra were splined at

0.0025 µm intervals. In some cases, the survey’s reported wavelength range is

longer than what actually exists in individual files. Splining performed very poorly

when extrapolating beyond the reported data. Therefore, any spectra that are

shorter than the needed wavelength range by > 0.01µm in either direction were

discarded. After eyeball checks, any remaining spectra whose splines appeared

to grossly misrepresent the data were corrected by hand. There are a total of 28

classes spanning the full breadth of data; however, some subclasses are only present

in the combined set. Classes O and R were removed because they are too sparse
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Figure 4.6: Top: Template for Q-type for SDSS from DeMeo & Carry (2013)) Bottom:
Examples of Q-type objects that are not particularly consistent with one another.

to split for training and testing. A few subclasses (S comp, Svw, Xn) have been

relabelled according to their basic classes for the same reason. Here, a basic class

is designated by a single letter and includes the spectra originally labelled as such

as well as data from any subclass under it; for example, ‘Sl’ would be designated

‘S’ as its basic class. The designation of a class as ‘basic’ is somewhat arbitrary

at this point; for example, the classes K and L are understood to be part of the

S complex but are not treated as subclasses in the SDSS classifiers. Conversely,

SMASS class T is a small class not seen outside that survey, so here it is treated as

a basic class in the early stages but discarded when the work moves on to consider

the SDSS.

For each dataset, the following routine is executed:

(a) Spline, clean, scale with RobustScaler and split the data as described in 3.3

(b) Perform PCA

(c) Examine the fraction of variability captured by each principal component

(d) Visualise the classes according to first three principal components

(e) Visualise the PCA loadings

(f) Cross-validate and train an SVM to classify the validation set



Chapter 4 — Supervised learning with optical spectra 81

Figure 4.7: Template for A-type (DeMeo & Carry, 2013) Below: Examples of A-type
objects that seem to have little in common with one another.

(g) Test on test set from the same data

(h) Test on test set from other datasets, if available in that wavelength range

(i) Produce confusion matrices and/or ROC-AUC plots

The same datasets are then re-processed as above, but without using PCA.

The SVM has been chosen because after trialling three other classifiers (random

forest, MLP, and XGB) models, all methods performed within a few percentage

points of one another in accuracy. Overall, optimally consistent results came from

the support vector machine.

4.3.1 PCA preliminary findings

As described in 1.3, the SMASS2 classifier was designed based on splined SMASS

data using the slope of the entire spectrum as a proxy for PC1 and taking PCA

of residuals (Bus & Binzel, 2002b). I decided to consider what happens when

new PCA is performed on different combinations of data and without explicitly

calculating slope. I produced a series of heatmaps to visualise the eigenvalues,

some of which are shown in figure 4.10.

In reading these plots it is important to recall that each principal component is

calculated and plotted on the same scale. The first PC contains the majority

of the dataset’s variance, with each successive component representing a smaller

share. Dramatic-looking features in a heatmap have impact if they occur in the
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first PCs but mean very little for higher-numbered PCs because the amount of

variance that they represent is tiny; see figure 4.8 to understand how quickly the

variance diminishes with additional PCs.

Heatmaps of loadings are very useful in flagging the presence of extreme outliers

because anomalous values become very obvious. When combining datasets of dif-

ferent provenance, there is a concern that the principal components will change

meaningfully. This is because each dataset will have a unique covariance matrix,

leading to unique eigenvalues and unique PCs. Figure 4.10 offers some reassurance

that the covariance matrices for SMASS, MITHNEOS, and S3OS2 are all reason-

ably similar. Each of these heatmaps has the same pattern of variance. For PC1

the correlation becomes negative shortward of 0.55 µm and positive longward, but

is otherwise almost uniform. For PC2 we are seeing variance occur where some

spectra fall off at higher (and lower) wavelengths, but others do not. These changes

present as a smooth transition. The middle of the plot is relatively uniform be-

cause in this wavelength range there is little difference between the spectra on the

PC2 axis. For PC3 some spectra are very strongly shaped just short (and just

long) of the normalisation, and in addition some are very different above 0.875

µm. These broad characteristics are the same across all the datasets to be tested.

PCA also assists with visualisation of class relationships. Figure 4.9 shows each

dataset in three-dimensional PC-space, labelled by class. Again, it is important

to remember that the PC1 axis encodes most of the variance when viewing these

plots.

The results of PCA screeplots (figure 4.8) were used in setting the number of prin-

cipal components to be tested in cross-validation of classification models. These

plots show the percentage of variance in the data captured by each of the first

25 PCs. The main difference in the screeplots lies in the greater number of PCs

needed to express the variance in the full-class datasets, except for the combined

SMASS/MITHNEOS/S3OS2 dataset, where the distribution of PCs is very similar

for all classes vs. basic classes.

Because of the long tails of some of these distributions, tests were done on PCA

up to 85 classes and 100% of the variance. Even so, improvements in classification

were marginal. For this reason, the number of PCs was limited to the range 3-7

to be tuned to each individual dataset using cross-validation.
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4.4 Results

4.4.1 Classifying with PCA and SVM

Tables 4.1 and 4.2 record scores for SVMmodels on all-class and basic-class models,

respectively. The reason for progressing by dataset across the columns of each table

is to take account of changes in class population one the one hand, and changes in

wavelength range in the other. By testing SMASS + MITHNEOS at the longest-

possible wavelength range and then at the shorter range, a baseline is established

against which to measure the shorter (but more numerous) spectra from 0.5 – 0.9

µm. A small decrement in accuracy can be seen when moving to the latter model,

which is attributable to wavelength limits rather than changes in class population.

Conversely, when adding S3OS2 data to the combined model, changes in behaviour

can be pinned to the new survey constraints (including class diversity) rather than

a change in wavelength range.

Some feeling for the performance of the basic-class models vs. the all-class models

can be gained from Figure 4.12, which shows the ROC-AUC results for each. The

basic class model performs well, with all classes performing close to the top left

Test set SMASS long SMASS + SMASS + SMASS +
MITH MITH MITH
long short S3OS2

Self 0.69 0.672 0.636 0.621
SMASS - - 0.722 0.796
MITHNEOS 0.30 - 0.50 0.359
S3OS2 - - 0.382 0.412
INT - - 0.540 0.628

Table 4.1: SVM models trained and tested on PCs of all classes. Models struggle
to do well even when tested on their own data; the reasons that SMASS is the most

successful can be attributed to its large sample size relative to the others.

Test set SMASS long SMASS + SMASS + SMASS +
MITH MITH MITH
long short S3OS2

Self 0.876 0.855 0.812 0.822
SMASS - - 0.890 0.889
MITHNEOS 0.689 - 0.800 0.736
S3OS2 - - 0.730 0.794
INT - - 0.762 0.78

Table 4.2: SVM models trained and tested on PCs of basic classes. The outcome
here is much better than for full classes. The final column represents the best results

achievable when training on principal components.
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of the plot; the full class model shows a much lower rate of true positives to false

positives as evidenced by lines close to (and below) the diagonal midline.

In Table 4.1, at first glance some results look worse than they are. For example,

testing the SMASS model on MITHNEOS data yields only 30% accuracy for full

classes; however, in examining the confusion matrix (Figure 4.13) all of the Q-

type objects are mis-classified for the simple reason that the SMASS model has

not been trained on Q-types. For eleven Q-types the SMASS model predicts ‘Sq’

(reasonably) and for ten ‘V’, with two predictions of ‘Sr’ and a single prediction of

‘A’. This ‘misclassification’ has some value; it helps to illuminate the relationship

between Q and its neighbouring classes in PC-space. Similarly, there are three

sub-types of ‘S’ in MITHNEOS that do not exist for the SMASS model; these are

also automatically misclassified. In general, the profusion of subclasses of ‘S’ seem

to be testing poorly, and about half of the misclassifications disappear in the basic

class version due to all S-types being treated as a single group.

The problem of missing subclasses can be handled by combining datasets to allow

the model to train on a wider variety of subclasses. For shorter wavelength-range

SMASS + MITHNEOS 0.5 – 0.9 µm model, the full-class model predicts six of

eight Q-types correctly in the MITHNEOS test set and four of seven correctly in

INT.

There is some blurring between B, C and X visible in the basic classes that is not

corrected with the addition of S3OS2 data (Figure 4.11). Overall, though, the

fully combined short dataset tests well on each of its components and on INT at

the basic class level, averaging around 80% correct across 11 classes. The final

column of 4.2 then becomes the best-case scenario for classification with available

spectra using PCA.

Finally, dimensionality reduction techniques such as PCA invariably involve infor-

mation loss. It could be argued that, if some small fraction of variance is contained

in the higher PCs (Figure 4.8), then including all variance in the training set would

permit (theoretically) perfect classification. To test this, the combined SMASS2 +

MITHNEOS 0.435 – 0.925 dataset is used. Classification improves only marginally

when up to 85 principal components are fed into the SVM. More PCs are not the

answer.

4.4.2 Classifying with SVM on full dimensions

Full results of all datasets with an SVM trained on all dimensions are shown in

Tables 4.3 and 4.4. Training without PCA produces slightly better results in most
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combinations of training and test sets, and in the combined dataset it performs

better across the board as summarised in Table 4.5.

Test set SMASS long SMASS + SMASS + SMASS +
MITH MITH MITH
long short S3OS2

Self 0.774 0.708 0.666 0.653
SMASS - - 0.838 0.872
MITHNEOS 0.295 - 0.609 0.500
S3OS2 - - 0.599 0.441
INT - - 0.47§ 0.780

Table 4.3: SVMmodels trained and tested on all dimensions of all classes. Poor results
here are due in part to surveys not containing a complete set of classes in common.

Test set SMASS long SMASS + SMASS + SMASS +
MITH MITH MITH
long short S3OS2

Self 0.936 0.898 0.836 0.850
SMASS - - 0.940 0.938
MITHNEOS 0.622 - 0.875 0.785
S3OS2 - - 0.736 0.837
INT - - 0.853 0.824

Table 4.4: SVM models trained and tested on all dimensions of basic classes. Results
are an improvement on the all-class version because subclasses have been lumped to-

gether, making the classifier’s job much easier.

Test set PCA all All PCA basic Basic

Self 0.621 0.653 0.822 0.850
SMASS 0.796 0.872 0.889 0.938
MITHNEOS 0.359 0.5 0.738 0.785
S3OS2 0.412 0.441 0.794 0.837
INT 0.628 0.780 0.798 0.824

Table 4.5: Comparison of ccuracy results for SVM models trained on SMASS +
MITHNEOS + S3OS2 with and without PCA. The model trained on full spectra im-

proves on the PCA model by 3− 5% depending on the test set.

4.5 Discussion

4.5.1 The value of PCA

The Bus-Binzel classification system is built on the use of PCA, predicated by the

same method in the Tholen (1984) system. PCA is extremely helpful in breaking

down high-dimensional data to a low-dimensional, visual representation, but some

weaknesses also exist. If a new spectrum is observed with features that vary dra-

matically from the dataset on which PCA was performed, when it is transformed
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into PC-space the unique variance of its features is at risk of being washed out

rather than enhanced. The effect has not been observed here, but it remains a risk

for new data. Additionally, the use of PCA should be reconsidered in machine-

learning classification, because results here indicate that it slightly disadvantages

the classifier. Although I have only reported results for SVM, this point holds

for random forest and multilayer perceptron models as well. Skipping PCA in

modelling also offers simplicity. New data can be immediately classified using a

non-PCA model without first transforming to the PC space of the model. The

model itself can be updated by retraining on new data without need to change the

PCA.

4.5.2 Role of uncertainties in spectra

I have not been able to find a straightforward way to incorporate errors on flux into

the training and testing of models. In the absence of errors, I have sought to use

diversity of sources and cross-validation in hyperparameter training to mitigate

overfitting due to . In Section 3.2 I claimed that using spectra from multiple

sources is beneficial because it implicitly introduces uncertainties, and the fact

that prediction accuracy in this chapter generally falls when new data are added

seems to support this assertion. Also, the cross-validation performed in setting

hyperparameters for SVM has created some buffer in the models against random

errors in new data.

As explained in Section 3.2, the literature suggests that variations in spectral slope

are likely to dominate uncertainties associated with these data. The physical causes

of slope change (e.g., phase reddening, rotation) are presumed random. Therefore

I would expect the SVM models to behave with patterns of prediction similar to

those seen in the confusion matrices in this chapter; that is, they would fail or

succeed in the same ways, albeit with some overall deterioration of accuracy to

be expected. However, errors associated with spectral calibration carry risk of

systematic bias in the slope of all spectra. For this there can be no cure, because

the SMASS classification system and its successors (including the most recent by

Mahlke, M. et al. (2022)) all rely on the spectra and, especially, their slope (as a

proxy for the first principal component). If the taxonomy itself were founded on

biased data, then the meaning of all results would be greatly diminished.

4.5.3 Classes and subclasses according to machine learning

Detailed spectra may offer insight into asteroid mineralogy, and even in cases

where mineralogy is ambiguous, high-quality data are always preferable to simple
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colour information. Any analysis of large-scale colour surveys implicitly depends

on solid classifications at spectrum level for the robustness of its own taxonomic

assignments. The problem is that with the sample of spectroscopically observed

objects still relatively small (few thousands), each new survey yields new sub-

classes and injects new variability into the population. Testing classes with an

SVM shows that many subclasses are too small and too similar to be picked apart

by machine learning. For the rest, most are well-defined, at least at the basic type

level, with the exception of B, K, and Q-types. B lives at one end of the C class in

PC space and tends to be lumped with C; this is not necessarily the fault of missing

albedo, because B-types generally have a negative slope. It is possible that more

samples of B would resolve this problem. I have already stated that Q-types do

not appear consistent on inspection, so it is not surprising that the SVM struggles

to classify them; as for K, it is not present in the largest survey (SMASS) and is

most often mistaken for the large S-class despite also being close to L in PC space.

As a class, K is barely distinguishable from L at spectrum level, yet its presence

as a major class in the DeMeo system means that SDSS broadband data can be

readily designated as K. We will find out later if this designation is tenable.

For asteroids, features that distinguish certain classes (such as the 2 µm absorption

band) may appear only in the infrared; this is the whole point of the Bus-DeMeo

taxonomy. Within the visible regime, though, results here indicate that small

changes in wavelength range of surveys are not too problematic in matching classes,

and the range 0.5 - 0.9 µm offers the best variety and quantity of spectra with

minimal loss of information.

4.6 Conclusion

In this chapter I have shown that a support vector machine can predict basic

classes within each of the SMASS, MITHNEOS, and S3OS2 datasets to around

90% accuracy, but when models are transferred from one dataset to another per-

formance can deteriorate dramatically. In order to move forward, I have combined

all the available data into a single model from 0.5 – 0.9 µm, which achieves 85%

accuracy in classification on a test set without resorting to PCA. Recalling that

there could be around a 27% difference in classifying the same objects in SMASS

as in S3OS2 (see 4.2) this can be treated as a good performance, and the SVM has

no trouble with high dimensionality. I have trained a second model on data from

SMASS and MITHNEOS in order to increase the wavelength range from 0.435

– 0.925 µm whilst retaining all the important classes. The long model achieves
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90% classification accuracy, but because it is based on a smaller, less diverse pop-

ulation, performance will almost certainly degrade more on new data than in the

short model.

Despite these encouraging numbers, I note that some of the major types are diffi-

cult to distinguish from neighbouring classes despite the high level of detail avail-

able in their spectra: namely, B, K, L, and Q. Generally, these classes can be

differentiated by models tested within their original datasets, but not by models

trained on all available data. While there is some reason to believe that the prob-

lem is exacerbated by the absence of B, K, and Q classes in the large SMASS

dataset that makes up much of the data used for training, the fact that L-types

are also compromised indicates that some more fundamental problem exists in the

taxonomy. The implication is that models need to overfit in order to find these

classes. This is important because it shows that some classes do not have a strong

identity even given the best possible resolution.
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 https://www.reneshbedre.com/blog/principal-component-analysis.html
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Figure 4.9: First three PCs for SMASS, SMASS + MITHNEOS long, SMASS +
MITHNEOS + S3. Left: all classes, right: basic classes. For all its uses, PCA necessar-
ily shifts its axes as the data are changed, which we can see in the different distributions

of the data as more objects are added successively to the plot.
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Figure 4.10: Eigenvalues for PCA expressed as a heatmap of ‘loadings’ (weights);
the values of each unit on the x-axis represent the importance of each wavelength in
setting the axis that maximises variance. Top to bottom: SMASS 0.435 – 0.925 µ
m, SMASS + MITHNEOS 0.435 – 0.925 µm, SMASS + MITHNEOS 0.5 – 0.9 µm,
SMASS + MITHNEOS + S3OS2 0.5 – 0.9 µm All are basic classes. Note that colour
schemes are independent for each principal component as well as each subplot. The
greatest variance is always indicated by the greatest deviation from zero. Qualitatively

the features expressed in the eigenvalues are consistent throughout.

Figure 4.11: Confusion matrix of all three datasets combined in the range 0.5 - 0.9
µm and tested on the combined test set. A problem remains in defining B, K, and
L-types. The two most populous classes, S and C, tend to ‘pull in’ members of classes

that are similar to them.
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Figure 4.13: Confusion matrices for PCA/SVM model trained on SMASS2 0.435 -
0.925 µm and tested on (top): self all classes, self basic classes; (bottom): MITHNEOS

all classes, MITHNEOS basic classes.

Figure 4.14: Confusion matrices for a model trained on PCA of combined SMASS2
+ MITHNEOS + S3 0.5 - 0.9 and tested on each individual training set (top: S3 left,

MITHNEOS right; bottom: SMASS left, INT right).



Chapter 5

Pseudo-broadband classification

tests on SDSS

5.1 Introduction

This chapter addresses the question: what happens to the integrity of each asteroid

type when moving from spectra to SDSS broadband photometry? There are two

impacts of this shift, one being felt at the level of spectra converted to pseudo-

broadband and a second when comparing the result to SDSS recorded classes,

for which there are three (partially overlapping) datasets and two separate (but

related) classification systems. To understand the shift better I work with a subset

of the data having both spectra and broadband values, hereafter known as the

common objects.

Both the Carvano et al. (2010) and DeMeo & Carry (2013) SDSS classification sys-

tems were designed with the benefit of expertise in interpreting asteroid spectra, a

process that (for better or worse) carries biases. When I began this work, I hoped

to triangulate on these systems by letting the spectra speak for themselves, so that

for SDSS it would be possible to train on pseudo-broadband from spectra and pre-

dict on broadband to achieve a more objective understanding of class boundaries.

Over time it became clear that the process is less than straightforward, largely

due to apparent differences in scaling between SDSS and spectra. This work has

ended up being more about what cannot be done than what can be done.

In this chapter I attempt to separate the problems with low-resolution data in

general from the problems with matching SDSS broadband to spectrum pseudo-

broadband. The short (SMASS + MITHNEOS + S3 + INT 0.5 - 0.9 µm) and

long (SMASS + MITHNEOS 0.435 - 0.925 µm) datasets described in 4 are con-

verted to pseudo-broadband and a classifier is trained on each of them. I compare

94
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the outcome to the results obtained with full spectra to show which classes are

the most difficult to separate at this much lower resolution. Then the model is

tested on three different SDSS datasets. The difficulties that arise are addressed

using the data themselves in two ways: 1) calculation of conversion factors be-

tween pseudo-broadband and each of the SDSS datasets, and 2) training a model

to ‘recognise’ the correct spectrum class from SDSS broadband values based on ob-

jects having both spectra and SDSS data. The improved results are then examined

to deconstruct failures.

5.1.1 Method

The short and long combined datasets are used to create pseudo-broadband filter

data for comparison with SDSS-MOC objects.

Spectra were prepared as pseudo-broadband to match SDSS broadband reflectance

data from the literature. I did some prior work that approximated u band by

using the value of the spectra at 0.435 µm, but the extra dimension did not offer a

meaningful improvement for classification even within spectrum datasets, so here

I use only g, r, i, z (where g is simply unity in all cases). This enables me to plot

in three dimensions over r-i-z.

Short spectra from 0.5 – 0.9 µm were normalized to unity at 0.5 µm and long

spectra from 0.435-0.925 µm were normalized to unity at 0.4775 µm, as close as

possible to SDSS g-band centre of 0.4774 µm. For each dataset, r and i values

were obtained by taking the mean wavelength over the full-width half-maximum

of the SDSS bandpass. The z values were obtained by taking the value at 0.9 µm

for short data and the mean value immediately around the central wavelength for

z band (0.9132 µm) for long data. A bias is therefore introduced to the short data

because the g-band is shifted to higher wavelength and z-band is set to slightly

lower wavelength than the SDSS z band centre. For positively-sloped spectra

(which the overwhelming fraction of the sample are) these wavelength limitations

will compress the range of fluxes at both ends, with a greater effect on the strongly-

sloped classes (e.g., D and the S-complex) than on the flatter classes (B, C, X).

For each dataset, an SVMwas trained and tested on the spectrum pseudo-broadband

data and the model saved. Each model was tested on each of three SDSS datasets:

Carvano, DeMeo, and Sergeyev, each prepared as described in 3.4. Because the

Carvano system has no B and folds K into L, separate models are trained for the

DeMeo and Carvano data.
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Proceeding on the assumption that pseudo-broadband is more precise than SDSS,

I attempt to bring the SDSS data in line with the spectrum data to improve

classification accuracy.

The first method (bridge model) takes a machine-learning approach. The bridge

model involves retraining the SVM to ‘recognise’ SDSS data associated with a given

class spectrum class in the hope that it can become a ‘bridge’ between spectra and

SDSS. A major assumption is that the difference in SDSS data vs spectrum data for

the same objects follows a consistent pattern that can be learned. The problem is

challenging for machine learning due to the small number of common observations

and the imbalance in class numbers.

(a) The bridge model was trained on common objects in three permutations:

i. train on spectrum pseudo-broadband and test on the same

ii. train on SDSS broadband and test on the same

iii. train on SDSS broadband but test on spectrum classes

(b) Results were compared to the original fraction of mismatched classes between

spectra and SDSS

The second method is to simply correct the SDSS data. Histograms of common

objects by band show bimodality in both the spectrum and SDSS data (likely

attributable to the two fundamental groupings, C-types and S-types). Objects with

matching classes have similar distributions to objects with unmatching classes, also

irrespective of class. However, the SDSS is systematically brighter in all bands;

that can be corrected.

(a) Corrections were assigned based on the median value for SDSS divided by

the median value for spectra.

(b) Each set of SDSS data was divided by the appropriate correction factor in

each band.

(c) An SVM was trained on all spectra and tested.

(d) Classes are predicted on each SDSS dataset with and without correction.

Predictions on SDSS are compared to recorded classes and some discrepancies are

investigated.
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Band DeMeo Carvano Sergeyev DeMeo Carvano Sergeyev
short short short long long long

r 1.08 1.09 1.13 1.09 1.08 1.10
i 1.09 1.1 1.13 1.13 1.12 1.13
z 1.05 1.07 1.1 1.15 1.18 1.15

Table 5.1: SDSS data are divided by the values in this table to bring them in line with
pseudo-broadband. The corrections are derived by dividing the median SDSS value in

each band by its pseudo-broadband counterpart.

Figure 5.1: Offsets in band values between common spectra and SDSS data used to
calculate conversion factors.The difference in the distributions between datasets is the
most dramatic at r’ band; for z’ band the distribution peaks are quite close to one

another.

Figure 5.2: Common objects before (left) and after converting Carvano SDSS values
(right). Horizontal and vertical bars are used to differentiate datasets visually (they
do not denote error). After the correction factor is applied to SDSS the S and L-types
move closer to their pseudo-broadband equivalents, but there is still a significant visible

difference between the data for V-types.
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Figure 5.3: Confusion matrices showing predictions from broadband model vs. spec-
trum model on short spectra test set for Carvano classes (left) and DeMeo classes
(right). Top row are short spectra, bottom row are long. The absence of A, B, and
K from the broadband predictions suggest that the data resolution is too low for the

classifier to pick out these types.

5.2 Results

5.2.1 Spectrum model predictions on broadband data

The simplest measure of changes of class boundaries after reducing to pseudo-

broadband can be obtained by running the broadband-trained model on the origi-

nal test set and comparing its predictions to the predictions of the spectrum-trained

model. If the broadband version could perfectly represent the spectrum data, the

results would be the same; where there is disagreement, there must be deterioration

in the quality of the data because this is the only thing that has changed.

There are a few insights to be gleaned from Figure 5.3. The first is that the

short data are more robust when switching to pseudo-broadband, especially for

the DeMeo data. There is very poor matching between spectrum predictions and

broadband predictions for the long data. The short data do experience problems

with some classes. Of Carvano classes, the broadband model does not find type A

at all, whilst of DeMeo classes it loses A, B, and K. Without doing any comparisons

to recorded classes, it’s already possible to say that the use of classes A, B, and

K is not meaningful for broadband data, at least not at these population levels.

This is not the fault of the method, but of the data resolution.
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Classes Short Short Difference Long Long Difference
spectra griz spectra griz

Carvano N/A 83.7 N/A N/A 86.4 N/A
DeMeo 85.0 79.6 -5.4 89.8 82.8 -7.0

Table 5.2: Results of griz models from short and long spectra as percentages. We
are interested in the change in accuracy for DeMeo classes between spectra and griz;
this is 5 − 7%, and it means that the best we can hope for from a pseudo-broadband
classifier is around 85% accuracy. The result on Carvano classes is included to enable

later comparison to tests on SDSS Carvano data.

5.2.2 Pseudo-broadband model on pseudo-broadband data

Now the results of the broadband models are compared to actual recorded classes

for these spectra. As seen in Table 5.2, after reducing to broadband the classifier

score drops by 5.4% for short spectra and 7% for long. Carvano classes have been

introduced to facilitate comparison with SDSS; they score higher because B-types

have been folded into C and K-types into L at the training stage, making less work

for the classifier

A benchmark is now established for the pseudo-broadband classifier that reflects

the expected upper limit of its performance. Figure 5.3 illustrates how well each

class is predicted using DeMeo classes; deterioration of the result is actually worse

than the score alone would indicate because the A, B and K classes disappear

completely from predictions; all A are predicted as S, all B as C, and most K as

L (otherwise X). In the long model predictions, the same thing happens; but D

and Q also disappear. Type D are predicted as L, and Q are mostly classed as S

(otherwise B). We cannot know if these three classes are truly ‘lost’ at this stage;

but the classifier so far does not recognise any examples from the test set.

Given the predominance of S-types in the sample it is hard to know to what

extent class imbalance is involved in misclassifications. The fact that a few Q and

D objects, which disappear in the long model, are successfully identified in the

short model (which contains more data) suggests that the role of class imbalance

is more pronounced when 1) there are very few samples of the smallest classes and

2) the smallest classes are immediately adjacent to the majority class.

5.2.3 Comparing pseudo-broadband to SDSS

Before attempting to predict on SDSS using spectrum pseudo-broadband it is

important to find out how well the SDSS and spectrum classes match up. Table

8 indicates that for common objects recorded classes align between spectrum and

SDSS classes to about 70.7% (see Figure 5.6 for breakdown by class). It cannot be
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Figure 5.4: Recorded class for original spectra in pseudo-broadband r-i-z space (left)
vs class predicted by model from spectra in the same space (right). The absorption of

B (gold) into C (blue) is evident in the right panel.

known whether this fraction generalises to the entire dataset, but the implication

that SDSS labels are only about 70% trustworthy makes it effectively impossible

to establish a ground truth for models to learn. It is particularly difficult to

say anything about A- and Q-types, which are barely represented in the common

objects; these classes are also vulnerable to being overlooked by the models trained

so far.

Data Matching Matching
long (%) short (%)

Carvano 76 82
DeMeo 70 70
Sergeyev 0.71 0.78

Table 5.3: Class matching between spectra and SDSS for common objects

Before jumping to conclusions about classification systems, it’s important to look

at the data in r–i-z space. Common objects exhibit a larger scatter in the values for

each SDSS bandpass than the values in spectrum pseudo-broadband. The effect is

shown in for Carvano data in Figure 5.5. If this increased variability in SDSS were

related to loss of flux at the high and low ends of the spectra when converting to

pseudo-broadband, then a comparison of the data in i– vs. r–band should reveal

a similar relationshp for both spectra and SDSS. However, the bottom subplots in

Figure 5.5 shows that this is not the case.

The fact that spectra can redden due to high phase as well as variations in the sur-

face presented due to rotation are both possible reasons for differing values at the

high end of photometric/pseudo-broadband wavelength range. However, these dif-

ferences should be random. Additionally, pseudo-broadband and SDSS catalogues
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rely on averaged values. There is no reason to expect SDSS to have systematically

higher values (for example) in z-band due to random physical changes.

I note that I have obtained Carvano reflectances by converting from log reflectances,

whereas DeMeo and Sergeyev data come from linear reflectances calculated by the

authors; in both cases the divergence from pseudo-broadband is similar in nature.

It seems more likely that the problem comes from differences in spectrophotomet-

ric calibration (covered in Section 3.2) between the SDSS system and the various

reflectance spectrum datasets.

Finally, the fact that the data are yet more widely spread in the DeMeo and espe-

cially Sergeyev datasets relative to Carvano SDSS can be observed by comparing

the distribution of the data in Figures 5.9, 5.10, and 5.11, which are all plotted on

the same axes. I suspect that the increased uncertainty associated with the larger

populations included in the DeMeo and especially Sergeyev catalogues contributes

to the observed scatter.

5.2.4 Results of model predictions on SDSS datasets

Common objects test set Score (%)

Pseudo-broadband train/test 78
SDSS train/test 81
Pseudo-broadband vs. SDSS recorded class 71
Bridge model 72

Table 5.4: Results of training and testing on the common objects using pseudo-
broadband data vs. SDSS data on the same objects. For the bridge model, the SVM
was trained on SDSS photometry with pseudo-broadband classes to try to teach the
model to recognise the classes derived from spectra. The result is very slightly better
than recorded class matching between SDSS and pseudo-broadband classes, but not

enough to solve the problem.

Table 5.4 shows results of training and testing on common objects for the bridge

model. Training pseudo-broadband and testing on pseudo-broadband is slightly

less successful than training on all SDSS and testing on SDSS. Small sample size

is likely a problem here, because the SDSS as a whole can train and test on its

own classes at > 90%. For the bridge model in which the classifier tried to ‘learn’

the spectrum classes from SDSS data, only 72% were correctly classified. This is

higher than the 70.7% matching in recorded classes, but at low significance ( 78%)

at this sample size. The bridge model is not used further in this work.

Turning to the corrections derived from common objects, for short spectra, pseudo-

broadband can be predicted at 80.1% accuracy (with or without correction) on

their own test set. Results on SDSS score between 62.3 – 75.3%. The latter
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Figure 5.5: Comparison of reflectance values in common objects as seen from spectra
converted to pseudo-broadband (left) and Carvano SDSS (right). The top row shows
values in r, i, z relative to g-band, while the bottom row shows r – i only, where loss
of flux in g and z should not matter. A wider spread in SDSS values as well as an

apparent offset between the two datasets is evident.

scores improve after correction for DeMeo (+ 11.6%) and Carvano (+21%), but

for Sergeyev data they degrade (-3.8%). (see Table 5.5). In a contest between the

bridge model and the correction factor, the correction factor wins; however, figure

5.2 makes it clear that improvements with this method are limited. The classes

are not fully superposed even after correction.

Short Before (%) After (%) Difference (%)

Carvano 67.4 88.5 +21.1
DeMeo 62.3 73.9 +11.6
Sergeyev 75.3 71.5 -3.8

Table 5.5: Correction factor: before and after
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In studying the plots of recorded classes in Figures 5.10, 5.9, for DeMeo and

Sergeyev the boundaries of recorded classes seem arbitrary because the data show

up as a cloud; however, it is reassuring that the classes mostly appear consistent

between the three SDSS datasets. On the other hand, when machine-learning

predictions are made, the S-type becomes subdivided and the plots take on more

of a patchwork appearance, especially in Sergeyev where the recorded classes show

severe dominance of S-types. In principle, this effect would indicate that the

complexities of spectrum classes, once flattened into pseudo-broadband, project

into r− i− z space in complicated ways. That is, degeneracies in class are implied

at broadband level, which is expected at such low resolution. But due to the poor

correspondence between pseudo-broadband and real SDSS values, it is not possible

to be more specific about how those degeneracies work. In fact, it is more likely

that the fitted model is attempting to label some distortion of what the ‘true’

data would be if spectra for these objects were available, and the nature of the

distortion is not-well characterised. This is the heart of the problem.

For Carvano, the appearance of discrete clumps occurs in part because I have

removed objects with mixed or uncertain classes as well as photometric flags.

However, the mixed Carvano classes are a minority of the dataset, and by looking

at figure 5.11 it’s obvious that the mixed classes don’t make much difference.

In fact the data have been more carefully curated in the first place, especially

compared to the Sergeyev dataset, where the authors explicitly set out to find as

many asteroids as they possibly could.

When predicting on DeMeo, the SVM boundary in C/X runs nearly parallel to

the i-axis, similar to the recorded class C/X boundary in the Carvano classifier.

However, the recorded DeMeo C/X boundary runs almost parallel to the r-axis,

resulting in a different interpretation of the differences between the two classes. I

am going to assert that the SVM classifier trained on spectra is ‘less wrong’ than

Figure 5.6: Comparison of class distributions between spectra and SDSS from com-
mon objects. For about 70% of objects the classes agree. The dearth of common objects

from A and Q is a problem
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Figure 5.7: Comparison of broadband model on test sets (left) and SDSS data (right).
Top row is for DeMeo classes, bottom for Carvano classes. There are few D-types
for training, but the model agrees with SDSS classification well. Note that Type A
‘reappears’ in SDSS after being misclassified in the model’s own test set. However Q
‘disappears’ when tested on SDSS data for Carvano. Classes B and K are ‘lost’ in the
DeMeo test set as well as SDSS predictions, suggesting that the Carvano approach may

be more realistic here.

the DeMeo SDSS classifier, especially because some of the objects used to create

the Bus-Binzel classes will have had albedos that make separation of C and X

much easier. There is a clear loss of B-types in the predictions, which again seem

to be operating on the i-axis whilst the DeMeo classifier uses the r-axis. The SVM

model is preferable to recorded classes in this specific point as well.

On the C/X boundary, Carvano predictions line up better to recorded classes

than DeMeo predictions. Type A manages to reappear, even though the pseudo-

broadband model failed to predict A-types on its own test set. At the same time,

Q disappears, despite the presence of a distinct region associated with Q in the

3D plot of the test set. From the plots of recorded vs. predicted class for Carvano,

class boundaries of the spectrum classifier are not a good match when it comes

to Q and D. The Q (grey) region in Carvano SDSS appears distinct from the S-

complex (red) but borders on V (magenta)—yet the spectrum classifier groups it

with S. A smattering of D-types are predicted as X even though they are relatively
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Figure 5.8: Results of spectrum-trained model on Carvano (left) before and (right)
after correction factor applied. The corrected model still cannot find Q or A-types, but

C and L recognition is greatly improved.

distant from the main X cluster in the Carvano plot; at the same time, a patch of

Carvano L-types are assigned to D when, to the eye, they do not belong there.

The Carvano A-class consists of a small cluster of outliers in r-i-z space, but the

spectrum classifier also predicts a substantial chunk of Carvano S-types as A. Given

the expanded domain of values in SDSS, this is a slightly suspicious outcome.

Looking at the full distribution of Carvano classes vs the model predictions, it

is clear that the model captures the expected A-types plus some others that are

recorded as S and L, but the intrusion of A into S/L is not too egregious (see

Figure 5.11)

Overall, the recorded Carvano classes appear more convincing than the predicted

ones and there does not seem to be a problem with imbalance in the sense that

both A and D-types end up over-represented by the model (possibly because the

overrepresentation involves moving ‘inward’ in an r-i-z space where the SDSS data

occupies a larger domain). On the other hand, the two largest classes, S and

C, appear to have ‘gained territory’, which could be the result of imbalance and

warrants further investigation.

5.2.5 Long spectrum version

Results for the long spectra are presented next. In the interest of space, plots are

not included here as they are similar to the short spectrum model results.

Table 5.6 shows the improvement in recorded class matching for common objects

after correcting SDSS data. The long model improves less from correction than the

short model when tested on Carvano data. In terms of scoring, the short model

works better on Carvano data, but the long model works better on DeMeo and

Sergeyev data. Here once again entire classes are lost, but this effect is worse than

in the short model. A few things to note:
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• Most objects are predicted to be C, L, S, or X

• A, B, K disappear completely; A becomes S, B becomes C, and K is spread

between C, S, X.

• All but a few Q are lost to S. About half of L is predicted as S and a quarter

as X. Most of D is lost to L.

At this point it seems that small sample size is beginning to bite when it comes

to the overfitting of models, and the ‘cleanliness’ of the long data are not an

advantage. In the contest between quality and quantity of data, when it comes to

models trained on spectra, quantity wins.

Short Before (%) After (%) Difference (%)

Carvano 68.8 80.7 + 11.9
DeMeo 64.8 76.2 + 11.4
Sergeyev 75.7 78.0 + 2.3

Table 5.6: Results of classification with the long pseudobroadband model for each
SDSS dataset, before and after the correction factor is applied. There are distinct
benefits for the alignment of Carvano and DeMeo data to pseudobroadband values.

5.3 Discussion

Remembering that the common objects can be matched at no more than 80%

agreement between spectra and SDSS, the short spectrum model achieves a good

score on SDSS after corrections are made. In fact, given the 20% mismatch in

recorded classes it is hard to see how it could possibly do better. Yet the accuracy

score alone masks an important problem of smaller classes being misrepresented

or not represented at all. The classes A, B, K, and Q are no longer able to be

verified by the short spectrum test set.

There are two challenges to overcome here: firstly, poor calibration between spec-

trum pseudo-broadband and SDSS broadband, and secondly, loss of information in

moving from spectra to broadband. Calibration is challenging for several reasons:

Neither spectral dataset is ideal for comparison with SDSS data. The short dataset

is sourced from four surveys whose class assignments are not in complete agree-

ment, and their wavelength limits force broadband normalization at 0.5 µm when

it should be at 0.4775 µm to match SDSS. The long 0.435 – 0.925 µm data extend

to better coverage of the SDSS g and z bands and are correctly normalised, but

they come from only two surveys and still carry biases (described in Section 5.1.1

SDSS is normalised at the centre of g-band (0.4776 µm) and extends into the NIR

beyond 0.9 µm. Carvano et al. (2010) converted magnitudes to log reflectances,
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which I have re-converted to linear values relative to g in order to render them

equivalent to the reflectances used so far. DeMeo & Carry (2013) used a different

approach, referencing 371 optical/infrared spectra which they were able to convolve

with SDSS filter profiles for the sake of comparison with SDSS broadband. They

do not say how they handled the short end of the SDSS g-band filter, which extends

below the limit of 0.435 µm for any publicly-available spectra that I have been able

to find.

Because I was unwilling to extrapolate into the end regions of the spectra, and

because most S3OS2 and INT data are available only between 0.5 - 0.9 µm, both

the z- and g-bands are incomplete in my work. I also note that the Bus-DeMeo

system (DeMeo et al., 2009) relies on albedo, especially to separate B from C

—also unavailable here.

The real problem in training a classifier on spectra and testing on SDSS lies in

the scaling of the data. I have discussed the possible reasons for this in section

5.2.3. While I have ruled out some possible explanations, I am unable to pinpoint

the problem. Since the same object is often brighter in r, i, and z in SDSS than

in spectra, some problem with calibration is assured. But there is evidence that

inclusion of a larger population of asteroids also results in greater scatter of the

data, which I attribute to two intertwined causes. The first is error. Spectrum

data have a selection bias in favour of brighter objects, which in turn implicitly

reduces the error on reflectance for any given wavelength. Spectra were carefully

curated and processed with eyeball checks; SDSS data are more widely inclusive

and processed automatically. The size of SDSS data increases from Carvano to

DeMeo to Sergeyev, and so does the size of the data domain. I attribute the second

possible cause of the scatter to inclusion of a genuinely more diverse sampling of the

population, especially in the dimmer parts of the Main Belt that are not observed

by small spectroscopic surveys.

An apparent offset in the values of the three bands also exists between SDSS and

pseudo-broadband. The offset has been improved as much as possible with the

introduction of a correction factor. This adjustment is crude and certainly in-

sufficient; it is clear from comparing 3D plots of pseudo-broadband with SDSS

broadband that the former has values concentrated in a narrower region of each

of the three bands. The most obvious reason for the result is the increased error

range together with the sheer size of the SDSS data. In the absence of a clearly

defined cause of the discrepancy, ideally a systemic correction would come from

the data themselves by training a machine learning model to find the relationship.

The so-called ‘bridge model’ that I have attempted here is not effective enough
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for good classification and cannot even be shown to enable a statistically signif-

icant improvement on the models trained on unaltered data. Small sample size

of objects-in-common may be to blame for the failure, but there is not enough

evidence to know one way or another.

In terms of information loss in the conversion to pseudo-broadband, all the worst-

affected classes have small populations. To lose A is hardly unexpected because it

is a very small class; but size is not the only factor because type D tests well even

though it is also small; this could be because D-types are more tightly clustered

than A. It is a little surprising that B is lost because it appears to have a well-

defined position in r-i-z at the extreme end of the C-complex, but there are few

samples for the classifier to train on. On the other hand, K is difficult to distinguish

from L even at spectrum level, and Q has already been shown to be a class whose

spectra are rather variable in shape. It is understandable that the model struggles

on these classes.

Overall, the increased scatter and brightness offset of the SDSS vs. spectra make

the use of pseudo-broadband problematic without even thinking about known er-

rors on magnitude/reflectance. It is to be expected that the inclusion of known

errors would wash out most of the value of models trained on pseudo-broadband.

The results of training on data that have been deliberately ‘blurred’ with a varia-

tional autoencoder in Chapter 6 will offer some feeling for the impact of random

errors on the broadband classification models.

5.4 Conclusion

The transition to pseudo-broadband reduces model score by only 5% compared to

full spectra, but this is enough to wash out the identifying characteristics of classes

A, B, and K in the test set. A problem like this might possibly be correctable with

careful augmentation of minority classes, but it turns out to be secondary to the

issue of domain size in r-i-z space for SDSS data. The SVM can achieve a score

comparable to the percentage of recorded classes that match between spectra and

SDSS, but examination of 3D plots and confusion matrices makes it clear that the

recorded classes have a more believable place in r-i-z space than the predictions of

the SVM do. Therefore, the SVM fails to help us better understand the data.

I have shown that it is possible to improve matching between spectrum pseudo-

broadband and SDSS with a correction factor derived from the mean differences

in reflectance of common objects, but there are not enough data to teach a model

to do a better job of translation. I am reluctant to recommend this correction

factor without a deeper understanding of how SDSS magnitudes translate to flux,



Chapter 5 — Pseudo-broadband classification with SDSS 109

and anyway I consider the approach itself to run contrary to the machine-learning

focus of this work.

The boundaries of classes are destined to overlap when broadband photometry is

involved. However, we need to know what kind of groupings are latent in the data,

irrespective of mineralogical knowledge or any other preconceptions. Clustering

has the potential to offer unexpected information in this respect. However, in

order to compare human classifier results to clustering results, it is important to

understand the role of class imbalance on the data. It is also necessary to correct

the sparsity that leads to some classes being washed out of the model, for which

augmentation, the subject of Chapter 6 will be performed. Since the performance

of the short data model is shown to be slightly more robust than the long version,

I will carry on with the short dataset only.
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Figure 5.12: Comparison of common objects i vs. r in pseudobroadband (left) and
SDSS (right). The SDSS objects are scaled over a wider range of values even in the

bands where pseudo-broadband contains the full SDSS range of wavelengths.



Chapter 6

Addressing class imbalance

with augmentation

6.1 Introduction

Up until this point some smaller classes (A, B, K) have been elided by models,

while others such as D and V have generally survived intact. It has been unclear

to what degree the population dominance of S and C classes over the others has

factored into this result. Also, it has been impracticable to incorporate the effects

of measurement error on models, nor to make allowances for the movement of class

boundaries in the event of presumed new data becoming available in the border

regions between classes. In this chapter I will attempt to address these limitations

as forensically as possible.

I will compare results of an SVM trained on original data to models trained in

ways designed to overcome imbalance. The first and simplest balancing method

is to weight the classes, which does not require adding new data. The second and

third involve augmentation using, respectively, SMOTE-ENN and VAE oversam-

pling. Each of these methods carries its own characteristic advantages and risks,

as discussed in 2.6.

6.2 Method

For each of the balancing methods, data from short spectra used in the previous

chapters were divided into training, validation, and test sets by setting aside 20%

of the data as a test set and then splitting the remaining 80% in a 4:1 ratio

of train:validation. The training spectra were used for augmentation and model

training, after which each model was tested on its own validation set as well as

114
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on the original (unaugmented) test set. Each model was tested on each of the

three SDSS datasets using SDSS data with and without correction as described in

Chapter 5.

6.2.1 Class weighting

The class weighting approach applies to the existing data without augmentation

by giving equal emphasis to all classes, irrespective of their population size. Ba-

sic classes were used to train an SVM as in the previous section, except for the

addition of a class weights parameter in the call to scikit-learn’s support vector

machine. By setting class weights to ‘balanced’, the algorithm automatically cal-

culates an appropriate weighting for each class and multiplies the cost function by

this weighting (Pedregosa et al. (2011a)). This is the most conservative approach

to the problem, but with small sample size overall it is still likely to produce a

weaker model, nor can it address the effects of errors or the anticipated scatter in

new samples.

6.2.2 SMOTE-ENN

SMOTE-ENN was described in detail in Chapter 2.6.1. Here it is used to raise

the numbers of each minority class to match the majority class, S. For the short

spectra, this means 689 spectra of each class. The SVM model was trained on orig-

inal spectra and then tested on SMOTE-ENN augmented spectra and vice versa.

The data were then reduced to pseudo-broadband values and a new model trained

and tested on SMOTE-ENN before being tested on the three SDSS datasets. As

before, a separate model was trained for the Carvano system.

Unlike in the weighted version, SMOTE-ENN doesn’t rely on a small number of

points to determine a given class. Examples of SMOTE-ENN synthetic spectra

for each class are shown in Figure 6.1 to illustrate that they are plausible repre-

sentations of real spectra of their respective classes. Because SMOTE-ENN works

within existing class boundaries, it seems like a safe method of augmentation, but

there are unwanted consequences of interpolating between existing samples to gen-

erate new ones. Although the SMOTE-ENN dataset was created in the full 161

dimensions of the original spectra, when reducing to r-i-z space a substructure is

introduced that results in complicated class boundaries and subsequent overfitting

(see Figure 6.2).
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6.2.3 Variational Autoencoder

As described in Chapter 2 the variational autoencoder resamples individual spectra

according to a trained model that includes variance. For this work I used the Keras

library’s 1DConvnet to build a variational autoencoder for the spectra. There was

a good deal of trial and error in this process. In order to get good approximations

of the original classes it was necessary to train the VAE for each class individually

and then combine all the samples into one dataset, working with a laptop and

using Google Colab to do the heavy lifting. As with SMOTE-ENN, the number

of samples was set by the number of S-types. Unlike SMOTE-ENN, it’s possible

to compare the variational spectrum to its progenitor directly. Most VAE spectra

are very close to the originals in shape while usually being smoother, as shown in

Figure 6.3. On the other hand, figure 6.4 shows that in a minority of samples, the

approximation strays from the original. This is the reason for using a VAE: it is

desirable to simulate some error and some scope for the variation that is expected

from new observations. It is worth noting that the way the VAE represents the

latent state of a class seems to depend on how similar the training examples are

to one another. When looking at many synthetic spectra it’s apparent that the

tendency of the VAE to produce something different to the parent spectrum is

greater if the set of parent spectra for that class has a large scatter (and vice

versa). It is easier to find A-types that vary noticeably from their parents than

it is to find C-types that vary, for example. I did not attempt to engineer the

autoencoders to address this, but in future work it could be attempted.

Finally, it can’t be stated whether a Gaussian distribution around an accurately

encoded state is the best representation of variability in unknown asteroids, but

at least there is scope for the new samples to move outside the original class

boundaries in a statistically believable way.

6.3 Predicting on spectra with balanced data

Results of SVM classification on these new datasets are presented in Table 6.1. The

weighted model does not improve on the imbalanced model. The SMOTE-ENN

model produces a 91% accuracy result on the test set of unaugmented spectra, and

88% after conversion to pseudo-broadband; however, in the pseudo-broadband 3D

plots (see Figure 6.2) the augmentation produces undesirable substructure in the

upsampled data, creating a risk of overfitting.

At spectrum level the VAE gets a similar result of 96% and 92%, respectively, for

augmented and original test spectra and 90% in pseudo-broadband.
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Data 0.5 - 0.9 µm Imbalanced Weighted SMOTE-ENN VAE

Spectra (self) 0.851 0.829 0.969 0.957
Spectra (other) 0.839 (SMT) N/A 0.912 (orig) 0.918 (orig)

0.797 (VAE) N/A
griz spec (self) 0.825 0.692 0.875 (self) 0.898 (self)
griz spec DM 0.739* 0.299* 0.351 conv 0.306*

0.386 unconv
griz spec S 0.715* 0.298* 0.434 conv 0.374*

0.415 unconv
griz spec C** 0.885* 0.441* 0.517 conv 0.585*

0.436 unconv

* with conversion
** fold B into C, K into L

Table 6.1: Augmentation results summary showing the training/test data in the left
column and model results for different class-balancing methods on the right. The VAE-
trained model performs very nicely on test spectra, but when tested on the SDSS it
is 30-40 percentage points worse than models trained on imbalanced data. It is likely
that Carvano performs slightly better than the others because there are fewer classes

to differentiate.

But when it comes to testing on the SDSS, the VAE and SMOTE-ENN models do

not improve on the imbalanced model when classifying the original data, whereas

I will show in Section 6.4 that the matching to SDSS classes is nothing short of

disastrous. To get to the bottom of what is happening, some 3D plots of the

spectra will be helpful.

Figures 6.5 and 6.6 show that weighting the classes solves the disappearing of A, B,

and K, but it also over-assigns samples to these classes, usually by removing them

from S. This model scores at 0.692, markedly worse than the original imbalanced

model. Figure 6.7 and indicates that the results for SMOTE-ENN (score:0.75)

and VAE (score: 0.745) are very similar in their pattern of misclassification. The

‘missing’ classes have been recovered, but there is still a tendency to confuse them

with their main-complex neighbours; i.e., C and S.

In examining the misclassifications of this model, in many cases there is an ar-

gument to be made in favour of the VAE classifier’s decisions. For example, the

problematic Q-type has seven misclassifications by the VAE, but examination of

spectra shows that five of these are type Sq and could be considered borderline

objects. Similarly, half of wrong A-predictions are labelled Sa. Of the five spectra

wrongly predicted as D-type, three are Ld. Only one S is misclassified (as L) and

there are no mistakes for V-type. K fares worst, but even in this case, of the eleven

wrong K-types, three are Xk.
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When it comes to B/C, these classes are tricky to distinguish even with full spec-

tra. Looking at plots, of those wrongly predicted as B-type, most have a slight

downward slope longwards of 0.8 µm and one is subtype Cb. Conversely, there are

several B-types predicted as C by the model; visually, in these cases there is very

little to distinguish these classes (see Figure 6.9). However, DeMeo et al. (2009)

did use albedo to determine definition of B-types in that taxonomy, which could

be a factor in their choice of labels for these asteroids.

The VAE model is sometimes wrong, but not greatly wrong, and it clearly helps

to correct training set class imbalance. Although performance by SMOTE-ENN

is similar, I will show in the next section that overfitting causes concern with

SMOTE-ENN.

6.4 Predicting on the SDSS with balanced data

The results of applying the balanced models to the SDSS are described in this

section. They are all worse than the unbalanced models. The weighted model

(6.10 second row) greatly reduces the population of S and, to a lesser extent, X.

It predicts many more A, B, and L-types than expected, across the board. The

effect on DeMeo and Sergeyev data is to render them almost unrecognisable. For

Carvano, matters are a little better. However, D is divided into two populations,

A spreads into S, L, and Q, and X has been nearly overrun by C even though C

(as a large class) should have been de-emphasized by this model.

For the VAE model, figure 6.11 shows a similar proportion of class redistribution,

but the boundaries look very different. Each class shows up as an oblate cloud

with simple but soft boundaries rather than the severe and rather arbitrary lines

as of the weighting method. Across all three datasets the nature of the boundary

between C/X now resembles the original Carvano boundary. However, in the

Carvano data there is still a tendency for D to appear in S and S in Q, and

fewer X-types are predicted here. Because the Carvano data have clearly-defined

boundaries, what emerges is an imprint of the disagreements between spectra and

SDSS class boundaries, because here the classifications are visually inconsistent

with the shape of the Carvano data. There are a few examples of X and L-

types popping up in unexpected places, indicating that the VAE has altered some

spectrum parameters beyond the bounds of their original classes.

Turning to SMOTE-ENN, with an accuracy score of 88% on its own test set it

appear to outperform the imbalanced classifier from the previous chapter. This is

misleading because the ‘spiderweb’ structure that was seen in the spectrum aug-

mentation produces undesirable effects on class boundaries in the SDSS. In the
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bias-variance tradeoff discussed in Chapter 2, this model is an example of empha-

sis on variance run amok. A slightly subtler point can be made from Table 6.1

regarding the risks of relying on a conversion factor to translate pseudo-broadband

to SDSS broadband. The gap between scores on converted and unconverted data

greatly narrows for SMOTE-ENN results. In other words, even the small amount

of variability introduced by augmentation invalidates the correction because the

model overfits to SMOTE-ENN class boundaries.

6.5 Discussion

There is good news and bad news to be found in these results. The good news

is that both SMOTE-ENN and VAE can produce believable synthetic examples

of the spectrum classes, with individual SMOTE-ENN samples appearing a little

more realistic than the rather smooth VAE objects. They also appear to perform

well at pseudo-broadband level. The bad news is that when the augmented data

are examined in r-i-z space SMOTE-ENN has introduced unwanted substructure

through its interpolation between existing datapoints. There does not seem to

be any harm in this when working with the small spectrum test set, but when a

SMOTE-ENNmodel is applied to the large cloud of SDSS data the class boundaries

become segmented and excessively complicated: bad news.

Once the data are augmented with VAE, the SVM is quite effective at identifying

very similar classes B, C, and X in pseudo-broadband, especially considering that

no albedo has been provided. For spectra, I would recommend the VAE model as

an improvement on the unaugmented model developed in earlier chapters, and I

would go so far as to say that VAE augmentation is a credible way to balance classes

with asteroid spectra if one is happy with a little dirt in the outcome. It seems

to offer a little insurance against overfitting that SMOTE-ENN and weighting do

not.

However, just as seen in chapter 5, the problem of matching to SDSS has not gone

away, and sadly is only exacerbated by augmentation. For a VAE model tested

on corrected SDSS data, accuracy scores drop by around 30% to between 31%

and 59% depending on the dataset. This occurs despite the encoder’s tendency

to produce synthetic objects that appear very similar to their progenitors. It is

difficult to square this result with the fact that a) unbalanced pseudo-broadband

models worked better than this, and b) augmentation of the spectra was very

conservative in its changes. But the reason for the worse result probably has to do

with the nature of the accuracy score itself. In unbalanced versions of the models,

there were only a handful of K, Q, etc. for the classifier to get wrong, so the scores
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were artificially inflated. Now are looking at a model that continues to fail to

separate certain classes (K/L/Q/S and also C/X/B) but now there are even more

of the minority classes included in the sample, so we are seeing the true nature of

the problem.

The Carvano data give the clearest picture of what the distribution of asteroids in

r-i-z space looks like, because there are visible clusters of objects. It may be that

the larger DeMeo & Carry (2013) dataset depends too heavily on NIR features

to be useful in this context, but it seems more likely that this blurriness is the

inevitable result of their inclusion of objects with larger errors on magnitudes.

Certainly, the errors on the very large dataset reported by Sergeyev, Alexey V. &

Carry, Benoit (2021) can account for the difficulty of classifying those data and I

would hesitate to blame any classifier for failing.

6.6 Where does this leave us?

With augmentation I set out to balance the classes and in turn, the classifiers —

but the results are anything but balanced. This should not have surprised me,

but it did. What these results are saying is that assumptions about the nature

of a class relate not only to the relationships of vectors in feature-space, but to

the quantities of vectors in regions of feature-space; i.e., the density of the data.

When densities are changed to equalise class numbers, the boundaries of classes

naturally shift, and they do not necessarily shift the way our classification system

says they should. This entire process is about the nature of biases, and it is quite

difficult to know what to conclude. Weighting gives a different result to linear

interpolation, which gives a different result to Gaussian resampling, and no set of

results comes close to replicating the classification systems that have been inherited

and progressively updated from the 1970s.

Well, besides messing up the classifiers there was a reason for doing the augmen-

tation in the first place, and that was to enable the data to be clustered — which

cannot be done effectively if it is unbalanced. Chapter 7 takes the augmented data

and clusters them to find out what groups they fall into naturally.
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Figure 6.1: Randomly-selected SMOTE-ENN spectra for each augmented class.
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Figure 6.2: Comparison of original training set (top left) with SMOTE-ENN (top
right) and VAE (bottom) training sets in pseudo-broadband. Despite SMOTE-ENN
being performed on 161 dimensions, in r-i-z space we see that linear features are intro-
duced. VAE augmentation produces a ‘blurring’ of datapoints by resampling near to

the original datapoints.
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Figure 6.3: Examples of original and augmented plots of reflectance vs. wavelength
(µm) for each class show that the VAE can generate good representative samples of
each type. Simulated spectra tend to be less noisy than originals, but most noise will

wash out in conversion to pseudo-broadband anyway.

Figure 6.4: Examples of VAE spectra reflectance vs. wavelength (µm) that show
some structural variation from their progenitor spectra. These are more likely to be
found in classes that are poorly-defined, and can be treated as representations of what
might happen in the presence of errors, for which the models do not otherwise take

account. This is some insurance against overfitting.
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Figure 6.5: Test set classes as predicted by weighted model on pseudo-broadband.
Compared to Figure 5.4 classes A, B, Q, L, and K all gain members, mostly at the

expense of S. These designations do appear somewhat arbitrary, however.

Figure 6.6: Confusion matrices of test set classes as predicted by imbalanced pseudo-
broadband model with score 0.825 (left) and weighted model with score 0.692 (right).
To compensate for the effects of the majority classes, the weighted model reassigns

some S-types to classes A, K, L, and Q and some C-types to class B.
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Figure 6.7: Comparison of pseudo-broadband test set classes as predicted by SMOTE-
ENN model (left), and VAE model (right). Similar to the weighted model in 6.5, in
the SMOTE-ENN model, B objects gain territory within C-complex and more Q-types
appear. The VAE model is fairly close to the predicted classes from Figure 5.4; it is

able to predict the smaller classes without over-predicting them.

Figure 6.8: Comparison of spectrum test set classes predicted by SMOTE-ENN model
with score 0.750 (left), and VAE model with score 0.745 (right). The pattern is virtually
identical. Classes B, K and Q are now detectable, but at low accuracy, and L continues
to be absorbed by S despite balancing the data. The VAE has an edge for A, K, L, and

Q, but the tendency of S to be overpredicted persists.
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Figure 6.9: Examples of C and X-type asteroids predicted as B-type by the VAE
SVM. Most do have a slight negative slope characteristic of B-types. The assignment
of these objects to C-type may be a consequence of albedo being factored into the Bus-

DeMeo taxonomy—which the SVM cannot see in the spectra alone.
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Figure 6.11: VAE (left) and SMOTE-ENN model predictions (right)(top to bottom):
DeMeo, Sergeyev, Carvano SDSS.



Chapter 7

Implications of unsupervised

learning for asteroid classes

7.1 Clustering to validate classes (or not)

In previous chapters I have shown that trained supervised learning models are

reasonably successful at finding classes both at full (161) dimensionality and when

reduced to pseudo-broadband. There is a meaningful decrement when moving

from one dataset to another, however; for example, SMASS spectra can be clas-

sified to within 93% accuracy on their own test set, but only 62% when tested

on MITHNEOS. Part of the problem comes from the tendency of S-class to over-

attract objects that belong in A,K, L, and Q. When I changed SVM weighting

and augmented to correct for this, in both cases the result was an over-correction;

i.e., minority classes excessively gained datapoints. At this stage, it is difficult to

avoid the suspicion that some of these classes are not well-defined to begin with.

So, what is a class? If a class label is intended to serve as a pointer to some unifying

set of qualities possessed by a subset of the data, the label needs to be detachable

from the data that gave rise to it. For asteroids, this unifying set of qualities refers

to knowledge of how mineralogical features translate to reflectance spectra in the

laboratory by means of absorption, emission, and scattering, a summation of which

has been encoded in the label1. In that sense the label originates in a knowledge

base extrinsic to the data at hand. Given the power implicit in this knowledge,

why would we want to throw the classes out the window and entrust ourselves

completely to statistics? The main motivation is to uncover latent structure in

the data that may not meet with preconceptions. A secondary reason is to find

1I am going to pretend there are no conflicts or complexities between asteroid classes and mineralogical
interpretations, or between historical assumptions and isotope distributions in the literature, and take
the existing taxonomy as gospel.
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out whether the proposed classes are reinforced by any latent statistical structure;

to the extent that they are, the classes can be said to have a meaning intrinsic

to the data. If that happens, the class is granted some integrity independent of

preconceptions from the external knowledge base.

To think for a moment about what preconceptions could be involved here we need

to remember that each successive classification system has been designed to build

on the foundations of its predecessor, all the way back to the Tholen system created

from 589 asteroids in eight bands. In 1984, this represented around 50% of the

recorded population, with a declared bias in favour of objects belonging to families

of interest (Zellner et al., 1985). The most recent public report on NASA’s website

claims 1,113,527 known asteroids as of July 2019. In 2020 alone nearly 3000 new

near-Earth asteroids were recorded (Witze, 2021), pointing to the other obvious

problem: sample size. For most of the million-plus known asteroids, high-quality

spectra are not yet available. For the known data, classes described by Tholen have

formed the basis for articulation of new classes as well as subclasses, but if Tholen’s

system had not existed and a million (or even, as here, a few thousand) asteroids

had been observed first time round, would the categories have been the same?

Where, for example, would the boundaries for Q-type be if Tholen had observed

Q-types? We have seen how the Bus-Binzel system added classes and subclasses to

handle new data and greater detail. The subsequent Bus-DeMeo system improved

the classification by extending into the infrared, where the 2 µm feature enables

better distinctions between types. Yet at every stage comes the potential for bias.

This is not a criticism of the decision to privilege consistency, which is perfectly

practical, but a caution that every such decision has consequences. To a newcomer

it seems that there is a lot of adding of classes going on, but apparently very little

taking away.

Here, I am simply using the available optical spectra to see what the statistics say

about them via unsupervised learning. By plotting the data in either r − i − z

or PCA space, one can already see that the points do not sit in separate regions.

Instead, there are unevenly distributed clouds of points that need to be marshalled

into groups somehow. How many groups? That is also to be determined.

In this chapter I use a battery of statistical methods to try to find out how

many groups of objects are detectable in the full spectra, the augmented spec-

tra, the reduced-dimension spectra using PCA and pseudo-broadband, and finally

the SDSS. For the latter I focus on the high-quality Carvano dataset in which some

clustering is visible. Armed with this information, I then attempt clustering using

a suite of complementary methods.
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7.2 Method

The familiar datasets from previous chapters are explored here:

• Unaugmented full spectra 0.5 - 0.9 µm

• Augmented full spectra (VAE)

• First three PCs of unaugmented spectra

• Unaugmented pseudo-broadband g-r-i-z (denoted ‘griz’ hereafter)

• SDSS griz (Carvano, DeMeo, and Sergeyev datasets)

As described in Chapter 2 there are several clustering methods available, each

having a different definition of a cluster. The choice of method depends on the

characteristics of the data and one’s knowledge of the relationship between its

dimensions. In this case, the data are not in clear groups, nor are the classes

particularly spherical, so k-means is not an ideal choice. However, its status as

one of the most widely used clustering algorithms warrants its inclusion. I chose

the GMM because it does not rely on clusters of uniform size or shape. HDBSCAN

is selected because its documentation claims that for data where clusters are in

unusual shapes/configurations it performs better than other algorithms (McInnes

et al., 2017) and because, uniquely, HDBSCAN can refuse to cluster items that it

judges to be noise. In addition to these methods, I did perform tests with spectral

clustering (Ng et al., 2001), which is a method based on a similarity matrix between

datapoints that allows for non-spherical and/or nested cluster shapes. I found it

concerning that spectral clustering could not form a closed graph with the data,

and as its results added no new information, I have excluded it from the reported

results.

I have run a set of tests to assess the number of k-clusters and the number of

Gaussian components in the data. I use multiple methods in order to find out

whether the number of clusters remains consistent across different metrics. Infor-

mally, an identifiable optimum number of clusters is a necessary but not sufficient

criterion for a robust clustering result. For k-means, I have used the elbow method

with distortion, the Calinski-Harabasz Index, the silhouette score, and the Davies-

Bouldin Index. For GMM I calculated the Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC) and the Jensen-Shannon distance as

well as the silhouette method. I ran HDBSCAN iteratively to determine the op-

timal minimum number of points per cluster. I then visualised the clusters and

performed some simple comparisons between clusters and classes.
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7.3 Results

7.3.1 Full spectra clustering results

Method Number of clusters

K elbow (distortion) 5
K Calinski-Harabsz 2
K Davies-Bouldin 2
K silhouette 2
GMM silhouette 2
GMM AIC/BIC 2
GMM Jensen-Shannon distance 2
HDBSCAN 2

Table 7.1: Number of clusters - full spectra

In Table 7.1 there is strong consensus for only two clusters in the data here. The

elbow plot calculates five clusters, but a glance at figure 7.1 shows that curva-

ture between k=4 and k=6 is slight, making the case for five clusters quite weak.

However, it’s not safe to conclude that there really are two clusters in these data,

because it turns out that the GMM clusters show signs of instability.

In figure 7.2 for the silhouette on GMM, we can see that even for two clusters the

average silhouette values sit at around 0.1, and above four clusters the silhouette

score is negative, indicating that the objects are closer to the neighbouring cluster

than to their assigned cluster. This is a bad sign. After clustering with GMM, the

Jensen-Shannon distance between the each half of the dataset is clearly minimised

at two clusters, but there is a large error on this value indicating instability. Figure

7.3 illustrates what is going on, with Gaussians plotted for two, three, and four

clusters (left to right). Visualised in three dimensions, the Gaussians are fully

superposed. This is, of course, inconsistent with even the primary division between

S-complex and C-complex that we would expect to see. If stability were observed

in the Jensen-Shannon distance between two versions of these data, it might be

possible to conclude that some hidden structure exists in the high-dimensional

data that is invisible in r-i-z. But the evidence of instability is there, so GMM can

be said to fail.

The only algorithm that seems to work at all with these data is HDBSCAN,

which offers an option for classifying points as noise. As seen in Figure 7.4, this

model can only find the cores of C-complex and S-complex, with everything else

considered noise. It is clear, then, that although classifiers could train successfully

on labelled data at the full-spectrum level, unsupervised learning can only ‘find’

the two highest-density regions in the data, and only with one algorithm.
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Figure 7.1: Determining number of k-means clusters for full spectra. Top: Elbow plot
of the average SSE for each set of clusters showing an almost imperceptible preference
for five clusters. Bottom: Calinski-Harabsz index results indicating preference for two

clusters.

7.3.2 Clustering on spectra augmented with VAE

In Chapter 6 the VAE data turned out to be well-suited to classification with an

SVM and offered the advantage of separating B, C, and X classes better than

unaugmented data. When viewed in r-i-z space, there was no sub-structure intro-

duced, unlike linear sub-structures that were seen when spectra were augmented
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Figure 7.2: Determining number of Gaussian components for full spectra. Top: Sil-
houette of the full-spectrum GMM showing that the best result for two clusters is still
poor at 0.1. Bottom: After splitting data 50/50, the Jensen-Shannon distance between
each half is lowest for two clusters, but the large error bar shows that the clusters are

unstable.

with SMOTE-ENN. However, the VAE data do appear in small clumps because

each synthetic spectrum is drawn from a Gaussian distribution around its parent.

Table 7.2 indicates a mixed result for optimal number of VAE clusters. For k-means

the measures of cluster integrity are split between two and six.

Six k-means clusters are shown in the left of figure 7.5 with the ten classes shown

to the right. The only improvement on unaugmented K-means clustering is that

the V-class objects (in orange on the left plot) have been assigned their own group,

and some A-types have also been picked out. However, a lot of X-types have been

grouped with S despite having different shapes in r-i-z, and there is no indication
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Figure 7.3: GMM fitted to two, three, and four clusters (clockwise from top left).
The GMM is not able to cluster believably on these data.

that D will be seen as its own group. In fact, S-types have been split along a differ-

ent axis by the clustering algorithm than by scientists who built the classification

system.

What about GMM? The silhouette, AIC, and BIC all predict three clusters, but

the Jensen-Shannon distance indicates that the most stable clustering happens at

seven and eight clusters. Figure 7.6 shows this result. Note that the silhouette

peaks at around 0.36 of a possible 1.0 at three clusters, which is not a large fraction

and so does not inspire confidence.

In Figure 7.7 the three Gaussian components in the left plot bear no resemblance

to visible structure in r-i-z space, and in the right plot the seven components are

heavily intermixed, especially in the region between C-complex and S-complex:

the part of the plot that would be expected to be well-differentiated. So this is

also a failure.
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Figure 7.4: HDBSCAN plot of unaugmented spectra. Noise is the largest component,
followed by C-complex, with the core of S-complex identified as the second cluster.

Method Number of clusters

K elbow (distortion) 6
K Calinski-Harabsz 2, 6
K Davies-Bouldin 6
K silhouette 2
GMM silhouette 3
GMM AIC/BIC 3
GMM Jensen-Shannon distance 7,8
HDBSCAN 2

Table 7.2: Number of clusters - VAE augmented full spectra. There is a lack of
consensus both within and between the different methods.

HDBSCAN again finds (roughly the same) two clusters, although in Figure 7.8

this time the noise level dominates, and the smaller cluster (S-complex) appears

to be split in two even though it has been labelled as a single cluster.

The introduction of augmented spectra has only succeeded in increasing the noise.

Considering that the Gaussian distribution around observed spectra is meant to

act as a proxy for new data, a picture begins to emerge of a relatively smooth

continuum in the r-i-z space. Of course, this is what is seen in the most inclusive

SDSS data reported by Sergeyev, Alexey V. & Carry, Benoit (2021) in which

classification results were so disappointing.
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Figure 7.5: VAE spectra comparison of six k-means clusters (left) with ten classes
(right) projected in r-i-z space. There is some overlap, but k-means is still making cuts

across the i-axis as a major way of dividing the data.

7.3.3 Comparison of clustering on reduced dimensions: griz vs

PCA

Method PCA clusters griz clusters

K elbow (distortion) 5 6
K Calinski-Harabsz 2 2
K Davies-Bouldin 2 2
K silhouette 2 2
GMM silhouette 2 2
GMM AIC/BIC 5 4
GMM Jensen-Shannon distance 2 2
HDBSCAN 2 2

Table 7.3: Number of clusters - griz vs PCA on full spectra. Reduced dimensions
improve consensus on two clusters.

Because the VAE clustering resulted in increased noise, in this section the focus

returns to unaugmented spectra. In Table 7.3 there is once again a mix of results

for numbers of k-means clusters. PCA is predicted to have two, four, and five with

an emphasis on two, and griz is predicted to have two, four, and six, also with an

emphasis on two. HDBSCAN predicts two as usual. Once again there is a lack of

consensus amongst the models.

For both PCA and griz, HDBSCAN clusters are consistent with what was found

for spectra. The improvement comes in a smaller amount of noise, especially for

PCA (see Figure 7.10). However, only two clusters are found by this method,

consistent with many of the results in Table 7.3.
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Figure 7.6: For GMM, the VAE silhouette plot (top) predicts three clusters, but
the most stable clustering is found at either seven or eight clusters, where the Jensen-
Shannon distance between two halves of the data is the smallest (bottom). It now
remains to determine by eye which number of clusters is most realistic for these data.

Figure 7.9 shows that there is no argument for using k-means here. Because most

of the variability is captured in the first principal component, k-means will ‘stack’

the classes along the axis of PC1. When this effect is projected into r-i-z space

the effect is a series of diagonal stripes across the data that correspond poorly to

classes.

However, things are a little better for the GMM. Figure 7.11 compares the results

of clustering on PCA versus clustering on griz versus recorded classes. The chosen

numbers of components represents the optimal results indicated for that dataset

(where we are looking at more than two clusters). PCA does a better job of

separating C from X and generally best resembles the class distribution, which is

to be expected given that classes were allocated based on principal components in

the first place. There is no indication of a V-class or a D-class here even though

both of these classes are easy for an SVM to find. This is as good as it gets
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Figure 7.7: Comparison of Gaussian mixture model on VAE spectra for (left) three
components and (right) seven components. Both plots show a failure to separate C-

and S-complex, the most fundamental division in types

Figure 7.8: HDBSCAN on VAE spectra projected in r-i-z space. The perceived noise
component now dominates the data, with the smaller (S-complex) cluster being divided.

for unsupervised learning in terms of ‘finding’ classes in the best data that are

available.

7.3.4 Clustering the SDSS

Of the three SDSS datasets, the most amenable to clustering is the ‘pure’ Carvano

dataset of 10487 objects. As roughly sketched in Figure 7.12 these data appear

distributed in five clumps, or perhaps four if the sparsely populated A-class at the

extreme end of all three bands is treated as noise. The question is, will machine

learning see it the same?

It turns out that SDSS broadband data suffer even more than spectra, griz, or

PCA data when it comes to finding the true number of clusters, which could be
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Figure 7.9: Two k-means clusters on PCA data in PC-space (left) and r-i-z
space(right). Even in PC-space, there is very little structure to the data from which to
make clusters. The boundary drawn by k-means is too simple to capture the differences

in C- and S-complex that we observe in r-i-z space.

Figure 7.10: Comparison of clusters found with PCA (left) and griz (right) showing
that there less noise in the HDBSCAN clusters when using griz data. The results of
Chapter 4 found that griz was preferable to PCA for classification, and this also seems

to be the case for clustering with HDBSCAN.

anything between two and seven depending on the method followed (see Table

7.4). By now it is no surprise that k-means has trouble with the data, but the

fact that HDBSCAN still finds only two clusters with a lot of noise is worrisome,

because two of the outlying groups shown here (D, V/Q) are relatively dense with

gaps maintained between themselves and the main complexes. As for GMM, there

are only two clusters found by the silhouette method, but BIC predicts eight. The

latter is important because BIC penalises the addition of new classes.

Because the Carvano system accounts for mixed classes, we can examine the ‘pure’

classes only. There is a marked improvement of HDBSCAN’s ability to cluster on
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Figure 7.11: Visual check on PCA vs. griz clustering results. Top left: Five GMM
components on PCA spectra projected in r-i-z space. Top right: Five GMM r-i-z
clusters. Bottom: Ten classes in r-i-z. The GMM seems to ‘see’ the C/X distinction in
PCA space, but there is no indication of a D or V cluster despite classifiers performing

well on these classes.

the pure Carvano classes when compared to the larger DeMeo dataset with its

inclusion of classes B and K, seen in Figure 7.14. The probabilistic nature of the

Carvano classification system helps because it permits a flexible approach to the

selection of groups of objects without resorting to adding new subtypes.

To get to the bottom of the discrepancy between BIC and other methods, the

eight-cluster Gaussian mixture model is shown in the centre of Figure 7.15. This

model produces clusters with some fundamental differences to classes. It breaks

C- and S-complexes into five rather artificial-looking subsets, only one of which

corresponds roughly to a class (B). The model also interprets D-class as part of

a larger distribution around the central S-complex. The four-cluster Gaussian
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Figure 7.12: Left: rough sketch of the clusters one might expect from the Carvano
SDSS data in r-i-z. Right: k-Means with two clusters is completely unsuitable for the

data.

Method Number of clusters

K elbow (distortion) 5
K Calinski-Harabsz 2
K Davies-Bouldin 3
K silhouette 2
GMM silhouette 2
GMM AIC/BIC 8
GMM Jensen-Shannon distance 2
HDBSCAN 2

Table 7.4: Number of clusters - SDSS Carvano

(left) consists of C-complex, S-complex, Q/V as a group, and once again the large,

diffuse distribution encompassing D, L and some S- and Q-types. It seems that

GMM and HDBSCAN may be finding the same thing after all, only the GMM

model is not ‘allowed’ to declare a point as noise; instead, it creates a large, diffuse

distribution encompassing what appear to be multiple groups.

Figure 7.13: Number of Gaussians for SDSS Carvano data. There is no consensus.
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7.4 Discussion

Usually, people perform unsupervised learning as part of a discovery process prior

to doing other work. I have done everything backward, using unsupervised learning

as an independent test of classification. I hoped this method would shed light, but

it has produced mostly heat instead. In interpreting the results, I find that most

of the classes fail to be recognised; but I also find that unsupervised learning fails

to capture features that appear important.

Depending on the algorithm used and even on the method of determining number

of clusters, the results of unsupervised learning can be utter nonsense. I have tried

Figure 7.14: Comparison of HDBSCAN results for: (top) Carvano ‘pure’ class data,
with regions belonging to D, V, Q, and A considered noise; (bottom) DeMeo data,

where the two main complexes are there, but the noise is overpowering.
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to select methods with as much care as possible and have presented only results

that I consider robust. Statistically, apart from C-complex and S-complex, the

classes do not seem to be ‘real’. It is possible to squeeze out clusters roughly

corresponding to C, S, Q/V, and X with PCA and a GMM, but not K, L, D, or A.

In considering PCA results one must recall that classification systems are founded

on PCA, making even this limited success less than independent (although PCA,

of course, does refer to ‘real’ variability).

For unsupervised learning with these data, augmentation degrades the result rather

than improving class imbalance. This is an ironic result, given that the primary

reason I built the variational autoencoder was to balance the sizes of expected

clusters and correct implicit algorithmic bias that favours large classes. Since the

autoencoder produces credible spectra of each class, I attribute the failure to the

Figure 7.15: Carvano ‘pure’ class data according to (top left) four Gaussians, (top
right) eight Gaussians, (bottom) recorded class. The Gaussian mixture interprets D-

class as a member of a larger distribution around the S-complex.
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introduction of more noise to an already-noisy dataset, which can be seen in the

HDBSCAN results.

There is clearly a use for dimensionality-reduction despite the power of modern

computing making light work of 161 dimensions for classification. With both PCA

and griz simplification, noise is reduced, and visualisation becomes easy. PCA

works well for this purpose, but as discussed in Chapter 4, griz is more visually

intuitive and also allows easy comparison between datasets.

When it comes to the SDSS, though, even the cleanest dataset only shows C-

complex and S-complex. Unsupervised learning does not ‘find’ the visually distinct

D-types, and it groups V together with some of Q. Does this mean that unsuper-

vised learning has failed, or does it mean that D, K, L, and some Q-types are part

of a more general pattern of variation around the central S-complex? It is hard to

say. With only around 2000 spectra at 161 dimensions the GMM understandably

struggles to find discrete clusters. But even after PCA, the GMM still only finds

a single large component surrounding the S-types in the place of four putative

classes. The individual classes described by such a Gaussian do not appear to

have a reality independent of the classification system.

When classifying asteroids purely by optical spectra/colour, their dominant distin-

guishing feature is slope. Section 1.6 discussed the physical reasons for degeneracy

in asteroid spectral slope. Phase reddening occurs on short timescales related

to orbit, and in some cases it can be corrected; but slope increase due to space

weathering from the solar wind and cosmic ray bombardment, etc. works in op-

position to the slope decreases associated with surface refreshment from collisions

and gravitational interaction. Disentangling these different sets of causes and ef-

fects is not possible. Clustering in the optical is to some extent a futile effort due

to data appearing as a continuum in feature-space. For that matter, classifying

in the optical is equally limited, especially when optical slope can be physically

unrelated to surface composition for some objects.

Is clustering of no value, then? In order to progress, it is necessary to break the

degeneracy by including new physical parameters. The NIR has been incorporated

into the Bus-DeMeo classification system and is included in the new Mahlke, M.

et al. (2022) system, together with albedo – which has been absent from systems

since Tholen (1984). Mahlke et al. have used clustering to good effect in their

work, but they treat it as an early step in the process of defining a classifier much

as Tholen did (rather than as a test of the classification system, as I do here).

They have also taken a number of specific steps to process their data to avoid

some of the pitfalls apparent in this thesis:
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(a) They use NIR preferentially, with most of their data going up 0.8 µm and

only a small fraction having data below 0.6 µm.

(b) Instead of normalising at 0.55 µm (which necessarily reduces variance in this

region) they use a novel method to estimate normalisation constants.

(c) They use a probabilistic variant of PCA that handles missing data, meaning

that they can have spectra of varying lengths and ranges and still work out

the dominant variances.

(d) They specify the number of Gaussians required at 20 and then manually

combine groups based on prior knowledge of types.

(e) They scale albedo carefully to ensure a good balance of spectra vs. albedo in

setting classification boundaries.

The Mahlke system represents a significant evolution of prior classification systems,

in particular because of the inclusion of albedo. But it is not an independent check

on any system.

7.5 Conclusion

In this chapter I have shown that even for PCA the classification system appears to

be reaching when it goes beyond C-complex and S-complex. It is true that a GMM

can be trained on four components to produce a fair representation of visually

recognisable clusters, but only the C-complex and S-complex clusters match the

recorded classes (with X folding into C). PCA can produce a five-cluster model that

reflects classes a little better, which is to be expected given that the classification

system has been designed based on PCA. There is no case to be made for A, B,

D, K, L, or Q as distinct groups based on these results.

When addressing the question of classification of asteroids it is probably most

important to consider the purpose of the classification. If we are trying to un-

derstand solar system formation history then large numbers of objects are more

important than the details of mineralogy; but if we are thinking about mining an

asteroid for its resources, the details of a specific object supercede the statistics of

types. It is already widely acknowledged in the field that asteroids are distributed

in a continuum in colour space, so in that sense they are never going to be suited

to clustering methods. Yet without any independent verification of classes, the

taxonomic system will carry the biases of the domain knowledge that gave rise to

it.

In working on clustering, I developed progressively greater faith in HDBSCAN as

a reliable method, until I came to the Carvano data and found that even after
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hyper-parameter tuning it could not ‘see’ what seemed obvious to the eye. It may

well be that a more skilled machine-learning practitioner could squeeze more value

out of HDBSCAN for these data, but if that is the case then this is a method

poorly suited for use by beginners (which at the time of this writing describes

many astronomers).



Chapter 8

Summary and conclusion

The questions driving this research were:

(a) Can a machine-learning classifier detect the major asteroid classes in the

Bus-Binzel and/or Bus-DeMeo taxonomies at spectrum level, at photometric

colour level, or at both?

(b) Are these classes ‘real’ from the point of view of unsupervised learning algo-

rithms?

8.1 Summary of main results

In Chapter 4 I examined the consistency of the Bus-Binzel asteroid classification

system by using a support vector machine on detailed spectra as well as on their

principal components. I trained and tested within and between four datasets

(SMASS, MITHNEOS, S3OS2 and INT). The SVM trained with spectra performed

around 3% better than the SVM trained with principal components. In a combined

dataset, major classes could be classified to 85% accuracy in wavelength range 0.5

- 0.9 µm, and to 90% in range 0.435 - 0.925 µm. Failures showed a pattern:

class K was difficult to separate from L, Q from S, and B from C. The SVM was

able to pick out ambiguous objects better when applied to a single dataset; but I

concluded that it must overfit to do so, or it would not fail on the combined data.

More B-type samples might have solved the problem with that class, but an eyeball

check of Q-types showed that Q is not well-defined to begin with. There is doubt

that classes B, K, L, and Q are anything other than outlier members of the major

complexes C and S. I found that none of the thirteen subclasses identified by the

taxonomy’s authors were convincingly distinguishable from their parent classes.

Having established the best-case scenario, in Chapter 5 I converted the data to a

simplified ‘pseudo-broadband’ to make it compatible with SDSS photometry. As
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a result the SVM only lost 5% of its accuracy, but the aforementioned B and K

completely ‘disappeared’, as did A, whilst Q is nearly always misclassified. Pho-

tometric classification therefore has a ceiling at about 80% and tells us that only

classes C, S, L, S, V and X are ‘real’ (if imperfectly separable) at that resolution.

Given that SDSS-based taxonomies use all these classes, the question became:

what happens when the SVM meets SDSS data? An examination of objects-in-

common indicated that only 71% have the same assigned class in photometric

catalogs that they do in spectrum-based catalogs, with ambiguity concentrated

amongst C/X, B/X and L/S particularly. This fuzziness in class targets placed

limits on what could be achieved by the SVM and hinted at difficulties to come.

Indeed, when I trained on spectrum-based pseudo-broadband and tested on SDSS

values in the Carvano et al. (2010) and DeMeo & Carry (2013) catalogs, accuracy

deteriorated to 67% and 62% respectively. I proposed that the partial cause was

an apparent offset in each of the r− i−z bands’ brightness despite using the SDSS

band centres and full-width-half-maxima to define pseudo-broadband values. I was

able to recover some of these losses by using objects common to both spectrum

and SDSS datasets to define a correction factor. After applying the correction,

accuracy improved to 88.5% on Carvano data and 73.9% on DeMeo. The ‘dis-

appeared’ class A gained a small number of objects but B and K had no correct

predictions. Overall, the distribution of SDSS data in r-i-z space was found to

be excessively large relative to the spectrum pseudo-broadband, which was not

remediable. Ultimately, A, B, K, L, Q are not verifiable classes in the SDSS.

Because of the observed tendency of some minority classes to disappear from pre-

dictions, Chapter 6 related the quest for an unbiased classifier by balancing the

numbers of classes to remove the disproportionate effects of S and C on training.

I compared two methods: SMOTE-ENN and a VAE. SMOTE-ENN data can be

classified to accuracy of 91% as spectra and 88% as pseudo-broadband. VAE can

achieve 92% accuracy at spectrum level and 90% at pseudo-broadband. Both aug-

mentation methods can recover all the ‘missing’ classes, but only to low levels of

accuracy, and they continue to mistake L for S. However, I found that VAE resam-

ples very closely to each of its parent datapoints, and SMOTE-ENN introduces

unacceptable substructure that is visible in 3D plots of pseudobroadband.

The performance of the augmented models collapsed when testing on the SDSS.

Accuracy of the augmented models is 30−40% lower on the SDSS than on pseudo-

broadband. The SMOTE-ENNmodel’s substructure created highly overfitted class

boundaries that became obvious when examining plots of its predicted classes on

SDSS data. The VAE was able to correct for some class imbalance, especially in

the C-complex, but its accuracy results ran to 58% at best. The reason for much
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lower accuracy scores is the fact that the classes which I have already asserted are

not ‘real’ (i.e., B, K, L, Q) make up a very substantial fraction of the sample after

augmentation, and they remain at least as unreal as they were when the best data

was used. These objects would naturally raise the failure rate of the classifier.

In Chapter 7 I went on to show that unsupervised learning cannot find any ver-

ifiable groups in spectrum data apart from the C-complex and S-complex, which

were established over 50 years ago. K-means failed to produce any credible clus-

ters. Gaussian mixture models showed indications of instability when subjected

to statistical tests, and the best Gaussian mixture models produced clusters that

correspond roughly to S, C, and X, with everything else being treated as part of

some larger, diffuse distribution around the central classes. Trying to emphasise

variance in the data by working with principal components did not meaningfully

change this outcome. Similarly, HDBSCAN recognised only the cores of C and S

and treated everything else as noise.

When it came to clustering on the SDSS, the GMM preferred to separate the data

into only two clusters; however, these did not match the observed C-complex/S-

complex groups! If forced to create four or five clusters, the GMM treated C-

complex as a single group and broke S-complex into a core cluster plus a smaller

cluster encompassing some Q, V, and a little bit of S, plus a larger cloud around S-

complex that includes D, A, and some Q. It therefore does not find correspondences

to classes apart from the two major complexes. Again, HDBSCAN found only the

cores of S-complex and C-complex, with everything surrounding them relegated

to noise. The visual appearance of clusters in r-i-z space–particularly D and V

classes in Carvano SDSS–does not matter to the algorithms.

At some point, it must be decided what is useful about all these experiments.

Based only on data spanning a 0.4 µm range in the optical, I am not going to be

the person to claim that classes A, B, K, L, and Q are not real! But I will say

that the taxonomy does not hold up in this wavelength regime for these classes.

With the asteroids, we have a sample of spectra that we know are biased towards

larger/closer (brighter) and more orbitally interesting objects (for example, the V-

types and the Trojans), but the data quality are very good. We also have a large

amount of not-so-good but unbiased data, exemplified by the Sergeyev dataset.

It has long been an assumption of the big data approach that more data is the

answer to all things, but if the data quality is low, we do not learn very much.

In practical terms, if one were using machine-learning to select follow-up targets

there could be some benefit in tweaking the feature-space with augmentation to

widen the net for rare objects. I have shown that simple weighting of the classifier

to place more emphasis on the minority class can lead to over-selection for that
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class. SMOTE-ENN (for all its faults) also accomplished this enhancement of small

classes. There are situations it would be better to select some unwanted objects

and later discard them than to miss the rare object entirely — when searching for

metallic asteroids, for example. But the real difficulty in that case lies in separating

X from C, and then finding the metallic subtypes within X. The existence of X

subtypes in modern taxonomies is misleading in that we do not actually have

albedos for most of these objects; as described in 1.3 all metallic asteroids are

supposed to live in the same visible feature-space as their high-albedo relatives,

but this assignation is based on a small sampling. Luckily, Mahlke, M. et al.

(2022) recently introduced a taxonomy that splits X-types according to albedo;

their sample size is larger than Bus-DeMeo’s by an order of magnitude, so their

classifications should supersede or at least complement the Bus-DeMeo system.

And, of course, there is the little problem of collecting albedos for objects that we

wish to classify.

Machine learning can be good for showing up hidden relationships and acting as

a check on our own implicit biases; but it is also perfectly capable of introducing

biases of its own. Most machine learning methods discussed in this thesis are

relatively easy to implement, and techniques like cross-validation in a pipeline

enable some automation of parameter tuning. Still, like any learning process,

machine learning involves trial and error — this is true on the part of the operator

as well as the machine. In this work, given the abundance of statistical tools to

handle asteroid classification and clustering and their power to fit to the data they

are fed, the quality of the data (and its labels) is the limiting factor. The absence

of NIR and albedo in this work has degraded the quality of data; this is the main

issue that still hangs unresolved.

8.2 Future work

Overall, the population size of known asteroids has now reached the point where big

data approaches are needed, but this project has probably come a little too soon as

Gaia spectra of asteroids were unavailable. Some machine-learning methods that

I attempted (such as the bridge model) failed due to lack of data. This is only a

temporary problem.

The ’big data’ that I worked with here was low-resolution SDSS photometry. My

expectation is that new data from Gaia will supercede the SDSS, and an analysis

of clusters versus classes in the Gaia data would be interesting to pursue to find

out whether the classes (or clusters) have more integrity when data quality and

quantity are both increased.
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This work was performed entirely in the optical regime because the project orig-

inated with those data through my AMC placement. As the results of the work

became clearer over time, I had occasion to regret restricting myself to the optical

because of the 1 and 2 µm features that are incorporated into the Bus-DeMeo

system and so implicitly affect optical classification using this system. I am there-

fore unable to say whether classification or clustering results would improve with

inclusion of the 2 µm feature especially, although of course the SDSS photometry

does not cover this regime anyway, nor does Gaia. Instead, a multi-wavelength

approach is required.

One of the limitations of this project has been the paucity of high-quality spectra

for training the models. For its ability to generate synthetic spectra, the variational

autoencoder has been one fruitful outcome, and it could remain useful in the

future because even if the size of the asteroid dataset increases exponentially,

class imbalances are likely to persist. However, I have not yet explored the full

capabilities of this technique. One niggling concern is the tendency of my VAE

to produce overly smooth spectra. It would be worth the effort to explore the

capability of the VAE to generate more variable random noise and thereby to

simulate more realistic spectra.

Rather than attempting to refine the unsupervised learning methods used in this

thesis, I would address the new Mahlke system instead. An improved version of K-

Means as developed by Lisboa et al. (2013) facilitates a rigorous determination of

appropriate cluster centres for the data. This algorithm, as well as HDBSCAN and

GMM models, could provide some independent checks on the Mahlke boundaries

that were assigned based on prior knowledge of classes. Given that the Mahlke

training spectra have significant overlap with the training spectra used in this

work, the results of such a study could also offer insight to the response of the

classification system to the addition of albedo as a feature. Intuitively, one would

expect albedo to hold its value more readily than spectral slope in the face of

the environmental stressors discussed previously. If albedo could demonstrably

break any of the degeneracies associated with spectral slope, the classification

system would be greatly improved. Testing with unsupervised learning could tell

us whether the new system is founded on statistical bedrock.
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