
Simulation and programming
strategies to mitigate device non-

idealities in memristor based
neuromorphic systems

by

Pedro Nuno de Jesus Francisco Freitas

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

March 2023

Declaration

The work presented in this thesis was carried out at the School of Engineering, Liv-

erpool John Moores University. Unless otherwise stated, it is the original work of the

author.

While registered as a candidate for the degree of Doctor of Philosophy, for which sub-

mission is now made, the author has not been registered as a candidate for any other

award. This thesis has not been submitted in whole, or in part, for any other degree.

Pedro Freitas

School of Engineering

Liverpool John Moores University

Byrom Street

Liverpool

L3 3AFD

UK

MARCH 2023

ii

Abstract

Since its inception, resistive random access memory (RRAM) has widely been re-

garded as a promising technology, not only for its potential to revolutionize non-volatile

data storage by bridging the speed gap between traditional solid state drives (SSD) and

dynamic random access memory (DRAM), but also for the promise it brings to in-

memory and neuromorphic computing.

Despite the potential, the design process of RRAM neuromorphic arrays still finds it-

self in its infancy, as reliability (retention, endurance, programming linearity) and vari-

ability (read-to-read, cycle-to-cycle and device-to-device) issues remain major hurdles

for the mainstream implementation of these systems.

One of the fundamental stages of neuromorphic design is the simulation stage. In

this thesis, a simulation framework for evaluating the impact of RRAM non-idealities

on NNs, that emphasizes flexibility and experimentation in NN topology and RRAM

programming conditions is coded in MATLAB, making full use of its various toolboxes.

Using these tools as the groundwork, various RRAM non-idealities are comprehen-

sively measured and their impact on both inference and training accuracy of a pattern

recognition system based on the MNIST handwritten digits dataset are simulated.

iii

In the inference front, variability originated from different sources (read-to-read and

programming-to-programming) are statistically evaluated and modelled for two differ-

ent device types: filamentary and non-filamentary. Based on these results, the impact

of various variability sources on inference are simulated and compared, showing much

more pronounced variability in the filamentary device compared to its non-filamentary

counterpart. The staged programming scheme is introduced as a method to improve lin-

earity and reduce programming variability, leading to negligible accuracy loss in non-

filamentary devices. Random telegraph noise (RTN) remains the major source of read

variability in both devices. These results can be explained by the difference in switching

mechanisms of both devices.

In training, non-idealities such as conductance stepping and cycle-to-cycle variability

are characterized and their impact on the training of NNs based on backpropagation are

independently evaluated. Analysing the change of weight distributions during training

reveals the different impacts on the SET and RESET processes. Based on these find-

ings, a new selective programming strategy is introduced for the suppression of non-

idealities impact on accuracy. Furthermore, the impact of these methods are analysed

between different NN topologies, including traditional multi-layer perceptron (MLP)

and convolutional neural network (CNN) configurations.

Finally, the new dynamic weight range rescaling methodology is introduced as a way

of not only alleviating the constraints imposed in hardware due to the limited conduc-

tance range of RRAM in training, but also as way of increasing the flexibility of RRAM

based deep synaptic layers to different sets of data.

PEDRO FREITAS MARCH 2023

iv

Main contributions

[1] P. Freitas, Z. Chai, W. Zhang, J. Marsland, P. Lisboa, and J. F. Zhang, “Program-
ming strategies to mitigate the impact of device non-idealities in training synaptic
resistive-switching memory based analog neural networks,” 2023. [In preparation].

[2] P. Freitas, Z. Chai, W. Zhang, J. Marsland, P. Lisboa, J. F. Zhang, F. Hatem, and
K. Jones, “Evaluation of different variabilities in resistive-switching memory de-
vices and their impacts on inference accuracy of synaptic neural network,” 2023.
[In preparation].

[3] M. E. Pereira, J. Deuermeier, P. Freitas, P. Barquinha, W. Zhang, R. Martins, E. For-
tunato, and A. Kiazadeh, “Tailoring the synaptic properties of a-IGZO memristors
for artificial deep neural networks,” APL Materials, vol. 10, p. 011113, jan 2022.

[4] P. Freitas, Z. Chai, W. Zhang, J. F. Zhang, and J. Marsland, “Impact of RTN and
Variability on RRAM-Based Neural Network,” in 2020 IEEE 15th International
Conference on Solid-State and Integrated Circuit Technology (ICSICT), vol. 1,
pp. 1–4, IEEE, nov 2020.

[5] D. Joksas, P. Freitas, Z. Chai, W. H. Ng, M. Buckwell, C. Li, W. D. Zhang, Q. Xia,
A. J. Kenyon, and A. Mehonic, “Committee machines – a universal method to deal
with non-idealities in memristor-based neural networks,” sep 2019.

[6] Z. Chai, P. Freitas, W. Zhang, F. Hatem, J. F. Zhang, J. Marsland, B. Govoreanu,
L. Goux, and G. S. Kar, “Impact of RTN on Pattern Recognition Accuracy of
RRAM-Based Synaptic Neural Network,” IEEE Electron Device Letters, vol. 39,
pp. 1652–1655, nov 2018.

[7] Z. Chai, W. Zhang, P. Freitas, F. Hatem, J. F. Zhang, J. Marsland, B. Govoreanu,
L. Goux, G. S. Kar, S. Hall, P. Chalker, and J. Robertson, “The Over-Reset Phe-
nomenon in Ta 2 O 5 RRAM Device Investigated by the RTN-Based Defect Probing
Technique,” IEEE Electron Device Letters, vol. 39, pp. 955–958, jul 2018.

PEDRO FREITAS MARCH 2023

v

Other contributions

[1] Z. Hu, W. Zhang, R. Degraeve, D. Garbin, Z. Chai, N. Saxena, P. Freitas, A. Fan-
tini, T. Ravsher, S. Clima, J. F. Zhang, R. Delhougne, L. Goux, and G. Kar, “New
Insights of the Switching Process in GeAsTe Ovonic Threshold Switching (OTS)
Selectors,” IEEE Transactions on Electron Devices, pp. 1–7, 2022.

[2] W. Zhang, Z. Chai, P. Freitas, J. F. Zhang, and J. Marsland, “Relaxation in GeSe
Ovonic Threshold Switching Device,” in 2022 IEEE 16th International Conference
on Solid-State & Integrated Circuit Technology (ICSICT), pp. 1–4, IEEE, oct 2022.

[3] Z. Chai, P. Freitas, W. Zhang, J. F. Zhang, and J. Marsland, “True random number
generator based on switching probability of volatile Ge X Se 1-X ovonic threshold
switching selectors,” in 2021 IEEE 14th International Conference on ASIC (ASI-
CON), pp. 1–4, IEEE, oct 2021.

[4] Z. Chai, W. Zhang, S. Clima, F. Hatem, R. Degraeve, Q. Diao, J. F. Zhang, P. Fre-
itas, J. Marsland, A. Fantini, D. Garbin, L. Goux, and G. S. Kar, “Cycling In-
duced Metastable Degradation in GeSe Ovonic Threshold Switching Selector,”
IEEE Electron Device Letters, vol. 42, pp. 1448–1451, oct 2021.

[5] J. Brown, J. F. Zhang, B. Zhou, M. Mehedi, P. Freitas, J. Marsland, and Z. Ji,
“Random-telegraph-noise-enabled true random number generator for hardware se-
curity,” Scientific Reports, vol. 10, p. 17210, dec 2020.

[6] Z. Chai, P. Freitas, W. D. Zhang, F. Hatem, R. Degraeve, S. Clima, J. F. Zhang,
J. Marsland, A. Fantini, D. Garbin, L. Goux, and G. S. Kar, “Stochastic Computing
Based on Volatile GeSe Ovonic Threshold Switching Selectors,” IEEE Electron
Device Letters, vol. 41, pp. 1496–1499, oct 2020.

[7] Z. Chai, P. Freitas, J. Marsland, A. Fantini, D. Garbin, L. Goux, G. S. Kar, W. Shao,
W. Zhang, J. Brown, R. Degraeve, F. D. Salim, S. Clima, F. Hatem, and J. F. Zhang,
“GeSe-Based Ovonic Threshold Switching Volatile True Random Number Genera-
tor,” IEEE Electron Device Letters, vol. 41, pp. 228–231, feb 2020.

[8] F. Hatem, J. F. Zhang, J. Marsland, P. Freitas, L. Goux, G. S. Kar, Z. Chai,
W. Zhang, A. Fantini, R. Degraeve, S. Clima, D. Garbin, J. Robertson, and Y. Guo,
“Endurance improvement of more than five orders in Ge x Se 1-x OTS selectors
by using a novel refreshing program scheme,” in 2019 IEEE International Electron
Devices Meeting (IEDM), no. 1, pp. 35.2.1–35.2.4, IEEE, dec 2019.

vi

[9] Z. Chai, W. Zhang, R. Degraeve, S. Clima, F. Hatem, J. F. Zhang, P. Freitas, J. Mars-
land, A. Fantini, D. Garbin, L. Goux, and G. S. Kar, “Dependence of Switching
Probability on Operation Conditions in Ge x Se 1–x Ovonic Threshold Switching
Selectors,” IEEE Electron Device Letters, vol. 40, pp. 1269–1272, aug 2019.

[10] Z. Chai, W. Zhang, R. Degraeve, S. Clima, F. Hatem, J. F. Zhang, P. Freitas,
J. Marsland, A. Fantini, D. Garbin, L. Goux, and G. S. Kar, “Evidence of filamen-
tary switching and relaxation mechanisms in Ge x Se 1-x OTS selectors,” in 2019
Symposium on VLSI Technology, no. 1, (Kyoto), pp. T238–T239, IEEE, jun 2019.

PEDRO FREITAS MARCH 2023

vii

Acknowledgements

Firstly, I would like to thank my supervisors: prof. Wei Zhang, prof. John Marsland

and prof. Paulo Lisboa, for all of the availability and continuous support they have

shown me throughout this project.

I would also like to thank the other members (current and past) of the LJMU micro-

electronics reliability and characterization research group that were alongside me for

this journey. They are: Dr Zheng Chai, Dr Firas Hatem, Dr James Brown, Dr Mehz-

abeen Mehedi, Dr Rui Gao, Mr Zeyu Hu, Dr Nishant Saxena, Mr Kean Tok and Mr

Dale Hodgkinson. Special thanks to Dr Zheng Chai, who has provided me with a lot of

guidance throughout the project.

Next, I would like to thank the university support staff, particularly Alexia Mon-

taubin and Natasha Walden-Jones that supported me through the administrative pro-

cesses throughout my years in the university.

Finally, my biggest thanks goes to my family and friends. These are the people who

motivate me to keep pushing and bring this project to fruition.

PEDRO FREITAS MARCH 2023

viii

Contents

Declaration ii

Abstract iii

Main contributions v

Other contributions vii

Acknowledgements viii

List of Figures xiii

List of Tables xix

Abbreviations xxi

Symbols xxv

1 Introduction & literature review 1
1.1 Memory technology . 2

1.1.1 Conventional memory technology 2
1.1.2 Emerging non-volatile memory 5
1.1.3 Introduction to RRAM . 9

1.1.3.1 Switching model . 11
1.1.3.2 Nature of defects . 12
1.1.3.3 Operation scheme 15

1.1.4 Key performance metrics . 18
1.1.4.1 Retention . 20
1.1.4.2 Endurance . 21
1.1.4.3 Nonlinearity . 24
1.1.4.4 Variability . 26
1.1.4.5 Noise . 28
1.1.4.6 Power . 30
1.1.4.7 Scalability . 31
1.1.4.8 Comparison between different eNVM 32

1.2 Learning algorithms for neuromorphic systems 34

ix

Contents x

1.2.1 Machine learning concepts . 34
1.2.1.1 The task T . 34
1.2.1.2 The performance measure P 37
1.2.1.3 The experience E 41
1.2.1.4 Gradient-based learning 43
1.2.1.5 Feedforward Networks 48
1.2.1.6 Backpropagation . 52
1.2.1.7 Challenges in optimization 54
1.2.1.8 Optimization techniques for deep models 59
1.2.1.9 Convolutional Neural Networks 66
1.2.1.10 Genetic Algorithms 70

1.2.2 Limited Precision algorithms 73
1.2.2.1 Expectation Backpropagation 74
1.2.2.2 Binarized Neural Networks 75
1.2.2.3 Other Limited Precision Approaches 76

1.3 Neuromorphic systems with non-volatile memories 78
1.3.1 Architectures for inference . 80

1.3.1.1 VMM in crossbars 80
1.3.1.2 Input signal encoding 82
1.3.1.3 Synaptic bit slicing 85
1.3.1.4 Signed computation 87

1.3.2 Architectures for training . 88
1.3.2.1 Backpropagation in neuromorphic architectures . . . 89
1.3.2.2 Parallel weight update 90
1.3.2.3 Batch training . 92

1.3.3 Neuromorphic simulation frameworks 93

2 Devices and characterization methodology 97
2.1 Devices . 98
2.2 Instrumentation . 99
2.3 DC measurements . 100

2.3.1 Stepped IV measurements . 101
2.3.2 DC RTN measurements . 102

2.4 AC Programming . 103
2.5 Neuromorphic interface and programming 105

2.5.1 Identical pulse train programming 106
2.5.2 Staged programming and linear response 107
2.5.3 Neuromorphic programming GUI 109

3 Simulation framework 114
3.1 Variability analysis . 115

3.1.1 Data entry . 116
3.1.2 Analysis . 117
3.1.3 Non-idealities . 119

Contents xi

3.1.3.1 Discretization . 119
3.1.3.2 D2D . 120
3.1.3.3 C2C . 121

3.1.4 Plots . 123
3.2 NN definition . 126

3.2.1 Session Manager . 126
3.2.2 Options1 . 127

3.2.2.1 Loading files . 128
3.2.2.2 NN Layers . 129
3.2.2.3 NN Training Options 129
3.2.2.4 Others . 130

3.2.3 Options2 . 132
3.2.3.1 Plot Options . 132
3.2.3.2 Weight Range Rescaling 133

3.3 Summary . 134

4 Impact of RRAM non-idealities on inference 136
4.1 Impact of RTN . 137
4.2 Impact of other read noises . 144
4.3 Impact of programming variability on inference 148
4.4 Summary . 158

5 Impact of RRAM non-idealities on training 160
5.1 Natural response and Non-idealities 162
5.2 Impact of non-idealities during SET and RESET 164
5.3 Linear response and Non-idealities . 170
5.4 Selective programming . 173
5.5 Impact of NN topology . 175
5.6 Impact of Learning Rate . 177
5.7 Dynamic weight range rescaling . 181
5.8 Summary . 185

6 Conclusions & future perspectives 187
6.1 Conclusions . 187

6.1.1 Conclusions on inference . 187
6.1.2 Conclusions on training . 189

6.2 Future perspectives . 190
6.2.1 Extending the simulation framework 191
6.2.2 Future perspectives for inference 192
6.2.3 Future perspectives for training 192

A Impact of learning rate 194

Contents xii

B Impact of Dynamic Range Rescaling 200

C Limited Precision training based on genetic algorithms 207
C.0.1 Algorithm structure and typical results 208
C.0.2 Impact of weight bitwidth . 210
C.0.3 Impact of mutation rate and activation functions 211
C.0.4 Impact of read noise . 212
C.0.5 LP GA Conclusions . 213

Bibliography 215

List of Figures

1.1 Schematic illustrating the von Neumann architecture scheme 3
1.2 Conventional semiconductor memory technologies: a SRAM, b DRAM,

c Flash. 4
1.3 The four fundamental two-terminal circuit-elements: resistor, capacitor,

inductor and memristor. 6
1.4 Memory taxonomy from the IEEE IRDS 2021 update. 7
1.5 An illustration of memory hierarchy with typical access speed, lined up

with the performance range of major eNVM devices. 9
1.6 a Number of publications filtered by specific keywords: RRAM, RRAM

& Memristor, and memristor (excluding RRAM) from 2003 up to 2015.
b Survey of Emerging Memory Devices from the 2014 ERD Emerging
Logic Workshop. 10

1.7 Schematic illustrating: a Filamentary and b Non-filamentary resistive
switching. 13

1.8 The two basic operation schemes of RRAM. I-V curves recorded for
a triangular shaped voltage signal. cc denotes the compliance current.
Dashed lines indicate that the real voltage at the system will differ from
the control voltage because of the cc in action. a Unipolar switching. b
Bipolar switching. 17

1.9 Reliability metrics of the neuromorphic device. Device reliability met-
rics are classified into basic and functional reliability metrics. 18

1.10 Schematic diagram of different basic reliability metrics of memory ap-
plication for digital data storage and neuromorphic computing applica-
tion for analog data processing and storage. 19

1.11 Schematic of the endurance failure mechanism of RRAM. Three failure
types of endurance degradation are illustrated. 22

1.12 a Different programming schemes and b the corresponding experimen-
tally measured data of conductance modulation in TaOx/TiO2 based
synaptic device. 24

1.13 a Definitions of the different types of variability. b An example of a
common misconception between C2C and P2P definitions found in the
literature. 26

1.14 Cumulative distribution functions (CDF) of the read-out current be-
tween different devices before (black) and after (red) retention tests for
a filamentary H f O2 and b non-filamentary a-VMCO RRAM. 27

1.15 a Schematic representation of a two-level RTN signal, defining its main
parameters and b its Lorentzian spectrum. 29

xiii

List of Figures xiv

1.16 Hardware estimation results for each epoch. Energy breakdown by a
main components, b by operations and c peak energy breakdown by
operations. 31

1.17 Key metrics for memory performance assessment and a qualitative com-
parison of STTRAM, PCM, and RRAM based on the metrics. 33

1.18 Sample images of MNIST database. 43
1.19 Illustration of the path followed by a gradient descent algorithm in a

two-parameter hyperspace. 48
1.20 Schematic illustrating the forward propagation process in a single hid-

den layer MLP. 49
1.21 Schematic illustrating the backpropagation process in a single hidden

layer MLP. 52
1.22 Typical relationship between capacity and error. Training beyond the

point of optimal capacity may lead to degradation of the test errors de-
spite improvements on the training dataset. 54

1.23 Examples of a underfitting, b appropriate fitting and c in a single pa-
rameter hyperspace. 55

1.24 Example illustrating a high cost local minima point (right) and low cost
(center) local minima point in comparison to the function global min-
ima(left). 57

1.25 Types of critical points. 57
1.26 a An example of the exploding gradient problem without clipping. The

gradient overshoots the ravine then receives a very large gradient from
the cliff face that propels the parameters outside the axes of the plot. b
The same example with gradient clipping, the step size is restricted to
avoid increasing the gradients to very large values. 58

1.27 Illustration of the effect of L2 regularization on the value of the optimal w. 62
1.28 a Example of sparse connectivity in comparison to b a fully connected

layer. 69
1.29 a An illustration of the typical composition of a CNN layer. b Typical

example representing the architecture of a whole CNN. 70
1.30 Flowchart of a standard Genetic Algorithm. 73
1.31 The basic concept of a massively parallel analog VMM within an RRAM

crossbar. 81
1.32 Four different schemes for representing the crossbar input signal and

the associated peripheral circuitry. 82
1.33 Column-wise synaptic bit slicing. 86
1.34 A general scheme to represent positive and negative weights. 88
1.35 Reconfigurable neural core for implementing a VMM, b MVM and c

outer product update. 90
1.36 Demonstration of parallel outer product update of a crossbar array using

temporal encoding for the activations and amplitude coding for the errors. 91
1.37 The PipeLayer architecture. 93
1.38 Radar chart comparing different simulation frameworks. 94

List of Figures xv

1.39 Comparison of training routines between DNN + NeuroSim V2.1, the
IBM Analog Hardware Acceleration Kit (aihwkit) and a Baseline Py-
Torch ML library for the VGG-8 network architecture, using the CIFAR-
10 dataset. 96

2.1 Illustration of the device stack of the a aVMCO and b Ta2O5 RRAM
devices. 99

2.2 Signatone S-1160S probe station (left) and Keysight B1500 semicon-
ductor parameter analyser (right). 100

2.3 Schematic of a DC IV a single sweep and b double sweep measurement. 102
2.4 Standard DC IV measurements of the a Ta2O5 and b aVMCO devices. . 103
2.5 Schematic illustrating a single AC a SET and b Reset process in an

aVMCO device. 104
2.6 Relationship between voltage and time in single AC programming in a

135×135nm aVMCO device. 105
2.7 Schematic illustrating the identical pulse train programming scheme. . . 107
2.8 Schematic illustrating the staged programming scheme. 108
2.9 Capture of the VB GUI for neuromorphic programming. 110
2.10 Capture of the ”custom” tab of the main panel of the VB GUI. 112
2.11 Capture of the ”Linear+RTN” tab of the main panel of the VB GUI. . . 113

3.1 Variability analysis panel of the GUI. 115
3.2 Example of the data contained in the a Discretization, b D2D and c C2C

structs. 119
3.3 Example of the Discretization Non-ideality sub-panel. 120
3.4 Example of the D2D variability Non-ideality sub-panel. 121
3.5 Example of the C2C variability Non-ideality sub-panel when using a

the ”user-input” mode and b the ”extract from data” mode. 121
3.6 Example of the preview plots available in the Plots sub-panel. 124
3.7 An example of the model refit window. 125
3.8 NN definition panel of the GUI. 126
3.9 Illustration of the two tabs of the Options sub-panel: a Options1 and b

Options2. 127
3.10 Example of the Disturbance files path definition table. 128
3.11 Example of the NN Layers Edit Field. 129
3.12 Example of the NN training Options Edit field. 130
3.13 Example of the remaining options in the ”Options1” tab. 131
3.14 Examples of the plots available in the simulation framework. 134

4.1 Examples of RTN signals captured in a Ta2O5 and b a-VMCO devices. . 137
4.2 Lognormal distributions of the relative RTN amplitude (RTN ampli-

tude/I) of 8 distinct resistance levels for the a Ta2O5 and b aVMCO
devices. 138

List of Figures xvi

4.3 Occurrence rate of RTN signals at 8 distinct resistance levels in the
(a) Ta2O5 and (b) aVMCO devices. (c - d) Extracted parameters from
the lognormal distributions at 8 levels for Ta2O5 and aVMCO devices
respectively. 138

4.4 CDF of RTN time constants a in Ta2O5 and b aVMCO devices. 140
4.5 a Topology of the used pattern recognition NN. b Visualization of weights:

(1) directly after training; (2) with CF RTN disturbance; (3) with NCF
RTN disturbance; (4-5) their differences to case (1) respectively. c
Statistical accuracy in 50 training-disturbance procedures. d Accuracy
comparison of NN with different number of neurons in the hidden layer. 141

4.6 Pattern recognition accuracy with MNIST images of different resolu-
tions. (a - c) Example of the rescaled MNIST image with (a) down-
scaled 14x14 pixels, (b) original 28x28 pixels and (c) upscaled 56x56
pixels. (d) Effect of RTN disturbance on the different input layer scaled
NNs. (e - f) log-log plot of relative error rate (Accuracywell−trained−AccuracyCF or NCF−RTN)
against square root of the neurons in the input layer (N). The straight
dash lines are guides for the 1√

N
scaling rule. 143

4.7 a read signals shorter than 100µs. b read signals between 10ms and 10s,
captured in a CF device. 145

4.8 Comparison of the read variability induced by RTN and other read
noises captured in a CF device. 146

4.9 Pattern recognition accuracy loss comparison between ORN (blue) and
RTN (red) in both CF and NCF devices. 147

4.10 Demonstration of the saturation of the aVMCO NR at different voltage
amplitudes. 149

4.11 Typical examples of Natural (red) and Linear (blue) responses captured
in a a Ta2O5 and b aVMCO devices. 149

4.12 Schematic of the implemented write-verify methodology. 151
4.13 a demonstration of programming to a high target current in the SET

process of aVMCO NR, the inset shows the small discrepancy between
the target current and the actual programmed current value. b current
achieved during the initial 20 programming attempts at both high (1µA)
and low (0.3µA) currents. Large PIV still exists at low target current. . 151

4.14 (a) Demonstration of the Weibull distributions for the 4 programming
cases in a CF device. (b - c) Weibull parameters (b) α and (c) β across
the normalized weight range. (d) NN accuracy loss caused by the CF
variabilities in the 4 programming cases. 152

4.15 (a) Demonstration of the Weibull distributions for the 4 programming
cases in a NCF device. (b - c) Weibull parameters (b) α and (c) β

across the normalized weight range. (d) NN accuracy loss caused by
the NCF variabilities in the 4 programming cases. (e) Mean accuracy
loss comparison between the CF and NCF devices. 155

4.16 (a - b) Weibull parameters of the PIV variability programmed with SET
and RESET for the NCF device. (c) Accuracy loss comparison between
the PIV programmed with SET and RESET. 156

4.17 Comparison of accuracy loss caused by PIV. 157

List of Figures xvii

5.1 a Illustration of the non-filamentary switching mechanism in the a-
VMCO RRAM. b DC I-V characteristics at different RESET voltages.
c Illustration of the large conductance stepping (GS) caused by initial
pulses, and the large C2C variability (in shade), in both linear and nat-
ural SET processes. d Typical natural programming with 100 cycles
(grey) and its mean (red). 163

5.2 Empirical CDF (eCDF) of the GS and C2C induced conductance changes
at different conductance levels in aVMCO RRAM when programed by
identical pulses with the natural response during a SET and b RESET. . 164

5.3 Illustration of the different programming methods used in this work. a
Set-only, b Reset-only, c Gradient-based. Red arrows represent a SET
step and blue arrows represent a RESET step. 165

5.4 a Topology of the CNN used in simulation. b Normalized weight his-
togram of the trained final layer of the CNN. c Validation accuracy on
the MNIST database achieved using the natural response with different
programming methods and non-idealities. 167

5.5 Trained normalized weight histograms of the final layer of the CNN
with the GS (a - c), C2C (d - f) and GS combined with C2C (g - i) using
the different programming methods (SET, RESET and Gradient-based).
Insets in (d - h) show a zoomed in version on the y-axis of the histograms.168

5.6 a Illustration of the staged weight update scheme and b the obtained
linear like response, with 100 cycles shown in grey and the mean in
blue. c eCDF of ∆G and dispersion in the linear response for SET and
d for RESET. e Validation accuracy on the MNIST database achieved
by the linear response with different programming methods and non-
idealities. 171

5.7 Trained normalized weight histograms of the final layer of the CNN
using the linear response with the GS (a - c), C2C (d - f) and GS com-
bined with C2C (g - i) using the different programming methods (SET,
RESET and Gradient-based). 173

5.8 a Illustration of the Selective programming method. b Summary of the
achieved accuracies of the CNN with different programming methods
and weight update schemes. c CE loss throughout training while using
the Natural and d Linear Programming Response. 174

5.9 Comparison of different NN topologies. a Number of weights required
for each topology. b Accuracy achieved with different topologies on the
Natural and Linear Response. 176

5.10 Impact of learning rate on the software benchmark accuracies of the
three tested NN topologies. 178

5.11 Impact of learning rate on the final accuracy achieved by the CNN
model from Fig. 5.4a after 10 epochs of training, using the Natural
Response (a - c), evaluated with the (a) GS, (b) C2C and (c) GS com-
bined with C2C non-idealities. (d - f) shows the same methodology
using the Linear Response. 179

List of Figures xviii

5.12 Illustration of the dynamic weight range rescaling effect on the weight
availability of a typical Natural Response curve. Red ticks show the
weights available through SET and blue ticks show the weights avail-
able through RESET. 182

5.13 Impact of Dynamic Weight Range rescaling compared to two fixed
ranges: [-0.327; 0.327] & [-1.575, 1.575] on the final validation ac-
curacy of a CNN. Different programming methods (SET, RESET, Gra-
dient and Selective) illustrated on both the aVMCO Natural Response
(a - c) and Linear Response (d - f). 183

A.1 Impact of learning rate on the maximum accuracy achieved by the CNN
model from Fig. 5.4a using the Natural Response (a - c), evaluated with
the (a) GS, (b) C2C and (c) GS combined with C2C non-idealities. (d -
f) shows the same methodology using the Linear Response. 194

A.2 Impact of learning rate on validation accuracy during training. Different
programming modes (SET, RESET, Gradient-based and Selective) are
analysed, as well as the impact of the Natural vs Linear Response on
the different non-idealities: (a - b) GS, (c - d) C2C and (e - f) GS+C2C. 199

B.1 Impact of Dynamic Weight Range rescaling compared to two fixed
ranges: [-0.327; 0.327] & [-1.575, 1.575] on the final validation loss of
a CNN. Different programming methods (SET, RESET, Gradient and
Selective) illustrated on both the aVMCO Natural Response (a - c) and
Linear Response (d - f). 200

B.2 Evolution of validation accuracy during training of the CNN using dy-
namic range rescaling (a & d) and two examples of fixed range scaling:
one with a range of [-0.327; 0.327] for all CNN layers (b & e) and the
other with a range of [-1.575; 1.575] (c & f). 206

C.1 Typical example of LP GA a accuracy and b cost curves per generation
of a 3-bit trained 1L-MLP on the MNIST database. 209

C.2 Impact of weight bit-precision on the a accuracy and b cost of a LP GA
trained 1L-MLP. 210

C.3 Training curves of GA LP using a the limited dataset and b the full dataset.211
C.4 Impact of mutation rate on the training accuracy of GA trained 1L-MLP

with LP. 212
C.5 Impact of odd individual mutation rate combined with fixed even indi-

vidual mutation rate trained with LP 213
C.6 Impact of noise in accuracy of the LP GA trained NN. Typical RTN

amplitude values of the aVMCO and Ta2O5 devices are represented for
reference. 214

List of Tables

1.1 Detailed comparison of different memory technologies 33
1.2 Different types of mathematical neurons. 51
1.3 Chronology of recent approaches on NN training using limited precision. 79
1.4 A comparison of modern simulation frameworks. 94

2.1 Conditions used for recording the DC IV characteristics in the Ta2O5
and aVMCO devices. 102

2.2 Identical pulse train programming conditions used for the Ta2O5 and
aVMCO devices. 107

2.3 Staged programming conditions used for the Ta2O5 and aVMCO devices.109

3.1 Table listing the statistical distributions available to use in the simula-
tion framework for the D2D and C2C Non-idealities sub-panels. 123

C.1 Table containing the (left) NN and (right) GA default parameters of the
LP GA trained MLP. 209

xix

List of Algorithms

1 Stochastic gradient descent (SGD) update at training iteration k. 46

2 Stochastic gradient descent with momentum (SGDM). 47

3 AdaGrad algorithm. 65

4 RMSProp algorithm. 65

5 Adam algorithm. 66

6 SGD training with a BNN. 76

xx

Abbreviations

1S1R 1-Selector-1-Resistor

1T1R 1-Transistor-1-Resistor

Acc Accuracy

ADC Analogue-to-Digital Converter

ALD Atomic Layer Deposition

API Application Programming Interface

a-Si amorphous Silicon

a-VMCO amorphous-Vacancy Modulated Conductive Oxide

BE Bottom Electrode

BN Batch Normalization

BNN Binarized Neural Network

BP BackPropagation

C2C Cycle-2-Cycle

CBRAM Conductive Bridge Random Access Memory

CC Compliance Current

CDF Cumulative Distribution Function

CE Cross Entropy

CF Conductive Filament

CNN Convolutional Neural Network

CPU Central Processing Unit

D2D Device-2-Device

DAC Digital-to-Analogue Converter

DRAM Dynamic Random Access Memory

xxi

Abbreviations xxii

EBP Expectation BackPropagation

eCDF empirical Cumulative Distribution Function

ECM ElectroChemical Metallization

eNVM emerging Non-Volatile Memory

EP Expectation Propagation

ETML ElectroThermal Modulation Layer

FC Fully Connected

FP32 Floating Point 32-bit

GA Genetic Algorithm

GPIB General Purpose Interface Bus

GPU Graphics Processing Unit

GradCAM Gradient-weighted Class Activated Mapping

GS Conductance (G) Stepping

GUI Graphic User Interface

HDD Hard Disk Drive

HMM Hidden Markov Model

HPC High Performance Computing

HRS High Resistance State

IGZO InGaZnO

IoT Internet of Things

I/O Input/Output

ISPP Incremental Step Pulse Programming

KapS Kappa Statistic

KDE Kernel Density Estimation

LFN Low-Frequency Noise

LP Limited Precision

LRS Low Resistance State

MAC Multiply-Accumulate

MAE Mean Absolute Error

MAPR Macro Average Mean Probability Rate

MAvA Macro Average Arithmetic

Abbreviations xxiii

MAvG Macro Average Geometric

MIM Metal-Insulator-Metal

ML Machine Learning

MLC Multi Level Cell

MNIST Modified National Institue of Standards and Technology

MPR Mean Probability Rate

MSE Mean Squared Error

MTJ Magnetic Tunnel Junction

MVM Matrix-Vector Multiplication

NCF Non Conductive Filament

NDR Negative Differential Resistance

NN Neural Network

NR Natural Response

NVM Non-Volatile Memory

ORN Other Read Noises

OxRAM Oxide Random Access Memory

P2P Pulse-2-Pulse

PCM Phase-Change Memory

PCMO Pr0.7Ca0.3MnO3

PDF Probability Density Function

PIV Programming Induced Variability

PLU Piece-wise Linear Unit

PSD Power Spectral Density

PVD Physical Vapour Deposition

RAM Random Access Memory

RNN Recurrent Neural Network

ROC Receiver Operating Characteristics

RRAM Resistive Random Access Memory

RTN Random Telegraph Noise

SCM Storage Class Memory

SGD Stochastic Gradient Descent

Abbreviations xxiv

SGDM Stochastic Gradient Descent with Momentum

SMU Source Measurement Unit

SNN Spiking Neural Network

SPGU Semicondutor Pulse Generator Unit

SPICE Simulation Program with Integrated Circuit Emphasis

SRAM Static Random Access Memory

SSD Solid State Drive

STT-RAM Spin-Transfer-Torque Random Access Memory

TE Top Electrode

TMDC Transition Metal DiChalcogenides

TMR Tunneling Magneto Resistance

TPU Tensor Processing Unit

VB Visual Basic

VCM Valence Change Memory

VISA Virtual Instrument Software Architecture

VMM Vector-Matrix Multiplication

WGFMU Waveform Generator/Fast Measurement Unit

W-V Write-Verify

Symbols

C Capacitance F

L Inductance H

M Memristance Ω

P Power W (Js−1)

q Elementary charge C

R Resistance Ω

VForming Forming voltage V

VRead Read voltage V

VWrite Write voltage V

η Learning rate

µ Mean

φ Flux linkage Wb

σ Standard deviation

xxv

Chapter 1

Introduction & literature review

In this section the concepts that are discussed throughout the thesis will be introduced

through literature review. This work focuses on the application of emerging non-volatile

memories (eNVM) towards neuromorphic systems, as such, this introductory section

will be split into three main sections:

1. Emerging non-volatile memories

2. Learning algorithms for neuromorphic systems

3. Neuromorphic systems with non-volatile memories

In the first section an overview of existing eNVM devices will be given with special

emphasis on the topic of resistive random access memories (RRAM), since most of the

work throughout this thesis is centered around RRAM. This subsection will focus more

on eNVM physical and operating principles, as well as the relevant key performance

metrics.

1

Chapter 1 Introduction & literature review 2

The second section will shift the focus towards different machine learning (ML) con-

cepts. While the main focus of this work will be on Backpropagation (BP) based learn-

ing, different learning strategies will also be discussed, including limited precision (LP)

variations of BP algorithms as well as global search methods such as genetic algorithms

(GA).

Finally, an overview of existing application of these ML concepts onto hardware

neuromorphic arrays found in the literature will be given. Beyond that, a large part

of the neuromorphic design process revolves around the simulation of training and/or

inference based on modelled devices, so a subsection will also be dedicated towards

reviewing existing neuromorphic simulation frameworks.

1.1 Memory technology

1.1.1 Conventional memory technology

Traditional computing paradigms have relied on the same basic principles first pro-

posed in 1945, known as the von Neumann architecture [1].

The operating principle of this paradigm relies on the data transfer between input/out-

put (I/O) devices, a central processing unit (CPU) and a memory unit. Through tech-

nological development over the years, the processing speed of CPU’s and read/write

speeds of the memory units have increased significantly, however the data transfer be-

tween CPU and the memory element through the memory bus has not kept up with

the latency and energy consumption demand of these sub-systems, which has led to

Chapter 1 Introduction & literature review 3

Figure 1.1: Schematic illustrating the von Neumann architecture scheme [1].

what is now known as the von Neumann bottleneck. The surge of interest in the Inter-

net of Things (IoT) and Machine Learning (ML) elements recently has accentuated the

need for alternative computing architectures that rely on in-memory computing [2] to

circumvent the von Neumann bottleneck.

As seen in Figure 1.1, there exists a difference in storage elements regarding the

interconnectivity with the CPU: a memory unit that communicates directly with the

CPU which is known as Random Access Memory (RAM) and an auxiliary storage type

memory device that can be seen as an I/O device. This comes down to the limitations of

different type of traditional memory designs, since there is no single memory element

that can combine all of the advantages without any of the drawbacks in terms of area

consumption, read/write speed, volatility and endurance.

Semiconductor memories can typically be categorized according to their volatility,

this is, whether it is able to hold the stored information when its power supply is turned-

off (non-volatile) or not (volatile). Conventional volatile semiconductor memories are

Chapter 1 Introduction & literature review 4

comprised of static random-access memory (SRAM) and dynamic random access mem-

ory (DRAM), while traditional non-volatile memories (NVM) were initially only viable

using mechanical hard disk drives (HDD) until the introduction of solid state drives

(SSD) based on semiconductor Flash memory technology [3], which initially were rel-

egated to high speed but low capacity auxiliary storage devices, but with the growth

of the Flash memory technology and manufacturing cost reduction, higher capacities

are achievable and are steadily replacing mechanical HDDs as the most widely adopted

NVM technology.

(a)

+ very fast read/write
+ no refresh
+ std. CMOS devices

- volatile
- very large cell

(b)

+ fast read/write
+ small cell

- volatile

(c)

+ non-volatile
+ very small cell

- slow write/erase
- only block erase
- limited endurance

Figure 1.2: Conventional semiconductor memory technologies: (a) SRAM, (b) DRAM, (c)
Flash.

Among these conventional memory technologies (illustrated in Figure 1.2), even with

recent advances of Flash technology, there are still significant discrepancies in the ca-

pabilities of conventional volatile and non-volatile techonologies in terms of speed, en-

durance, multilevel cell (MLC) capacity and power consumption. These discrepancies

mean that SRAM and DRAM still need to be used as low latency volatile solutions

Chapter 1 Introduction & literature review 5

while Flash, due to limited speed and endurance can only be used as auxiliary storage

solutions, hindering the practicality of conventional memory technologies to be applied

towards in-memory computing systems, whereas other eNVM types can be viewed as

alternatives to confront these issues.

1.1.2 Emerging non-volatile memory

In 1971, Leon Chua [4] identified a theoretical symmetry between the three (known)

non-linear circuit elements:

• non-linear resistor : R = dv/di [4]

• non-linear capacitor : C = dq/dv [4]

• non-linear inductor : L = dφ/di [4]

From this symmetry he inferred there was a missing link between flux linkage (φ)

and the amount of electric charge that has flowed (q):

M = dφ/dq [4] (1.1)

This missing link was denominated as Memristance (short for memory resistance) [4].

Various experimental accounts of memristance date as far back as to the late 19th

century [6], with early accounts on the observation of negative differential resistance

(NDR) and hysteresis, two distinctive characteristics of memristive devices, dating as

Chapter 1 Introduction & literature review 6

Figure 1.3: The four fundamental two-terminal circuit-elements: resistor, capacitor, inductor
and memristor [5].

far back as 1896 [7] and 1904 [8] respectively. Despite this, the link between an ex-

perimental device and Leon Chua’s theoretical memristor was only established in 2008

by an HP research group led by R. Stanley Williams, by associating the hysteretic I-V

characteristics of a 2-terminal Pt/TiO2/TiO2−x/Pt device, denominated RRAM as per

its variable resistance characteristics, to that of a simulated voltage-driven memristive

device [5].

Following this discovery from HP, interest by the scientific community on the re-

search of memristive devices grew considerably and a number of different types of

devices, beyond RRAM surged as alternatives.

Figure 1.4 provides a simple visual method of categorizing current memory technolo-

gies. At the highest level, these technologies can be split according to its volatility. On

the volatile side, this taxonomy includes only SRAM and DRAM as two mature tech-

nologies, however, on the non-volatile side, these devices can be further categorized in

terms of their technological maturity. As a baseline for non-volatile memories due to

Chapter 1 Introduction & literature review 7

Figure 1.4: Memory taxonomy from the IEEE IRDS 2021 update [9].

its state of optimization and significant commercial presence, Flash can be considered

as the baseline most mature technology and a benchmark for comparison with other

products. Prototypical memory devices are at an intermediate point of maturity where

there exists already significant scientific and technological background available in the

literature and certain niche commercial products are making their way into the market.

Beyond this point exists the emerging type of technology, which can be regarded as

the least mature category but have been shown to have the potential to offer significant

benefits if various scientific and technological hurdles can be overcome.

Due to the nature of this thesis and its connection to ML architectures, the category of

highest interest is that of the prototypical memory devices due to its intermediate state

of maturity where integrating these devices into larger architectures is now possible but

there is still ample research opportunities to be developed. Beyond that, ML applica-

tions also incentivize the use of high bit density within its chips, so the focus will be on

devices capable of programming to multiple conductance levels designed as multi-level

cell (MLC) devices and also on 2-terminal devices due to their smaller area footprint.

Chapter 1 Introduction & literature review 8

With these requirements three device categories stand out: phase-change memory

(PCM), spin-transfer-torque RAM (STT-RAM) and RRAM.

• PCM devices consist on a chalcogenide material sandwiched between two elec-

trodes, which is able to transition between an amorphous (high resistance) phase

and a polycrystalline (low resistance) phase triggered by heat surges generally

achieved through high power electric pulses [10]. The memory cell resistance

can then be read out using low voltage non destructive pulses.

• STT-RAM is based on the operating principles of magnetic tunnel junction (MTJ)

devices. MTJs consist of two ferromagnetic layers sandwiching an insulating

tunnel barrier, the device state is determined by tunneling magneto-resistance

(TMR), which is defined as: (RAP−RP)/RP×100(%); where RAP and RP are the

tunneling resistance of the MTJ when the two magnetic layers are in anti-parallel

and parallel alignment, respectively. The writing mechanism of STT-RAM orig-

inates from the theoretical prediction that spin-polarized electrical current can

generate a torque to switch the magnetic moment of a magnet through the trans-

fer of angular momentum [11–13].

• RRAM devices generally consists of a 2-terminal metal-insulator-metal (MIM)

structure that is able to switch between a high resistance state (HRS) and a low

resistance state (LRS) through the application of different voltages. The choice of

materials (both metals and insulators) of the structure, as well as their dimensions,

will dictate the physical phenomenons responsible for the switching of the resis-

tive states. Depending on these physical principles, RRAM can be further catego-

rized into oxide RAM (OxRAM) [14–16] or conductive bridge RAM (CBRAM)

Chapter 1 Introduction & literature review 9

[17, 18]. Since this thesis will have a higher emphasis relating to RRAM, a more

detailed overview will be presented in the following subsection.

Figure 1.5: An illustration of memory hierarchy with typical access speed, lined up with the
performance range of major eNVM devices [19].

The aforementioned eNVM devices all possess uniquely distinct physical operation

principles that are able to bridge the speed gap that exists between conventional volatile

and non-volatile memory technologies (Figure 1.5), this in turn opens up several pos-

sibilities on applications beyond the scope of the von Neumann architecture, such as:

in-memory [2, 20] and bio-inspired computing [21–23] and novel hardware security

primitives [24–26].

1.1.3 Introduction to RRAM

The observation that nominally insulator oxide materials could undergo abrupt switch-

ing events into conductive states date has far back as the 1960s [27–30], however, these

early observations were not robust enough to support practical development of memory

applications. It was only in the early 2000s, firstly with the demonstrations of NiO mem-

ories integrated in a conventional 0.18µm CMOS node in a one-transitor-one-resistor

Chapter 1 Introduction & literature review 10

(1T1R) structure by Samsung [31], and then by the memristor discovery by HP [5], that

the scientific interest in RRAM took off.

(a) (b)

Figure 1.6: (a) Number of publications filtered by specific keywords: RRAM, RRAM & Mem-
ristor, and memristor (excluding RRAM) from 2003 up to 2015 [32]. (b) Survey of Emerging
Memory Devices from the 2014 ERD Emerging Logic Workshop [9].

These discoveries not only led to a massive surge of interest in RRAM but also in

memristive devices in general for storage class and beyond CMOS applications (Figure

1.6a). Concerning the different types of eNVM, RRAM (OxRAM & CBRAM com-

bined), according to the IEEE International Roadmap for Devices and Systems, comes

in as the 2nd most promising eNVM technology, just behind STT-RAM (Figure 1.6b).

RRAM operating principles are based on the migration of defects inside the insu-

lating medium of a MIM structure (usually caused by the application of an external

electric field) which will affect the resistivity of the overall device. Beyond this simple

principle, the underlying mechanisms causing defect migration and resistance switch-

ing are varied, complex and heavily dependent on device engineering. Several non

exclusive subcategorizations can be made for the broader RRAM category; for the pur-

pose of this thesis, RRAM will be classified according to its: nature of defects (oxygen

Chapter 1 Introduction & literature review 11

vacancies for OxRAM or metalic ions for CBRAM), switching model (filamentary or

non-filamentary) and operation mode (unipolar or bipolar).

1.1.3.1 Switching model

Most RRAM devices reported in the literature are of the filamentary type. In filamen-

tary RRAM (Figure 1.7a), switching is controlled by building up a conductive filament

(CF) inside the insulating layer which forms a percolation path that shorts the two con-

ducting electrodes, therefore switching towards a LRS. This initial filament is achieved

by applying an electric field to the MIM structure that is strong enough to lead to a soft

dielectric breakdown and electromigration of defects [33]; this initial process is called

the forming process [34]. Once on the LRS, the filament can be ruptured, depending

on the nature of defects in the device, this can either be achieved through the passing

of a high current that breaks down the filament through Joule heating, or through the

application of a reverse electric field leading to the filament dissolution through redox

reactions and consequently, ”resetting” the device resistance back to the HRS. The fila-

ment can then be restored by using a similar electric field to the forming process but with

lower magnitude; this is called the ”Set” process. The memory element of the device is

therefore present on whether the filament is ruptured or shorting the two electrodes.

Non-filamentary switching (Figure 1.7b) contrasts with the filamentary type in the

sense that there is no CF formation on the insulator material, instead, resistance changes

by modulating the defect profile close to the interfacial regions of the device, either be-

tween in the metal-oxide interface [35] or inner-interfacial region of multi-layer devices

Chapter 1 Introduction & literature review 12

[36]. The absence of one single critical percolation path in non-filamentary devices gen-

erally translates in a few distinct characteristics, such as: low operating currents (sub-

µA) [37], controllable MLC capability [38, 39], low intrinsic variability [40], forming-

free [37] and since the change of resistance happens across the volume of the device, an

external current limiter is not a necessity to prevent a hard breakdown (self-compliance)

[37, 41].

1.1.3.2 Nature of defects

Beyond the switching model, RRAM devices can also be categorized according to

the nature of the moveable defects. The defects responsible for switching can be an-

ionic (negative charges) or cationic (positive charges). In this context, devices where

(a)

Chapter 1 Introduction & literature review 13

(b)

Figure 1.7: Schematic illustrating: (a) Filamentary and (b) Non-filamentary resistive switching
[15].

the switching is based on cation migration can generally also be referred to as electro-

chemical metallization (ECM) memory or CBRAM, and anionic based devices can also

be referred to as valence change memory (VCM) or OxRAM.

In CBRAM, switching is based on the migration of metal ions across the insulator

material and subsequent reduction/oxidation (redox) reactions [17, 42]. To enable this

phenomenon, CBRAM devices need to generally be composed of asymmetric elec-

trodes: one oxidizable (ionizable) electrode such as Ag, Cu or Ni and a relatively inert

electrode, e.g. W, with an ion conducting medium between them that is able to transport

the metal cations. Providing a positive voltage to the oxidizable electrode leads to the

dissolution of the metal cations (e.g. Ag→ Ag++ e−) that are transported by the elec-

tric field towards the inert electrode, where the ions are reduced (e.g. Ag++ e−→ Ag)

and deposited upon contact. This process leads to the formation of a conductive bridge

Chapter 1 Introduction & literature review 14

that shorts the two electrodes, therefore switching to the LRS. In some cases the fila-

ment can be dissolved through Joule heating, but in other cases, reversing the voltage

polarity leads to the opposite redox reactions causing filament dissolution instead of

formation, reverting the device back to HRS. The description for CBRAM seems very

similar to that of filamentary switching so it is worth noting that due to the nature of the

involved materials, most CBRAM devices are of the filamentary type, however, there

have already been interesting reports of non-filamentary type cation-migration devices

[43].

In OxRAM, the physical mechanism that is responsible for resistive switching is gen-

erally associated with the generation of oxygen vacancies (V 2+
o) and subsequent re-

location of oxygen ions (O2−). Common reports are found for both filamentary and

non-filamentary type OxRAM devices.

For filamentary OxRAM, the switching mechanisms are very similar to those of the

filamentary CBRAM devices, with the main difference that instead of having redox re-

actions on one of the electrodes, oxygen atoms are knocked out of the lattice of the

insulating layer and drift toward the anode under the application of high electric fields,

while oxygen vacancies are generated and get accumulated near the cathode, creat-

ing a phase conductive filament that connects both electrodes resulting in switching

from HRS to LRS. Similar to the CBRAM case, in some cases this filament can be

re-oxidized and ruptured by reversing the voltage polarity (valence change mechanism

[44]), in other cases the filament can be ruptured by driving a large current and sub-

sequent joule heating effects (thermochemical mechanism [45, 46]). Various materials

systems possessing filamentary switching dynamics have been studied, such as: metal

Chapter 1 Introduction & literature review 15

oxides [47, 48], 2D transition metal dichalcogenides (TMDC) [49], perovskite [50, 51]

and organic materials [52]. Of these, the class of binary oxides is of particular interest

due to its general CMOS compatibility, multistate switching and simple chemical com-

position; material systems in this class include: H f O2 [53–56], ZnO [57], NiO [58],

TiO2 [59], WO3 [60] and TaOx [61, 62].

Beyond this, OxRAM devices can also be of the non-filamentary type, which involve

oxygen vacancy exchange on the interface between two different materials of the stack.

A typical example is based on redox processes at these interfaces, leading to varying

thicknesses of the interfacial layers and thus different resistance states [63]. Typical

material systems used for non-filamentary switching include: Pr0.7Ca0.3MnO3 (PCMO)

[38, 64], InGaZnO (IGZO)/α − IGZO [65], TiN/TiOx [66], Al/a− TiO2 [67], and

a−Si/TiO2 (a-VMCO) [37].

1.1.3.3 Operation scheme

General RRAM operation can be divided into four steps: Forming, Reset, Set and

Read.

Forming: The forming process is generally the first step of operation on a fresh RRAM

device and is generally only applied once. This involves the application of a

high electric field that induces a soft dielectric breakdown that allows for the

initial defects to be delocalized into the switching layers, changing the device

state to the LRS (logic ”1”); all subsequent operating voltages are then lower than

the forming voltage (VForming). Typically filamentary devices require some sort

Chapter 1 Introduction & literature review 16

of current compliance (CC) mechanism to prevent a hard permanent dielectric

breakdown to occur due to high current. Non-filamentary devices, due to the

nature of their switching mechanism, may not need either the application of CC

or the forming process and are known as self-compliant and forming-free [37, 41]

devices respectively.

Reset: The Reset process refers to the application of a specific electrical stimuli that al-

lows the device to change back to the HRS (logic ”0”). This involves the breaking

(or thinning) of the CF in filamentary type devices and the barrier modulation in

the interfacial layers of non-filamentary devices.

Set: The Set process is in essence very similar to the forming process, with the dif-

ference that subsequent ”Sets” do not require high electric fields because there

are already mobile defects present in the switching layers induced by the initial

forming process.

Read: The Read process simply consists on the application of a carefully selected volt-

age value across the 2-terminal RRAM so that the current (or resistance) across

the device can be registered. The read voltage (VRead) that is low enough has to

not induce any further changes in resistance but high enough so that a reasonable

current window between the HRS and LRS can be read.

Depending on both the switching model and the nature of defects of the device, the

RRAM device can operate under two different schemes: unipolar or bipolar switching.

In unipolar switching (Figure 1.8a), the switching operation is independent of the

polarity of the write voltage (VWrite). The Set process typically requires to be limited

Chapter 1 Introduction & literature review 17

Figure 1.8: The two basic operation schemes of RRAM. I-V curves recorded for a triangular
shaped voltage signal. CC denotes the compliance current. Dashed lines indicate that the real
voltage at the system will differ from the control voltage because of the cc in action. (a) Unipolar
switching. (b) Bipolar switching [14].

by a CC, while the Reset process is conducted by applying a voltage signal of the same

polarity while removing this current limiter, therefore inducing a high current that will

change the device back to the HRS, normally induced by joule heating effects [45, 46].

This type of operation tends to be more common on filamentary type devices.

Bipolar switching devices on the other hand (Figure 1.8b), require that the voltage

polarity of the ”Set” and ”Reset” processes be opposite to each other. This is brought

about on devices in which the physical mechanisms is strongly dependent on redox

reactions caused by voltage application. In this case, there is a dedicated polarity which

will induce carrier migration in one direction that will be responsible for the ”Set”

process, and the ”Reset” process, contrary to the unipolar scheme, is not done through

application of high currents but rather through the change of voltage polarity in the

device which leads to the reverse redox reaction and consequent reversal of resistance

state. This type of operation tends can be found on both filamentary and non-filamentary

type devices.

Chapter 1 Introduction & literature review 18

1.1.4 Key performance metrics

In this subsection, an emphasis on the different performance requirements that need

to be met by eNVM will be given. Since a large focus of this thesis is on neuromorphic

computing, a distinction will be made between the performance metrics for storage

class memory (SCM), denominated basic reliability metrics, and functional reliability

metrics for neuromorphic specific applications (Figure 1.9).

Figure 1.9: Reliability metrics of the neuromorphic device. Device reliability metrics are clas-
sified into basic and functional reliability metrics [68].

Basic reliability metrics include: endurance, retention, write/read disturbances and

noise; while functional reliability metrics, given the importance of MLC behaviour for

neuromorphic applications, go beyond the requirements for SCM and include: program-

ming non-linearity, asymmetry, precision, dynamic range, variability and yield.

It should be noted that basic reliability metrics are also fundamental requirements

for neuromorphic computing. Even though the concepts are similar for both SCM and

neuromorphic computing, the requirements for both may vary, as shown in Figure 1.10.

Chapter 1 Introduction & literature review 19

The main difference in requirements between SCM and neuromorphic computing can

also be viewed as a difference between digital data storage (SCM) and analogue data

processing and storage (neuromorphic). In traditional digital data storage, the require-

ments need to comply as to maintain the device resistance (or conductance) between

certain reference lines that still allow the bits to perceivable without errors, as such,

the basic reliability metrics for SCM are more lenient as long as those reference lines

are not crossed. For analog data storage on the other hand, the goal is to achieve as

many perceivable resistance levels in one device without errors, as such, the same basic

reliability metrics become much more strict in cases such as: retention, endurance and

noise, where small variations or drifts can have a big impact on the perceivable state of

the device and therefore on computing accuracy. More in-depth descriptions for each

of these metrics will follow in the next sections.

Figure 1.10: Schematic diagram of different basic reliability metrics of memory application
for digital data storage and neuromorphic computing application for analog data processing and
storage. (a) Window retention of digital memory and (b) conductance retention of analog data in
the computing process. (c) Cycling endurance of digital memory and (d) incremental switching
endurance of analog data in the computing process. (e) Write/read disturb in memory and (f)
computing. (g) Noises in memory and (h) computing [68].

Chapter 1 Introduction & literature review 20

1.1.4.1 Retention

Retention is the metric that evaluates how long the device can maintain its conduc-

tance value, in short, it quantitatively evaluates the non-volatility of the device. The

commonly accepted standard for data retention for SCM applications is around 10 years

at a temperature of 85◦C. Testing for such a long period of time is obviously unrealistic,

as such there are different methods by which the retention properties can be inferred.

One common method is a simple linear extrapolation where the device is baked at high

temperature and multiple read measurements are taken during a long period of time

(105s) and the data is then extrapolated towards the 10 year mark. A more accurate

method however is to use the Arrhenius equation:

k = Ae

−Ea

kBT [69, 70] (1.2)

where:

k is the rate constant

T is the absolute temperature (in degrees Kelvin)

A is the pre-exponential factor

Ea is the activation energy

kB is the Boltzmann constant

Chapter 1 Introduction & literature review 21

In this method, time to failure can be recorded at different high temperatures (in a

reasonable amount of time), the Arrhenius plot can then be used to extract the activation

energy and extrapolate for the reasonable device operating temperatures [71].

On the neuromorphic side, the retention concern is extended beyond not only main-

taining a long retention time of binary states, but also the ability to keep a tight con-

ductance distribution with minimal drifts of multiple analog conductance states. Zhao

et al. [72] has devised a compact model describing retention drift based on the statisti-

cal collection of filamentary RRAM retention behaviours across 8 different conductance

levels and measured the impact of retention time on an inference NN trained for MNIST

pattern recognition.

1.1.4.2 Endurance

Endurance is the measure that quantitatively evaluates the maximum number of switch-

ing cycles a memory device can perform before failure. During successive cycling

operations in RRAM, the resistance values of its defined states may shift beyond its de-

fined reference thresholds(Figure 1.10c & d). Depending on its switching mechanisms,

RRAM can have different types of endurance failures.

In filamentary RRAM, Chen et al. [73] reported three types of endurance failure

behaviours (Figure 1.11).

Type I is characterized by a drift of both resistance states towards the middle of the

resistance window and can be attributed to an interfacial electron barrier created by

oxidation of a metal electrode subjected to large power/current and high temperature.

Chapter 1 Introduction & literature review 22

Figure 1.11: Schematic of the endurance failure mechanism of RRAM. Three failure types of
endurance degradation are illustrated. Adapted from [73].

In type II, there is a gradual continual drift of LRS towards lower resistance values

accompanied by a degradation of HRS in two stages, a first stage where the HRS drifts

to lower values and a second stage where there is a sudden drop of resistance and reset

is no longer possible. This type of failure is caused by redundant V 2+
o generation that

incrementally increase the thickness of the CF up to the point of failure where the CF

can no longer be broken by the reset process.

Failure type III is identified by a gradual loss of the HRS resistance while maintaining

a steady LRS. Frequent switching gradually leads to the depletion of O2− ions that are

required for V 2+
o recombination in the reset process [44], in turn leading to gradually

more deficient reset processes.

In non-filamentary type devices, particularly in a-VMCO, tends to occur with closure

of the resistance window for both LRS and HRS, similar to the filamentary failure type

I (Figure 1.11).

Chapter 1 Introduction & literature review 23

However, due to the inherently different switching mechanism, this failure attribute

is also different. Subhechha et al. [74] proposed that defect movement in the switching

layer involves a combination of an electric field-driven model [75], where electrons

play a significant role, and a current-driven electromigration-based model [76]. In the

field-driven switching mechanism, the distribution of defects becomes more symmetric,

the tunneling gap between neighbouring defects becomes more uniform, and the device

conductance increases, driven by the movement of electrons. Conversely, in current-

driven switching, electrons push defects closer to the device or grain boundary edge,

rendering these defects inactive in the conduction mechanism, consequently reducing

the device conductance.

In storage-type SCM applications, 106 endurance cycles is generally considered as

the base target for memory devices to achieve (as listed in the IEEE IRDS 2021 Update

[9]). However, neuromorphic applications, particularly in NNs, can require a wide range

of weight updates depending on the task and dataset, although for small tasks such as

MNIST, an endurance of around 106 may be sufficient [77], larger datasets may require

significantly more weight updates. On the other hand, NN training does not require full

switching between HRS and LRS, but only the addition of small increments of current

at a time, which reduces the endurance strain on the device [78]. Another mitigating

factor on NN endurance requirements is that there exists some flexibility in terms of

mapping the weights to the synaptic device, as such, several pieces of work exploit

intelligent programming and weight mapping solutions towards mitigating endurance

effects and extending device lifetime for online training [79–81].

Chapter 1 Introduction & literature review 24

(a) (b)

Figure 1.12: (a) Different programming schemes and (b) the corresponding experimentally
measured data of conductance modulation in TaOx/TiO2 based synaptic device [82].

1.1.4.3 Nonlinearity

As previously mentioned in Figure 1.9, nonlinearity is a functional reliability metric

that mostly affects performance on neuromorphic applications. Nonlinearity can be

seen as the rate of conductance change as a function of the number of applied voltage

pulses and can also be seen as a quantitative measure of the device’s analog capabilities.

Ideal synaptic behaviour would be a perfectly linear evolution in conductance with

the applied voltage pulses, however, most synaptic devices exhibit inverse exponential

conductance evolution due to their intrinsic switching mechanism, which still imposes

a major challenge for NN online training.

Nonlinearity in weight update is a specially relevant issue in filamentary RRAM, as

the forming process mostly controls CF growth through a drift process [83], after the

CF is completed, filament thickness is controlled by diffusion [83–85] of only a few

Chapter 1 Introduction & literature review 25

defects which have a big impact on device conductance hence larger jumps with each

voltage pulse.

In non-filamentary devices, however, conductance is mostly controlled by barrier

modulation of a large number of defects, the contribution for each defect is evened

out throughout the device area and each voltage pulse can have small incremental con-

tributions towards conductance change, therefore improved linearity [86–88].

Nonlinearity mitigations strategies can be achieved either through material and struc-

ture engineering or novel programming schemes.

Through materials engineering several pieces of work have been explored towards

improving nonlinearity. Wu et al.[89] proposed the insertion of an electrothermal mod-

ulation layer (ETML) over the switching layer of an H f Ox device for better control of

electric field and thermal distributions, improving Reset and Set linearity respectively.

Chandrasekaran et al. [90] introduced uneven Al dopants, creating oxygen rich and

oxygen poor regions that confine filament formation, therefore improving programming

linearity. Moon et al. [91] designed a 1T2R structure with a serial-connected resistor

for voltage division, resulting in lower voltage drop across the RRAM and improved

linearity.

Beyond solutions in device engineering, nonlinearity mitigation strategies coming

from novel programming methodologies can also be explored. Bipolar programming

pulse trains with positive and negative pulse pairs can be used towards reducing the

effects of over-programming in the steepest parts of the conductance curves [82, 92].

Chapter 1 Introduction & literature review 26

Pulse trains with increasing voltage amplitude or pulse widths can be effective at coun-

teracting the natural exponential nonlinearity that comes from using identical pulses

[82] (Figure 1.12). Cai et al. [93] introduced the concept of charge-domain pulse width

modulation to mitigate nonlinear conductance update behaviour in RRAM, however,

this is only possible with the use of custom current-integrating hybrid analogue-to-

digital converter (ADC) and pulse-mode digital-to-analogue converter (DAC) scheme.

Novel programming schemes for nonlinearity mitigation therefore come at the cost of

increasingly complex peripheral circuitry design.

1.1.4.4 Variability

Variability is defined as any variations between multiple instances of memory switch-

ing. In typical SCM applications, variability is often measured between only two dis-

tinguishable states (HRS and LRS), as such, two common types of variability stand

out: variability between different cycles of switching within the same device, called

cycle-to-cycle (C2C) variability, and variability between different devices, denominated

device-to-device (D2D) variability.

(a) (b)

Figure 1.13: (a) Definitions of the different types of variability [68]. (b) An example of a
common misconception between C2C and P2P definitions found in the literature [94].

Chapter 1 Introduction & literature review 27

In neuromorphic applications, the device is usually programmed in multiple pulses in

order to exploit its analog conductance capabilities. This type of programming gave rise

to a third type of variability defined as pulse-to-pulse (P2P) variability (Figure 1.13a).

Nevertheless, since neuromorphic application of eNVM devices is still a relatively new

and growing field of interest some common misconception on the different definitions

are still present in the literature (Figure 1.13b).For the purpose of this thesis the defini-

tions from Figure 1.13a are considered.

Variability in RRAM is an intrinsic property of the device that is linked to the stochas-

tic nature of oxygen vacancy/ionic movement [95]. Therefore the switching model in

each device plays a significant role in terms of device variability.

Figure 1.14: Cumulative distribution functions (CDF) of the read-out current between different
devices before (black) and after (red) retention tests for (a) filamentary H f O2 and (b) non-
filamentary a-VMCO RRAM [37].

In filamentary RRAM LRS variation comes from both the number of CFs as well as

their size, thus the reduction of possible filament paths by restricting the active switch-

ing area may reduce LRS variation. HRS variation, on the other hand comes from

variations on the ruptured CFs length, as such, any small variations of the tunneling gap

can lead to exponential variations on tunneling current (Figure 1.14a).

Chapter 1 Introduction & literature review 28

For non-filamentary RRAM however, current transportation mechanisms dominated

by interfacial barrier modulation diminishes the impact of singular defects, resulting

not only in similar variability distributions for both HRS and LRS as well as tighter

distributions of current overall (Figure 1.14b) [37].

1.1.4.5 Noise

In electronics, noise can be defined as deviations from an average electrical signal

(voltage or current) present during measurement.

Several different types of noise exist in electronics, however, in RRAM three types

are the most prevalent: thermal noise [96], 1/ f α [97, 98] and random telegraph noise

(RTN) [99, 100].

Thermal noise, often also referred to as Johnson-Nyquist or white noise, is an un-

avoidable type of electrical disturbance generated by the random thermal motion of

charge carriers inside an electrical conductor, which happens regardless of the applied

voltage.

1/ f α noise, also referred to as Flicker or pink noise, refers to a kind of low-frequency

noise (LFN) that is defined by its power spectral density (PSD) function (often also

referred to as Lorentzian), which can be fitted by a 1/ f α power law, where 1≤ α ≤ 2.

Beyond simply being a source of noise in electronics, 1/ f α noise can be used as a tool

for characterizing the underlying conduction and switching mechanisms in RRAM. Yu

et al [97] determined that in a TiN/HfOx/AlOx/Pt RRAM device, the LFN can be

fitted to 1/ f α with α ∼ 1 for LRS and α ∼ 2 for HRS, and a cut-off frequency in this

Chapter 1 Introduction & literature review 29

transition, suggesting that CFs are ruptured and a tunneling gap is formed during the

reset process.

RTN, often also referred to as burst noise is a dominant pattern of LFN particularly

characterized by a distinct fluctuation between two discrete conductance states (Figure

1.15a), originating from the filling or emptying of one or more traps. Furthermore, RTN

can also be seen as the specific type of LFN where the PSD is defined as 1/ f 2 (Figure

1.15b).

(a) (b)

Figure 1.15: (a) Schematic representation of a two-level RTN signal, defining its main parame-
ters and (b) its Lorentzian spectrum [99].

As with 1/ f α noise, RTN obervations can be used as a powerful characterization

tool for a detailed insight into RRAM conduction mechanisms and switching dynamics

[101].

Since RTN is a consequence of trapping/detrapping of defects in the RRAM switch-

ing layers, there is a significant difference in terms of impact the RTN amplitude present

in CF and NCF RRAM types. In CF RRAM, one single defect can be responsible for

the restoration/rupture of the CF, hence causing large fluctuations in terms of conduc-

tivity [102], while in NCF devices, the impact of trapping/detrapping a singular defect

Chapter 1 Introduction & literature review 30

is evened out throughout the device area, having therefore an attenuated impact in its

overall conductivity [103]. This difference between CF and NCF devices can also be

observed on the impact that RTN has in the accuracy of a neuromorphic inference en-

gine used for pattern classification [104].

1.1.4.6 Power

With ever increasing circuit complexity and aggressive nanoelectronics scaling, power

consumption has become an ever increasing concern. Particularly, neuromorphic sys-

tems aim to mimic the efficiency of biological synapses which use approximately 10 f J

per energy spike, however, the programming energy for most RRAM devices is around

100 f J ∼ 10pJ, and PCM devices may consume 10pJ ∼ 100pJ per programming op-

eration, meaning that realistic consumption of hardware based synapses is anywhere

between 10X to 10 000X higher than the biological plausible goal.

The fundamental challenge comes from the type of ionic movement present in bio-

logical and hardware based synapses. Synaptic events in biological synapses come from

the movement of ions in a liquid environment, whereas in hardware synapses based on

eNVM, programming comes in the form of ionic/defect movement through a solid-state

medium which requires more energy.

Even though there are still significant challenges in terms of reducing individual

synaptic power consumption on eNVM devices, an even more significant difficulty

comes when considering all of the necessary components present in neuromorphic chip

design. Peng et al. [105] simulated energy consumption estimates of an entire neuro-

morphic array including peripheral circuitry (Figure 1.16). It was shown that the eNVM

Chapter 1 Introduction & literature review 31

(a) (b) (c)

Figure 1.16: Hardware estimation results for each epoch, adapted from [105]. Energy break-
down by (a) main components, (b) by operations and (c) peak energy breakdown by operations.
Data extracted simulating the device from [106].

synaptic arrays only account for 0.05% of the total energy estimates, while most of the

energy consumption comes from temporary DRAM buffer storage (94.19%) and the

second highest consuming component is the ADCs (4.31%)(Figure 1.16a). Another

worthy observation is that average and peak energy consumption on the feed-forward

operation is of 1.07% and 5.98% (Figures 1.16b & c) respectively, highlighting the large

discrepancy in power consumption between inference only and online training applica-

tions.

1.1.4.7 Scalability

Coupled to the power consumption issue of neuromorphic arrays comes the concern

for scalability. The scaling of NN parameters can be extremely aggressive depending on

the desired task and most of the available NN processing solutions come in the form of

power hungry graphics processing units (GPU) or application specific tensor processing

units (TPU), which can contain over 28M transistors per die.

Chapter 1 Introduction & literature review 32

Most eNVM devices, on the other hand, are 2-terminal devices with MLC capabil-

ity. Due to these characteristics, eNVM devices such as RRAM not only can be or-

ganized as 2D crossbar arrays, where the RRAM device is fabricated at each crossing

point between a word and bit line, but multiple 2D arrays can be vertically stacked on

top of each other for very high density architectures. Beyond this, the crossbar array

is also capable of performing matrix-vector multiplications (MVM) and vector-matrix

multiplications (VMM) naturally through a combination of Ohm’s and Kirchoff’s law,

enabling in-memory computing solutions applicable to neuromorphic architectures.

Nevertheless, one of the main issues hindering the practicality of RRAM crossbars is

that of sneak currents. Sneak currents are defined as the currents that arise in a passive

crossbar array due to multiple parallel conduction paths between a given top electrode

(TE) and bottom electrode (BE) and poor non-linear behaviour of the unselected de-

vices.

The sneak path issue is typically solved by combining a transistor in series with the

RRAM element, making up a 1T1R structure. This solution however will reduce the

benefits of having a 2-terminal high density memory element, as such, significant re-

search interest exists in the development of 2-terminal highly nonlinear selector devices

that can be used to replace the transistor in a 1T1R structure so has to build 2-terminal

1-selector-1-resistor (1S1R) structures [107–109].

1.1.4.8 Comparison between different eNVM

Given the different types of performance metrics, clear distinctions can be made re-

garding the suitability of different eNVM for different applications.

Chapter 1 Introduction & literature review 33

Figure 1.17: Key metrics for memory performance assessment and a qualitative comparison of
STTRAM, PCM, and RRAM based on the metrics [19].

Table 1.1: Detailed comparison of different memory technologies

Technology SRAM DRAM NAND Flash NOR Flash PCM STT-MRAM RRAM
Cell area > 100F2 6F2 < 4F2 10F2 4−20F2 6−20F2 < 4F2

Cell element 6T 1T1C 1T 1T 1T(D)1R 1(2)T1R 1T(D)1R
Voltage < 1V < 1V < 10V < 10V < 3V < 2V < 3V
Read time 1ns 10ns 10µs 50ns < 10ns < 10ns < 10ns
Write time 1ns 10ns 100µs-1ms 10µs-1ms 50ns < 5ns < 10ns
Write energy (J/bit) 1 f J 10 f J 10 f J 100pJ 10pJ 0.1pJ 0.1pJ
Retention N/A 64ms > 10y > 10y > 10y > 10y > 10y
Endurance > 1016 > 1016 > 104 > 105 > 109 > 1015 106-1012

Multilevel capacity No No Yes Yes Yes Yes Yes
Non-volatility No No Yes Yes Yes Yes Yes

A qualitative and quantitative comparison of the different performance metrics on

different memory types are displayed in Figure 1.17 and Table 1.1 respectively.

The particular case of RRAM, in comparison with its technological competitors,

shows a clear advantage and potential in terms of scalability, speed and low power

consumption when compared to PCM or STT-RAM for instance. However, the major

challenges for RRAM still lie in terms of reliability (retention and endurance) and vari-

ability. Taking these considerations in mind, this thesis will have particular emphasis on

Chapter 1 Introduction & literature review 34

exploring the impact of RRAM variability and solutions towards mitigating its effects

on neuromorphic systems.

1.2 Learning algorithms for neuromorphic systems

1.2.1 Machine learning concepts

Neuromorphic computing, as well as deep learning are specific use cases that stem in

a more general sense from ML. In this section an overview of relevant ML concepts in

the scope of this thesis will be given.

A machine learning algorithm is an algorithm capable of learning from data. Mitchell

provides a succinct definition: “A computer program is said to learn from experience E

with respect to some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E” [110].

1.2.1.1 The task T

ML algorithms should generally be conceived with the purpose of solving a particular

task or problem. In this definition of ”task”, the learning process itself is not the task,

but learning is rather the means towards attaining the ability to perform said task.

ML tasks can usually be described in terms of how a learning system should process

an example. An example is a collection of features that have been quantitatively mea-

sured from an object or even meant to be processed by the ML system. The example is

Chapter 1 Introduction & literature review 35

typically represented as a vector x ∈Rn where each entry xi of the vector is one feature.

For example, the features of an image are usually the values of each pixel of that image.

ML tasks can be divided into several categories. Below are listed some of the most

common ML tasks:

• Classification: In this task, the ML algorithm is asked to specify which of k

categories a given input belong to. To solve this task, the algorithm must produce

a function f : Rn → {1, . . . ,k}. The classification model can directly output a

numeric code that can be translated to the category, or could give a probability

distribution over the different classes. A common example of a classification task

is pattern recognition, where the input is a vector x containing the pixel brightness

values and the output is a numeric code that can be decoded into different classes.

The classification task will be the most emphasized within the scope of this thesis

work.

• Regression: To solve this task, the algorithm must output a function f : Rn→R,

such that, given a set of real numbers, a numerical prediction is found. Common

examples of ML regression tasks are financial or stock market predictions based

on previously learned data.

• Transcription: This task consists on the transformation of relatively unstructured

representations of some kind of data into discrete textual form. A common ex-

ample of this is speech recognition where the algorithm must transform an audio

waveform into a sequence of characters that describe the words spoken in the

audio recording [111].

Chapter 1 Introduction & literature review 36

• Machine translation: Machine translation is similar to transcription, however,

instead of converting from an unstructured data type to text, translation simply

converts a sequence of symbols or text in one language to another, such as trans-

lating from English to Spanish [112, 113].

• Structured output: Structured output tasks involve any task where the output

is a vector with important relationships between the its different elements. This

is a broad category that can include but is not limited to the above examples of

transcription and translation. A different example is that of parsing, a natural lan-

guage process that breaks down sentences into trees that describe its grammatical

structure [114].

• Anomaly detection: In this type of task, the algorithm must go through a set of

events or objects and flag some of them as unusual or atypical [115]. An example

of this would be credit card fraud detection through the modelling of the owner’s

purchasing habits.

• Synthesis and sampling: The goal of this task is to generate new examples

similar to those on the training data. This can be extremely useful in situations

when generating large amounts of content by hand would be expensive and cum-

bersome, like in media applications such as video game or computer generated

graphic design [116]. Synthesis could be viewed as another form of structured

output task with the added characteristics that there is no single correct output for

each input, and large amounts of output variation is desired in order to emulate

more natural and realistic results.

Chapter 1 Introduction & literature review 37

• Imputation of missing values: In this task, the ML algorithm is given a new

example x ∈ Rn, but with some entries xi of the input vector x missing. The goal

is to provide the prediction of the missing entries.

• Denoising: In this type of task, the ML algorithm is given an input of a corrupted

example x̃ ∈ Rn obtained by an unknown corruption process from a clean exam-

ple x ∈ Rn. The algorithm must predict the clean example x from the corrupted

version x̃, or predict a conditional probability distribution p(x|x̃)

• Density estimation: In the density estimation problem, the ML algorithm must

learn a function pmodel : Rn→ R, where pmodel(x) can be interpreted as a proba-

bility density function(PDF) if x is continuous, or a probability mass function if

x is discrete. Most of the tasks described previously may in one form or another

require the algorithm to implicitly capture the structure of the probability distri-

bution. In this case however, the goal is to explicitly capture that distribution. In

principle, this would allow the algorithm to make predictions of a given dataset,

based on p(x). This could be specially useful for example for the missing value

imputation or denoising tasks.

1.2.1.2 The performance measure P

Taking into consideration Mitchell’s definition of ML, a quantitative measure of per-

formance (also called cost or loss function) is necessary for both the system end-user as

an analysis tool of how well the ML algorithm performs, but also for the system itself to

use recursively in the learning process, in other words, the continuous improvement of

a specified performance measure is what drives the ML algorithm to learn. Usually this

Chapter 1 Introduction & literature review 38

performance measure P should be chosen specifically for the task T that is to be carried

out.

In classification tasks, for instance, the accuracy (or error rate) is often measured as

performance metric, being that the accuracy simply refers to the proportion of exam-

ples that the model correctly classifies. This type of error rate can be referred to as a 0-1

loss, as the error rate for a specific example is 0 if incorrectly classified or 1 if correctly

classified. At first this may seem as a straightforward means of choosing a performance

measure, however, it is often the case that the penalties imposed on the ML algorithm

by this kind of binary decision can be too harsh on the learning experience (on gradi-

ent descent algorithms for instance), where the optimization could easily get stuck on

saddle points or local minima and optimization stops early. Taking this point into con-

sideration, even though the accuracy is the main quantitative measure of interest for the

end-user, a different cost function is often used by the ML algorithm to smooth out the

penalties of incorrect classifications to avoid local minima. One common example of a

suitable cost function for classification is the cross-entropy function, where the relative

entropy between different probability distributions is calculated.

Below, the definitions of some commonly used performance measures in classifica-

tion will be given. The first 5 are qualitative and the remaining are probabilistic.

For the definitions presented below, the following notation should be considered

[117]. Given a dataset, m denotes the number of examples, and c the number of classes.

f (i, j) represents the actual probability of example i to be of class j. It is assumed

that f (i, j) always takes values in {0,1} and is strictly not a probability but an indicator

Chapter 1 Introduction & literature review 39

function. m j = ∑
m
i=1 f (i, j) denotes the number of examples of class j. p(j) denotes the

prior probability of class j, i.e., p(j) = m j/m.

Given a classifier, p(i, j) represents the estimated probability of example i to be of

class j taking values in [0,1]. Cθ (i, j) is 1 if j is the predicted class for i obtained from

p(i, j) using a given threshold θ . Otherwise Cθ (i, j) is 0. θ will be omitted below.

Acc Accuracy: This is the most common and simplest measure to evaluate a classifier.

It is simply defined as the amount of correct predictions of a model (or conversely,

the percentage of misclassification errors)

Acc =
∑

m
i=1 ∑

c
j=1 f (i, j)C(i, j)

m
[117] (1.3)

KapS Kappa statistic: Originally a measure of agreement between classifiers [118], it

can also be applied as a classifier performance measure [119], or for estimating

the similarity between the members of an ensemble in Multi-classifiers Systems

[120]

KapS =
P(A)−P(E)

1−P(E)
[117], (1.4)

where P(A) is the relative observed agreement among classifiers and P(E) is the

probability that agreement is due to chance. P(A) can be simply defined as the

classifier accuracy, i.e. P(A) = Acc as previously defined, and P(E) is defined as:

P(E) =
∑

c
k=1([∑

c
j=1 ∑

m
i=1 f (i,k)C(i, j)] · [∑c

j=1 ∑
m
i=1 f (i, j)C(i,k)])

m2 [117] (1.5)

Chapter 1 Introduction & literature review 40

MAvA Macro average arithmetic: Defined as the arithmetic average of the partial ac-

curacies of each class [110].

MAvA =
∑

c
j=1

∑
m
i=1 f (i, j)C(i, j)

m j

C
[117] (1.6)

MAvG Macro average geometric: Defined as the geometric average of the partial accu-

racies of each class.

MAvG = c

√
c

∏
j=1

∑
m
i=1 f (i, j)C(i, j)

m j
[117] (1.7)

MAPR Macro Average Mean Probability Rate: Computed as an arithmetic average of

the mean predictions for each class [110].

MAPR =
∑

c
j=1

∑
m
i=1 f (i, j)p(i, j)

m j

c
[117] (1.8)

MPR Mean Probability Rate: A measure that analyses the deviation from the true

probability. It is a non-stratified version of MAPR, being the arithmetic average

of the predicted probabilities [121].

MPR =
∑

c
j=1 ∑

m
i=1 f (i, j)− p(i, j)

m
[117] (1.9)

MAE Mean Absolute Error: Shows how much the predictions deviate from the true

probability.

MAE =
∑

c
j=1 ∑

m
i=1 | f (i, j)− p(i, j)|

m · c
[117] (1.10)

Chapter 1 Introduction & literature review 41

MSE Mean Squared Error: A quadratic version of MAE, which penalises strong

deviations from the true probability. Can also be referred to as Brier score [122].

MSE =
∑

c
j=1 ∑

m
i=1 (f (i, j)− p(i, j))2

m · c
[117] (1.11)

CE Cross Entropy: This is a measure of how good the probability estimates are (also

known as LogLoss) and it is commonly used when calibration is an important

factor [123, 124].

CE =
−∑

c
j=1 ∑

m
i=1 (f (i, j) log2 p(i, j))

m
[117] (1.12)

1.2.1.3 The experience E

The experience E can be referred to as the dataset that the ML algorithm is intended

to learn. In some cases, a ML algorithm may be allowed to experience an entire dataset,

while in others, a dataset may be split into training and test data. Training data is the

data that the algorithm is allowed to use as learning data to continuously improve its

performance, while test data can be thought of as ”unseen” data to evaluate how well a

given ML model fits to general data outside of the training data.

In this sense it is also important to make the distinction between unsupervised and

supervised learning experiences.

Unsupervised learning algorithms involves the observation of several examples of a

random vector x and attempting to either implicitly (e.g. density estimation) or explic-

itly (e.g. synthesis, denoising, clustering, etc.) learn the probability distribution p(x),

Chapter 1 Introduction & literature review 42

or some interesting properties of that distribution.

Supervised learning, on the other hand, aims at learning by observing several exam-

ples of a random vector x that has an associated label or target value or vector y, then

learning to predict y from x, usually by estimating p(y|x). The term supervised learning

comes from the view that the target y is provided by an instructor that shows the ML

system what to do. In unsupervised learning, however, there is no such instructor, and

the algorithm must learn to make sense of the data without guidance.

The line between unsupervised and supervised learning can often be blurred, since

both methods can be adopted by the same ML technology. For instance, the chain rule

of probabilities states that for a vector x ∈ Rn, the joint distribution can be decomposed

as:

p(x) =
n

∏
i=1

p(xi|x1, . . . ,xi−1) [125] (1.13)

meaning that an unsupervised learning problem of modeling p(x) can be split into n

supervised learning problems. Alternatively, a supervised learning problem of learn-

ing p(y|x) can be solved using unsupervised learning technologies to learn the joint

distribution p(x,y), inferring:

p(y|x) = p(x,y)
∑y′ p(x,y′)

[125] (1.14)

Nonetheless, unsupervised and supervised learning concepts, despite not being for-

mally distinct, traditionally have different applications; regression, classification and

structured output problems are generally thought of as more suitable for supervised

Chapter 1 Introduction & literature review 43

learning, while density estimation, for example, is generally considered as unsupervised

learning.

Figure 1.18: Sample images of MNIST database [126].

The main focus of this thesis work will be on supervised learning techniques applied

to the classification of the Modified National Institute of Standards and Technology

(MNIST) handwritten digits database [126] (Figure 1.18).

1.2.1.4 Gradient-based learning

Most ML algorithms achieve their task by way of optimization (minimizing or max-

imizing) of some cost function f (x) by altering x (already discussed in subsubsection

1.2.1.2). Gradient-based optimization achieve minimization of a cost function y = f (x)

by using the derivative f ′(x) to move x in small increments to improve y. For small

Chapter 1 Introduction & literature review 44

enough η , f (x−ηsign(f ′(x))) is less than f (x), so f (x) can be reduced by moving x

in small steps with the opposite sign of the derivative. This method is called gradient

descent [127].

In most ML cases, the learning problem comes in a multi-dimensional form (multiple

inputs), as such, the notion of gradient descent can be extended to a multi-dimensional

space by making use of partial derivatives. The partial derivative ∂

∂xi
f (x) measure how f

changes as only the variable xi increases at point x. The gradient generalizes the notion

of derivative to the case where the derivative is with respect to a vector, being that the

gradient of f is the vector containing all its partial derivatives, denoted as ∇x f (x).

The directional derivative in direction u (a unit vector) is the slope of the function f

in direction u. In other words, the directional derivative is the derivative of the function

f (x+αu) with respect to α , evaluated at α = 0. Using the chain rule, we can see that

∂

∂α
f (x+αu) evaluates to u⊤∇x f (x) when α = 0.

So, to minimize f , the direction in which f decreases the fastest should be found:

min
u,u⊤u=1

u⊤∇x f (x) [125] (1.15)

= min
u,u⊤u=1

∥u∥2∥∇x f (x)∥2 cosθ [125] (1.16)

where θ is the angle between u and the gradient. Substituting in ∥u∥2 = 1 and ignoring

factors that do not depend on u, simplifies to minu cosθ . This is minimized when u

points in the opposite direction as the gradient. In other words, the gradient points

Chapter 1 Introduction & literature review 45

directly uphill, and the negative gradient points directly downhill. As such, for multi-

dimensional spaces, the method of steepest descent is defined as:

x′ = x−η∇x f (x) [125] (1.17)

where η is the learning rate, a positive scalar that determines the size of each step. The

learning rate is an hyper-parameter of the ML algorithm that should be adjusted for each

individual problem. Choosing too high of a value results in large steps that may never

converge towards the optimal solution, while choosing too low values could make the

algorithm to become stuck in suboptimal local minima or saddle points. One approach

to determine the learning rate is to evaluate f (x−η∇x f (x)) for several values of η and

choosing the one that results in the smallest objective function value. This method is

called a line search.

With the introduction of the gradient descent method for solving complex problems

that rely on large training sets, a new issue became apparent: limited computing power.

The cost function of a ML algorithm generally decomposes as the sum over all training

examples. The computational cost of this operation is a function O(m), where m is the

number of training examples. As the training set size grows to billions of examples, the

time to take a single gradient step may become impractical.

As a solution for this issue came the Stochastic Gradient Descent (SGD) algorithm

[128]. SGD comes as an extension of the traditional gradient descent algorithm, with

the main difference that the calculated gradient is an expectation estimated from a small

set of training samples called the minibatch. On each gradient calculation step of the

Chapter 1 Introduction & literature review 46

algorithm, a minibatch of examples B = {x(1), . . . ,x(m′)} is drawn uniformly from the

training set. The minibatch size m′ is another algorithm hyperparameter and is usually

set to be lower than a few hundred of examples. Crucially, m′ is usually a fixed number

while the size of the training set m may grow to very large numbers.

The estimate of the gradient is formed as:

g =
1
m′

∇θ

m′

∑
i=1

L
(

x(i),y(i),θ
)
[125] (1.18)

using examples from the minibatch B and L is the loss function to be calculated. The

SGD algorithm then follows the estimated gradient downhill:

θ ←− θ −ηg [125] (1.19)

The SGD algorithm can therefore be summarized as:

Algorithm 1 Stochastic gradient descent (SGD) update at training iteration k.
Require: Learning rate ηk
Require: Initial parameter θ

while stopping criterion not met do
Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)} with the

corresponding targets y(i).
Compute gradient estimate: ĝ←+ 1

m∇θ ∑i L(f (x(i);θ),y(i)).
Apply update: θ ← θ −η ĝ

end while

While SGD remains a popular training algorithm, further optimization in terms of

learning speed can be made. SGD with momentum (SGDM) [129] is designed to ac-

celerate learning facing high curvatures, small or noisy gradients. The momentum al-

gorithm accumulates an exponentially decaying moving average of past gradients and

Chapter 1 Introduction & literature review 47

continues to move in their direction.

A variable v that plays the role of velocity is introduced. Similar to the velocity of

a ball rolling down a slope, the velocity v in this context can be seen as the direction

and speed at which the parameters move through the parameter space. v is set to an

exponentially decaying average of the negative gradient. In the momentum algorithm,

unit mass is assumed, so the velocity vector v may also be regarded as the momentum

of the particle. A hyperparameter α ∈ [0,1) determines how quickly the contributions

of previous gradients exponentially decay. As such, the update rule is given by:

v← αv−η∇θ

(
1
m

m

∑
i=1

L
(

f
(

x(i);θ

)
,y(i)

))
[125], (1.20)

θ ← θ + v [125] (1.21)

and the SGDM algorithm can be summarized as such:

Algorithm 2 Stochastic gradient descent with momentum (SGDM).
Require: Learning rate η , momentum parameter α

Require: Initial parameter θ , initial velocity v
while stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), . . . ,x(m)} with
corresponding targets y(i).

Compute gradient estimate: g← 1
m∇θ ∑i L(f (x(i);θ),y(i)).

Compute velocity update: v← αv−ηg.
Apply update: θ ← θ + v.

end while

Using momentum, the step size will depend on the magnitude and direction of a

sequence of gradients. If the momentum algorithm always observes gradient g, then it

Chapter 1 Introduction & literature review 48

will accelerate in the direction of −g, until reaching a terminal velocity where the size

of each step is:

η∥g∥
1−α

[125] (1.22)

Therefore, the momentum hyperparameter should be thought of in terms of 1
1−α

. Com-

mon practical values of α include 0.5, 0.9 and 0.99.

(a) (b)

Figure 1.19: Illustration of the path followed by a gradient descent algorithm in a two-parameter
hyperspace. (a) typical gradient descent, (b) gradient descent with momentum. The contour
lines depict a quadratic loss function with a poorly conditioned Hessian matrix. The red path
indicates the path followed by the algorithm. The black arrows in (b) indicate the step that would
be taken at each point without momentum.

1.2.1.5 Feedforward Networks

Feedforward NNs can be considered as the basis of many deep learning models. A

feedforward NN can be defined as a network of functions that aims to approximate

some function f ∗. In the case of a classifier, y = f ∗(x) maps an input x to a category

y. A feedforward NN can define the mapping as y = f (x;θ), where the values of the

parameters θ that result in the best function approximation are learned by the NN itself.

Chapter 1 Introduction & literature review 49

These types of models are called feedforward because the process of evaluating f ∗(x)

only involves the flow of information in one direction: from the input x to the output y;

if feedback connections from the output of the model are fed back into itself, the model

is defined as a recurrent NN (RNN).

Feedforward NN are called networks because they are typically represented by chain-

ing together many different functions. A typical example could be formed with three

functions: f (1), f (2), f (3) connected in a chain, to form: f (x) = f (3)(f (2)(f (1)(x))).

In this case, f (1) corresponds to the NN first layer, f (2) to the second layer, and so

forth. The overall length of this chain gives the depth of the model. The first layer of a

feedforward NN is called the input layer and is typically fixed by the NN problem, for

example, in an image classification problem the input layer corresponds to the values

of the pixels that make up the image, while the final layer is the output layer, using the

previous example, the output would be each category that an image may belong to. Any

layers between the input and output are referred to as hidden layers.

Figure 1.20: Schematic illustrating the forward propagation process in a single hidden layer
MLP [130].

A common example of a feedforward NN is one where all previous nodes are con-

nected to all subsequent nodes (fully connected NN). Nomenclature for the components

Chapter 1 Introduction & literature review 50

of NN are inspired in biology, as such, the connections between nodes are referred to as

”synapses” or ”weights” and each node is defined as a ”neuron”. In the case that a fully

connected NN has at least 1 hidden layer, the NN is designed as a multilayer perceptron

(MLP) [131, 132], this type of network was one of the first designed architectures for

deep learning and remains as one of its basis due to its structural simplicity.

Figure 1.20 illustrates the forward propagation step in a MLP. The input neuron acti-

vations x(l) to layer l are converted to the next layer’s activations x(l+1) by the transfor-

mation:

x(l+1) = f
(

W(l)x(l)
)
[130], (1.23)

where W(l) is an Nl ×Nl+1 matrix of weights connecting layer l with Nl neurons to

layer l +1 with Nl+1 neurons. f is the nonlinear activation function of the neuron that

is applied element-wise to its argument, which is the product of a VMM.

The function of the neuron f is essential in ensuring that the multiple layers in the

network cannot be collapsed into an equivalent single-layer linear network. Table 1.2

shows typical examples of commonly used neuron functions in deep learning.

While the activation functions presented in Table 1.2 are common use for the hidden

layers of a NN, the use of a different function called softmax is more common use in the

output layer of classifiers to represent a probability distribution over n different classes.

In the case of binary variables a predictor ŷ can be obtained by:

ŷ = P(y = 1|x) [125], (1.24)

Chapter 1 Introduction & literature review 51

Table 1.2: Different types of mathematical neurons [133].

Neuron/function Plot Equation Derivative Range

Identity f (x) = x f ′(x) = 1 (− inf, inf)

Binary step f (x) =

{
0 f or x < 0
1 f or x≥ 0

f ′(x) =

{
0 f or x ̸= 0
? f or x = 0

(0,1)

Logistic f (x) = 1
1+e−x f ′(x) = f (x)(1− f (x)) (0,1)

Tanh f (x) = 2
1+e−2x −1 f ′(x) = 1− f (x)2 (−1,1)

Arctan f (x) = tan−1(x) f ′(x) = 1
x2+1 (−π

2 ,
π

2)

Softsign f (x) = x
1+|x| f ′(x) = 1

(|x|+1)2 (−1,1)

Rectified Linear Unit (ReLU) f (x) =

{
0 f or x < 0
x f or x≥ 0

f ′(x) =

{
0 f or x < 0
1 f or x≥ 0

[0, inf)

Leaky ReLU f (α,x) =

{
αx f or x < 0
x f or x≥ 0

f ′(x) =

{
α f or x < 0
1 f or x≥ 0

(− inf, inf)

Exponential Linear Unit (ELU) f (α,x) =

{
α(ex−1) f or x < 0
x f or x≥ 0

f ′(α,x) =

{
f (x)+α f or x < 0
1 f or x≥ 0

(−α, inf)

SoftPlus f (x) = ln(1+ ex) f ′(x) = 1
e−x+1 (0, inf)

which for gradient-based optimization of the cross-entropy function, can be translated

into:

z = log P̃(y = 1|x) [125] (1.25)

To generalize to the case of a discrete variable with n values, a vector ŷ should be

produced, with yi = P(y = i|x), and zi = log P̃(y = i|x). The softmax function can then

exponentiate and normalize z to obtain the desired ŷ. Formally, softmax is defined as:

so f tmax(zi) =
exp(zi)

∑ j exp(z j)
[125] (1.26)

Chapter 1 Introduction & literature review 52

The softmax function can therefore be seen as the generalization of the logistic func-

tion across multiple classes.

1.2.1.6 Backpropagation

Subsubsection 1.2.1.5 described the means through which to obtain a predictor output

ŷ by propagating an input x forward through a series of weights W and neuron functions

f in a process called forward propagation or inference.

The inference process is that by which a trained network can achieve its goal. How-

ever a NN is required to train its weight matrices to produce the best generalized output.

Forward propagation continues onwards until a scalar cost is produced at the network

output. The backpropagation algorithm [134] (often referred to as simply backprop)

extends the use of the forward propagation step into a methodology that allows for the

training of the NN weights by allowing the information from the cost to flow backward

through the network in order to compute the gradients in each layer.

Figure 1.21: Illustration of the backpropagation process in a single hidden layer MLP [130].

Chapter 1 Introduction & literature review 53

For a given example, after the inference step, an error δ is obtained (typically through

MSE or CE loss function) based on the known correct output. By differentiating equa-

tion 1.23, the error at the output layer can be propagated backwards (Figure 1.21) by

recursively applying the chain rule of calculus through the NN layers to find the error

values at a layer l:

δ
(l) =

(
W(l)

)T
δ
(l+1)⊙ f ′

(
W(l−1)x(l−1)

)
[130], (1.27)

where ⊙ denotes an element-wise product. This expression involves the multiplication

of the transpose of the weight matrix with an error vector, so it no longer refers to a

VMM operation as in equation 1.23, but now involves a MVM operation.

The term backpropagation is often misconstrued as meaning the whole learning al-

gorithm for training MLPs, when in reality, backprop refers only to the method for

computing the gradient, while another algorithm, such as SGD or SGDM must be used

to perform the learning using this computed gradient.

From the error vectors, the derivative with respect to the prediction error δ can be

found for all the weights, and these derivatives can be used to update the weights accord-

ing to an optimization algorithm, SGD for instance. The weight update can formally be

described as:

W(l) =−ηδ
(l)
(

x(l)
)T

[130], (1.28)

since η is a scalar, the weight update is in essence the outer product of two vectors.

Chapter 1 Introduction & literature review 54

1.2.1.7 Challenges in optimization

The central issue in ML is that the algorithm must perform well on new (previously

unseen) inputs, and not just those on which the model was trained. This ability to

perform well on unobserved inputs is referred to as generalization. What separates ML

from a simple optimization problem is the notion that beyond minimizing the training

errors, the generalization or test error must also be reduced as close as possible to the

training error.

Generalization spawns two major opposing challenges in ML: underfitting and over-

fitting. Underfitting occurs when the model is not able to obtain a sufficiently low error

value on the training set. On the other hand, overfitting occurs when the trained algo-

rithm no longer generalizes well to unseen data, resulting in low errors on training set

and large errors on the test data.

Figure 1.22: Typical relationship between capacity and error. Training beyond the point of
optimal capacity may lead to degradation of the test errors despite improvements on the training
dataset [125].

The likelihood of underfitting or overfitting can be controlled by altering the model’s

capacity (Figure 1.22). A model’s capacity can be thought of as its ability to fit a

wide variety of functions. One way to control the capacity of a learning algorithm is

Chapter 1 Introduction & literature review 55

by choosing its hypothesis space, the set of functions that the algorithm is allowed to

select as a solution. For instance, linear regression can be generalized as polynomials

of degree k, such that:

ŷ = b+
k

∑
i=1

wixi [125] (1.29)

Choosing a low value of k will result in a low degree polynomial incapable of fitting

the training data, while using a high k will allow the algorithm to overfit, probably

rendering it unable to fit unseen data (Figure 1.23).

(a) (b) (c)

Figure 1.23: Examples of (a) underfitting, (b) appropriate fitting and (c) in a single parameter
hyperspace [125].

Another challenge in NN optimization is that of an ill-conditioned Hessian matrix

H, where H is the matrix containing all of a function f second derivatives and can be

seen as its curvature. This issue can manifest itself on a SGD algorithm by causing it to

get ”stuck”, meaning that even very small steps can increase the cost function.

Chapter 1 Introduction & literature review 56

A second-order Taylor series expansion of the cost function predicts that a gradient

descent step of −ηg will add:

1
2

η
2g⊤Hg−ηg⊤g [125] (1.30)

to the cost. The ill-conditioning problem becomes prevalent when 1
2η2g⊤Hg exceeds

ηg⊤g. To determine if the ill-conditioning problem will be detrimental to a NN task,

the squared gradient norm g⊤g and the g⊤Hg term can be monitored. In most cases,

the gradient norm does not shrink significantly through training, but the g⊤Hg term

grows by more than an order of magnitude. This results in slow learning despite strong

gradients because the learning rate must be shrunk to compensate for the even stronger

curvature.

Local minima can be considered one of the most common challenges in NN op-

timization. The goal of a gradient descent algorithm is to find the global minimum,

however, in NNs with the increase of dimensionality and size, local minima points be-

come more prominent throughout the hypothesis space. Nevertheless, the appearance

of local minima will only pose a problem for gradient-based learning if these points

have a large cost in comparison to the global minima (Figure 1.24).

Even though the problem of local minima is an active area of research, if the NN

size is large enough, then most local minima should have a low enough cost value that

finding the true global minima is no longer important, and finding a local minima point

with a close enough cost to that global minima is now a viable solution [135–138].

Chapter 1 Introduction & literature review 57

Figure 1.24: Example illustrating a high cost local minima point (right) and low cost (center)
local minima point in comparison to the function global minima(left).

Beyond minima, there are other types of critical points characterized by a zero slope:

maximum and saddle points (Figure 1.25).

Figure 1.25: Types of critical points.

Contrasting with minima and maxima, the Hessian matrix of saddle points contain

both positive and negative eigenvalues, meaning that points along eigenvectors associ-

ated with positive eigenvalues have a greater cost than the saddle point, while points

lying along negative eigenvalues have a lower cost. Because saddle points have both

positive and negative eigenvalues, the presence of saddle points in detriment to minima

or maxima increases with dimensionality. For instance, for a function f : Rn→ R, the

expected ratio of the number of saddle points to local minima increases exponentially

with n. The intuition behind this behaviour can be thought of as having a coin toss

Chapter 1 Introduction & literature review 58

decide the sign of each eigenvalue of the Hessian matrix. In this sense, the likelihood

of generating n all positive or all negative eigenvalues decreases as n grows.

The implications of the appearance of multiple saddle points are similar to the local

minima problem. In first-order optimization algorithms, the gradient could become very

small and eventually vanish. Dauphin et al. [136] introduced a saddle-free Newton

method for second-order optimization, even though more efficient than the traditional

method, it is a complex solution for scaling in large NNs.

NNs with increased depth may often have steep cliffs that result from the multiplica-

tion of several large weights together. These cliff regions can be a challenging problem,

as the gradient may become unreasonably large that can catapult the parameters away

from an optimal solution (Figure 1.26a). One solution to this problem may be to clip

the gradients to a predefined threshold (Figure 1.26b).

(a) (b)

Figure 1.26: (a) An example of the exploding gradient problem without clipping. The gradient
overshoots the ravine then receives a very large gradient from the cliff face that propels the
parameters outside the axes of the plot. (b) The same example with gradient clipping, the step
size is restricted to avoid increasing the gradients to very large values [125].

Chapter 1 Introduction & literature review 59

Another issue that comes with depth is the vanishing and exploding gradient prob-

lem. A high depth NN may involve repeated application of the same parameters. For

instance, supposing that a NN contains a path that consists of repeatedly multiplying by

a matrix W. After t steps, this is equivalent to multiplying by Wt . Assuming that W

has an eigendecomposition W = Vdiag(λ)tV−1:

Wt =
(
Vdiag(λ)V−1)t

= Vdiag(λ)tV−1 [125] (1.31)

Following the above equation, any eigenvalues λi that are not near an absolute value

of 1 will either explode if greater than 1, or vanish if less than 1. Vanishing gradients

may make it difficult to know which direction the parameters should move to mini-

mize the cost function eventually halting learning, while exploding gradients may make

learning unstable.

1.2.1.8 Optimization techniques for deep models

To counteract some of the challenges in learning presented in the previous section,

some optimization techniques for deep learning will also be presented. In this section a

brief overview of the following concepts will be given:

• Batch normalization

• Regularization

• Parameter initialization strategies

• Adaptive learning rates

Chapter 1 Introduction & literature review 60

Batch normalization (BN) [139] comes as not exactly an optimization algorithm,

but rather as a methodology of adaptive reparametrization, motivated by the difficulty

of training deep NNs. Deep models involve the composition of several layers. The

gradients contain the instructions on how to update each parameter, assuming that the

other layers do not change, but in practice all layers are updated simultaneously, causing

unexpected results in deep NNs (≥ 3 layers). Second-order optimization algorithms

somewhat address this issue by taking these second-order interactions into account but

since the issue scales with the NN depth, building n-th order optimization algorithms

for n > 2 layers becomes intractable.

Addressing this issue, the reparametrization from BN reduces the problem in coordi-

nating updates across many layers. BN can be applied to any input or hidden layer of a

NN. In this context, defining H as a minibatch of activations of the layer to normalize,

where each row of the matrix is a sample from the minibatch, H can be replaced by:

H ′ =
H−µ

σ
[125], (1.32)

where µ is a vector containing the mean of each unit and σ is a vector containing the

standard deviation of each unit. The arithmetic here is based on broadcasting the vectors

µ and σ to be applied to every row of H. At training time:

µ =
1
m ∑

i
Hi [125], (1.33)

σ =

√
δ +

1
m ∑

i
(H−µ)2

i [125], (1.34)

Chapter 1 Introduction & literature review 61

where δ is a small positive scalar (i.e. 10−8), imposed to avoid encountering an un-

defined gradient of
√

0. Crucially, the µ and σ are backpropagated through the NN,

meaning that a gradient will never propose an operation that acts solely on one layer.

At test time, µ and σ may be replaced by ”moving” averages that were collected

during training time, or it can be based on the entire ”population” of data. Furthermore,

a choice can also be made on whether BN is applied before (X) or after (XW +b)[139]

the Multiply-accumulate (MAC) seen at the neuron input.

Another central issue in ML is that of generalization to previously unseen inputs.

Strategies explicitly designed to reduce test error (sometimes even at the expense of

training error) are known collectively as regularization. Regularization can assume

many different forms, however, in the scope of this work, L2 regularization (often also

called weight decay or ridge regression) will be in focus.

The strategy behind L2 regularization aims to drive the weights closer to the origin by

adding a regularization term Ω(θ) = 1
2 ∥w∥

2
2 to the objective function.

Using this method, the regularized cost function J̃ is written as:

J̃(w;X ,y) =
α

2
w⊤w+ J(w;X ,y) [125], (1.35)

with the corresponding parameter gradient:

∇wJ̃(w;X ,y) = αw+∇wJ(w;X ,y) [125]. (1.36)

Chapter 1 Introduction & literature review 62

The weight update is given by:

w← w−η (αw+∇wJ(w;X ,y)) [125] (1.37)

w← (1−ηα)w−η∇wJ(w;X ,y) [125]. (1.38)

In this way, the addition of the weight decay term α multiplicatively shrinks the weight

vector by a constant factor on each step before the gradient update. Considering a reg-

ularized solution w̃, the purpose of weight decay is to rescale w∗ along the axes defined

by the eigenvectors of the Hessian H. Along the directions where the eigenvalues of

H are relatively large, the effect of regularization is relatively small, while being more

significant for smaller eigenvalues (Figure 1.27).

Figure 1.27: Illustration of the effect of L2 regularization on the value of the optimal w. The
solid ellipses represent contours of the unregularized objective. The dotted circles represent
contours of equal value of the L2 regularizer.

The training of deep models is a complex iterative task that is strongly affected by

parameter initialization. The initial point of training may determine how fast the al-

gorithm converges or at times if it actually converges at all. Beyond this, convergence

Chapter 1 Introduction & literature review 63

points of comparable cost affected by initialization can also have very different gener-

alization errors. Adding to the complexity on initialization choice, some initial points

may be beneficial in optimizing the training data, but detrimental for generalization of

the test data.

Despite these complexities, one known certainty in initialization is that the parameters

should be to stochastic enough to ”break symmetry” between different units. This will

avoid that a deterministic learning algorithm updates different units in the same way

(avoiding redundancy).

The most common method to initialize the weights in a NN is simply from choosing

a Gaussian or uniform distribution from which to draw all of the weights from. In this

context, choosing between a Gaussian or an uniform distribution does not seem to mat-

ter, however, the scale of these distributions has a large impact on training. Larger initial

weights will yield a stronger ”symmetry-breaking” effect, helping in avoiding redun-

dancy, as well as the loss of signal through forward and back-propagation. Nonetheless,

very large weights may result in either exploding gradients or early saturation of the

activation functions, causing subsequent loss of gradient through the saturated units.

Common heuristics for weight initialization include:

• Xavier [140]

Wi, j ∼U
(
− 1√

m
,

1√
m

)
, (1.39)

• Normalized Xavier [140]

Chapter 1 Introduction & literature review 64

Wi, j ∼U

(
−
√

6
m+n

,

√
6

m+n

)
, (1.40)

• He [141]

Wi, j ∼N

(
0,

√
2

ml

)
, (1.41)

where m denotes the number of inputs, and n the number of outputs of a given layer l.

The learning rate is arguably one the most difficult to set hyperparameters in NNs be-

cause of its high impact on training. To solve the issue of the difficult to set fixed learn-

ing rate, adaptive learning rates that adjust themselves for each parameter throughout

the course of learning may be used.

The delta-bar-delta algorithm [142] is an early heuristic approach on adaptive learn-

ing rates. The approach is based on a simple idea: if the partial derivative of the loss,

with respect to a given model parameter remains the same sign, then the learning rate

should increase, if it changes signs, it should decrease. The drawback of this method is

that it can only be applied to full batch optimization.

More recently, different adaptive learning rate algorithms based on minibatch pro-

cessing have been introduced, such as: AdaGrad, RMSProp and Adam.

AdaGrad individually adapts the learning rates of all model parameters by scaling

them inversely proportional to the square root of the sum of all the historical values

of the gradient [143]. In convex optimization, AdaGrad has some desirable theoretical

Chapter 1 Introduction & literature review 65

properties, however, in empirical deep NN models, the accumulation of squared gradi-

ents from the beginning of training can result in a premature and excessive decrease in

the effective learning rate.

Algorithm 3 AdaGrad algorithm.
Require: Global learning rate η

Require: Initial parameter θ

Require: Small constant δ (default = 10−7)
Initialize gradient accumulation variable r = 0
while stopping criterion not met do

Sample a minibatch of m examples from the training set
{

x(1), . . . ,x(m)
}

with

corresponding targets y(i).
Compute gradient: g← 1

m∇θ ∑i L
(

f
(

x(i);θ

)
,y(i)

)
.

Accumulate squared gradient: r← r+g⊙g.
Compute update: ∆θ ←− η

δ+
√

r ⊙g. (Division and square root applied element-
wise)

Apply update: θ ← θ +∆θ

end while

RMSProp [144] comes in as a modification of the AdaGrad algorithm for better

performance in a nonconvex setting by changing the gradient accumulation into an ex-

ponentially weighted moving average, instead of shrinking the learning rate based on

the entire history of the squared gradient.

Algorithm 4 RMSProp algorithm.
Require: Global learning rate η , decay rate ρ

Require: Initial parameter θ

Require: Small constant δ (default = 10−6)
Initialize accumulation variable r = 0
while stopping criterion not met do

Sample a minibatch of m examples from the training set
{

x(1), . . . ,x(m)
}

with

corresponding targets y(i)

Compute gradient: g← 1
m∇θ ∑i L

(
f
(

x(i);θ

)
,y(i)

)
.

Accumulate squared gradient: r← ρr+(1−ρ)g⊙g.
Compute parameter update: ∆θ =− η√

δ+r
⊙g. (1√

δ+r
applied element-wise).

Apply update: θ ← θ +∆θ .
end while

Chapter 1 Introduction & literature review 66

The Adam algorithm derives its name from the phrase ”adaptive moments” [145].

In this context, Adam can be seen as a variant on the combination of RMSProp and

momentum.

Algorithm 5 Adam algorithm.
Require: Global learning rate η (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, ρ1 and ρ2 in [0,1). (Sug-

gested defaults: 0.9 and 0.999 respectively)
Require: Small constant δ (Suggested default: 10−8

Require: Initial parameter θ

Initialize 1st and 2nd moment variables s = 0,r = 0
Initialize time step t = 0
while stopping criterion not met do

Sample a minibatch of m examples from the training set
{

x(1), . . . ,x(m)
}

with

corresponding targets y(i).
Compute gradient: g← 1

m∇θ ∑i L
(

f
(

x(i);θ

)
,y(i)

)
t← t +1
Update biased first moment estimate: s← ρ1s+(1−ρ1)g
Update biased second moment estimate: r← ρ2r+(1−ρ2)g⊙g
Correct bias in first moment: ŝ← s

1−ρt
1

Correct bias in second moment: r̂← r
1−ρt

2

Compute update: ∆θ =−η
ŝ√

r̂+δ
(operations applied element-wise)

Apply update: θ ← θ +∆θ

end while

1.2.1.9 Convolutional Neural Networks

Convolutional Neural Networks (CNN) [146] are a specialized kind of NN for pro-

cessing data arranged in a grid-like topology. Examples of this type of data include:

time-series data seen as 1-D grid sampled at regular time intervals, or more commonly,

image data arranged as a 2-D grid of pixels.

At the heart of CNN lies the convolutional operation. In its most general form,

convolution is an operation on two functions of a real-valued argument. The convolution

Chapter 1 Introduction & literature review 67

between two functions f and g can be written as f ∗g such that:

s(t) = (f ∗g)(t) =
∫

f (τ)g(t− τ)dτ [125], (1.42)

here, the first argument (f) is often referred to as the input, and the second argument

(g) as the kernel. The output of the operation (f ∗g) may be referred to as the feature

map.

In most ML cases, it might be more realistic to work with data sampled at regular

intervals. In this case, equation 1.42 can be modified to:

s(t) = (f ∗g)(t) =
inf

∑
τ=− inf

f (τ)g(t− τ) [125]. (1.43)

In ML applications, the input is usually a multidimensional array of data, and the ker-

nel a multidimensional array of parameters that are adapted by the learning algorithm.

These arrays are often referred to as tensors. Since each element of the input and kernel

must be explicitly stored separately, it can be assumed that the functions values are zero

for every element outside of the finite set of points that are stored. This means that in

practice, an infinite summation can be implemented as a finite summation of the stored

elements.

Extending these notions to a two-dimensional example such as an image with input I

and kernel K:

S(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(m,n)K(i−m, j−n) [125], (1.44)

Chapter 1 Introduction & literature review 68

since convolution is commutative:

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j−n)K(m,n) [125]. (1.45)

Equation 1.45 tends to be more straightforward to implement in ML because there is

less variation in the range of values of m and n.

Convolution leverages three important ideas for ML systems: sparse interactions,

parameter sharing and equivariant representations.

Contrary to fully connected NNs, using convolutional features in a NN means that

not all neurons of a given layer l need to be connected to all neurons of the previous

layer l−1. This is achieved by using a kernel smaller than the input in the convolution

operation (Figure 1.28). This particular feature is designated as sparse interactions

(often also referred to as sparse connectivity or sparse weights).

Taking an input image composed of millions of pixels for instance, means that by

using sparse interactions, the focus shifts from detecting the whole image to detecting

only small and meaningful features such as edges using kernels that occupy a fraction

of the total image, significantly reducing the model’s memory requirements but also

improving its statistical efficiency.

Parameter sharing refers to using the same parameter for more than one function in

a model. In a traditional NN, each element of the weight matrix is used exactly once

when computing the output of a layer, while in a CNN each member of the kernel is

used at every position of the input. Parameter sharing used by the convolution operation

Chapter 1 Introduction & literature review 69

(a)

(b)

Figure 1.28: (a) Example of sparse connectivity in comparison to (b) a fully connected layer.
The darkened neurons in this example show the effect of a single neuron (x3) on its next layer
for both connection schemes

means that rather than learning a separate set of parameters for every location, only one

set is learned.

Using convolution with parameter sharing causes a layer to have a property called

equivariance to translation. Equivariant functions means that if the input of a function

changes, then the output changes in the same way. This is particularly useful in image

recognition, where certain transformations, such as rotations or translations may be

applied to an image, but the output of the image classifier will remain insensitive to

these transformations.

A typical layer of a CNN consists of three stages: convolution, detector and pooling

stages (Figure 1.29a).

Chapter 1 Introduction & literature review 70

(a) (b)

Figure 1.29: (a) An illustration of the typical composition of a CNN layer. First a convolution
operation is performed, followed by the activation function and finally the pooling layer. (b)
Typical example representing the architecture of a whole CNN. In image classifiers, the final
layer is typically flattened and fully connected to the output.

A pooling function replaces the output of the net at a certain location with a summary

statistic of the nearby outputs. For instance, max pooling [147] reports only the max-

imum output within a rectangular neighbourhood. Similar methods can be used with

an average, weighted average or the L2 norm. In all cases, pooling helps to make the

representation invariant to small translations of the input, meaning better generalization

and resilience to input noise. Another benefit of pooling is that it allows the handling of

inputs with varying size by offsetting the pooling regions in a manner that ensures that

the classification layer always receives the same number of summary statistics.

1.2.1.10 Genetic Algorithms

In the previous subsections, learning using some form of gradient-based optimization

has been focused on. Nonetheless, several other learning heuristics exist that deviate

from that concept. One such example is that of population-based learning algorithms

Chapter 1 Introduction & literature review 71

that rely on changing the properties of a population of solutions via some determined

metaheuristic with the goal of finding the best candidate within said population to solve

the optimization problem.

One notable case of population-based optimization is genetic algorithms (GA). GA

was introduced in the early 1970s by John Holland [148] and takes its inspiration in bi-

ology, specifically, Charles Darwin’s theory of biological evolution, where the strongest

individuals within a population survive. GAs attempt to mimic this behaviour by simu-

lating a population of individuals, where each one of these individuals carries informa-

tion (chromosome) regarding the solution to a proposed problem and the highest ranked

individuals are allowed to survive in the next iteration and reproduce offspring.

GAs can be described by five major components: Initialization, Fitness evaluation,

Selection, Crossover and Mutation.

In the initialization phase, a population of individuals is created. Each individual

contains information of size M pertaining to the number of inputs that a given problem

may require, while the number of individuals within the population N may be variable,

thus the population is of size M×N. Typically, initialization is random, however, there

are cases in which initialization may be ”seeded” in areas where optimal solutions are

likely to be found.

During each generation the fitness of each individual to provide the solution to the

problem is evaluated by a cost function (often referred to as fitness function in this

context) and each individual within the population is ranked accordingly.

Chapter 1 Introduction & literature review 72

Following that, a predefined selection criteria will choose which individuals are al-

lowed to survive towards the next generation. Typically, only the fittest based on the

previous ranking survive, however, the selection criteria may often be designed to also

preserve poorly ranked individuals in an effort to introduce some diversity in the popu-

lation and prevent premature GA convergence on poor solutions.

The individuals that survive the selection process then are tasked with spawning a

new generation of individuals in order to replenish the same amount of individuals that

was present before the selection process. This is achieved by the genetic operators:

crossover (also called recombination) and/or mutation.

In crossover, a pair of ”parent” solutions are selected to breed a ”child” solution. The

chromosome of this new ”child” will be a combination of the information of both par-

ents. While this reproduction method based on the use of two parents is more ”biology

inspired”, GAs are not constrained in the number of parents used in crossover to spawn

a child, and some research suggests that the use of three or more parents provides better

quality chromosome [149].

Mutation works in a similar way as crossover, however, whereas crossover was a

direct combination of the chromosomes of the parent solutions, in mutation, the chro-

mosome of the child suffers random alterations. Similar to biology, mutations can be an

important part of the evolutionary strategy in order to provide solutions that are caused

by stochasticity, when crossover may be limited by its gene pool. GAs can be designed

in such a way that only mutation, crossover, or a combination of both are utilized.

Chapter 1 Introduction & literature review 73

The process described above is then repeated for the successive generations, until a

satisfactory solution is found. Figure 1.30 shows the basic flow of a GA.

Initialization

Fitness
Evaluation

Selection

Crossover

Mutation

Stop criteria met?

End

No

Yes

Figure 1.30: Flowchart of a standard Genetic Algorithm.

1.2.2 Limited Precision algorithms

As discussed in the previous sections, the balance between performance and the size

of NN architectures is one of critical concern, since a high-performance NN that is not

able to train with a reasonable amount of time and resources becomes impractical. One

way of improving this balance is the use of sparse connectivity of CNNs.

Chapter 1 Introduction & literature review 74

Broadly speaking, the reduction of the memory footprint can be achieved in two dis-

tinct forms:

• Quantization: The process of reducing the numerical precision of the NN param-

eters (weights, activations and gradients) from the typical FP32 to lower bitwidths.

• Pruning: The process of shrinking NNs to a reduced size by eliminating re-

dundant parameters or neurons that do not significantly contribute towards its

accuracy results.

In this section, the focus will only be in quantization methods.

Typically, NN parameters are 32-bit floating point (FP32) numerical representations

of real numbers; depending on the NN task, this precision could be quantized to lower

values, aiming at improved efficiency while maintaining accuracy [150]. In this scope,

there exists a rich body of literature, however, a disproportionately large majority of

these studies only focuses on the inference stage, assuming that the NN is trained be-

forehand with high precision computations [151]. In the following subsections a brief

overview on limited precision algorithms that focus on training will be provided.

1.2.2.1 Expectation Backpropagation

Early quantized networks were trained on the basis of a variation of Bayesian infer-

ence called Expectaction Backpropagation (EBP) [152, 153].

Chapter 1 Introduction & literature review 75

EBP derives its methodology from the widely applicable expectation propagation

(EP) technique, specifically applied to the approximation of the posterior of the weights

using a ”mean-field” factorized distribution in an online setting.

Assuming a NN with large fan-in, the precision of weights and activations can be

reduced, in its limits down to 1 bit representations. Beyond this, EBP also has the

advantage of being parameter-free, given the prior and the NN architecture.

This method, however, comes with the drawbacks that the bias must be real valued

and that the NN architecture must be fully connected, therefore not being applicable to

CNNs.

1.2.2.2 Binarized Neural Networks

EBP therefore paved the way towards the appearance of novel limited precision al-

gorithms that rely on the idea of using binary values (±1) for the weights, coining the

term Binarized Neural Network (BNN) [154].

Instead of optimizing the weights posterior distribution such as in EBP, BNNs rely

on preserving the floating-point weights to compute the weight update and then passing

those weights through a sign function to quantize them into binary values. Deterministic

binarization of the weights could lead to a significant loss of information, so instead,

BNNs tend to use stochastic binarization:

wb =

+1 with probability p = σ (w) ,

−1 with probability 1− p,

[154] (1.46)

Chapter 1 Introduction & literature review 76

where, wb is the binarized weight, w the real valued weight and σ is the ”hard sigmoid”

function:

σ(x) = clip
(

x+1
2

,0,1
)
= max

(
0,min

(
1,

x+1
2

))
[154] (1.47)

As such, SGD training in a BNN can be summarized in algorithm 6:

Algorithm 6 SGD training with a BNN [154]. C is the cost function for minibatch and
the functions binarize(w) and clip(w) specify how to binarize and clip weights. L is the
number of layers.
Require: a minibatch of (inputs, targets), previous parameters wt−1 (weights) and bt−1

(biases), and learning rate η .
Ensure: updated parameters wt and bt .

Forward propagation:
wb← binarize(wt−1)
for k = 1 to L do

compute ak knowing ak−1, wb and bt−1
end for
Backward propagation:
Initialize output layer’s activations gradient ∂C

∂aL
for k = L to 2 do

compute ∂C
∂ak−1

knowing ∂C
∂ak

and wb

end for
Parameter update:
Compute ∂C

∂wb
and ∂C

∂bt−1
knowing ∂C

∂ak
and ak−1

wt ← clip
(

wt−1−η
∂C
∂wb

)
bt ← bt−1−η

∂C
∂bt−1

1.2.2.3 Other Limited Precision Approaches

In the previous subsections, the quantization approach relies on diminishing the bitwidth

of the weights to the extreme end (1-bit) while still training using a gradient descent

Chapter 1 Introduction & literature review 77

method. This is only possible because the FP32 weight values are preserved to en-

able the gradient calculations, therefore significantly attenuating the benefits of limited

precision computations in terms of memory footprint.

Nonetheless, different approaches can be considered towards limited precision where

the precision may be reduced from FP32, while maintaining a large enough bitwidth

to allow gradient calculations. Gupta et al. [150] has demonstrated that training us-

ing constrained weights, biases and its respective updates to fixed-point representations

of 16 bits allows for comparable training to the FP32 counterpart without any signifi-

cant loss of accuracy. Furthermore, a stochastic rounding scheme was introduced that

showed improved training using numerical representations with a fixed fractional length

of 8-bits, when compared to its deterministic rounding counterpart. More recent GPU

and TPU architectures now include optimization for NN training with half-precision

(16-bit) as a standard design for their architectures.

Following on this research, several groups focus on training with reduced gradient

precision in order to avoid preserving the FP32 weight values. DoReFa-Net [155]

showed comparable training to FP32 on ImageNet using 1-bit weights, 2-bit activa-

tions and 6-bit gradients by introducing stochastic quantization to the gradients during

BP. The original authors of the BNN expand on this idea by combining determinis-

tic quantization with the use of a ”straight-through-estimator” first proposed by Hinton

[156], a shift-based BN and a novel shift-based AdaMAX algorithm [157]. Wang et

al. [158] moves away from fixed-point to novel floating point representations with 8-bit

precision using stochastic rounding and chunk-based accumulation during training. A

Chapter 1 Introduction & literature review 78

different approach involves the simulation of the effects of quantization during infer-

ence and adds correction to the training updates by introducing quantization noise in

the gradient updates [159, 160].

The previous examples all relied on some form of gradient-based learning, however,

as seen with BNNs, gradient calculation with limited precision becomes challenging

considering the discontinuities introduced on the derivatives of the activation functions.

As such, Stromatias et Marsland [161] introduced a new limited precision supervised

learning algorithm for training Spiking Neural Networks (SNN) based on GA. Popula-

tion based optimization algorithms such as GA do not require the gradients to be calcu-

lated for weight update and therefore present themselves as an interesting alternative in

the context of LP training.

Table 1.3 shows a chronological summary of some recent developments in LP train-

ing.

1.3 Neuromorphic systems with non-volatile memories

The growing size and demand for NNs call for hardware innovations in parallel with

the algorithmic ones in order to make large, high-performance NNs available to users

and researchers who are constrained by the cost of computation. Generally speaking,

large NNs cannot be implemented efficiently on general-purpose CPUs in either the

inference or training phases, since CPUs are specialized in executing only a few po-

tentially very complicated instructions at a time, which goes against the flow of NNs

Chapter 1 Introduction & literature review 79

Table 1.3: Chronology of recent approaches on NN training using limited precision. Adapted
from [162].

Approach Keywords
Quatization Benchmark

Forward Backward
Parameter

Update Data Model

2014 EBP [152] Expectation Back Propagation 1 bit, FP - - used in [163] Proprietary MLP

2015

Gupta et al. [150] Stochastic Rounding
16 bits 16 bits 16 bits MNIST Proprietary MLP, LeNet-5
20 bits 20 bits 20 bits CIFAR-10 used in [164]

Binary Connect [154] Stochastic Binarization 1 bit 1 bit Float 32
MNIST

CIFAR-10
SVHN

Proprietary MLP, CNN

2016

Lin et al [165]
Stochastic Binarization

No forward pass multiplication
Quantized back propagation

1 bit 1 bit Float 32
MNIST

CIFAR-10
SVHN

Proprietary
MLP, CNN

Bitwise Net [166]
Weight compression

Noisy back propagation 1 bit 1 bit
1 bit

Float 32 MNIST Proprietary MLP

XNOR-Net [167]
Binary convolution
Binary dot-product

Scaling binary gradient
1 bit 1 bit

1 bit
Float 32 ImageNet

AlexNet
ResNet-18
GoogLenet

DoReFa-Net [155]
Stochastic gradient quantization

Arbitrary bit-width
1-8 bit 1-8 bit 2-32 bit

SVHN Proprietary CNN
ImageNet AlexNet

2017 QNN [157]

Deterministic binarization
Straigth through estimators

Shift-based BN
Shift-based AdaMAX

1 bit 1 bit 1 bit
MNIST Proprietary MLP

CIFAR-10
SVHN CNN from [154]

ImageNet
AlexNet

GoogLenet

4 bit 4 bit 4 bit
Penn

Treebank
Proprietary RNN

LSTM

2018

Wang et al. [158]
Novel floating point

chunk-based accumulation
Stochastic rounding

8 bit 8 bit 8 bit
CIFAR-10

Proprietary CNN
ResNET

BN50 [168] Proprietary MLP

ImageNet
AlexNet

ResNET18
ResNET50

Jacob et al. [159]
Training with simulated

quantization
8 bit 8 bit 8 bit

ImageNet
ResNet

Inception v3
MobileNet

COCO MobileNet SSD
Flickr [169] MobileNet SSD

2019 WAGEUBN [170]

BN layer quantization
8-bit integer representation

Combination of direct, constant
and shift quantization

8 bit 8 bit 8 bit ImageNet ResNet18/34/50

2020

S2FP8 [171]
Shifted and squeezed FP8
representation of tensors

Tensor distribution learning
8 bit 8 bit 32 bit

CIFAR-10 ResNet20/34/50
ImageNet ResNet18/50

English-Vietnamese Transformer-Tiny

MovieLens
Neural Collaborative

Filtering (NCF)

Wiedemann et al. [172]
Stochastic gradient quantization

Induce sparsity
Non-subtractive dither

8 bit 8 bit 32 bit
MNIST LeNet

CIFAR-10/100
AlexNet

ResNet18
VGG11

ImageNet ResNet18

Quant-Noise [160]
Training using

quantization noise 8 bit 8 bit 8 bit
Wikitext-103

MNLI
ImageNet

RoBERT
RoBERT

EfficientNet-B3

that require large data volumes and highly regular workloads built from a small set of

computational primitives.

GPUs, which contain thousands of co-processors that compute in parallel signifi-

cantly improves performance on NN processing. The GPU’s co-processors share ac-

cess to a very fast local memory or to a global memory in a highly parallelized fashion.

Combining these advantages in terms of parallelism with already mature software in

Chapter 1 Introduction & literature review 80

terms of drivers and libraries facilitates the usage of GPUs for inference and training,

making them the preferred choice of hardware for NNs.

Nonetheless, in spite of the advantages over CPUs, memory transfer still remains a

major bottleneck for GPUs when processing large NNs [173, 174], making the prospect

of in-memory processing evermore appealing.

1.3.1 Architectures for inference

In the context of neuromorphic acceleration, the use of inference-only accelerators are

a nearer-term application compared to the full training experience due to the stringent

device and circuit requirements. In this sense, inference accelerators can be seen as

a ”read-only” circuit where the weights of a NN are trained externally (e.g. GPU,

TPU or cloud processing) and subsequently loaded onto the inference accelerator. For

accelerators based on crossbars of eNVM devices, this means programming all of the

devices once, possibly followed by occasional re-programming to mitigate component

failures caused by retention drifts over time.

1.3.1.1 VMM in crossbars

By embedding NN computations directly inside the memory elements that store the

weights, analog neuromorphic accelerators based on eNVM arrays can greatly reduce

the energy and latency costs associated with data movement. In particular, 2-terminal

devices such as RRAM, allow building crossbar arrays that gave rise to the concept of

massively parallel VMM operations to accelerate the inference of NNs (Figure 1.31).

Chapter 1 Introduction & literature review 81

Figure 1.31: The basic concept of a massively parallel analog VMM within an RRAM crossbar
[130].

As introduced in section 1.2.1.5, the inference stage of a feedforward NN relies on

MAC operations on the weights seen at the input of each neuron. The structure of these

crossbar arrays naturally performs a vector dot product when all the rows are activated

simultaneously, driven by a voltage (input) Vi at each row i, such that the current (output)

collected at each jth column is:

I j =
Nr−1

∑
i=0

Gi jVi, 0 < j < Nc−1 [130] (1.48)

where, Gi j is the conductance (weight) of the eNVM element at array position (i, j),

Nr is the number of rows, and Nc the number of columns. This natural operation is

possible because the multiplications between Gi j and Vi are realized by Ohm’s law

and the summation of currents by Kirchhoff’s law. Since the currents flow through

all the columns in parallel, the crossbar executes the full VMM in a single operation.

Additionally, the bias b can be seen as an extra row in the crossbar array.

Chapter 1 Introduction & literature review 82

1.3.1.2 Input signal encoding

As mentioned in the previous subsection, the input data for neuromorphic crossbars

based on eNVM devices is the voltage applied to each row of the crossbar. Nevertheless,

the way in which the voltage signal is encoded as an input can assume many forms, and

this aspect is one of the main differentiators between different inference accelerator

architectures. Figure 1.32 shows different categories of input representation.

Figure 1.32: Four different schemes for representing the crossbar input signal and the associated
peripheral circuitry: (a) Voltage amplitude encoding [175, 176]. (b) Analog temporal encoding
[177, 178]. (c) Digital temporal encoding [179] and (d) input bit slicing [180, 181].

The most direct method of implementing the VMM operation of equation 1.48 is

through amplitude encoding. In other words, an input xi could simply be encoded as

the amplitude of a voltage signal Vi as shown in Figure 1.32a [175, 176]. For an input

with Bin bits of precision, this method requires a Bin-bit DAC to supply the 2Bin possible

analog voltage levels to a crossbar row.

Chapter 1 Introduction & literature review 83

The advantage of this method is that all of the rows can be driven simultaneously, and

the full VMM can be realized in a single crossbar read operation without any latency de-

pendency on the timing of the inputs. Nevertheless, some significant drawbacks exist in

this methodology. The area and energy consumption of the DAC could scale exponen-

tially with Bin, and while a singular DAC scales similarly to an ADC, the DACs cannot

be shared across the inputs in the same way that an ADC can be shared or multiplexed

over the outputs. Another major drawback is that the memory device utilized in the

crossbar must have a highly linear I-V characteristics across the whole range of voltage

amplitudes to be read, and as already discussed in section 1.1.4, RRAM nonlinearity is

one of its major performance concerns.

A different methodology can be used by driving the rows of the crossbars with voltage

pulses of fixed amplitude (±V0) but variable duration [177], effectively eliminating the

requirement of device I-V linearity. When used with analog voltage pulses, this method

is known as analog temporal encoding (Figure 1.32b), in this way, the input xi is

encoded in the pulse duration Ti, converting the VMM from equation 1.48 into:

I j =V0

Nr−1

∑
i=0

SiGi jTi [130], (1.49)

where Si =±1 is the sign of the pulse.

Besides the relaxed requirements regarding device I-V linearity, this temporal ap-

proach has the added benefit that the activation data is encoded in an analog way,

therefore bypassing the conventional ADC step and potentially requiring no DACs at

the input. Nevertheless, this approach still requires ADC-like circuitry to convert the

Chapter 1 Introduction & literature review 84

outputs of each crossbar (voltage or current) into temporally coded signals and since

these circuits have finite temporal resolution, the pulse duration (and consequently the

VMM latency) scales exponentially with the effective number of input bits represented.

Another issue regarding the purely analog approach is that the noise associated with

the analog signals will effectively be accumulated and propagated through the different

layers of a feedforward NN, becoming a limiting factor in very deep NNs [175].

A variation of the previous approach is digital temporal encoding (Figure 1.32c).

This method shares its principals of operation with its analog counterpart, but with the

difference that the inputs are taken in the digital form and converted by a digital logic

circuit into a voltage pulse train with one pulse per input bit [179]. The column currents

produced by this pulse train are then accumulated in an integrator and passed through

an ADC.

Input bit slicing (Figure 1.32d) avoids the use of analog voltages while maintaining

a read latency that scales linearly with its input resolution. In this approach, a digital

input xi can be passed one bit at a time using binary voltage pulses of fixed length. The

output of the VMM with input bit slicing is:

Yj =
Bin−1

∑
b=0

2b

(
Nr−1

∑
i=0

Gi jV
(b)
i

)
[130], (1.50)

where, V (b)
i ∈ {0,V0} is the binary voltage pulse amplitude corresponding to the bth bit

of the input xi.

This VMM operation requires Bin sequential crossbar read operations (inner sum),

each of which requires an ADC step at the output. By organizing the bits from lowest to

Chapter 1 Introduction & literature review 85

the highest significance the VMM can be implemented by shifting the digitized crossbar

output one position to the right prior to adding the output for the next bit. Therefore,

the outer sum can be implemented using a digital shift-and-add circuit at the outputs

[180, 181].

An advantage of this approach is that the 1-bit inputs do not require sophisticated

DACs and the inputs pulse trains could potentially simply be modulated by access tran-

sistors that enables or disables the input rows. Additionally, the binary resolution of the

inputs consequently reduces the required ADC resolution at the outputs.

1.3.1.3 Synaptic bit slicing

One of the limiting factors hindering the use of neuromorphic eNVM crossbars for

inference and training is the number of distinguishable conductance levels that each

synaptic weight is able to represent when accounting for the device non-ideal behaviour.

Realistically, 6 to 8-bit precision remains at the upper limit of what singular eNVM ele-

ments are able to achieve [182–184], so to enable higher precision crossbar processing

a method called synaptic bit slicing can be employed.

Synaptic bit slicing relies on a similar concept to the previously discussed input bit

slicing but applied to the synaptic elements instead of the inputs. The basic principle

relies on the use of multiple eNVM elements to represent a single weight, such that the

Bw bits of a synaptic weights can be segmented into Nw slices with B̃W = Bw/Nw bits

each, making so that each eNVM element is only required to store the bitwidth of the

sliced weight B̃W .

Chapter 1 Introduction & literature review 86

The devices representing the sliced weights are organized such that each slice of

the same weight is partitioned along the columns of the same row, therefore creating

blocks of Nw columns to represent each weight commonly referred to as stripes that are

subsequently aggregated by shift-and-add reduction trees. (Figure 1.33).

Figure 1.33: Column-wise synaptic bit slicing. Each weight is represented by an 8-bit integer
and implemented using four 2-bit memristors spread across four columns. Each column block
is aggregated using a shift-and-add reduction tree [130].

One approach for inference accelerators is to combine synaptic bit slicing with in-

put bit slicing in what has been dubbed as the ”internally analog, externally digital”

approach to VMM [185]. In this instance, the VMM equation can be expressed as:

Yj =
Bin−1

∑
b=0

Nw−1

∑
c=0

2b+c

(
Nr−1

∑
i=0

G(c)
i j V (b)

i

)
[130], (1.51)

Chapter 1 Introduction & literature review 87

where b indexes the input bit and c indexes the weight bit slice. Typically, the weight

bit slices are aggregated first, followed by the input bit slices.

1.3.1.4 Signed computation

One discrepancy that arises between the NN concepts and its implementation in ana-

log circuitry with eNVMs is the implementation of negative synaptic weights. The

use of both positive and negative weights is a fundamental aspect in the functioning of

NNs, however, implementations with eNVM crossbars rely on the eNVM conductance

to represent each weight which makes the representation with negative conductance

impossible.

The most common solution to tackle this issue is to use a differential pair of conduc-

tances. In other words, each weight must be represented by a pair of devices, instead of

a singular device, such that the conductance of the differential pair is represented by:

Gi j = G+
i j −G−i j . (1.52)

As such, the VMM operation in the analog domain is described by:

I j =
Nr−1

∑
i=0

(
G+

i j −Gi j−
)

Vi [130] (1.53)

The current subtraction in the above equation can easily be implemented by applying

the same voltage input with different polarity to the two elements of the differential pair

and summing the currents of each column [179] as shown in Figure 1.34.

Chapter 1 Introduction & literature review 88

Figure 1.34: A general scheme to represent positive and negative weights. When a positive
input pulse is sent to the left crossbar, a negative pulse of the same magnitude is sent to the right
crossbar and vice versa, and a subtraction is performed by Kirchhoff’s law [130].

Alternative approaches to negative weight implementation using a single crossbar

have also been proposed, where a column of reference bias resistors (or memristors) is

added to each crossbar, whose fixed conductance Gb is effectively subtracted from the

conductance of each synaptic element using an analog inverter [186, 187]. While being

more area-efficient than the two-crossbar approach, the susceptibility to errors coming

from variability, drift or offset in the shared reference resistors rises.

1.3.2 Architectures for training

Training of large NNs using analog neuromorphic accelerators is considered a more

long-term goal due to the challenges presented by additional device non-ideal behaviours,

such as, update non-linearity, symmetry, precision, latency, energy consumption and en-

durance. Most of the already discussed considerations for inference also apply for the

Chapter 1 Introduction & literature review 89

feedforward step in training and in this section, additional considerations regarding BP

and weight update will be presented.

1.3.2.1 Backpropagation in neuromorphic architectures

As with the feedforward step, the major advantage of using eNVM crossbars lies in its

intrinsic parallelism. In order to support BP, both the computation of the layer-by-layer

errors δ and the weight updates ∆W should be designed with parallelism in mind.

The BP of errors is by design the MVM operation that corresponds to the transpose

of the VMM operation used in the inference step (equation 1.48). As such, the imple-

mentation of MVM can be parallelized in the same fashion as the VMM, as long as

the circuit supports forward and backward flow of data. The peripheral circuitry that

is used for VMM can also be reused for the MVM operation with additional re-routing

[179, 188].

An additional requirement of the BP step is the usage of the derivative of the neuron

function f ′ (equation 1.27). Activation functions such as the sigmoid or hyperbolic

tangent can have its derivative implemented by separate digital lookup tables, however,

other activation functions such as ReLU or a piece-wise linear version of the hyperbolic

tangent become much easier to implement in circuit since their derivative are simple

step functions [189].

Figure 1.35 shows the schematic of the reconfigurable neural core implemented by

Marinella et al [179] and the peripheral circuit blocks involved in the three stages re-

quired for training: VMM, MVM, and outer product weight update.

Chapter 1 Introduction & literature review 90

Figure 1.35: Reconfigurable neural core from [179] for implementing (a) VMM, (b) MVM and
(c) outer product update.

1.3.2.2 Parallel weight update

As with VMM and MVM, the weight update step in the training of a neuromorphic

array should be parallelized to avoid impractical latency issues. Derived from equation

1.28, Marinella et al. [179] suggest that the activations x can be applied as a temporal

coded input to one edge of the crossbar, while the errors δ are applied as an amplitude

encoded signal at the opposite end, resulting in a multiplication effect seen at each

crosspoint as shown in Figure 1.36. The learning rate η can be controlled by scaling

the pulse lengths or the number of pulses fired [190].

Rosenthal et al. [191] implements a similar variation to this but takes an analog input

for δ instead of a digital signal and applies those signals to access transistors along a

column instead of directly across the devices, allowing for fully analog implementations

of the parallel outer product update.

Alternatively, the multiplication effect can also be achieved at constant voltage ampli-

tudes by encoding one variable in the length or duty cycle and the other variable in the

repetition rate of two overlapping pulse trains [61, 192]. The benefits of using constant

Chapter 1 Introduction & literature review 91

Figure 1.36: Demonstration of parallel outer product update of a crossbar array using temporal
encoding for the activations and amplitude coding for the errors.

voltages come in the form of reduced area/power consumption of the ADCs/DACs, but

at the cost of increased latency.

Using a parallel outer product in detriment of a serial row-by-row programming

scheme has not only the more straightforward advantage of improving the weight up-

date latency by O(N), but also comes with the added benefit of reducing the temporary

storage requirements on the peripheral memory buffers, since only the x and δ vectors

need to be stored rather than the full weight update matrix ∆W.

One potential drawback in this approach is the large instantaneous power draw that

comes with programming all of the weights at once. To reduce this large power con-

sumption, the weight updates may be sectioned off into blocks that update in a parallel

fashion inside the block, but each block updates sequentially [177]. The design of these

Chapter 1 Introduction & literature review 92

blocks is application dependent and the balance between power consumption and la-

tency must be considered.

1.3.2.3 Batch training

The previous section discussed the benefits of a parallel weight update in terms of

latency, energy consumption and storage overhead, however, the parallel outer product

comes with the inherent drawback of being incompatible with training with batch sizes

greater than one, since the weight update matrix ∆W is no longer stored. This limitation

can not only be problematic in calculating accurate estimates of the true gradients [125],

but also imposes greater endurance requirements on the devices, since they need to be

programmed after every training sample.

Nevertheless, batch training while maintaining parallel weight updates have been re-

alized by using two crossbars per weight matrix [190]. In this way, while the first

crossbar handles the VMMs from forward propagation, parallel weight updates are be-

ing applied to the second crossbar. At the end of a batch, the total accumulated weight

update is read from the second crossbar and serially transfered to the first one.

The PipeLayer architecture [193] built upon and expanded this approach by duplicat-

ing each weight matrix so that while one matrix is being used for forward propagation,

the other is used in BP, therefore pipelining the two processes within a batch without

weight conflicts. At the end of each batch, the accumulated weight updates are copied

from the buffer array to all crossbars containing the copies of the weight matrix. The

schematic for dataflow in PipeLayer can be seen in Figure 1.37.

Chapter 1 Introduction & literature review 93

Figure 1.37: The PipeLayer architecture. (a) Dataflow of a single example through a 3-layer NN
for training. Each time step may correspond to several computational cycles. The computational
blocks active in each time step are labeled: forward propagation (blue) backpropagation (red)
and weight update (green). (b) Pipeline for multiple training examples. The weight updates ∆W
are serially written to the W and WT crossbars at the end of a batch. Adapted from [193].

The intermediate activations x are also stored in dedicated local RRAM buffers. This

pipelining of the forward and backward propagation means that the storage requirement

for the activations is determined by each layer’s depth within the NN instead of the

batch size.

1.3.3 Neuromorphic simulation frameworks

As discussed in the previous sections, the focus on synaptic crossbars using eNVM

devices is rising. Despite this surge of interest, eNVM designs for NNs are still in a

prototypical phase, consequently, due to the difficulty and cost constraints on eNVM

fabrication, simulating device and circuit behaviour prior to circuit-level realization be-

comes a necessity.

Traditional circuit-level relied on general purpose Simulation Program with Inte-

grated Circuit Emphasis (SPICE), but as the complexity of the underlying systems and

Chapter 1 Introduction & literature review 94

neuromorphic architectures being simulated grew, SPICE-based simulation, which is

difficult to parallelize, became prohibitively slow and impractical.

There is therefore a growing need for customized simulation frameworks that are able

to process large designs in a parallel and efficient manner. Table 1.4 and Figure 1.38

compare some of the more modern simulation frameworks for eNVM neuromorphic

circuitry design.

Table 1.4: A comparison of modern simulation frameworks [194].

Simulation
framework

Prog.
language(s) GPU

Pre-trained
DNN
conversion

TF/
PyTorch
integration

Inference Training Peripheral
circuitry Supported devices Open-

source

RAPIDNN [195] C++, SPICE ✓ ✓ ✓ ✓
Single-level memristive
devices

PUMA [196] C++ ✓ ✓ ✓ ✓
eNVM and
legacy NAND flash

DL-RSIM [197] Python ✓ ✓ ✓ ✓ ✓ eNVM
Tiny but
Accurate [198] MATLAB ✓ ✓ ✓ ✓ eNVM ✓

Ultra-Efficient
Memristor-Based
DNN [199]

C++, MATLAB ✓ ✓ ✓ ✓ eNVM ✓

MemTorch [200, 201]
Python, C++,
CUDA ✓ ✓ ✓ ✓ ✓

eNVM and
legacy NAND flash ✓

NeuroSim [94, 105, 202, 203] C++, Python ✓ ✓ ✓ ✓ ✓ ✓
eNVM and
legacy NAND flash ✓

IBM Analog
Hardware
Acceleration
Kit [204]

C++, Python,
CUDA ✓ ✓ ✓ ✓ ✓ ✓ eNVM ✓

Figure 1.38: Radar chart comparing different simulation frameworks [194].

At first glance it would seem that there is an abundance of similar frameworks to

choose from, however, Figure 1.38 shows that most of these frameworks have distinct

Chapter 1 Introduction & literature review 95

strengths and weaknesses due to the adoption of different software designs and usability

approaches, making them complimentary to each other more so than direct competitors.

For instance, both Tiny but Accurate and the Ultra-Efficient Memristor-Based DNN

are built upon NVSim [205], whereas all of the other presented frameworks are either

written from scratch in a lower level language (C++ or Python), or are extensions to

popular existing high-level GPU-accelerated computing libraries such as TensorFlow

or PyTorch which allow faster processing at the cost of more sophisticated hardware

requirements.

Furthermore, while RAPIDNN, PUMA, Tiny but Accurate, Ultra-Efficient Memristor-

Based DNN and DNN + NeuroSim can be used to generate estimate reports on power

consumption, area and latency, these frameworks have limited flexibility in terms of dif-

ferent NN layer types and device non-ideality simulation, when compared to MemTorch

and the IBM Analog Hardware Acceleration Kit.

Moreover, out of the listed frameworks in Table 1.4, only DNN + NeuroSim and the

IBM analog hardware Acceleration Kit (denoted as aihwkit in short-form) are capable

of simulating training using eNVM based deep CNN architectures. Lammie et al. [194]

benchmarked these two simulation frameworks on training a VGG-8 network architec-

ture on the CIFAR-10 dataset, using a High Performance Computing (HPC) cluster with

the following run-time hardware configuration:

• 1 node and 8 CPU cores (Intel Xeon 6132 series CPU sockets)

• 100 GB DDR4 3200 MHz RAM

• 1 PCI-E 32GB Volta V100 GPU

Chapter 1 Introduction & literature review 96

Figure 1.39: Comparison of training routines between DNN + NeuroSim V2.1, the IBM Analog
Hardware Acceleration Kit (aihwkit) and a Baseline PyTorch ML library for the VGG-8 network
architecture, using the CIFAR-10 dataset. Adapted from [194].

Figure 1.39 shows the results of those benchmarks. While the aihwkit consumes more

resources overall, it also has a comparable time per epoch to the PyTorch baseline,

which makes sense given that the additional computational resources are directed to-

wards the simulation of the crossbar arrays and non-idealities, without a large penalty on

simulation time. More interestingly, DNN + NeuroSim consumes more RAM than the

baseline implementation, but significantly less VRAM, while taking almost 3x longer

per epoch, suggesting an overall under utilization of the parallel GPU resources. One

large factor in play could be that DNN + NeuroSim simulates modular crossbar tiles,

while the aihwkit does not, and while the aihwkit may be limited in terms of hardware

resources in case of NN scaling, DNN + NeuroSim could be limited in terms of im-

practical training times due to the under-utilization of the parallel capabilities of the

hardware.

Chapter 2

Devices and characterization

methodology

In this chapter, the characterization methodology as well as a brief overview on the

fabrication of the devices used throughout the thesis work will be overviewed. First,

the details pertaining the used RRAM devices will be given, followed by details on the

used instrumentation for characterization.

Throughout the thesis work, a combination of DC and AC electrical characterization

techniques were performed which will be discussed in further detail. Furthermore, one

important aspect discussed throughout this work is that of RTN, so the methodology of

RTN testing and time constant extraction will be discussed in detail.

Finally, custom software was built with the purpose of extending the stock instrumen-

tation capabilities in regards to neuromorphic specific testing in RRAM. This method-

ology will be further explored in the final section of this chapter.

97

Chapter 2 Devices and characterization methodology 98

2.1 Devices

One overarching theme throughout this work is based on the differences in terms of

noise and variability between filamentary and non-filamentary switching RRAM de-

vices. As such, all measurements are taken from either a filamentary Ta2O5 based

device or the non-filamentary a-VMCO counterpart.

Both filamentary and non-filamentary RRAM devices are fabricated in singular de-

vice isolated crosspoint structures. All used samples were fabricated at IMEC [37, 206]

and subsequently sourced to LJMU for further characterization.

The filamentary Ta2O5 RRAM consists of a TiN/Ta2O5/TaOx/TaN/TiN stack pro-

cessed in an integrated process [56]. The TiN BE was sputtered at room temperature and

patterned. A 4nm thick stoichiometric Ta2O5 layer was deposited by Atomic Layer De-

position (ALD). A nonstoichiometric 20nm thick TaOx film was deposited by reactive

DC magnetron sputtering using a Ta target under oxygen ambient. Without breaking

the vacuum, a 10nm thick TaN capping layer was sputtered. Finally, a 30nm thick TiN

film was sputtered.

The non-filamentary a-VMCO devices consist of a TiN/a−Si/TiO2/TiN stack pro-

cessed in a CMOS-compatible process [41, 56, 207]. The active stack consists of an

8nm amorphous silicon (a-Si) layer deposited by Physical Vapour Deposition (PVD)

and an 8nm ALD TiO2 layer crystallized in the anatase phase. This stack is sandwiched

between TiN BE and TE with 30nm and 40nm thicknesses respectively [37].

Chapter 2 Devices and characterization methodology 99

(a) (b)

Figure 2.1: Illustration of the device stack of the (a) aVMCO and (b) Ta2O5 RRAM devices.

The dies provided by IMEC contain a range of different sized devices. Nevertheless,

for the purpose of this work, unless stated otherwise, all measured Ta2O5 devices have

a size of 75×75nm2 and the measured a-VMCO devices have a size of 135×135nm2.

2.2 Instrumentation

In this section a brief overview of the instrumentation used for characterization through-

out the thesis work will be given.

Figure 2.2 shows the measurement system used throughout this work, based on the

Keysight B1500A Semiconductor Device Parameter Analyser connected to a Signatone

S-1600S probe station.

The Keysight system is equipped with 4 Source Measurement Units (SMUs), as well

as 4 B1530A Waveform Generator/Fast Measurement Units (WGFMUs) and 2 B1525A

Semiconductor Pulse Generator Units (SPGUs). This system features current-voltage

(IV) measurement capabilities of spot, sweep, sampling and pulse measurement in the

Chapter 2 Devices and characterization methodology 100

Figure 2.2: Signatone S-1160S probe station (left) and Keysight B1500 semiconductor param-
eter analyser (right).

range of 0.1fA−1A/0.5µV−200V, AC capacitance measurement in multi frequency

from 1kHz to 5MHz and Quasi-Static Capacitance-Voltage (QS-CV) measurement ca-

pabilities, pulsed IV and ultra-fast IV measurement capabilities from a minimum sam-

pling interval of 10ns (100MSa/s), and up to 40V high voltage pulse.

The Keysight system can be controlled either through its embedded EasyExpert soft-

ware, or by its General Purpose Interface Bus (GPIB) that allows a connection to an

external computer capable of triggering the Keysight’s Sourcing/Measurement subrou-

tines from inside a script, extending the flexibility offered by the default EasyExpert

software.

2.3 DC measurements

As mentioned in section 1.1.3.3 RRAM devices can either belong to the bipolar or

unipolar category in what comes to its operation scheme. However, in the scope of this

Chapter 2 Devices and characterization methodology 101

thesis, both the non-filamentary a-VMCO devices and the filamentary Ta2O5 operate

in the bipolar mode (Figure 1.8b), with the added caveat that the a-VMCO devices are

self-compliant while the Ta2O5 are not, and require an external CC on the SET process

to prevent device breakdown.

2.3.1 Stepped IV measurements

Arguably the most basic and essential form of RRAM characterization lies in its basic

IV characteristics. In this work, all DC IV measurements are performed using only two-

terminals as the measured devices are not integrated with a transistor.

The DC IV characteristics can be obtained by either sweeping the current and measur-

ing the voltage drop (current-controlled), or by sweeping the voltage across the device

and measuring the current (voltage-controlled) in a predefined range
([

VInitial : VStep : VFinal
])

.

In the scope of this work, all DC measurements are voltage-controlled. Additionally, the

sweeps can be defined as either single or double as illustrated in Figure 2.3. Due to the

characteristic hysteretic behaviour of RRAM, the usage of the double sweep becomes

a necessity to observe the full IV behaviour, and as such, all DC sweeps performed in

this work are double sweeps unless stated otherwise.

Using the conditions specified in table 2.1, the DC IV characteristics were measured

for both the Ta2O5 and aVMCO devices, and are presented in Figure 2.4. These mea-

surements serve as the reference point throughout the thesis work.

Chapter 2 Devices and characterization methodology 102

(a)

Time

Vo
lta

ge

VStep
VInitial

VFinal

(b)

Time

Vo
lta

ge
Figure 2.3: Schematic of a DC IV (a) single sweep and (b) double sweep measurement. The
red circles represent the point in time at which the current is recorded.

Table 2.1: Conditions used for recording the DC IV characteristics in the Ta2O5 and aVMCO
devices.

VInitial
∣∣VStep

∣∣ VFinal CC

Ta2O5
SET 0V 0.1V 3V 60µA
RESET 0V 0.1V −1.7V -

aVMCO
SET 0V 0.1V −3V -
RESET 0V 0.1V 5.5V -

2.3.2 DC RTN measurements

One important factor considered in this work is the impact of read noises, specifically

RTN, on the pattern recognition accuracy of neuromorphic networks containing RRAM

devices.

As such, the RTN measurement methodology is based on taking multiple long DC

measurements at the specified read-out voltage of each device after programming to a

desired resistance level. Each measurement is taken with a sampling time of 2 ms/sample

and contains 10,000 samples. The read-out voltages are 0.1V and 3V for the Ta2O5 and

aVMCO devices respectively.

Chapter 2 Devices and characterization methodology 103

(a)

- 2 - 1 0 11 0 - 9
1 0 - 8
1 0 - 7
1 0 - 6
1 0 - 5
1 0 - 4

R e s e t

Cu
rre

nt
(A

)

V T E (V)

S e t

(b)

- 4 - 2 0 2 4 61 0 - 1 1

1 0 - 9

1 0 - 7

1 0 - 5

S e t

R e
s e t

Cu
rre

nt
(A

)

V T E (V)
Figure 2.4: Standard DC IV measurements of the (a) Ta2O5 and (b) aVMCO devices.

RTN occurrence rate is defined as the percentage of time where the RTN is at the high

state across the DC measurement.

The RTN measurement process is repeated after programming to 8 distinct levels

with the goal of statistically describe RTN amplitude distributions and occurrence rates

which will serve as the basis for neuromorphic simulations.

2.4 AC Programming

DC programming was discussed in the previous section, and while being a suitable

method for characterization, real world applications of RRAM mostly make use of AC

programming.

Figure 2.5 illustrates the basic form of AC single pulse programming in an aVMCO

device.

Chapter 2 Devices and characterization methodology 104

(a)

Vo
lta
ge

Time

V S
ET

V R
ea
d

tSET

tRead

(b)

Vo
lta
ge

Time

V R
ES

ET

V R
ea
d

tRESET

tRead

Figure 2.5: Schematic illustrating a single AC (a) SET and (b) Reset process in an aVMCO
device.

As described previously in Figure 2.4b, aVMCO devices characteristically are Set

at negative voltages and Reset at positive voltages. Typically, AC programming is di-

vided into the programming step (defined by VSet/Reset & tSet/Reset) and the reading step

(defined by VRead & tRead). While the reading step is necessary for obtaining the de-

vice state at each programming step, specific programming applications may forego the

reading step in certain cases where knowing the device state at each step is unnecessary.

The Ta2O5 device, being a filamentary device requires some form of CC to avoid hard

dielectric breakdowns to occur during the Set process. While this could be achieved by

coupling the RRAM device with some selectors or by using certain instrumentation

systems that are capable of applying CC on AC signals, both of these solutions fall

outside the scope of this work. The AC characterization for the Ta2O5 device in this

work occurs only for the Reset step, while using DC programming with CC (as in

Figure 2.4a) for the Set process.

With AC programming surges the involvement of a controlled timing parameter (tSet/Reset)

Chapter 2 Devices and characterization methodology 105

that heavily impacts the final conductance state after programming. The combination

of the impacts of both voltage and time in programming RRAM devices is known as

the Voltage-Time dilemma. Figure 2.6 shows the extracted relationship of voltage and

time in AC single pulse programming for a typical aVMCO device used throughout this

work.

Figure 2.6: Relationship between voltage and time in single AC programming in a 135×135nm
aVMCO device.

2.5 Neuromorphic interface and programming

AC single pulse programming can achieve different conductance states depending on

its programming conditions as previously illustrated in Figure 2.6. However, RRAM

Chapter 2 Devices and characterization methodology 106

programming for neuromorphic applications aims to achieve as many distinct conduc-

tance states as possible. For this purpose RRAM is typically programmed using a volt-

age pulse trains with multiple pulses that gradually change the device conductance. This

form of programming will be named as neuromorphic programming in this thesis work.

Many different forms of neuromorphic programming have been explored in the liter-

ature [82, 92, 93, 208], yet, in the scope of this work emphasis will be given to identical

pulse train programming and staged programming.

2.5.1 Identical pulse train programming

Arguably the simplest form of neuromorphic programming, identical pulse train pro-

gramming simply involves the application of a voltage pulse train with fixed voltage/-

timing conditions and Pn number of pulses (Figure 2.7b).

Despite the simple nature of this programming scheme being an advantage, this usu-

ally comes with the disadvantage of typically high nonlinear programming behaviour

of the RRAM (Figure 2.7a), which we denominate as Natural Response (NR).

Beyond this point, the optimum voltage amplitude must be carefully chosen, as in-

creasing the voltage results in a higher overall On/Off ratio but at the cost of also in-

creased nonlinearity.

Chapter 2 Devices and characterization methodology 107

V S
ET

Time

P1 P2 Pn

(b)

(a)

I ro

Pulse Number

Voltage Increase

Figure 2.7: Schematic illustrating the identical pulse train programming scheme. (a) illustrates
how current evolves with programming for different applied voltages (Natural Response) and
(b) shows a typical example of the applied voltage pulses.

Table 2.2: Identical pulse train programming conditions used for the Ta2O5 and aVMCO de-
vices.

VProgramming tProgramming VRead tRead Pn CC

Ta2O5
SET 1.5V (DC) DC

0.1V
DC DC 100µA

RESET −1.7V 100µs 100µs 100 -

aVMCO
SET −2.5V 20µs

3V 100µs
500 -

RESET 5.3V 100µs 500 -

2.5.2 Staged programming and linear response

To address the nonlinearity issue usually present in the identical pulse train program-

ming scheme, the staged programming scheme is proposed (Figure 2.8).

Chapter 2 Devices and characterization methodology 108

V S
ET

Time

P1P2 Pn

V 1 V 2

V 3

V 4

(b)

(a)

Figure 2.8: Schematic illustrating the staged programming scheme. (a) details how current
evolves with programming (Linear Response) and (b) illustrates the applied voltage pulses in
stages.

In this scheme, the programming is divided into stages of Pn pulses, where the voltage

amplitude is increased by VStep whenever the stage changes (Figure 2.8b). The under-

lying idea being that combining the initial low voltage amplitudes with the subsequent

increasing amplitudes will allow for a more Linear Response (LR) without sacrificing

the overall On/Off conductance ratio.

Methods that improve on device linearity such as Incremental Step Pulse Program-

ming (ISPP) have already been extensively covered in literature [74], nevertheless, the

staged programming scheme differs from the traditional ISPP methods in the sense that

Chapter 2 Devices and characterization methodology 109

the staged programming simply follows a predetermined pulse scheme and verification

at each pulse/stage is not required, making it a more attractive solution for online train-

ing where the latency requirements turn ISPP impractical.

In this scheme, only the staged (variable) voltage conditions are touched upon while

maintaining fixed timing pulse parameters. This practical decision was based upon ini-

tial observations that small variations on the voltage amplitude result in more coarse

adjustments to the RRAM conductance, while the timing parameters only result in fine-

tuned adjustments to conductance. As such, the scope of this work focuses on the vari-

able voltage conditions while leaving variable timing conditions as a future prospect.

Table 2.3 details the staged programming conditions used for programming the Ta2O5

and aVMCO devices.

Table 2.3: Staged programming conditions used for the Ta2O5 and aVMCO devices.

VInitial VStep VFinal tProgramming VRead tRead Pn nStages CC

Ta2O5
SET 1.5V (DC) DC

0.1V
DC DC DC 100µA

RESET −1.2V −0.1V −1.7V 100µs 100µs 100 6 -

aVMCO
SET −1.5V −0.1V −2.6V 300µs

3V 100µs
50 10 -

RESET 3.5V 0.1V 5.4V 1ms 25 20 -

2.5.3 Neuromorphic programming GUI

With the creation of the staged programming scheme, the limited flexibility of the

default Keysight EasyExpert suite for programming increasingly complex RRAM tests

(such as the staged programming scheme) becomes apparent.

As mentioned in section 2.2, the Keysight instrument was connected to an external

computer through a GPIB connection to allow the control of the instrument subroutines

from inside of a script. As such, for extended practicality and flexibility, an instrument

Chapter 2 Devices and characterization methodology 110

control framework including a Graphic User Interface (GUI) was developed in Visual

Basic (VB) .NET, with special focus on ease of use of the staged programming scheme.

The framework is based around the Virtual Instrument Software Architecture (VISA)

API and the dedicated Keysight WGFMU drivers.

Plotting panel

WGFMU Pannel

Save Folder Directory
Wafer
panel

SMU
Panel

Main Panel
AC RTN Panel

Figure 2.9: Capture of the VB GUI for neuromorphic programming.

Figure 2.9 shows a capture of the aforementioned VB GUI. The GUI is sectioned off

into different panels:

• Main panel: responsible for setting up all of the required parameters (Voltage

and timing) for testing as well as including the buttons that trigger the actual test

to execute.

Chapter 2 Devices and characterization methodology 111

• Save folder directory: determines where all the saved files will be stored in the

external computer.

• Wafer panel: saves information regarding the location of the tested device in the

wafer, such as: Wafer #, Block, Module, Location.

• SMU panel: is a specific panel for the use of the instrument’s SMU’s for DC

testing.

• AC RTN panel: allows for the use of the WGFMU modules to trigger fast con-

stant voltage measurements for RTN detection of lower time constants than the

capabilities of the standard DC RTN measurements.

• Plotting panel: displays the measured results in real-time.

The main panel includes 3 different tabs that are purposefully built for different mea-

surements. The first tab is simply called ”linear” and is displayed in Figure 2.9 and

was built with the goal of facilitating the use of the staged programming scheme with a

constant VStep.

The ”linear” tab beyond including definitions for all of the parameters of the staged

programming scheme already mentioned in sections 2.4 & 2.5.2, also includes the ad-

ditional parameters:

• tEdge: sets the rise/fall time of the pulse.

• Cycles: defines multiple cycles of the Set/Reset process for endurance/variability

testing.

Chapter 2 Devices and characterization methodology 112

• Target Current: defines a target current to set the device as close to the defined

value as possible.

• ILimit: defines a ”soft” current limit that can be either high or low, stopping the

current running SET/RESET process when the limit is reached.

• nSamples/Stage: is related to a Keysight/GPIB limitation in imposing ILimit.

Communication through the GPIB can be done pulse-by-pulse (which results in

increased test time) or can be performed on the basis of multiple pulses per GPIB

communication. This parameter defines the rate at which communication through

the GPIB connection occurs.

As an alternative to the ”linear” programming approach where every stage is in-

creased by VStep from the previous stage, a more custom approach was designed.

Figure 2.10: Capture of the ”custom” tab of the main panel of the VB GUI.

The second tab of the GUI called ”custom” displayed in Figure 2.10 allows the con-

struction of a list of matching voltages and Pn for the SET and RESET processes, the

instrument will then run through the custom list.

Chapter 2 Devices and characterization methodology 113

The third tab of the main panel called ”Linear+RTN” is dedicated towards the capture

of RTN signals at different conductance levels and is shown in Figure 2.11.

Figure 2.11: Capture of the ”Linear+RTN” tab of the main panel of the VB GUI.

This method uses the same principle introduced with the ”linear” tab, however, a list

of target currents is defined for SET and RESET, each time a target current is reached

during the SET/RESET process, an AC RTN measurement with the conditions defined

in the AC RTN panel is run, allowing for more accessible extraction of read noises at

different conductance levels in the RRAM devices.

Chapter 3

Simulation framework

In the sequence of thought provided in section 1.3.3, although there is an abundance

of neuromorphic device/circuit-level simulation frameworks, we feel that the currently

available software is often lacking in respects to flexibility in both NN layer topology

and training algorithms, as well as in hardware-level accessibility for the end-user at

runtime.

As such, a new simulation framework was designed in MATLAB, with the support of

its various toolboxes, that aims to emphasize flexibility and usability, which was named

FlexiNNSim. Since FlexiNNSim is focused on user flexibility, it is able to run on both

Windows and Linux environments (tested on Windows 10 and Ubuntu 22.04).

FlexiNNSim is designed around a GUI that contains two main panels: variability

analysis and NN definition, the former handles of the data manipulation required to cal-

culate RRAM non-idealities, while the latter is responsible for defining NN topologies

and the various training options as will be discussed in the following sections.

114

Chapter 3 Simulation framework 115

3.1 Variability analysis

Figure 3.1: Variability analysis panel of the GUI.

The variability analysis panel shown in Figure 3.1 handles all of the functionalities

required for the post-processing of the RRAM test data and is divided into four sub-

panels:

• Data entry

• Analysis

• Non-idealities

• Plots

Chapter 3 Simulation framework 116

3.1.1 Data entry

The data entry section of the variability analysis panel is responsible for defining the

file path of the RRAM data and to load it into the framework for post-processing. This

file path can be entered manually in the RRAM Data File Edit Field or alternatively by

opening the file selection dialog box by clicking on the browse button beside it.

Since the idea of this framework is meant to be able to operate data processing and

NN simulation under the same MATLAB environment, all data entry and output is

done with recourse to .mat files. As such, the RRAM data to be loaded should be a

.mat file containing 3 columns of data ordered from left to right pertaining to: Pulse #,

Voltage and |Current|. The program will automatically recognize the different polarities

and switching cycles based on sign changes provided in the Voltage data (it is always

assumed that SET is the first programming step). For simplicity of integration, this data

organization matches the output that the Neuromorphic programming GUI (introduced

in section 2.5.3) produces.

All of the calculations from this point forward are made over the RRAM conductance

values, so it is necessary to provide the VRead value in the VRead Edit Field.

After these considerations, pushing the Load button will import the data from the file

defined in the RRAM Data File Edit Field and perform all of the necessary calculations

based on the options selected in the remaining sub-panels.

Chapter 3 Simulation framework 117

3.1.2 Analysis

The analysis sub-panel displays three different dropdown menus with options on how

to process the RRAM data:

• ”RefCycle”

• ”Normalize”

• ”Weight Conversion”

All of the RRAM non-idealities are calculated with respect to a reference cycle that is

based on the RRAM data provided. The ”RefCycle” dropdown menu has two options:

• ”Mean”: Calculates the reference cycle based on the mean conductance of all of

the data provided.

• ”From Data”: Allows the user to specify one specific cycle of the provided con-

ductance data to use as the reference cycle.

Additionally, the data is converted to a 0 to 1 normalized conductance range. The

”Normalize” dropdown menu defines how that normalization procedure occurs, and has

the following options:

• ”Individually”: Normalizes each cycle to the [0, 1] conductance range indepen-

dently. This method can be useful to discard the impact of On/Off conductance

window fluctuations between cycles, which can have large impact in training.

Chapter 3 Simulation framework 118

• ”All Cycles”: This method takes all of the data into account when normalizing.

Conductance thresholds are set for the upper and lower limits based on one of the

following: ”min”, ”mean”, ”median” or ”max” of LRS and HRS respectively, and

any values above/below the upper/lower thresholds are capped. When using this

mode, it is recommended to set the upper/lower thresholds to ”min” and ”max”

respectively because the impact of having unreachable weight values is far greater

than the cost of the slightly reduced conductance window.

Finally, the ”Weight Conversion” dropdown menu specifies how conductance vari-

ability is converted into weight disturbance values and has the following options:

• ”NormG”: In this case the disturbance from the non-ideality (D2D or C2C) is

directly multiplied to the undisturbed weight. The data residuals with respect to

the reference cycle are defined by:

NormG =
G

GRe f
(3.1)

• ”DeltaG”: Here the variability is taken in the form of
∣∣∆G

G

∣∣, and is subsequently

added to the undisturbed weights during simulation. The residuals are:

DeltaG =

∣∣∣∣G−GRe f

GRe f

∣∣∣∣ (3.2)

By default, the results presented in the following chapters are obtained using the

”Mean”, ”Individually” and ”DeltaG” options for the ”RefCycle”, ”Normalize” and

”Weight Conversion” menus respectively.

Chapter 3 Simulation framework 119

3.1.3 Non-idealities

The Non-idealities sub-panel displays all of the options that are available in terms of

fitting of three different non-idealities: Discretization (also referred to as Conductance

Stepping (GS)), D2D and C2C variability.

In all cases, the Non-idealities sub-panel allows the generation of a .mat file contain-

ing a struct that has all of the necessary information to be applied during simulation.

Figure 3.2 shows an example of each of these structs.

Discretization

(a)
D2D

(b)
C2C

(c)

Figure 3.2: Example of the data contained in the (a) Discretization, (b) D2D and (c) C2C structs.

Additionally, the ”Export app Options” checkbox in each of the Non-idealities sub-

panels also exports a list of the used options used when generating the aforementioned

struct, which has no effect during simulation but can be used as a log to track the options

used in multiple files.

3.1.3.1 Discretization

The Discretization non-ideality is responsible for applying the gaps (or unreachable

weights) of the conductance curves. This non-ideality is always applied in respect to

the reference curve, as such, the options in this sub-panel only refer to the model that

should fit the reference curve data.

Chapter 3 Simulation framework 120

It is possible to define separate models for the SET and RESET portion of the ref-

erence curve in the ”SET Model” and ”RESET Model” Edit Fields respectively. The

model should be written with respect to ’x’ as the independent variable. One example

is displayed in the GUI itself, where the model from [94] was adapted for this inter-

face. Alternatively, any of the MATLAB Curve Fitting Toolbox [209] library models

can be used (documentation can be found in [210]), such as ”pchip” or other interpola-

tion models that have no physical meaning in the RRAM context, but provide a perfect

fit of the reference curve. An example of this panel is given in Figure 3.3.

Figure 3.3: Example of the Discretization Non-ideality sub-panel.

3.1.3.2 D2D

In the D2D sub-panel it is possible to define D2D variability based on a specific

user-input statistical distribution. Due to time-constraints, the current version of this

framework only allows for a single distribution to be defined that represents all con-

ductance levels in both SET and RESET programming polarities. An illustration of the

D2D variability sub-panel can be seen in Figure 3.4.

Chapter 3 Simulation framework 121

Figure 3.4: Example of the D2D variability Non-ideality sub-panel.

3.1.3.3 C2C

The C2C variability non-ideality can be defined in two different modes: ”user-input”

and ”extract from data” modes. Figure 3.5 illustrates this sub-panel under the two dif-

ferent modes.

(a) (b)

Figure 3.5: Example of the C2C variability Non-ideality sub-panel when using (a) the ”user-
input” mode and (b) the ”extract from data” mode.

Chapter 3 Simulation framework 122

In the ”user-input” mode the definition is similar to the one used for the D2D vari-

ability sub-panel, where a single statistical distribution with user defined parameters are

directly fed into program.

In the ”extract from data” mode, the user defines the type of statistical distribution to

which the data belongs to, along with the number of points to fit along the normalized

conductance range. These fit points can be seen as virtual conductance levels to which

the deviation from the reference cycle will be calculated to generate the data for the

C2C variability.

Along with defining the number of fit points, it is possible to define the spacing

as either ”linear” or by ”pulse-number”. In the ”linear” spacing case, the points are

evenly distributed across the normalized conductance range, whereas spacing by ”pulse-

number” refers directly to the conductance levels available in the reference cycle. In this

latter case, the number of fit points is directly extracted from the reference cycle and the

user-input in the ”Fit Number of Points” Edit Field is disregarded. In the results of the

following chapters, by default, the ”linear” spacing is utilized with 500 fit points.

Finally, it is possible to simulate a type of Write-Verify methodology, where the resid-

uals are calculated on the pulse that gives the minimum error for each cycle indepen-

dently, whereas the alternative without Write-Verify is calculated based on the pulse

that gives the minimum error seen in the reference cycle.

Based on these options, the C2C variability is then calculated at each of the fit points

using the defined type of statistical distribution, which will give different distribution

Chapter 3 Simulation framework 123

parameters (e.g. µ &σ for Lognormal or α &β for Weibull distributions) for the differ-

ent fit points. The curve generated by these fit points across the normalized conductance

range can then be fitted by the model defined in the ”Fit Model” Edit Field, which will

then be used during NN simulation.

The statistical distribution parameters saved in the C2C struct are stored in the generic

variables ”ParamA” and ”ParamB” which changes depending on the distribution type.

Table 3.1 shows a list of available distributions and corresponding ”ParamA” and ”ParamB”

variables:

Table 3.1: Table listing the statistical distributions available to use in the simulation framework
for the D2D and C2C Non-idealities sub-panels.

dist ParamA ParamB
Normal µ σ

Exponential µ N/A
Extreme Value µ σ

Half-Normal µ σ

LogNormal µ σ

Logistic µ σ

LogLogistic µ σ

Rayleigh B N/A
Weibull α (Scale) β (Shape)

3.1.4 Plots

The plots sub-panel allows the preview of the RRAM raw data supplied to the pro-

gram as well as the different fits involved in the Non-idealities sub-panel. Figure 3.6

shows examples of the different plots that can be previewed in this sub-panel.

Chapter 3 Simulation framework 124

(a) (b)

(c) (d)

Figure 3.6: Example of the preview plots available in the Plots sub-panel. (a) shows all of the
raw data that is fed into program (the black dotted lines represent the thresholds set in the ”All
Cycles” Normalize mode), (b) shows the fitting of the reference cycle by the model specified
by the user, (c) shows a preview of the statistical fit of the C2C variability of a specified con-
ductance level (in this case Weibull distribution) and (d) shows the fitting of the C2C variability
parameters (”ParamA” and ”ParamB”) across the normalized conductance range for the SET
and RESET polarities. The D2D variability plots preview uses the same functionality as the
C2C example and is not shown for simplicity.

Clicking on one of the preview plots of either the Discretization model or the C2C

variability will open a pop-up dialog box that allows to tune the fitting parameters for a

more refined fitting as shown in Figure 3.7.

It should be noted that by selecting the spacing method as ”linear”, the C2C variability

Chapter 3 Simulation framework 125

(a)

(b)

Figure 3.7: An example of the model refit window (a) before and (b) after adjusting the fitting
parameters.

parameters are extracted evenly across the normalized weight range and since generally

there is a region in this range (close to 0 in SET and close to 1 in RESET) where the

programming nonlinearity is higher, this typically leads to an inferred peak of higher

variability in these regions.

Chapter 3 Simulation framework 126

3.2 NN definition

Figure 3.8: NN definition panel of the GUI.

The NN definition panel shown in Figure 3.8 handles all of the functionalities re-

specting to setting up the NN simulation sessions and is divided in two sub-panels:

• Session Manager

• Options

3.2.1 Session Manager

The Session Manager sub-panel allows to create a queue of NN simulation sessions.

This can be particularly useful since the focus of this framework is to allow experi-

mentation with different parametrizations. The Session Manager Control Panel allows

Chapter 3 Simulation framework 127

control of the session order in the queue as well as the saving and loading of .mat files

containing Session parameters or alternatively loading whole Session tables.

Additionally, a .mat file is automatically saved in ”/SessionManager/Checkpoint-

Table.mat” at the end of each session, containing the session table of the remaining

sessions. This is particularly useful in the event of an error or unexpected system shut-

down since it allows to quickly resume the queue at the last checkpoint, avoiding the

need to repeat sesssions that were completed.

3.2.2 Options1

The Options sub-panel defines all of the parametrization to take effect during each NN

simulation session, and is divided into two tabs: Options1 and Options2 as illustrated

in Figure 3.9.

(a) (b)

Figure 3.9: Illustration of the two tabs of the Options sub-panel: (a) Options1 and (b) Options2.

Chapter 3 Simulation framework 128

3.2.2.1 Loading files

In the first Options tab, the Disturbance files table will indicate the file paths of the

dataset to train on and the Non-idealities structs generated (following section 3.1.3. An

example illustrating how to fill the Disturbance files table is shown in Figure 3.10.

Figure 3.10: Example of the Disturbance files path definition table.

In this table, the Datastore file must be defined, while the remaining structs that per-

tain to device Non-idealities are optional. The Datastore file is a .mat file that contains

a single datastore object that references how the dataset should be read during simula-

tion. Detailed documentation on datastore object creation can be found in [211]. Us-

ing datastore objects for importing the datasets may have limited usefulness handling

smaller datasets such as the MNIST database, but this idea will ease the testing of large

datasets as well as remote datasets, as the data is loaded into the simulation framework

in batches, limiting its impact on RAM.

Loading the files regarding the Non-ideality structs (Discretization, D2D or C2C)

will activate its use for the particular simulation session. To deactivate a particular non-

ideality simply leave its specific file path blank.

Chapter 3 Simulation framework 129

3.2.2.2 NN Layers

The NN Layers Edit field, allows the definition of the NN topology. The text entered

in this field will be passed to the layerGraph [212] function of the MATLAB Deep

Learning Toolbox [213] to create a LayerGraph object that is subsequently used in the

dlnetwork function [214] to create the dlnetwork object used in training. Therefore

all layers supported by the dlnetwork function can be used to build the NN topology.

Figure 3.11 shows a simple example on how to define a 784x30x10 MLP with ReLU

activations in the hidden layer.

Figure 3.11: Example of the NN Layers Edit Field.

Since the network layers need to comply with the supported layers of the dlnetwork

function, a limitation of the framework on this current version is the inability to choose

the cost function and initialization. By default the used cost function is CE (equation

1.12) and the initialization is done with the Normalized Xavier heuristic (equation 1.40).

3.2.2.3 NN Training Options

In the NN training Options Edit field, the options regarding the training algorithm is

defined along with any parametrizations for training. These options rely on the train-

ingOptions object of the MATLAB Deep Learning Toolbox and its specific documen-

tation can be found in [215]. Figure 3.12 shows an example on how to setup these

options.

Chapter 3 Simulation framework 130

Figure 3.12: Example of the NN training Options Edit field.

It should be noted that the ’CheckpointPath’ and ’Plots’ options are deactivated in

this Edit field since they are handled elsewhere in the framework GUI.

The ’ExecutionEnvironment’ ’parallel’ option is also unavailable in the current ver-

sion, but all other options are available for ’ExecutionEnvironment’, it is therefore rec-

ommended to set this option to ’auto’ which will search the system for a CUDA com-

patible GPU and will handle the calculations in the GPU if possible, if not, calculations

will be performed in the CPU.

Additionally, if ’DispatchInBackground’ is set to ’true’ then a parallel pool based on

the MATLAB default cluster will be used to handle the mini-batch inputs.

3.2.2.4 Others

Finally, the last few options in the ”Options1” tab are displayed in the lower-right

corner of the GUI, illustrated by Figure 3.13.

Chapter 3 Simulation framework 131

Figure 3.13: Example of the remaining options in the ”Options1” tab.

The ”Number of Runs” Edit field refers to the number of times one Session is sim-

ulated. Repeating a session for multiple runs can be useful for gathering statistically

significant data.

The ”Validation Data” Edit field defines what portion of the dataset provided will be

used for validation. This can be referred to as an absolute value if the value in the Edit

field is higher than 1 or a fraction of the total dataset if the value is lower than 1. Unless

stated otherwise, the simulations in this work are done with 0.15 of the dataset reserved

for validation.

The ”Programming Method” will set how the RRAM will be programmed during sim-

ulation and consists of four different options: ”SET-only”, ”RESET-only”, ”Gradient-

based” and ”Selective”. In-depth explanations of these programming modes can be

found in sections 5.2 & 5.4.

Finally, the two buttons at the bottom of the ”Options” sub-panel: ”Add Train Ses-

sion” and ”Add Inference Session” will pass all of the defined options to the Session

Manager Table while defining if the Session will be a Inference or Training session.

Although sharing similar functionality, a Training session will apply the Non-idealities

Chapter 3 Simulation framework 132

in every weight update during simulation, while the Inference session will train without

Non-idealities and will only apply them after the last iteration.

3.2.3 Options2

In the ”Options2” tab the options regarding Plotting and Weight Range Rescaling are

defined.

3.2.3.1 Plot Options

The ”Plot Options” is composed of checkboxes that define which plots are displayed

during training. The available plots are:

• Training Progress Plot: Shows how accuracy and loss evolve during training

and is updated every iteration.

• Weight & Gradient Histograms: Shows the histograms of the weights and gra-

dients for every layer and is updated at every validation step. When the session is

finished, a GIF is saved showing this plot at every validation step.

• GradCAM: Plots the gradient-weighted class activation mapping (GradCAM)

map [216, 217]. This can be particularly useful in complex image datasets such

as CIFAR-10 or CIFAR-100 to explain which parts of a certain image are being

focused on by a large class CNN to make its decisions.

• Weight & Gradient Heatmaps: At the end of the session heatmaps are generated

for each validation step, as well as a kernel density estimation (KDE) plot of

Chapter 3 Simulation framework 133

weight/gradient vs validation step. In the current version of the framework it is

required that the weights/gradients are saved to allow for these plots, which can

generate large files.

Figure 3.14 shows examples of the available plots in this framework.

(a) (b)

(c) (d)

3.2.3.2 Weight Range Rescaling

In respects to the Weight Range it can be set as a Fixed Range to mimic the RRAM

limited conductance range or it can be set as a Dynamic range that changes in every

iteration. An in-depth explanation of the mechanisms of the dynamic weight range

rescaling can be found in section 5.7.

Chapter 3 Simulation framework 134

(e)

1 2 3 4 5 6 7 8 9 10
Output Layer

200

400

600

800

1000

1200

1400

In
p

u
t

L
ay

er

(f)

Figure 3.14: Examples of the plots available in the simulation framework. (a) shows the Train-
ing Progress Plot, (b) the Weight & Gradient Histograms, (c) the Test Images to be analysed by
GradCAM, (d) GradCAM, (e) Weight Heatmap of the final layer of a CNN and (f) its respective
Weight vs Validation step KDE.

In the case of using a Fixed Range, the weight range limits for each NN layer must be

specified in the ”Fixed Limits” Edit field. Each scalar value that is written in this edit

field will define a range as being the minimum of the negative weights crossbar and the

maximum of the positive weights crossbar (e.g. inputting a value of 0.2 for one layer

will define the limits as [-0.2, 0] for the negative crossbar and [0, 0.2] for the positive

crossbar).

3.3 Summary

In this chapter, a simulation framework named FlexiNNSim was designed and writ-

ten from the ground up using MATLAB programming language, with the support of

its various toolboxes to be able to handle both the data analysis to determine RRAM

non-idealities (Discretization, C2C and D2D) based on experimental electrical char-

acterization data, as well as the application of those non-idealities in a neuromorphic

simulation environment.

Chapter 3 Simulation framework 135

The main focus of this framework is on flexibility and accessibility of testing. As

such, all of the framework’s functionalities are accessible through a GUI that allows

easy manipulation of both the way RRAM data is analysed (according to the desired

programming methodology) as well as NN topology and hyperparameter settings. This

framework constitutes the basis that allows for the development of the contents dis-

played in the following chapters.

Chapter 4

Impact of RRAM non-idealities on

inference

The emergence of oxide based RRAM devices as prospective candidates for integra-

tion as synapses in large scale NNs due to its MLC capability, low energy consumption

and CMOS-compatible 3D integration potential [218] has been a hot topic lately. How-

ever, noise and variability caused by the stochasticity of defect movements in the oxide

layers and its impact on the overall NN inference accuracy remains a major concern

[219].

In this chapter, the focus will be on the impact of read noises, as well as programming

variability on the inference process of feedforward NNs. Two different devices based

on distinct switching mechanisms: filamentary (Ta2O5) and nonfilamentary (aVMCO)

are tested and compared between them. In terms of non-idealities, the focus will be

136

Chapter 4 Impact of RRAM non-idealities on inference 137

on the effects of read noises (with special emphasis on RTN), as well as programming

induced variability (PIV) on the accuracy of a trained NN during inference.

4.1 Impact of RTN

As previously mentioned in section 1.1.4.5, RTN is a form of read noise uniquely

characterized by the fluctuation between two distinct current states, caused by trap-

ping/detrapping of defects.

As RRAM devices are scaled down below 10nm [56], the impact of singular defects

on the read current can become significant [220] leading to memory window reduction

and read errors.

This section will focus on the quantitative description of RTN fluctuations for both

CF (Ta2O5) and NCF (aVMCO) RRAM devices and its comparative analysis on the

impact of RTN on the accuracy of the inference process of a feedforward NN [104].

0 . 51 . 01 . 52 . 02 . 5

T i m e (s)

(a)

Cu
rre

nt
(mA

)

0 5 1 0 1 5 2 01 . 2
1 . 3
1 . 4
1 . 5

(b)

Figure 4.1: Examples of RTN signals captured in (a) Ta2O5 and (b) a-VMCO devices.

As shown in Figure 4.1, the maximum relative RTN amplitude (∆I/Iread) can be as

high as ≈ 300% in the Ta2O5 device, but only ≈ 10% in the NCF aVMCO device.

Chapter 4 Impact of RRAM non-idealities on inference 138

(a)

10-3 10-2 10-1 100 101

RTN Amplitude / I

0.005
0.01

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99
0.995

C
D

F
CF-type RTN

Resistance
increases

(b)

10-2 10-1 100

RTN Amplitude / I

0.005
0.01

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99
0.995

C
D

F

NCF-type RTN

Resistance
increases

Figure 4.2: Lognormal distributions of the relative RTN amplitude (RTN amplitude/I) of 8
distinct resistance levels for the (a) Ta2O5 and (b) aVMCO devices.

Taking the CDF distributions measured at 8 different resistance levels show that the

RTN amplitude follows lognormal distributions in both devices [221], as shown in Fig-

ure 4.2. Besides the higher RTN amplitude, the CF device also presents increased spread

in its CDF, ranging anywhere between 0.1% to 300%, compared to its NCF counterpart,

varying only between 1% to 10%.

0

5 0

1 0 0

5 0 1 0 0 1 5 0 2 0 0
- 4
- 2
0

0 1 2 3 4 5 6 7 8

 T a 2 O 5

Oc
c R

ate
 (%

) (a) a V M C O(b)

 T a 2 O 5 m u
 T a 2 O 5 s i g m a

Pa
ram

ete
r

R (k Ω)

(c) a V M C O m u
 a V M C O s i g m a

R (M Ω)

(d)

Figure 4.3: Occurrence rate of RTN signals at 8 distinct resistance levels in the (a) Ta2O5 and
(b) aVMCO devices. (c - d) Extracted parameters from the lognormal distributions at 8 levels
for Ta2O5 and aVMCO devices respectively.

Chapter 4 Impact of RRAM non-idealities on inference 139

In both devices, the occurrence rate of RTN increases linearly with resistance, never-

theless, the occurrence of RTN in the Ta2O5 device is much more pronounced than in

aVMCO, as shown in Figure 4.3a & b.

The significant difference in RTN amplitude distribution and occurrence rates can be

attributed to the different dynamics responsible for switching in both devices. While

the CF Ta2O5 resistance switching is caused by the formation/rupture of a conductive

filament, the NCF aVMCO operates through an areal modulation switching mechanism

(section 1.1.3.1).

In the case of the Ta2O5, at HRS, there are only a few critical defects in the constric-

tion of the CF responsible for current conduction, and as such, trapping/detrapping of

these critical defects lead to large RTN amplitudes that increase with resistance [222].

In the NCF aVMCO however, switching by the uniform modulation of the defect

profile limits the contribution of singular defects in the overall conduction, which in

turn leads to reduced RTN amplitude and occurrence rate.

The PDF and CDF of a lognormal distribution are described as:

y = f (x|µ,σ) =
1

xσ
√

2π
e
−(lnx−µ)2

2σ2 [223] (4.1)

p = F (x|µ,σ) =
1

σ
√

2π

∫ x

0

e
−(ln t−µ)2

2σ2

t
dt [223] (4.2)

respectively. The mean (µ) and standard deviation (σ) are extracted from 8 resistance

levels and displayed in Figures 4.3c & d.

Chapter 4 Impact of RRAM non-idealities on inference 140

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 10 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 1

CD
F

 T a 2 O 5 - t c
 T a 2 O 5 - t e

T i m e c o n s t a n t s (s)

(a)

 a V M C O - t c
 a V M C O - t e

(b)

Figure 4.4: CDF of RTN time constants (a) in Ta2O5 and (b) aVMCO devices.

The RTN time constants are extracted using a Hidden Markov Model (HMM) for

both devices and are shown in Figure 4.4. Both devices exhibit similar distributions

in regards to their time constants, and for the purpose of a comparative analysis, we

consider that the impact of time constant is equivalent for both CF and NCF devices.

To carry out the comparative simulation of RTN in an inference NN between the two

devices, the testing procedure is divided into three steps:

1. NN is trained using a minibatch SGD algorithm. A single hidden layer MLP

with a topology of 784x30x10 and sigmoid activations is used as the standard

benchmark in this work as shown in Figure 4.5a. This NN is firstly trained in an

ideal manner without the involvement of RRAM non-idealities, which typically

wields a satisfactory accuracy of ≈ 95% [177, 224, 225].

2. RTN induced disturbance based on the RTN amplitude lognormal distribution

parameters and the occurrence rate is generated for each synapse and applied

accordingly. The parameters µ , σ and the occurrence rate are linearly fitted and

interpolated for the normalized weight values (Figure 4.3).

Chapter 4 Impact of RRAM non-idealities on inference 141

3. An accuracy comparison is established between the well trained software bench-

mark and the RTN disturbed NNs for both devices.

It should be noted that the weights in this simulation can be both positive and negative.

To implement this feature in a hardware synaptic array, two separate RRAM crossbars

are required, one for positive and one for negative weights (see section 1.3.1.4).

(a) (b)

(c) (d)

Figure 4.5: (a) Topology of the used pattern recognition NN. (b) Visualization of weights:
(1) directly after training; (2) with CF RTN disturbance; (3) with NCF RTN disturbance; (4-
5) their differences to case (1) respectively. (c) Statistical accuracy in 50 training-disturbance
procedures. (d) Accuracy comparison of NN with different number of neurons in the hidden
layer.

Chapter 4 Impact of RRAM non-idealities on inference 142

The change in weights caused by RTN disturbance procedure can be visualized in

Figure 4.5b, in which the weights are shown in (1) without disturbance, (2) after the CF

disturbance, and (3) after the NCF disturbance. The weight differences (∆Weight) to

case (1) are shown in (4) for CF and (5) for NCF.

To obtain a statistically reliable result, the training-disturbance procedure is repeated

50 times for both CF and NCF devices, and the accuracy after disturbance is shown

in Figure 4.5c. After the CF RTN disturbance, the average accuracy drops to ≈ 75%

with a wide repeatability distribution, having its lowest accuracy below ≈ 50%, while

after the NCF disturbance, the accuracy only drops negligibly to ≈ 94%, with similar

repeatability to the inference without disturbance. This proves that the NCF RRAM has

a significant advantage for synaptic application when compared to the conventional CF

devices, due to its small RTN amplitudes and low occurrence rate.

Furthermore, as shown in Figure 4.5d, the NN with NCF devices is able to maintain a

high accuracy of ≈ 90% when reducing the number of hidden nodes to only 10, whilst

the accuracy with CF devices drops sharply with reduced hidden layer size. This shows

that NNs built with NCF devices are much more resilient to RTN and can achieve higher

accuracy while using less neurons and synapses than in the CF case.

One concern is that the impact of RTN may diminish in neurons with large fan-in,

as the averaging effects of independent variation sources scales following the 1√
N

rule.

To examine this possibility, the impact of RTN using different input layer sizes (and

therefore different neuron fan-in) is studied. As shown in Figure 4.6a-c, the input layer

is resized from the standard 28x28 pixels (784 input neurons), to a downsized 14x14

scale (196 input neurons) and an upscaled image of 56x56 pixels (3136 input neurons).

Chapter 4 Impact of RRAM non-idealities on inference 143

Figure 4.6: Pattern recognition accuracy with MNIST images of different resolutions. (a - c) Ex-
ample of the rescaled MNIST image with (a) downscaled 14x14 pixels, (b) original 28x28 pixels
and (c) upscaled 56x56 pixels. (d) Effect of RTN disturbance on the different input layer scaled
NNs. (e - f) log-log plot of relative error rate (Accuracywell−trained−AccuracyCF or NCF−RTN)
against square root of the neurons in the input layer (N). The straight dash lines are guides for
the 1√

N
scaling rule.

Figure 4.6d-f illustrates the influence of RTN while varying the size of the input layer

in our neural network. As expected, increasing the number of input nodes generally

leads to improvements in accuracy and lower error rates. However, it’s worth noting that

these improvements are not strictly following the 1√
N

rule, where N represents the num-

ber of input nodes. Instead, we observe only slight improvements with the expansion of

the input layer. This deviation from the expected rule can be attributed to the nuanced

roles that different neurons play within the neural network. While some synapses may

serve redundant functions in the network, others are more critical in pattern recognition

tasks. The weight fluctuations in these critical synapses can have a more pronounced

impact on the overall accuracy compared to less critical ones, thereby weakening the

Chapter 4 Impact of RRAM non-idealities on inference 144

averaging effects of increased neuron count. One noteworthy observation is that RTN

continues to be a significant factor even in larger neural networks. This finding chal-

lenges the assumption that the impact of RTN diminishes in neurons with large fan-in,

as predicted by the 1√
N

rule. Instead, our results suggest that the complex interplay of

neuron roles and the nature of RTN make the relationship between neuron count and

performance more intricate than previously anticipated. Consequently, addressing RTN

remains an important consideration in the design and optimization of neural networks,

especially in cases where specific neurons play pivotal roles in the network’s function.

4.2 Impact of other read noises

Besides the impact of RTN discussed in the previous section, there is also the concern

of other forms of read noise that can impact inference performance, such as thermal

noise [96] and 1/fα [97, 98].

This section is dedicated to investigating the impact of other read noises (ORN) be-

sides RTN on the accuracy of a feedforward inference neural network. It is important to

note that RTN and ORN are often intertwined within the same signal, which can make

it challenging to distinguish their effects. To address this challenge and gain a deeper

understanding of their individual impacts, it is necessary to decouple these two forms

of noise into separate signals.

In particular, random telegraph noise (RTN) exhibits distinctive time constants asso-

ciated with its behavior. RTN is typically induced by electron trapping and detrapping

processes, which require overcoming energy barriers between the electrode’s Fermi

Chapter 4 Impact of RRAM non-idealities on inference 145

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
1 0

2 0

3 0

4 0

5 0

0 2 4 6 8 1 0
1 0

2 0

3 0

4 0

5 0

Co
nd

uc
tan

ce
 (m

S)

T i m e (m s)

(a)

 L e v e l 4
 L e v e l 3
 L e v e l 2
 L e v e l 1

(b)

Co
nd

uc
tan

ce
 (m

S)

T i m e (s)
Figure 4.7: (a) read signals shorter than 100µs. (b) read signals between 10ms and 10s, captured
in a CF device.

level and defects within the material[226, 227]. These processes occur on a relatively

slow timescale, typically longer than 100µs (Figure 4.4 [104]).

To separate RTN from other read noises, such as ORN, it is crucial to capture signals

on a timescale that is significantly faster than the RTN capture and emission constants.

Figure 4.7 provides a visual representation of this concept by programming a CF de-

vice at 4 different conductance levels and probing its read signals at 0.1V in different

timescales. Figure 4.7a shows a reduced timescale of 20ns to 80µs (captured with

Keysight B1530A WGFMU), where we observe no visible RTN signals, while ORN

signals become more apparent. However, when using the Keysight B1500A SMUs,

the read signal timescale is extended between 10ms and 10s, RTN becomes prevalent

(Figure 4.7b).

This observation is not only important for distinguishing between RTN and ORN but

also has practical implications. It demonstrates that by capturing signals on a faster

Chapter 4 Impact of RRAM non-idealities on inference 146

timescale, it becomes possible to minimize the effects of RTN on PIV. When program-

ming the device using read signals in the same timescale as ORN, we can effectively

isolate the influence of ORN on programming variability. This decoupling is essential

for a more accurate assessment of the impact of each noise source on the performance

of our feedforward inference neural network.

It should be noted that even though this is an effective method towards decoupling

RTN from ORN, further decoupling ORN into other separate forms is much more com-

plex, and as such, in the scope of this work, these other forms of read noise (1/fα ,

thermal) will simply be designated as ORN.

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0

Co
un

t

| ∆G / G |

(a)

0 . 0 0 . 1 0 . 2 0 . 3
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0 (b)

Co

un
t

| ∆G / G |

1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0 . 0 0 1

0 . 0 1
0 . 1

1
51 0

5 09 09 9 O R N

We
ibu

ll P
erc

en
tile

s

| ∆G / G |

(c)

1
1 0
4 0
7 0
9 5
9 9 . 5

Lo
gn

orm
al

Pe
rce

nti
les

R T N

Figure 4.8: Comparison of the read variability induced by RTN and other read noises captured
in a CF device.

Figure 4.8 compares the magnitude (|∆G/G|) of a RTN and ORN signal taken at

similar conductance levels in a CF device.

Chapter 4 Impact of RRAM non-idealities on inference 147

While RTN can be typically described by a lognormal distribution, Weibull better fits

the ORN data in CF devices. Most importantly, when comparing the magnitude of both

distributions (Figure 4.8c), ORN is generally one order of magnitude lower than RTN.

In terms of occurrence rate however, we consider that ORN is an ever present source

of read noise, in practical terms, being impossible to fully remove from any of the

measurements taken, and as such, we consider that the occurrence rate for ORN is

100%.

C F N C F C F N C F
0

5

1 0

1 5

2 0

Ac
cu

rac
y L

os
s (

%) O R N R T N

Figure 4.9: Pattern recognition accuracy loss comparison between ORN (blue) and RTN (red)
in both CF and NCF devices.

With the previous considerations in mind, the impact of ORN is simulated in infer-

ence and its comparison with the RTN from the previous section is displayed in Figure

4.9. The very low magnitude of ORN (≈ 10−3) makes its impact in inference negligible,

being that the accuracy loss induced by this form of noise is typically lower than 1%,

whereas with RTN, the accuracy loss can range from having a low impact with NCF

devices (1% to 5%) to a significant degradation in CF devices (up to 20%).

Chapter 4 Impact of RRAM non-idealities on inference 148

In summary, the separation of RTN from other read noises on a faster timescale is not

only a crucial step for understanding their individual impacts but also provides valuable

insights into mitigating PIV when using read signals in the same timescale as ORN

during device programming.

4.3 Impact of programming variability on inference

Programming induced variability (PIV) in RRAM can be seen as the type of vari-

ability that originates from deviations of a pre-set target conductance level at each pro-

gramming stage. PIV originates from the stochastic ionic defect movement during the

program operation, which could be affected by different physical switching mechanisms

and programming schemes.

It has already been reported that under carefully controlled operation conditions, neg-

ligible difference in resistive switching variability is seen between C2C and D2D vari-

ability, indicating the intrinsic nature of RRAM variability [228] and as such, in this

section, the broader category of PIV is used to test the impact of variability under dif-

ferent programming schemes and device types in inference.

The linearity of synaptic weight updates driven by device conductance change due to

consecutive input pulses is a critical parameter of synaptic devices. The conventional

programming scheme (section 2.5.1) consists of a train of identical square pulses. Under

this scheme, the device’s conductance changes dramatically during the initial few pulses

and becomes saturated as the number of pulses increase, causing large non-linearity

[92].

Chapter 4 Impact of RRAM non-idealities on inference 149

0 2 5 0 5 0 0
0 . 0

0 . 2

0 . 4

0 . 6

- 2 . 5 V- 2 . 4 V- 2 . 3 VCo
nd

uc
tan

ce
 (m

S)

P u l s e N u m b e r

 - 2 . 2 V - 2 . 3 V
 - 2 . 4 V - 2 . 5 V

- 2 . 2 V

Figure 4.10: Demonstration of the saturation of the aVMCO NR at different voltage amplitudes.
The dotted line represents the expected LR when using the staged weight update scheme.

On the other hand, it has been discovered that the shape of the exponential-like NR is

dependent on the pulse amplitude and width. When the device is gradually programmed

into the saturation region, changing to a stronger pulse condition could speed up the

conductance change and alter the saturation conductance level as illustrated in Figure

4.10.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 01 0
2 0
3 0
4 0
5 0
6 0
7 0

Co
nd

uc
tan

ce
 (m

S)

N o r m a l i z e d P u l s e N u m b e r

 N R
 L R(a) (b)

Figure 4.11: Typical examples of Natural (red) and Linear (blue) responses captured in (a) a
Ta2O5 and (b) aVMCO devices. In Ta2O5, only RESET is represented, while in the aVMCO
device, both SET and RESET are represented.

Chapter 4 Impact of RRAM non-idealities on inference 150

Figure 4.11 shows how the linearity improvement on the gradual conductance pro-

gramming reference curves when using the staged programming scheme introduced in

section 2.5.2 with the conditions from table 2.3. It should be noted that at this stage

the SET programming step in the CF Ta2O5 device is only possible using DC program-

ming conditions with CC to avoid hard device breakdown, as is the case for typical CF

devices (section 1.1.3.3), and as such, only the RESET gradual programming is shown.

For the NCF aVMCO device, however, due to its self-compliant nature [37, 41], gradual

programming is possible for both SET and RESET.

Besides the linearization of programming response, a different methodology to seek

improvement in RRAM programming instability is that of adaptive program algorithms

[183, 229]. Specifically write-verify (W-V) methods are often regarded as an efficient,

although slower programming method that involves more complex circuitry [183, 230],

to tackle programming variability for inference applications. Nonetheless it has already

been reported that at least for binary conductance states (HRS and LRS), W-V methods

cannot fully resolve programming instabilities in OxRAM [229].

Here we implement a W-V method were the current is read after each programming

step and a target current is set. Once the read programmed current is higher/lower

when programming with the SET/RESET steps respectively, programming stops. On

the other hand, programming without the Figure 4.12 illustrates the used W-V method.

Figure 4.13 shows a demonstration on how an aVMCO device programmed with

the NR with W-V can still deviate from the desired current value due to non-linearity

(Figure 4.13a) and PIV (Figure 4.13b).

Chapter 4 Impact of RRAM non-idealities on inference 151

G
 (S

)
Ta

rg
et

 G
 le

ve
l

Pulse number

Reference

With variability
W-V

G measured w/ W-V

G measured w/o W-V

w/o W-V, fixed reference pulse

Figure 4.12: Schematic of the implemented write-verify methodology.

0 2 0 4 0 6 0 8 0 1 0 00 . 0
0 . 3
0 . 5

1 . 0

0 . 9 9
1 . 0 0
1 . 0 1

0 5 1 0 1 5 2 00 . 0

0 . 5

1 . 0

0 . 3Cu
rre

nt
(mA

)

P u l s e N u m b e r

(a) T a r g e t I = 1 u A
 T a r g e t I = 0 . 3 u A

Cu
rre

nt
(mA

)

P r o g r a m a t t e m p t s

(b)

Figure 4.13: (a) demonstration of programming to a high target current in the SET process of
aVMCO NR, the inset shows the small discrepancy between the target current and the actual
programmed current value. (b) current achieved during the initial 20 programming attempts at
both high (1µA) and low (0.3µA) currents. Large PIV still exists at low target current.

In this section, the concepts of PIV, NR, LR and W-V have been introduced. We aim

to discuss the impact of these concepts in the inference process of a pattern recognition

NN based on synaptic RRAM. Using the same programming methods, CF and NCF

devices could also exhibit different PIV due to their inherent differences in switching.

Chapter 4 Impact of RRAM non-idealities on inference 152

For a systematic evaluation, the PIV will be quantified and simulated in inference for

both CF and NCF devices in the following 4 cases: (1) NR without W-V, (2) LR without

W-V, (3) NR with W-V and (4) LR with W-V.

1 0 - 7 1 0 - 6 1 0 - 5 1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0 . 1
0 . 5 1

51 0

5 0
9 09 9

0 . 0
0 . 2
0 . 4
0 . 6

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 5

1
1 . 5

2

 N R
 L R
 N R + W - V
 L R + W - V

We
ibu

ll P
erc

en
tile

s

∆ G / G

(a) (b)

α

(c)

β
N o r m a l i z e d W e i g h t

N R L R N R + W - V L R + W - V
0

1 0
2 0
3 0
4 0
5 0
6 0 (d)

Ac
cu

rac
y L

os
s (

%) 2 5 % ~ 7 5 %
 M i n ~ M a x
 M e d i a n L i n e
 M e a n

Figure 4.14: (a) Demonstration of the Weibull distributions for the 4 programming cases in a
CF device. (b - c) Weibull parameters (b) α and (c) β across the normalized weight range. (d)
NN accuracy loss caused by the CF variabilities in the 4 programming cases.

The PIV of the CF device taken from 100 gradual RESET program cycles follows

Weibull distribution for all 4 programming cases and is shown in Figure 4.14a. The

Weibull PDF and CDF can be described respectively as:

y = f (x|α,β) =

β

α

(x
α

)β−1 e−(
x
α)

β

,x≥ 0

0 ,x < 0

[231] (4.3)

Chapter 4 Impact of RRAM non-idealities on inference 153

p = F (x|α,β) =

1− e−(

x
α)

β

,x≥ 0

0 ,x < 0

[231] (4.4)

The Weibull scale (α) and shape (β) parameters that describe equations 4.3 & 4.4 can

be taken across the whole normalized weight range and are shown in Figures 4.14b&c.

Furthermore, the Weibull parameters across the normalized weight range can be de-

scribed by a 1st degree tilted Gaussian model:

y = ae−(
x−b

c)
2

+dx+ e, (4.5)

where a,b and c are the height, position of the peak and width of the gaussian shape

respectively, while d and e describe the tilt.

It can be noted that the NR without W-V, (case (1)), shows the worst PIV, which

can be explained by the non-existence of any operational scheme to improve perfor-

mance. After using the staged programming scheme or W-V method, PIV is obviously

improved. The best PIV is achieved when using a combination of staged programming

and W-V schemes (case (4)). These variability parameters are fitted by equation 4.5 and

are superimposed onto a trained NN in a similar manner to the methodology used in

sections 4.1 & 4.2.

In order to collect statistically significant data, the NN is trained and disturbed with

PIV for 100 times. This process is repeated using the PIV of the four aforemen-

tioned programming cases in the CF device. The NN accuracy loss, described by:

Chapter 4 Impact of RRAM non-idealities on inference 154

Accuracywell−trained−Accuracydisturbed for the NN with the CF device is shown in Fig-

ure 4.14d. It is noticeable that the NR without W-V in the CF device results in a sig-

nificant mean accuracy loss of ≈ 24%, as well as a broad distribution of accuracy loss

values. Linearizing the programming response (case (2)) results in limited improve-

ments, with a mean accuracy loss of ≈ 11% and using a W-V with the NR (case (3))

further improves the inference accuracy loss to≈ 3%. The best accuracy, in accordance

to the PIV parameters, results from combining LR and W-V, which is able to bring down

the accuracy loss to values lower than 1%.

It should be noted that analog switching in the Ta2O5 device is only possible in the

RESET process due to its filamentary nature. Such unipolarity greatly limits the flex-

ibility in synaptic application, not only in training, but also in the types of adaptive

algorithms that can be used for inference. On the other hand, NCF devices as aVMCO

allows analog switching in both SET and RESET operations and shows exponential

NR in both polarities (Figure 4.11b). Therefore, analysis of the PIV of the NCF de-

vice under the aforementioned different programming cases in both polarities will be

meaningful.

In order to make a reasonable comparison between the CF Ta2O5 and NCF aVMCO

devices, firstly, only the PIV in the RESET polarity will be analyzed and shown in

Figure 4.15.

As with the CF device, the NCF PIV variability also follows Weibull distribution in

all 4 programming cases (Figure 4.15a). Also, similarly to the CF device, improvements

in PIV are found when using one of the mentioned programming schemes and the best

results are obtained when combining both LR and W-V (case (4)).

Chapter 4 Impact of RRAM non-idealities on inference 155

1 0 - 6 1 0 - 5 1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0 . 1
0 . 5 1

51 0

5 0
9 09 9

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00
1
2
3
4
5

N R L R N R + W V L R + W V0 . 0 1

0 . 1

1

1 0

1 0 0

We
ibu

ll P
erc

en
tile

s

∆ G / G

 N R
 L R
 N R + W - V
 L R + W - V

(a) (b)

α

(c)

β

N o r m a l i z e d W e i g h t

N R L R N R + W - V L R + W - V

0

5

1 0 (d)

Ac
cu

rac
y L

os
s (

%) (e) N C F
 C F

Me
an

 Ac
cu

rac
y L

os
s (

%)

Figure 4.15: (a) Demonstration of the Weibull distributions for the 4 programming cases in a
NCF device. (b - c) Weibull parameters (b) α and (c) β across the normalized weight range.
(d) NN accuracy loss caused by the NCF variabilities in the 4 programming cases. (e) Mean
accuracy loss comparison between the CF and NCF devices.

Those are, however, the extent of the similarities between the two devices. It is no-

ticeable that ∆G
G is generally one order lower in the aVMCO, compared to the Ta2O5

device. One other contrast to the CF case is that PIV with LR without W-V (case (2))

is superior to the case where the NR is done with W-V (case(3)). This can be explained

by two factors: the superior improvements that the staged programming can apply to

the conductance curve in the NCF device compared to the more limited linearization in

the CF device and the large gap in the CF NR conductance curve that the W-V method

is unable to mitigate. The prospect of improved PIV without resorting to W-V is not

only interesting in terms of less complex circuitry for inference, but also as a solution

for training algorithms which will be explored in the following chapter.

Chapter 4 Impact of RRAM non-idealities on inference 156

The impact of the mentioned PIV also translates into improved accuracy of the NCF

device (Figure 4.15d). Even in the worst case scenario (case (1)), the NCF impact in

inference results in a mean accuracy loss of ≈ 2.5%, using the LR with or without W-V

results in negligible mean accuracy loss in inference (less than 1%).

0 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

 S e t
 R e s e t

α

(a)

(b)

β

N o r m a l i z e d W e i g h t
S e t R e s e t- 0 . 4

- 0 . 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

1 . 6 (c)

Ac
cu

rac
y L

os
s (

%)

Figure 4.16: (a - b) Weibull parameters of the PIV variability programmed with SET and RE-
SET for the NCF device. (c) Accuracy loss comparison between the PIV programmed with SET
and RESET.

In addition, the bipolar analog switching is an advantage of the NCF devices. The

PIV comparison of the SET and RESET polarities both using the LR with W-V (case

(4)) is shown in Figures 4.16a&b, revealing that programming with the SET polarity

has further improved in PIV and consequently in the accuracy loss shown in Figure

4.16c. These improvements can be explained by the even higher degree of linearization

that is able to be achieved during the analog SET process of the NCF device opposed to

Chapter 4 Impact of RRAM non-idealities on inference 157

the RESET process that still suffers from small nonlinearities, particularly at the region

close to LRS.

Figure 4.17: Comparison of accuracy loss caused by PIV. Non-filamentary programmed with
a combination of weight-updating and write-verify scheme in the set polarity lead to the best
accuracy loss.

In summary, the accuracy loss induced by different devices, i.e. CF and NCF, and by

different operation modes, i.e. case (1) - (4), in different programming polarities, i.e.

RESET and SET are comprehensively compared in Figure 4.17. Here it is possible to

conclude that:

• The NCF device shows reduced variability than the CF counterpart, which is re-

flected in the NN accuracy.

Chapter 4 Impact of RRAM non-idealities on inference 158

• The combination of staged programming and W-V schemes always lead to the

best result, leading to acceptable accuracy loss below 1% for the CF device.

• Using a LR without W-V in the NCF device is sufficient for reducing the NN

accuracy loss to values below 1%.

• The SET polarity of the NCF device leads to further improvements when com-

pared to RESET due to improved linearity of this polarity.

4.4 Summary

In this chapter, the use case of two different RRAM devices: aVMCO and Ta2O5,

which are based on NCF and CF switching mechanisms respectively, in a neuromorphic

setting for inference is analysed, particularly focusing on read noises and PIV.

Regarding the read noise, it was possible to distinguish it into two separate categories:

RTN and ORN, by manipulating the sampling rate of the applied read signals above or

below the known device RTN time constants. Collection of statistical relevant exper-

imental results allowed the development of read noise disturbance models that were

posteriorly applied on trained synaptic arrays to simulate its impact on inference accu-

racy. RTN is revealed to play the major contribution in read noise, while the impact of

ORN seems to be negligible. Furthermore, due to its intrinsic switching mechanism,

the aVMCO device shows smaller RTN amplitude, tighter RTN distributions and lower

RTN occurrence rate compared to the Ta2O5 filamentary device. This results in a neg-

ligible impact of read noise in the NCF device and therefore better applicability of this

type of device for inference.

Chapter 4 Impact of RRAM non-idealities on inference 159

Statistical measurements of PIV reveals that this variability source can be modelled

by Weibull distributions and it was possible to create a model that describes the Weibull

parameters across the normalized weight range. NN simulations of different models

of variability based on different RRAM programming methods (weight update scheme,

W-V schemes and programming polarity) on both devices reveal that: (1) the NCF

device shows an overall much lower PIV than the CF device, (2) using a W-V scheme

with the NR in the CF device still wields worse results than the NR in the NCF device

without W-V, meaning that (3) to guarantee the best results, a combination of LR and

W-V is required. Finally, (4) the flexibility in programming polarity of the NCF device

allows for further reducing PIV in this device by switching to the more linear SET

programming polarity.

Chapter 5

Impact of RRAM non-idealities on

training

In the previous chapter, the importance of neuromorphic circuits using RRAM was

highlighted for NN inference and the impact of different types of noise and variability

on inference accuracy was evaluated.

Another, more challenging but interesting prospect is that of using synaptic RRAM

in the training process of BP based NNs. However, the large non-idealities such as

the nonlinearity, asymmetry and C2C variability during analog SET and RESET pro-

gramming in RRAM devices, due to the stochastic nature of the ionic movements in-

volved in resistive switching, remain a major issue that hinders its practical applications

[102, 104, 232].

CF based RRAMs suffer the most severe variability and nonlinearity, as a single

ionic movement event in the critical constriction region of the filament can lead to large

160

Chapter 5 Impact of RRAM non-idealities on training 161

changes in its conductance state [102, 104, 232]. On the other hand, significant im-

provement has been observed in NCF or multi-filamentary RRAMs by reducing the

effect of singular defects in the switching layer, but considerable non-idealities still

exist [37, 89].

The ISPP scheme with W-V can improve the linearity and variability to a limited ex-

tent but the drawbacks of implementation, particularly in terms of latency, can become

prohibitive for training [74].

Different simulation methods, such as in NeuroSim [94] and CrossSim [233], have

been developed to estimate the impact of device non-idealities on the training accuracy.

However, detailed evaluation on the impact of individual types of non-idealities within

the training process is still difficult due to the limited accessibility and flexibility of

these platforms. For example, details are missing on how the synaptic weights in the

array are affected during training by individual non-idealities and their combinations,

making it difficult to identify the root cause of training accuracy degradation. Also the

effects of large conductance stepping (GS) and its position in the normalized conduc-

tance range have not yet been evaluated separately from the effects of non-linearity and

C2C variability.

In this chapter, to better understand the origin of the impact of different non-ideality

mechanisms in analog NN applications, GS and C2C variability of the NCF aVMCO

RRAM device are experimentally extracted and characterized in the SET and RESET

processes, using the standard NR and the LR obtained through staged weight program-

ming. The evolution of weight distribution in the synaptic array during training are

Chapter 5 Impact of RRAM non-idealities on training 162

simulated using the custom developed simulator, so that the detailed origin of the im-

pact of different non-idealities and their combinations in various programming schemes

can be evaluated independently, including SET-only, RESET-only, and two different

practical combinations of SET and RESET.

5.1 Natural response and Non-idealities

This chapter emphasizes the testing of the NCF aVMCO device which is based in the

conductance modulation by the vertical distribution of oxygen vacancies in the switch-

ing TiO2 layer near its interface with the a-Si layer (Figure 5.1a) [76]. The width of

this defect-less region becomes larger at higher positive bias, resulting in the analog

modulation of multiple conductance levels (Figure 5.1b). Since most of the individual

defect movements are averaged out in the switching of multiple defects, it has a much

smaller variability in comparison with the CF RRAMs [228].

Here, GS is defined as the gaps in conductance that are present between each pro-

gramming pulse and C2C variability as the deviations of conductance from a reference

conductance curve, between different cycles, as illustrated in Figure 5.1c.

Despite sharing a strong to the most commonly referenced in literature, nonlinearity

(section 1.1.4.3) reliability metric, GS differs from nonlinearity in the sense that most

cases of nonlinearity are tested using a modelled fit to the data. However, it has been

noted that even very small residuals between the fitted model and actual conductance

data in the regions with the highest gaps can have a dramatic impact in simulation

results. As such, GS adopts the approach of a piecewise linear interpolation that allows

Chapter 5 Impact of RRAM non-idealities on training 163

Figure 5.1: (a) Illustration of the non-filamentary switching mechanism in the a-VMCO
RRAM. (b) DC I-V characteristics at different RESET voltages. (c) Illustration of the large
conductance stepping (GS) caused by initial pulses, and the large C2C variability (in shade), in
both linear and natural SET processes. (d) Typical natural programming with 100 cycles (grey)
and its mean (red).

for direct quantification of each gap in the reference conductance curve and its direct

impact in training, while allowing for the effects of C2C variability to be analysed both

together with GS and separately.

Figure 5.1d shows the data of the aVMCO NR after 100 analog SET/RESET cycles,

and its mean reference curve. Substantial non-idealities, such as the large GS at the

initial SET and RESET pulses and C2C variability can be seen in the NR when pro-

gramming with a train of identical pulses.

Chapter 5 Impact of RRAM non-idealities on training 164

Figure 5.2: Empirical CDF (eCDF) of the GS and C2C induced conductance changes at differ-
ent conductance levels in aVMCO RRAM when programed by identical pulses with the natural
response during (a) SET and (b) RESET.

The eCDF in Figure 5.2 shows that RESET in general suffers from a much higher

degree of non-ideality than the SET, with a very high ∆G and much larger dispersion

observed at high conductance levels. This is associated with the larger GS at the ini-

tial RESET pulses as in Figure 5.1d. On the other hand, the much smaller ∆G and

tighter dispersion at low conductance levels for both SET and RESET suggest that non-

idealities in this device occur predominantly at high conductance where the defect-less

region becomes narrower, and individual defect dispersion have much more significant

impact than at low conductance (Figure 5.1a).

5.2 Impact of non-idealities during SET and RESET

It is not clear, however, how GS and C2C in SET/RESET independently affect the

NN training accuracy. To clarify this issue, three different programming methods are

devised in the simulation.

Chapter 5 Impact of RRAM non-idealities on training 165

S e t o n l ya L R S

H R S
W (1) W (2)

W (3)H a r d R e s e t

R e s e t o n l y
Co

nd
uc

tan
ce

 (a
.u.

)
b

H R S

L R S
W (1)

H a r d S e t
W (2)

W (3)

G r a d i e n t - b a s e d

I t e r a t i o n (a . u .)

c

H R S

L R S

H R S

L R S
W (1) W (2)

W (3)

W (4)

Figure 5.3: Illustration of the different programming methods used in this work. (a) Set-only,
(b) Reset-only, (c) Gradient-based. Red arrows represent a SET step and blue arrows represent
a RESET step.

As shown in Figure 5.3, the SET-only and RESET-only methods allow the conduc-

tance only to increase and decrease, respectively. Although the practicality and appli-

cability of these two use cases for on-chip training can be debatable, in this work, it

is used as an ’academic’ study. The programming to an arbitrary level is achieved by

applying a Hard RESET/SET whenever the conductance needs to be changed to the

opposite directions as illustrated by the step from W(2) to W(3) in Figures 5.3a&b.

As a more practical approach in real-world applications, the Gradient-based program-

ming method in Figure 5.3c is also applied, which allows the device to be programmed

in any direction as required by the weight gradient during the BP of NN training, with-

out any Hard SET or RESET.

The MNIST handwritten digit database is used for training with a SGDM algorithm

(Algorithm 2). Out of the total 60,000 images, 85% are used for training and the re-

maining 15% are used for validation. After each mini-batch iteration in training, the

Chapter 5 Impact of RRAM non-idealities on training 166

weights are disturbed with the mean values of GS alone, then C2C without GS and then

GS combined with C2C. A mini-batch size of 128, learning rate = 0.001, momentum =

0.9, validation frequency of 50 iterations and a cost function based on CE loss (equation

1.12). The MNIST input data is shuffled once before each training.

The simulation results using the aVMCO NR are shown in Figure 5.4 trained using

a CNN, in which, each convolution has a filter size of 3x3, followed by a batch nor-

malization layer to standardize the inputs, and a piece-wise linear unit (PLU)[189] that

approximates a tanh function. The outputs of the activations then pass through a 2x2

Max-Pooling function. The final layer is a fully connected (FC) layer with a softmax

activation function. The PLU activation function is used because it is a bounded func-

tion that prevents the exploding gradients problem, unlike the ReLU (Table 1.2), and it

can achieve a NN training accuracy comparable to the tanh function, while being much

easier to implement in hardware [189]. The software benchmark of this simple CNN

topology achieves a satisfactory validation accuracy of 96.8% (Figure 5.4b) [189].

As shown in Figure 5.4c, the C2C variability alone without GS has minimal impact

on the accuracy degradation of the CNN, achieving about 90% accuracy in all three pro-

gram methods. In sharp contrast, GS alone causes significant accuracy drops to about

65% for all programming methods. More surprisingly, when applying both GS and

C2C, the accuracy further decreases to 55% for the SET-only but increases to 94.8%

for the RESET-only, and only drops slightly to 88.4% for the Gradient-based program-

ming method. This indicates that the C2C overcomes the GS’s adverse impact for the

RESET but makes it even worse for SET. This seems to contradict the results in Figures

5.1d&5.2, where RESET exhibits significantly worse GS and ∆G dispersion at high

Chapter 5 Impact of RRAM non-idealities on training 167

Figure 5.4: (a) Topology of the CNN used in simulation. (b) Normalized weight histogram
of the trained final layer of the CNN. (c) Validation accuracy on the MNIST database achieved
using the natural response with different programming methods and non-idealities.

conductance levels than SET. To explain this, we will compare the weight distributions

after training with SET-only and RESET-only to the software benchmark shown in Fig-

ure 5.4b, and how it is associated with the accuracy degradation mechanisms.

Figure 5.5a-c shows the trained normalized weight histograms using the SET-only,

RESET-only and Gradient-based programming with GS alone considered, by using the

custom-built simulation framework. When GS alone is considered, the final trained

Chapter 5 Impact of RRAM non-idealities on training 168

Figure 5.5: Trained normalized weight histograms of the final layer of the CNN with the GS (a
- c), C2C (d - f) and GS combined with C2C (g - i) using the different programming methods
(SET, RESET and Gradient-based). Insets in (d - h) show a zoomed in version on the y-axis of
the histograms.

weights remain very close to their random initialization while showing a clear gap due

to GS in all cases. For SET, the gap is situated between normalized weights 0 and±0.2,

which can be attributed to the GS in the initial SET pulses at low conductance levels

(Figures 5.1d&5.2a), while for RESET, a much larger gap is observable above normal-

ized weights ±0.5, due to the high GS at the initial RESET pulses at high conductance

levels. The gradient-based programming method achieves a weight distribution closer

to the RESET cases.

Despite these differences, Figure 5.4c shows that these different set of weights lead

to similarly bad accuracy with GS alone, suggesting that even though the gap is much

Chapter 5 Impact of RRAM non-idealities on training 169

larger during RESET at higher weight range, as the larger gap during RESET causes

some weights to become stuck at ±1, the availability of low value weights is more

critical in training than the high weights. This is confirmed by comparing with the soft-

ware ideal weight distribution in the absence of non-idealities (Figure 5.4b), where the

weights show a Gaussian distribution centered around normalized weight = 0, evolved

from the initial random distribution.

Furthermore, the impact of C2C variability alone is also studied. Figure 5.5d-f shows

that the weight distribution is completely different from the case of GS-only in Figure

5.5a-c. A similar Gaussian distribution can be obtained for both SET-only and RESET-

only as shown in the insets, albeit both appear tighter than the ideal case due to the larger

number of 0 weights. SET-only has a slightly worse accuracy due to the increased

variability at the low value weights than RESET. Therefore c2C alone has a limited

impact on the training accuracy [82].

On the other hand, as shown in Figure 5.5g-i, when adding C2C variability on top of

GS, the weight histograms show different trends for SET and RESET again. For SET,

since the gradients decrease throughout trainined leading to the convergence of weights

towards 0, the gap of missing weights near 0 caused by GS makes almost all weights

stuck at 0. The lower C2C variability at low conductance levels shown in Figure 5.2a

is not sufficient to help the weights surpass the gap that GS imposes, leading to worse

degradation than GS-only. For RESET, however, the gap caused by GS is at higher

weights, while most of the more important smaller weights are achievable. The larger

C2C variability at high conductance levels also randomly increase the gradients, so that

the weights are unstuck, leading to a Gaussian distribution of weights centered around

Chapter 5 Impact of RRAM non-idealities on training 170

0, which is still effective albeit being narrower than the ideal case. For the gradient-

based programming, however, the effects of both SET and RESET randomly come into

play as the weights need to increase or decrease, leading to a broad distribution caused

by the RESET process, combined with a gap at low value weights caused by the SET

process.

This analysis revealed the different roles played by GS and C2C in SET and RESET

in CNN training. The key difference lies in the availability of lower value weights in

the region close to 0, where most of ideally trained weights in the synaptic array are

located. The GS induces a gap of missing weights in this region during SET and can

predominantly degrade the training accuracy. The larger gap during RESET, however,

is not located in this region and the larger C2C at the gap can help the weights become

unstuck, improving the gradients and hence the training accuracy. Therefore, less device

non-ideality does not necessarily lead to a better NN accuracy, which is predominately

controlled by weight availability in the key region. It can also explain the performance

of Gradient-based program method as being a combination of both the SET and RESET

processes, it has a mixture of weight degradation mechanisms in SET and RESET,

leading to an intermediate NN training accuracy close to RESET-only, as shown in

Figure 5.4c.

5.3 Linear response and Non-idealities

To improve the training accuracy, various linear program schemes, such as the ISPP

with incremental pulse amplitude and/or pulse duration and W-V have been proposed

Chapter 5 Impact of RRAM non-idealities on training 171

to replace the NR with identical pulses [74, 234] and to improve the program linearity

and reduce the C2C variability. The aforementioned simulation method developed for

section 5.2 will be used in this section to analyse the effectiveness of the LR, and to

identify possible ways to further improve the NN training accuracy.

Figure 5.6: (a) Illustration of the staged weight update scheme and (b) the obtained linear like
response, with 100 cycles shown in grey and the mean in blue. (c) eCDF of ∆G and dispersion in
the linear response for SET and (d) for RESET. (e) Validation accuracy on the MNIST database
achieved by the linear response with different programming methods and non-idealities.

A simple staged weight update (see section 2.5.2) is used in this work to reduce the

Chapter 5 Impact of RRAM non-idealities on training 172

nonlinearity and therefore the GS in SET and RESET, during which the pulse amplitude

increments by stages, and is kept constant within each stage to mimic an overall LR,

as illustrated in Figure 5.6a. The achieved LR is shown in Figure 5.6b. As confirmed

in the eCDF in Figures 5.6c&d, ∆G and its dispersion, representing the GS induced by

nonlinearity and the C2C variability, respectively, are both significantly reduced when

compared to those in the NR shown in Figures 5.1d&5.2.

The final weight distributions of the LR with the SET-only, RESET-only and Gradient-

based methods are compared in Figure 5.7, and all have improved against those in the

NR, with smaller weight gaps and smoother Gaussian distributions centered at 0. The

lower magnitude of both GS and C2C in the LR also lead to a less significant weight

convergence towards 0.

This has led to a significant improvement of GS-only training accuracy from the 65%

in the NR to 85% in the LR (Figure 5.6e), proving the effectiveness of the LR in reduc-

ing the GS and hence the missing weight gap in training. On the other hand, C2C-only

introduces a very small accuracy loss of around 1% from the ideal case, which is negli-

gible when compared to the more than 11% accuracy loss for GS-only. The addition of

C2C variability on top of the GS results in an intermediate accuracy between GS-only

and C2C-only for all three program methods, and most noticeably, the SET-only method

no longer causes a very large degradation, in contrast with that in the NR as in Figure

5.4c. This result suggests that the GS during the initial SET pulses becomes smaller

in the LR and has led to a significant improvement to within 5% accuracy achieved by

RESET-only. However, as shown in Figure 5.6b there is still a considerable GS induced

by the initial SET and RESET pulses in the LR even when using a very small program

Chapter 5 Impact of RRAM non-idealities on training 173

Figure 5.7: Trained normalized weight histograms of the final layer of the CNN using the linear
response with the GS (a - c), C2C (d - f) and GS combined with C2C (g - i) using the different
programming methods (SET, RESET and Gradient-based).

pulse amplitude, GS still plays a dominant role in training accuracy loss in comparison

with C2C as shown in Figure 5.6e.

5.4 Selective programming

Based on the analysis made in section 5.3, a different programming method is devel-

oped to further reduce the impact of GS, especially in the low weight range close to 0.

Since the different impacts on NN accuracy in SET and RESET are directly linked to

where the large GS is situated in the weight range: large GS is only observed close to

weight 0 for SET, and it is inly close to weight 1 for RESET, a selective programming

Chapter 5 Impact of RRAM non-idealities on training 174

is introduced to mitigate the adverse effects of GS by combining the other half of the

SET and RESET weight range that has no large GS.

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

Co
nd

uc
tan

ce
 (a

.u.
)

I t e r a t i o n (a . u .)

M i d p o i n t

H R S

L R S

W (1)

W (4)
W (5)

W (6)
W (7)Ha

rd
SE

T

Ha
rd

RE
SE

T

W (2)

W (3)

SE
T C

on
tro

lled
RE

SE
T C

on
tro

lled

(a)

 S e t
 R e s e t
 G r a d i e n t - b a s e d
 S e l e c t i v e

CE
 Lo

ss

(c)

N a t u r a l R e s p o n s e L i n e a r R e s p o n s e0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Ac
cu

rac
y (

%)

(b)

CE
 Lo

ss

I t e r a t i o n

(d)

Figure 5.8: (a) Illustration of the Selective programming method. (b) Summary of the achieved
accuracies of the CNN with different programming methods and weight update schemes. (c)
CE loss throughout training while using the Natural and (d) Linear Programming Response.

As illustrated in Figure 5.8a, the selective programming is based on the idea of always

utilising the 2nd half of the weight range in SET/RESET to avoid the large GS caused by

the initial pulses in their first halves. This can be achieved by allowing the device to be

programmed using continuous SET/RESET pulses similar to the gradient-based method

at W(1)-W(2) and W(3)-W(4) where the weight is changing in the same direction as

in the 2nd half of SET and RESET, respectively. When the weight needs to change

towards the opposite target weight direction in their 2nd half, for example, at W(4)-W(5)

and W(6)-W(7), a Hard SET/RESET is applied first and then followed by a gradual

RESET/SET program, respectively, to ensure the 2nd half of program response is always

Chapter 5 Impact of RRAM non-idealities on training 175

used without large GS. Furthermore, this programming scheme is independent of the

staged weight update scheme and can be used in conjunction with both the NR and LR.

The detailed training results for all of the previously described program methods and

responses (from sections 5.2 - 5.4) are shown in Figure 5.8b. Based on the evolution of

the CE loss throughout training, as shown in Figures 5.8c&d, a significant improvement

can be observed when switching from the NR to the LR, particularly on the SET-only

and Gradient-based programming methods. Moreover, the introduction of the selective

programming allows for the CE loss to be reduced to the minimum level for both the

NR and LR. The best training accuracy of 95% can be achieved using either the NR or

LR showing that even for highly non-linear devices with large GS at the initial pulses,

this is an effective programming strategy for mitigating device non-idealities, at the cost

of an increase in power and latency in the iterations with the hard SET/RESET.

5.5 Impact of NN topology

A CNN model has been used so far to illustrate the impact of RRAM non-idealities.

Although CNNs are commonly used for pattern recognition, its weight mapping on

RRAM devices is usually more challenging than in FC MLPs [105, 202].

The impact of different NN topologies is evaluated in this section, including two dif-

ferent MLP topologies for MNIST classification. One MLP consists of one hidden layer

(1L-MLP) with a 784x30x10 topology, and the other is a three hidden layer MLP (3L-

MLP) with a 784x400x200x100x10 topology. The activation functions of the MLPs

are the PLU, and the final layer has a softmax activation function, the same as in the

Chapter 5 Impact of RRAM non-idealities on training 176

CNN. The validation accuracy for the software benchmarks are 91.6% and 95.5% for

the 1L-MLP and the 3L-MLP respectively.

Figure 5.9: Comparison of different NN topologies. (a) Number of weights required for each
topology. (b) Accuracy achieved with different topologies on the Natural and Linear Response.

The 1L-MLP has the comparable number of required weights to the CNN, as shown

in Figure 5.9a. The 3L-MLP has the comparable software benchmark accuracy to the

CNN, but the number of synaptic weights need to increase dramatically, highlighting

the benefits of the CNN. Figure 5.9b shows the achieved accuracy on the three different

topologies using the NR and LR and the Gradient-based and Selective programming

methods. For the Selective programming, a 5% increment in accuracy is observable

between the different topologies (1L-MLP < 3L-MLP < CNN) for both the NR and

LR, while the Gradient-based programming produces a lower accuracy in all cases in

comparison with the Selective method.

The maximum accuracy achieved by the Selective method is at 95%, which is very

close to the software benchmark ideal value of 96.8% that does not take any non-

idealities into account. Most remarkably, the Selective method can achieve an accuracy

Chapter 5 Impact of RRAM non-idealities on training 177

of 90% even with the simplest 1L-MLP and the simplest NR achieved with identical

pulses, which has the worst non-idealities, demonstrating its potential applications in

practical analog NN. Therefore, the Selective programming scheme can significantly

improve the accuracy of analog NN by avoiding the large GS in the key weight range

and mitigating this critical issue.

5.6 Impact of Learning Rate

As was shown in sections 5.2 & 5.3, GS is shown to be the type of non-ideality that

assumes the most impact during training. Since GS is related to the size of the step

between pulses in the device conductance curve, a direct parallel can be drawn to a NN

hyperparameter: the learning rate.

The learning rate can be seen as the scalar value that controls the magnitude and

proportionality of the gradients in a gradient descent algorithm (see section 1.2.1.4). In

other words, the learning rate controls the size of the step (in the software perspective)

before applying any device non-idealities, and the GS controls the size of the step (in

the hardware perspective) after applying the device non-idealities.

It is well known that even without involving non-ideal devices, the choice of learning

rate can have a big impact on training of different datasets. Choosing too high of a

learning rate value can lead to training instability, while choosing too low of a value

can lead to slow training that can become stuck in sub-optimal local minima or saddle

points. Figure 5.10 shows the accuracy achieved in the software benchmarks of the

three tested NN topologies. A slight increase in accuracy can be observed each learning

Chapter 5 Impact of RRAM non-idealities on training 178

rate decade up to a optimal learning rate value of 10−1, at which point the accuracy

decreases only slightly for the MLPs, but renders the CNN untrainable. Pushing the

learning rate further to a value of 10 turns all topologies practically untrainable.

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 1
0

2 0

4 0

6 0

8 0

1 0 0

Ac
cu

rac
y

L e a r n i n g R a t e

 1 L - M L P
 3 L - M L P
 C N N

Figure 5.10: Impact of learning rate on the software benchmark accuracies of the three tested
NN topologies.

Adding the GS on top of the learning rate issue, will have the added effect of pushing

the step beyond the weight values predicted by the gradients if the calculated weight

update lands on the areas with high GS.

It is therefore important to analyse the impact that different learning rate values can

have on a NN affected by RRAM non-idealities. Although the maximum achievable

accuracy by the NN could give some insights into this effect (Figure A.1), looking

into the evolution of validation accuracy through 10 epochs of training shows that the

accuracy can display instabilities as training evolves, when adding the non-idealities

Chapter 5 Impact of RRAM non-idealities on training 179

(Figure A.2), which is detrimental in an online training setting. Therefore, the final

accuracy taken at the end of training is a more reliable metric for this effect.

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0
G S

Ac
cu

rac
y (

%) (a)

N a t u r a l R e s p o n s e

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0
C 2 C

(b)

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0
G S + C 2 C

(c)

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0
G S

Ac
cu

rac
y (

%) (d)

L i n e a r R e s p o n s e

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0
C 2 C

L e a r n i n g r a t e

(e)
 S e t
 R e s e t
 G r a d i e n t
 S e l e c t i v e

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0
G S + C 2 C

(f)

Figure 5.11: Impact of learning rate on the final accuracy achieved by the CNN model from
Fig. 5.4a after 10 epochs of training, using the Natural Response (a - c), evaluated with the (a)
GS, (b) C2C and (c) GS combined with C2C non-idealities. (d - f) shows the same methodology
using the Linear Response.

Figure 5.11 shows the impact of learning rate on the CNN affected by the different

non-idealities trained using the four programming methods (SET-only, RESET-only,

Gradient-based and Selective) and weight staging responses (NR and LR). As expected

when taking into account the software benchmark results (Figure 5.10), a learning rate

of 1 is too unstable for training the CNN in every combination of non-idealities. How-

ever, for lower values, it is possible to notice some differences in regards to the software

benchmark.

Chapter 5 Impact of RRAM non-idealities on training 180

In the case of disturbing the NN only with GS, the high GS of the NR clashes with

high learning rate values and instabilities in training start to appear at 10−2 particularly

caused by RESET, evidenced in Figure A.2a which is likely caused by the higher GS

in RESET opposed to SET (Figure 5.1d). The lower GS in the LR, however, allows for

the learning rate to be increased to its ideal software benchmark value of 10−1 without

instabilities (Figure A.2b).

When disturbing the NN with C2C, the impact on accuracy is much more restrained

than with GS-only and the effects of increasing the learning rate is very limited in both

NR and LR, shown in Figures 5.11b&e, respectively. This limited impact is most likely

happening due to the fact that the very limited improvements in accuracy observed in

the software benchmark (Figure 5.10) are comparable to the very limited negative con-

tributions of C2C for the NN accuracy. Nevertheless, observing the training evolution

(Figure A.2c) it is possible to notice that at least for the NR, even though there is no clear

trend of accuracy degradation with time, there is more discrepancy at each validation

step when the learning rate is increased.

The impact of learning rate in a NN disturbed with both GS and C2C (Figure 5.11c&f)

agree with the previous conclusions from sections 5.2 - 5.4. Programming using SET-

only when combining GS and C2C is the most impacted by the choice of learning rate,

while RESET-only is able to train well under a low learning rate. Despite the appar-

ently small difference in maximum accuracy that the SET and RESET programmed LR

exhibited in Figures 5.6e&b, the degradation of accuracy occurring using SET-only is

much more evidenced than while using RESET-only (Figure A.2f). This effect is then

Chapter 5 Impact of RRAM non-idealities on training 181

aggravated as the learning rate increases for SET-only, and to a lesser extent RESET-

only. Since the Gradient-based programming is a stochastic combination of SET &

RESET, that is also reflected in an intermediate combination of the two results.

However, one noticeable aspect common to all the different learning rate and weight

staging response cases is that the selective programming is more resilient to instabilities

during training and in general does not suffer from accuracy degradation evolving with

time.

5.7 Dynamic weight range rescaling

One particular issue in neuromorphic systems with synaptic RRAM devices is the

discrepancy between a dynamically scalable weight range in the software training algo-

rithms and the finite conductance range of RRAM devices. Most implementations are

also bounded by the range of the digital interface circuitry at the edge of the crossbars

[2, 130], however, implementations that rely on fully analogue signal propagation are

able to avoid ADC/DAC peripheral circuitry overhead [235] and therefore have their

weight range only limited by the synaptic devices.

Most simulation frameworks, such as NeuroSim [94, 105, 202] or CrossSim [233]

rely on the standard digital approach that needs the weights in each layer to be scaled

to a specific fixed range, each layer’s fixed range becomes one additional NN hyperpa-

rameter that requires careful calibration to achieve the optimal results. As NNs become

more complex with increased hidden layers, choosing this hyperparameter can become

Chapter 5 Impact of RRAM non-idealities on training 182

an issue, especially in an online training setting where there is no prior knowledge of

the incoming data feed.

In this section, we simulate the possibility of dynamically changing the weight range

in accordance to the NN requirements at training time. In the case of mixed-precision

chip in loop systems [236], the scaling factors responsible for controlling the dynamic

weight range in each NN layer could be calculated by the external high-precision com-

pute unit.

Shrink

Expand

Figure 5.12: Illustration of the dynamic weight range rescaling effect on the weight availability
of a typical Natural Response curve. Red ticks show the weights available through SET and blue
ticks show the weights available through RESET.

Since the weight range is rescaled at each iteration, but the conductance range of the

RRAM devices cannot be changed, the dynamically changing scaling factor, in practice,

changes the weight availability that the device is able to provide, shrinking or expanding

the conductance curve depending if the weight range is decreased or increased respec-

tively. Figure 5.12 shows a schematic of how the dynamically changing weight range

Chapter 5 Impact of RRAM non-idealities on training 183

affects a generic RRAM conductance curve (similar to the aVMCO NR) and conse-

quently the GS.

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0
D y n a m i c R a n g e

Ac
cu

rac
y (

%) (a)

N a t u r a l R e s p o n s e

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0

F i x e d R a n g e
[- 0 . 3 2 7 ; 0 . 3 2 7]

(b)

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0

F i x e d R a n g e
[- 1 . 5 7 5 ; 1 . 5 7 5]

(c)

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0

Ac
cu

rac
y (

%) (d)
L i n e a r R e s p o n s e

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0

L e a r n i n g r a t e

(e) S e t
 R e s e t
 G r a d i e n t
 S e l e c t i v e

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0 (f)

Figure 5.13: Impact of Dynamic Weight Range rescaling compared to two fixed ranges: [-
0.327; 0.327] & [-1.575, 1.575] on the final validation accuracy of a CNN. Different program-
ming methods (SET, RESET, Gradient and Selective) illustrated on both the aVMCO Natural
Response (a - c) and Linear Response (d - f).

A similar methodology from section 5.6 is applied here to test the impact of using

dynamic versus a fixed range in training. Figure 5.13 shows the final accuracy of our

CNN model (Figure 5.4a) when GS and C2C of the aVMCO device is applied during

training, comparing the performance between training with the dynamic weight range

rescaling and two different fixed ranges: [-0.327; 0.327] and [-1.575; 1.575] [233].

The main noticeable difference between the dynamic range method and the fixed

range counterparts is that training is only possible when using a learning rate of 10−1,

Chapter 5 Impact of RRAM non-idealities on training 184

while with dynamic range, a broad range of learning rate values allows for training with

mixed results. Nevertheless, when using the selective programming combined with the

LR (best case scenario), the best results achieved with the proper choice of learning rate

are: 96.92%, 92.36% and 61.92% for the dynamic range, [-0.327; 0.327] and [-1.575;

1.575] fixed ranges respectively, with correspondent CE losses of: 0.105, 0.578 and

1.682 (Figure B.1). Compiling of these results shows that the dynamic range method

not only is able to provide a better accuracy result in the best case scenarios, but the

significantly lower CE loss in the dynamic can also be taken as an indication of training

stability between iterations that can be observed in Figure B.2.

Additionally, comparing the two fixed range cases shows that accuracies between

72% to 92% are achieved when selecting the [-0.327; 0.327] range, while using the

[-1.575; 1.575] range, all values are below 77%, being that in this range, training with

the Gradient-based programming method is impossible for both NR and LR. The clear

superiority of one fixed range over the other is an indication of the issue of calibration

of this additional NN hyperparameter for training using synaptic devices.

One issue that could rise from the use of dynamic weight range rescaling in detri-

ment of a fixed range is that of increased device endurance requirements. In the hard-

ware implementation, a weight range rescale event could mean that a device that would

maintain its weight value from one iteration to the other could still be required to be

reprogrammed due to the discrepancy in weight between iterations due to the rescaling.

Although we acknowledge this issue, we consider that this effect should be of minor

impact, nevertheless, the true impact of dynamic weight range rescaling on device en-

durance should be examined in future work.

Chapter 5 Impact of RRAM non-idealities on training 185

5.8 Summary

In this chapter, the impact of two different non-idealities of the NCF aVMCO RRAM

device: GS and C2C variability are experimentally extracted and characterized in the

SET and RESET programming polarities using two different staged weight program-

ming options: NR and LR. Using FlexiNNSim, the weight distributions are tracked

during SET, RESET and two different practical implementations of the two (gradient-

based and selective programming). This tracking revealed that the mechanisms behind

accuracy degradation are different depending on its programming polarity, and this is

linked to where the non-idealities are situated in the normalized weight range rather

than simply their magnitude. It was also revealed that the GS non-ideality has a larger

impact on accuracy degradation while C2C variability not only shows a minimal impact

on its own, but when combined with GS, can help improve training in certain scenarios.

Furthermore, the learning rate was established as one of the most affected NN hyper-

parameters by the RRAM non-idealitites, as high learning rates tend to aggravate the

effects of both GS and C2C.

The dynamic weight range rescaling methodology was introduced to challenge the

convention of using fixed weight ranges in RRAM neuromorphic circuits that accom-

modate the device fixed conductance window. This method allows the weight range

boundaries to be rescaled independently between NN layers and training iterations.

Training with fixed weight ranges requires careful calibration of this range for each

individual layer in a deep network, effectively adding an additional NN hyperparameter

to consider. Dynamic weight range rescaling shows that avoiding letting the system

Chapter 5 Impact of RRAM non-idealities on training 186

itself train the weight range not only allows for overall better accuracy, but better com-

patibility with other hyperparameters such as the learning rate.

Finally, based on the previous analysis, the accuracy improvements by the LR is

evaluated and mainly attributed to the overall reduction of GS, and to a lower degree

the C2C variability. A Selective programming approach is proposed as a combination

of SET/RESET programming that has the device GS in mind. Using the Selective

programming not only shows improved compatibility with other parameters such as

the choice of learning rate, but combining this with the LR it was possible to achieve a

state-of-the-art accuracy level of 95.1% in a simple CNN model, and 90% in a simple

1-L MLP using the NR, demonstrating its applicability in a wide range of NN settings.

Chapter 6

Conclusions & future perspectives

6.1 Conclusions

The goal of this work was focused on characterization of RRAM non-idealities and

its effects on the accuracy of neuromorphic circuits for pattern recognition implemented

RRAM synaptic crossbars, investigated through simulation and subsequently originat-

ing strategies for improvement. The impact of these non-idealities are analysed in two

major parts: (1) impact on inference and (2) impact on training. The conclusions taken

for each of these parts are given below:

6.1.1 Conclusions on inference

In Chapter 4, two types of RRAM devices: CF and NCF are characterized in terms

of read noise and PIV.

187

Chapter 6 Conclusions & future perspectives 188

By manipulating the sampling rate of read signals above or below the known devices

RTN time constants, read signals at different conductance levels were decoupled into

RTN and ORN signals respectively. Based on statistical experimental results taken

from both types of noise, a read noise disturbance model is developed and applied to

the trained synaptic arrays to simulate its impact on NN accuracy. Comparing both

types of read noise reveals that the low amplitude of ORN results in negligible impact

on NN accuracy for both devices. On the other hand, RTN comes in as the major source

of read noise. Furthermore, it is concluded that NCF RRAM devices show smaller

RTN amplitude, tighter RTN distribution, and lower RTN occurrence rate compared

with its CF counterpart. As a result, the NNs with NCF synapses shows that RTN has

a negligible impact in NN accuracy, and even smaller NNs can achieve better accuracy

than larger NNs built with CF devices that rely on synaptic redundancy to counteract

the effects of RTN.

Additionally, PIV was statistically measured at different conductance levels, using

different weight update, W-V schemes and programming polarity, on two distinct de-

vices based on CF and NCF switching. It is revealed that PIV ∆G
G variability can be

modeled by Weibull distributions and in addition, these Weibull parameters across the

normalized weight range can be described by a tilted Gaussian model (equation 4.5).

Based on these models of variability, the impact of PIV programmed with different

conditions is evaluated on the inference accuracy of a trained pattern recognition MLP

with one hidden layer. The simulations reveal that: (1) the NCF device shows an overall

much lower PIV than the CF device, (2) using a W-V scheme with the NR in the CF

device still wields worse results than the NR in the NCF device without W-V, meaning

Chapter 6 Conclusions & future perspectives 189

that (3) to guarantee the best results, a combination of LR and W-V is required. Finally,

(4) the flexibility in programming polarity of the NCF device allows for further reducing

PIV in this device by switching to the more linear SET programming polarity.

6.1.2 Conclusions on training

In Chapter 5, two RRAM non-idealities: GS and C2C variability, are independently

measured, characterized and their impacts during the training of analog NNs are evalu-

ated on the NCF device. The analysis of weight distribution evolution during training

revealed that GS plays a dominant role in accuracy degradation. On the other hand, C2C

variability not only a minimal impact but can also improve the accuracy upon the GS

in specific use cases. Furthermore, it is revealed that the mechanisms behind accuracy

degradation are different for SET and RESET, and this is directly linked to where the

non-idealities are situated in the conductance range instead of only to its magnitude.

Additionally, a link has been established between the learning rate NN hyperparame-

ter and non-ideal RRAM NNs has higher learning rates tend to aggravate the effects of

GS and C2C.

Moreover, the dynamic weight range rescaling methodology aims to challenge the

convention of matching the fixed RRAM conductance window to a fixed weight range

by allowing the weight range boundaries to be rescaled independently between NN lay-

ers and training iterations. It was shown that fixed weight ranges in training of RRAM

NNs requires careful calibration that is not only dependent on NN topology but also

Chapter 6 Conclusions & future perspectives 190

other NN hyperparameters such as the learning rate, which is entirely avoidable with

dynamic weight range rescaling.

Based on this analysis, the accuracy improvement by the LR is evaluated and linked

mainly to the reduction of GS, and to a lower degree of relevance also the C2C vari-

ability. A Selective programming approach is proposed to further mitigate the GS by

utilizing the 2nd halves of SET or RESET program range. It was not only observed that

the Selective programming method shows improved resilience to limiting factors such

as the choice of learning rate, but with the combination with the LR is able to achieve

a state-of-the-art accuracy level of 95.1% in our simple CNN model, and reaches 90%

in the simplest one hidden layer MLP with the NR, which has the worst non-idealities,

demonstrating its potential in practical analog NN applications.

6.2 Future perspectives

The work presented in this thesis was centered around characterization of individual

RRAM devices and simulation of different strategies for accuracy improvement in NNs

built with RRAM crossbar arrays. Nevertheless, the road from simulation to design

and implementation is still long and challenging. Following is some prospective work

towards neuromorphic implementation:

Chapter 6 Conclusions & future perspectives 191

6.2.1 Extending the simulation framework

The simulation framework presented in this thesis can be seen as a complement to

other existing frameworks. While most of the other frameworks are more detailed and

complex, they are also very demanding in terms of hardware requirements and have

limited flexibility. The framework built in this thesis is focused on providing flexibility

for the end-user not only in regards to the options available concerning NN topology,

hyperparameter setup, RRAM programming and user-accessible GUI, but also in terms

of hardware requirements for the simulation itself, this however, comes at the cost of

the level of detail provided for the peripheral circuitry.

Nevertheless, the natural progression for this framework would be to forego the sim-

ulation of peripheral circuitry in favour of optimized calculation speed towards the con-

struction of a chip-in-loop system provided the correct interface with the RRAM cross-

bar arrays.

Even though the scope of this work is focused on simulating NN accuracy, further

estimation tools could be built on top the existing simulation framework to estimate

other crossbar parameters such as: device endurance requirements, read/write latency

and power consumption.

Finally, with the required hardware, a comparison should be drawn between this

framework and other existing frameworks relating parameters such as: time per epoch,

CPU/GPU utilization, RAM and VRAM such as that of Figures 1.38 & 1.39.

Chapter 6 Conclusions & future perspectives 192

6.2.2 Future perspectives for inference

This work analysed the impact of RTN and other forms of read noise as well as PIV

in NN inference accuracy. Models that describe RTN, ORN and PIV were proposed

in this work, however in real-world scenarios, other device issues such as conductance

retention, read disturbances and device yields will come into play. Future work in this

regard should contemplate the noise models we propose as complementary material for

other types of model in order to build a more complete picture of RRAM behaviour

during inference.

We consider that the modelling of Weibull distribution parameters that can be de-

scribed by our tilted Gaussian model, although being a conceptual model at this stage,

can be an important step forward towards the development of a physics based model

that could describe PIV in RRAM devices, which in turn is an important developmental

step for the design stage of RRAM neuromorphic crossbar arrays.

6.2.3 Future perspectives for training

Regarding training, there is still considerable work to be done to transfer concepts

that are proposed not only at the simulation stage, but also between inference based

RRAM synaptic arrays and trainable circuits with RRAM. As described in the previous

subsection, issues such as: retention, device yields and read disturbances may have

added effects, to which training-specific issues such as: read/write latencies, power

consumptions and cycling endurance are added. As with the inference case, the work

Chapter 6 Conclusions & future perspectives 193

presented here is meant to be used in addition to other models that accurately portray

these additional issues.

Furthermore, we have with the concepts of staged weight update scheme, dynamic

range rescaling and Selective programming, interesting perspectives to mitigate the

problems of GS and C2C variability. However, the design of the crossbar peripheral

circuitry to allow these concepts to take place in real-world scenarios remains a chal-

lenging prospect. Additionally, the real device endurance requirements for Selective

programming and dynamic range rescaling will need to be analysed and discussed in-

depth.

Appendix A

Impact of learning rate

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0
G S

Ac
cu

rac
y (

%) (a)

N a t u r a l R e s p o n s e

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0
C 2 C

(b)

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0
G S + C 2 C

 S e t
 R e s e t
 G r a d i e n t
 S e l e c t i v e

(c)

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0
G S

Ac
cu

rac
y (

%) (d)

L i n e a r R e s p o n s e

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0
C 2 C

L e a r n i n g r a t e

(e)

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0
G S + C 2 C

(f)

Figure A.1: Impact of learning rate on the maximum accuracy achieved by the CNN model
from Fig. 5.4a using the Natural Response (a - c), evaluated with the (a) GS, (b) C2C and (c)
GS combined with C2C non-idealities. (d - f) shows the same methodology using the Linear
Response.

194

Appendix A Impact of learning rate 195

(a)

0
0

20

40

20 100

A
cc

u
ra

cy
 (

%
)

60

GS - Natural Response

Validation Iteration

40

80

10-1

Learning Rate

100

60 10-2

80 10-3

Gradient
Reset
Selective
Set

Appendix A Impact of learning rate 196

(b)

0
0

20

40

20

A
cc

u
ra

cy
 (

%
)

60

100

GS - Linear Response

Validation Iteration

40

80

Learning Rate

100

60
10-2

80

Gradient
Reset
Selective
Set

Appendix A Impact of learning rate 197

(c)

0
0

20

40

20

A
cc

u
ra

cy
 (

%
)

60

100

C2C - Natural Response

Validation Iteration

40

80

Learning Rate

100

60
10-2

80

Gradient
Reset
Selective
Set

Appendix A Impact of learning rate 198

(d)

0
0

20

40

20

A
cc

u
ra

cy
 (

%
)

60

100

C2C - Linear Response

Validation Iteration

40

80

Learning Rate

100

60
10-2

80

Gradient
Reset
Selective
Set

Appendix A Impact of learning rate 199

(e)

0
0

20

40

20

A
cc

u
ra

cy
 (

%
)

60

100

GS+C2C - Natural Response

Validation Iteration

40

80

Learning Rate

100

60
10-2

80

Gradient
Reset
Selective
Set

(f)

0
0

20

40

20

A
cc

u
ra

cy
 (

%
)

60

100

GS+C2C - Linear Response

Validation Iteration

40

80

Learning Rate

100

60
10-2

80

Gradient
Reset
Selective
Set

Figure A.2: Impact of learning rate on validation accuracy during training. Different program-
ming modes (SET, RESET, Gradient-based and Selective) are analysed, as well as the impact of
the Natural vs Linear Response on the different non-idealities: (a - b) GS, (c - d) C2C and (e -
f) GS+C2C.

Appendix B

Impact of Dynamic Range Rescaling

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0 . 1

1

1 0
D y n a m i c R a n g e

Lo
ss

(a)

N a t u r a l R e s p o n s e

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0 . 1

1

1 0

F i x e d R a n g e
[- 0 . 3 2 7 ; 0 . 3 2 7]

(b)

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0 . 1

1

1 0

F i x e d R a n g e
[- 1 . 5 7 5 ; 1 . 5 7 5]

(c)

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0 . 1

1

1 0

Lo
ss

(d)
L i n e a r R e s p o n s e

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0 . 1

1

1 0

L e a r n i n g r a t e

(e)

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
0 . 1

1

1 0 (f)
 S e t
 R e s e t
 G r a d i e n t
 S e l e c t i v e

Figure B.1: Impact of Dynamic Weight Range rescaling compared to two fixed ranges: [-0.327;
0.327] & [-1.575, 1.575] on the final validation loss of a CNN. Different programming methods
(SET, RESET, Gradient and Selective) illustrated on both the aVMCO Natural Response (a - c)
and Linear Response (d - f).

200

Appendix B Impact of Dynamic Range Rescaling 201

(a)
Natural Response:

Dynamic Range

0
0

20

40

20 100

A
cc

u
ra

cy
 (

%
)

60

Validation Iteration

40

80

10-1

Learning Rate

100

60 10-2

80 10-3

Gradient
Reset
Selective
Set

Appendix B Impact of Dynamic Range Rescaling 202

(b)
Natural Response:

Fixed Range: [-0.327; 0.327]

0
0

20

40

20 100

A
cc

u
ra

cy
 (

%
)

60

Validation Iteration

40

80

10-1

Learning Rate

100

60 10-2

80 10-3

Gradient
Reset
Selective
Set

Appendix B Impact of Dynamic Range Rescaling 203

(c)
Natural Response:

Fixed Range: [-1.575; 1.575]

0
0

20

40

20 100

A
cc

u
ra

cy
 (

%
)

60

Validation Iteration

40

80

10-1

Learning Rate

100

60 10-2

80 10-3

Gradient
Reset
Selective
Set

Appendix B Impact of Dynamic Range Rescaling 204

(d)
Linear Response:
Dynamic Range

0
0

20

40

20 100

A
cc

u
ra

cy
 (

%
)

60

Validation Iteration

40

80

10-1

Learning Rate

100

60 10-2

80 10-3

Gradient
Reset
Selective
Set

Appendix B Impact of Dynamic Range Rescaling 205

(e)
Linear Response:

Fixed Range: [-0.327; 0.327]

0
0

20

40

20 100

A
cc

u
ra

cy
 (

%
)

60

Validation Iteration

40

80

10-1

Learning Rate

100

60 10-2

80 10-3

Gradient
Reset
Selective
Set

Appendix B Impact of Dynamic Range Rescaling 206

(f)
Linear Response:

Fixed Range: [-1.575; 1.575]

0
0

20

40

20 100

A
cc

u
ra

cy
 (

%
)

60

Validation Iteration

40

80

10-1

Learning Rate

100

60 10-2

80 10-3

Gradient
Reset
Selective
Set

Figure B.2: Evolution of validation accuracy during training of the CNN using dynamic range
rescaling (a & d) and two examples of fixed range scaling: one with a range of [-0.327; 0.327]
for all CNN layers (b & e) and the other with a range of [-1.575; 1.575] (c & f).

Appendix C

Limited Precision training based on

genetic algorithms

In the previous chapters, the impact of noise and variability of RRAM devices was

analysed for full precision NNs that are meant to be trained in an analogue setting.

However, most neuromorphic systems with RRAM available in the literature are imple-

mented in the digital domain. In the digital setting, the bit precision of the NN weights

becomes a significant factor to take into consideration, since this will not only affect

the chip area and power consumption footprint that is largely dominated by memory

buffers and ADC/DAC peripheral circuitry [105], but also largely affects the impact of

hardware noise.

Being so, there is a large demand for software solutions that are able to use limited

precision weights to train ML models. Nonetheless, current solutions rely on some

variation of gradient-based learning, either by preserving FP32 weights for gradient

207

Appendix C Limited Precision training based on genetic algorithms 208

calculation, or in the cases that do calculate the gradients with LP, doing so with at least

6-bit precision (see section 1.2.2).

Previously, in this work, the focus was on a top-down design approach focusing on

mitigating the non-idealities present in the hardware, using traditional gradient-descent

algorithms. In this chapter, however, we aim at constructing LP GA designed from the

bottom-up to accommodate the non-idealities of RRAM. GAs were chosen following

the work of Stromatias and Marsland [161] where GAs were used to circumvent the

problem of weight discontinuity for training of biological inspired SNNs on non-linear

two-dimensional classification problems, whereas here we attempt to build LP GAs for

training of traditional NNs for image classification.

C.0.1 Algorithm structure and typical results

Our algorithm uses the same basic structure that was introduced in section 1.2.1.10,

but with a few particularities:

• Each individual of the population is a bitstream that represents every weight of

the NN that is posteriorly decoded into the weight matrices.

• Each bitstream weight is decoded into a gray code representation of a weight

value.

• Mutation rate values are distinctly set for odd and evenly numbered individuals

so that the mutation rate can be controlled for the individuals that crossover.

Appendix C Limited Precision training based on genetic algorithms 209

• Each crossover event is randomly performed using one of five distinct methods:

(1) Uniform crossover - bit wise random; (2) Uniform crossover - weight wise

random; (3) Uniform crossover - node wise random; (4) Fold crossover - bit wise;

(5) Child is a clone of the parent but mutated.

A wide range of different hyperparameters must be considered in this algorithm for

both the traditional NN topologies as well as the GA specific hyperparameters. Table

C.1 shows the default hyperparameters used for this algorithm.

Table C.1: Table containing the (left) NN and (right) GA default parameters of the LP GA
trained MLP.

NN Parameter Value
Weight precision 3 bit
Activation Gain 1
Cost Function CE
Hidden Layer Activations Leaky ReLU
Leaky ReLU Scale (α) 0.001
Output Layer Activation Softmax
NN Topology 784x30x10

GA Parameter Value
Mutation Rate [70, 70]
Ranking Selective pressure 1.9
Elitism operator 8
Max Generations 1000
Population Size 100

0 2 5 0 5 0 0 7 5 0 1 0 0 00
2 0
4 0
6 0
8 0

1 0 0

0 2 5 0 5 0 0 7 5 0 1 0 0 00 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5

 V a l i d a t i o n
 T r a i n i n gAc

cu
rac

y (
%)

G e n e r a t i o n

(a) M e a n
 B e s t

Cr
os

sE
ntr

op
y

G e n e r a t i o n

(b)

Figure C.1: Typical example of LP GA (a) accuracy and (b) cost curves per generation of a
3-bit trained 1L-MLP on the MNIST database.

Figure C.1 shows the training curves depicting the accuracy and crossentropy per

generation when using the default training hyperparameters on the MNIST database.

It is noteworthy that ≈ 76% accuracy is able to be achieved in both the training and

Appendix C Limited Precision training based on genetic algorithms 210

validation data, being that the drawback is the long time to convergence that is inherent

to GAs for training sparse datasets such as the MNIST database.

C.0.2 Impact of weight bitwidth

2 3 4 5 6
5 5
6 0
6 5
7 0
7 5
8 0

Ac
cu

rac
y (

%)

B i t W i d t h

 T r a i n i n g
 V a l i d a t i o n

(a)

2 3 4 5 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8

Cr
os

sE
ntr

op
y

B i t W i d t h

 M e a n
 B e s t(b)

Figure C.2: Impact of weight bit-precision on the (a) accuracy and (b) cost of a LP GA trained
1L-MLP.

Using the same set of parameters, the weight bitwidth was varied between 2 to 6

bits and a summary of bitwidth impact on accuracy is displayed in Figure C.2. As ex-

pected, training with 2-bits results in a penalty of accuracy of≈ 20%, however, counter-

intuitively, increasing the bitwidth beyond 3-bits results in worse performance than the

standard 3-bit case. One possible explanation is that in a global search algorithm such as

GA, increasing the bitwidth of the weights also increases the search space of solutions

that the algorithm is required to cover in what is already a very sparse setting.

Appendix C Limited Precision training based on genetic algorithms 211

C.0.3 Impact of mutation rate and activation functions

The impact of mutation rate and choice of hidden layer activation function was stud-

ied in this work, however, due to time-constraints and hardware limitations, a Limited

MNIST dataset containing 10% of the original database was used. Figure C.3 compares

the impact in accuracy of the limited dataset compared to the full dataset, using the

default training parameters. It was shown that a small penalty of ≈ 10% occurs in the

training with the limited data, and ≈ 20% for the validation data.

0 2 5 0 5 0 0 7 5 0 1 0 0 00
2 0
4 0
6 0
8 0

1 0 0

Ac
cu

rac
y (

%)

G e n e r a t i o n

 T r a i n i n g
 V a l i d a t i o n(a)

0 2 5 0 5 0 0 7 5 0 1 0 0 00
2 0
4 0
6 0
8 0

1 0 0

G e n e r a t i o n

(b)

Figure C.3: Training curves of GA LP using (a) the limited dataset and (b) the full dataset.

As such, the accuracy of the training data on the limited dataset is analysed for the

study on mutation rate and activation function, due to its smaller penalty in accuracy

but significant speed-up in simulation time. Figure C.4 shows the impact of varying the

mutation rate with different hidden layer activation functions. It was determined that a

high mutation rate value of 70 shows the best accuracy results while using the Leaky

ReLU activation function when using 2-bits, while for 3-bits, the best mutation rate

values maintain the same, but sigmoid or ReLU activations have comparable accuracy

results.

Appendix C Limited Precision training based on genetic algorithms 212

1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 3 1 0 40
2 0
4 0
6 0
8 0

1 0 0 2 - b i t s
Ac

cu
rac

y (
%)

M u t a t i o n R a t e

 R e L U
 L e a k y R e L U
 S i g m o i d
 t a n h

(a)

1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4

3 - b i t s

M u t a t i o n R a t e

(b)

Figure C.4: Impact of mutation rate on the training accuracy of GA trained 1L-MLP using
different hidden layer activation functions with LP of (a) 2-bits and (b) 3-bits.

Furthermore, different mutation rates for odd and even numbered individuals in an

effort to examine the effects of crossover between individuals with different mutation

rates was tested. Figure C.5 shows, however, that there is little change in accuracy by

changing the mutation rate of odd numbered individuals, which could be an indica-

tion that the training of this algorithm is dominated by the high mutation rate of the

even numbered individuals, suggesting that mutation plays a higher role in training than

crossover.

C.0.4 Impact of read noise

Finally, the impact of read noise introduced in the LP GA network during every feed-

forward operation as an attempt to simulate read noise such as RTN is examined in

Figure C.6. It is shown that even for relatively small normalized deviation values of

0.1, there is a high decrease in accuracy of ≈ 18% and ≈ 25% for 2-bit and 3-bit train-

ing respectively. One possible explanation for this effect could be the large fan-in that

Appendix C Limited Precision training based on genetic algorithms 213

0
2 0
4 0
6 0
8 0

1 0 0
E v e n M u t a t i o n R a t e = 3 0

Ac
cu

rac
y (

%) (a)
2-b

its
 R e L U
 L e a k y R e L U
 S i g m o i d
 t a n h

E v e n M u t a t i o n R a t e = 7 0
(b)

1 1 0 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0

Ac
cu

rac
y (

%)

O d d M u t a t i o n R a t e

(c)

3-b
its

1 1 0 1 0 0
O d d M u t a t i o n R a t e

(d)

Figure C.5: Impact of odd individual mutation rate combined with fixed even individual muta-
tion rate trained with LP of (a - b) 2-bits and (c - d) 3-bits.

exists in the 784x30x10 topology’s first hidden layer, as the noises of a large number of

devices on each single column can accumulate.

C.0.5 LP GA Conclusions

Training with limited precision was attempted using GAs as a global search strategy

in which every individual represents the weight matrices of a 1-L MLP to train in the

MNIST database. This algorithm allows for training without recurring to gradient cal-

culations with discrete weight values, which is the major challenge in LP algorithms

based on gradient descent.

Appendix C Limited Precision training based on genetic algorithms 214

0 . 0 0 . 5 1 . 0 1 . 5 2 . 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

Ac
cu

rac
y (

%)

N o r m a l i z e d d e v i a t i o n (s / m)

 2 - b i t
 3 - b i ta V M C O

T a 2 O 5

Figure C.6: Impact of noise in accuracy of the LP GA trained NN. Typical RTN amplitude
values of the aVMCO and Ta2O5 devices are represented for reference.

A training accuracy with 3-bit weights of ≈ 76% was achieved using this method.

Nevertheless, training with LP GAs comes with its own set of challenges, most no-

tably the slow speed to convergence that is inherent to GAs for sparse datasets such as

MNIST.

However, it was also determined that increasing the weight bit-width in this global

search algorithm is detrimental to accuracy, likely due to an increase of the search space

that the algorithm is required to cover.

Even though major hurdles still need to be crossed for the practical implementation

of LP GAs, the conclusions provided in this work will hopefully not only be applicable

to other GA methods but also to the wider category of LP global search algorithms.

Bibliography

[1] J. Von Neumann, First draft of a report on the EDVAC. Moore School of Electrical
Engineering, University of Pennsylvania, 1945.

[2] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou, “Mem-
ory devices and applications for in-memory computing,” Nature Nanotechnology,
vol. 15, pp. 529–544, jul 2020.

[3] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash mem-
ory,” Proceedings of the IEEE, vol. 91, pp. 489–502, apr 2003.

[4] L. Chua, “Memristor-The missing circuit element,” IEEE Transactions on Circuit
Theory, vol. 18, no. 5, pp. 507–519, 1971.

[5] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing
memristor found,” Nature, vol. 453, pp. 80–83, may 2008.

[6] T. Prodromakis, C. Toumazou, and L. Chua, “Two centuries of memristors,” Na-
ture Materials, vol. 11, pp. 478–481, jun 2012.

[7] J. Frith and C. Rodgers, “On the resistance of the electric arc,” The London, Ed-
inburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 42,
no. 258, pp. 407–423, 1896.

[8] W. Duddell, “On the resistance and electromotive forces of the electric arc,” Philo-
sophical Transactions of the Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character, vol. 203, pp. 305–342, jan 1904.

[9] IEEE, “International Roadmap for Devices and Systems 2021 Update - Beyond
CMOS,” tech. rep., 2021.

[10] S. Lai, “Current status of the phase change memory and its future,” in IEEE Inter-
national Electron Devices Meeting 2003, pp. 10.1.1–10.1.4, IEEE, 2003.

[11] J. C. Slonczewski, “Conductance and exchange coupling of two ferromagnets sep-
arated by a tunneling barrier,” Physical Review B, vol. 39, pp. 6995–7002, apr
1989.

[12] J. Slonczewski, “Current-driven excitation of magnetic multilayers,” Journal of
Magnetism and Magnetic Materials, vol. 159, pp. L1–L7, jun 1996.

215

Bibliography 216

[13] L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a cur-
rent,” Physical Review B, vol. 54, pp. 9353–9358, oct 1996.

[14] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switch-
ing Memories - Nanoionic Mechanisms, Prospects, and Challenges,” Advanced
Materials, vol. 21, pp. 2632–2663, jul 2009.

[15] H. Akinaga and H. Shima, “Resistive random access memory (ReRAM) based on
metal oxides,” Proceedings of the IEEE, vol. 98, no. 12, pp. 2237–2251, 2010.

[16] D. Ielmini, “Resistive switching memories based on metal oxides: mecha-
nisms, reliability and scaling,” Semiconductor Science and Technology, vol. 31,
p. 063002, jun 2016.

[17] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, “Electrochemical metalliza-
tion memories—fundamentals, applications, prospects,” Nanotechnology, vol. 22,
p. 289502, jul 2011.

[18] M. Kozicki, M. Mitkova, M. Park, M. Balakrishnan, and C. Gopalan, “Information
storage using nanoscale electrodeposition of metal in solid electrolytes,” Superlat-
tices and Microstructures, vol. 34, pp. 459–465, sep 2003.

[19] A. Chen, “A review of emerging non-volatile memory (NVM) technologies and
applications,” Solid-State Electronics, vol. 125, pp. 25–38, nov 2016.

[20] B. Li, B. Yan, and H. Li, “An Overview of In-memory Processing with Emerging
Non-volatile Memory for Data-intensive Applications,” in Proceedings of the 2019
on Great Lakes Symposium on VLSI, (New York, NY, USA), pp. 381–386, ACM,
may 2019.

[21] D. Kuzum, S. Yu, and H.-S. Philip Wong, “Synaptic electronics: materials, devices
and applications,” Nanotechnology, vol. 24, p. 382001, sep 2013.

[22] D. Querlioz, O. Bichler, A. F. Vincent, and C. Gamrat, “Bioinspired Programming
of Memory Devices for Implementing an Inference Engine,” Proceedings of the
IEEE, vol. 103, no. 8, pp. 1398–1416, 2015.

[23] E. Vianello, T. Werner, A. Grossi, E. Nowak, B. De Salvo, L. Perniola, O. Bichler,
and B. Yvert, “Bioinspired Programming of Resistive Memory Devices for Im-
plementing Spiking Neural Networks,” Proceedings of the on Great Lakes Sympo-
sium on VLSI 2017 - GLSVLSI ’17, vol. 1, pp. 393–398, 2017.

[24] G. S. Rose, N. McDonald, L.-K. Yan, and B. Wysocki, “A write-time based mem-
ristive PUF for hardware security applications,” in 2013 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 830–833, IEEE, nov 2013.

[25] A. Iyengar, K. Ramclam, and S. Ghosh, “DWM-PUF: A low-overhead, memory-
based security primitive,” in 2014 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pp. 154–159, IEEE, may 2014.

Bibliography 217

[26] J. Rajendran, R. Karri, J. B. Wendt, M. Potkonjak, N. McDonald, G. S. Rose, and
B. Wysocki, “Nano Meets Security: Exploring Nanoelectronic Devices for Secu-
rity Applications,” Proceedings of the IEEE, vol. 103, pp. 829–849, may 2015.

[27] T. W. Hickmott, “Low-Frequency Negative Resistance in Thin Anodic Oxide
Films,” Journal of Applied Physics, vol. 33, pp. 2669–2682, sep 1962.

[28] J. Gibbons and W. Beadle, “Switching properties of thin Nio films,” Solid-State
Electronics, vol. 7, pp. 785–790, nov 1964.

[29] G. Dearnaley, A. M. Stoneham, and D. V. Morgan, “Electrical phenomena in amor-
phous oxide films,” Reports on Progress in Physics, vol. 33, p. 306, sep 1970.

[30] J. G. Simmons, “Conduction in thin dielectric films,” Journal of Physics D: Ap-
plied Physics, vol. 4, p. 202, may 1971.

[31] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R.
Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, “Repro-
ducible resistance switching in polycrystalline NiO films,” Applied Physics Let-
ters, vol. 85, pp. 5655–5657, dec 2004.

[32] D. S. Jeong, K. M. Kim, S. Kim, B. J. Choi, and C. S. Hwang, “Memristors
for Energy-Efficient New Computing Paradigms,” Advanced Electronic Materi-
als, vol. 2, p. 1600090, sep 2016.

[33] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, and B. Yu,
“Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt re-
sistance switching random-access memories,” Applied Physics Letters, vol. 92,
p. 232112, jun 2008.

[34] J. Joshua Yang, F. Miao, M. D. Pickett, D. A. A. Ohlberg, D. R. Stewart, C. N. Lau,
and R. S. Williams, “The mechanism of electroforming of metal oxide memristive
switches,” Nanotechnology, vol. 20, p. 215201, may 2009.

[35] C.-W. Hsu, Y.-F. Wang, C.-C. Wan, I.-T. Wang, C.-T. Chou, W.-L. Lai, Y.-J. Lee,
and T.-H. Hou, “Homogeneous barrier modulation of TaO x /TiO 2 bilayers for
ultra-high endurance three-dimensional storage-class memory,” Nanotechnology,
vol. 25, p. 165202, mar 2014.

[36] B. Govoreanu, L. Di Piazza, J. Ma, T. Conard, A. Vanleenhove, A. Belmonte,
D. Radisic, M. Popovici, A. Velea, A. Redolfi, O. Richard, S. Clima, C. Adel-
mann, H. Bender, and M. Jurczak, “Advanced a-VMCO resistive switching mem-
ory through inner interface engineering with wide (¿10 2) on/off window, tunable
µA-range switching current and excellent variability,” in 2016 IEEE Symposium
on VLSI Technology, vol. 2016-Septe, pp. 1–2, IEEE, jun 2016.

[37] B. Govoreanu, D. Crotti, S. Subhechha, L. Zhang, Y. Chen, S. Clima, V. Paraschiv,
H. Hody, C. Adelmann, M. Popovici, O. Richard, and M. Jurczak, “A-VMCO: A
novel forming-free, self-rectifying, analog memory cell with low-current opera-
tion, nonfilamentary switching and excellent variability,” in 2015 Symposium on
VLSI Technology (VLSI Technology), vol. 2015-Augus, pp. T132–T133, IEEE, jun
2015.

Bibliography 218

[38] K. Moon, A. Fumarola, S. Sidler, J. Jang, P. Narayanan, R. M. Shelby, G. W.
Burr, and H. Hwang, “Bidirectional Non-Filamentary RRAM as an Analog Neu-
romorphic Synapse, Part I: Al/Mo/Pr 0.7 Ca 0.3 MnO 3 Material Improvements
and Device Measurements,” IEEE Journal of the Electron Devices Society, vol. 6,
pp. 146–155, dec 2018.

[39] A. Fumarola, S. Sidler, K. Moon, J. Jang, R. M. Shelby, P. Narayanan,
Y. Leblebici, H. Hwang, and G. W. Burr, “Bidirectional Non-Filamentary RRAM
as an Analog Neuromorphic Synapse, Part II: Impact of Al/Mo/Pr 0.7 Ca 0.3 MnO
3 Device Characteristics on Neural Network Training Accuracy,” IEEE Journal of
the Electron Devices Society, vol. 6, no. 1, pp. 169–178, 2018.

[40] Jen-Chieh Liu, I-Ting Wang, C.-W. Hsu, W.-C. Luo, and Tuo-Hung Hou, “Investi-
gating MLC variation of filamentary and non-filamentary RRAM,” in Proceedings
of Technical Program - 2014 International Symposium on VLSI Technology, Sys-
tems and Application (VLSI-TSA), pp. 1–2, IEEE, apr 2014.

[41] B. Govoreanu, A. Redolfi, L. Zhang, C. Adelmann, M. Popovici, S. Clima,
H. Hody, V. Paraschiv, I. Radu, A. Franquet, J.-C. Liu, J. Swerts, O. Richard,
H. Bender, L. Altimime, and M. Jurczak, “Vacancy-modulated conductive ox-
ide resistive RAM (VMCO-RRAM): An area-scalable switching current, self-
compliant, highly nonlinear and wide on/off-window resistive switching cell,” in
2013 IEEE International Electron Devices Meeting, pp. 10.2.1–10.2.4, IEEE, dec
2013.

[42] M. N. Kozicki and H. J. Barnaby, “Conductive bridging random access mem-
ory—materials, devices and applications,” Semiconductor Science and Technol-
ogy, vol. 31, p. 113001, nov 2016.

[43] C.-W. Huang, J.-Y. Chen, C.-H. Chiu, and W.-W. Wu, “Revealing Controllable
Nanowire Transformation through Cationic Exchange for RRAM Application,”
Nano Letters, vol. 14, pp. 2759–2763, may 2014.

[44] B. Gao, S. Yu, N. Xu, L. Liu, B. Sun, X. Liu, R. Han, J. Kang, B. Yu, and Y. Wang,
“Oxide-based RRAM switching mechanism: A new ion-transport-recombination
model,” in 2008 IEEE International Electron Devices Meeting, pp. 1–4, IEEE, dec
2008.

[45] T.-N. Fang, S. Kaza, S. Haddad, A. Chen, Y.-C. J. Wu, Z. Lan, S. Avanzino,
D. Liao, C. Gopalan, S. Choi, S. Mahdavi, M. Buynoski, Y. Lin, C. Marrian,
C. Bill, M. VanBuskirk, and M. Taguchi, “Erase Mechanism for Copper Oxide
Resistive Switching Memory Cells with Nickel Electrode,” in 2006 International
Electron Devices Meeting, pp. 1–4, IEEE, 2006.

[46] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Filament Conduction and Reset
Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices,” IEEE
Transactions on Electron Devices, vol. 56, pp. 186–192, feb 2009.

[47] T. Chang, S.-H. Jo, and W. Lu, “Short-Term Memory to Long-Term Memory Tran-
sition in a Nanoscale Memristor,” ACS Nano, vol. 5, pp. 7669–7676, sep 2011.

Bibliography 219

[48] X. Yan, J. Zhao, S. Liu, Z. Zhou, Q. Liu, J. Chen, and X. Y. Liu, “Memristor with
Ag-Cluster-Doped TiO 2 Films as Artificial Synapse for Neuroinspired Comput-
ing,” Advanced Functional Materials, vol. 28, p. 1705320, jan 2018.

[49] M. Wang, S. Cai, C. Pan, C. Wang, X. Lian, Y. Zhuo, K. Xu, T. Cao, X. Pan,
B. Wang, S.-J. Liang, J. J. Yang, P. Wang, and F. Miao, “Robust memristors based
on layered two-dimensional materials,” Nature Electronics, vol. 1, pp. 130–136,
feb 2018.

[50] Z. Xiao and J. Huang, “Energy-Efficient Hybrid Perovskite Memristors and
Synaptic Devices,” Advanced Electronic Materials, vol. 2, p. 1600100, jul 2016.

[51] Y. Ren, V. Milo, Z. Wang, H. Xu, D. Ielmini, X. Zhao, and Y. Liu, “Analytical
Modeling of Organic-Inorganic CH 3 NH 3 PbI 3 Perovskite Resistive Switching
and its Application for Neuromorphic Recognition,” Advanced Theory and Simu-
lations, vol. 1, p. 1700035, apr 2018.

[52] G. Liu, C. Wang, W. Zhang, L. Pan, C. Zhang, X. Yang, F. Fan, Y. Chen, and R.-
W. Li, “Organic Biomimicking Memristor for Information Storage and Processing
Applications,” Advanced Electronic Materials, vol. 2, p. 1500298, feb 2016.

[53] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, W. H. Liu,
Y. Y. Hsu, S. S. Sheu, P. C. Chiang, W. S. Chen, F. T. Chen, C. H. Lien, and M.-J.
Tsai, “Highly scalable hafnium oxide memory with improvements of resistive dis-
tribution and read disturb immunity,” in 2009 IEEE International Electron Devices
Meeting (IEDM), pp. 1–4, IEEE, dec 2009.

[54] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song,
N. Dávila, C. E. Graves, Z. Li, J. P. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu,
R. S. Williams, J. J. Yang, and Q. Xia, “Analogue signal and image processing
with large memristor crossbars,” Nature Electronics, vol. 1, pp. 52–59, jan 2018.

[55] U. Chand, K.-C. Huang, C.-Y. Huang, C.-H. Ho, C.-H. Lin, and T.-Y. Tseng,
“Investigation of thermal stability and reliability of HfO 2 based resistive ran-
dom access memory devices with cross-bar structure,” Journal of Applied Physics,
vol. 117, p. 184105, may 2015.

[56] B. Govoreanu, G. Kar, Y.-Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I. Radu,
L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo,
P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D. Wouters, J. Kittl, and
M. Jurczak, “10×10nm2 Hf/HfOx crossbar resistive RAM with excellent perfor-
mance, reliability and low-energy operation,” in 2011 International Electron De-
vices Meeting, pp. 31.6.1–31.6.4, IEEE, dec 2011.

[57] J. Song, Y. Zhang, C. Xu, W. Wu, and Z. L. Wang, “Polar Charges Induced Electric
Hysteresis of ZnO Nano/Microwire for Fast Data Storage,” Nano Letters, vol. 11,
pp. 2829–2834, jul 2011.

[58] S. G. Hu, Y. Liu, T. P. Chen, Z. Liu, Q. Yu, L. J. Deng, Y. Yin, and S. Hosaka,
“Emulating the Ebbinghaus forgetting curve of the human brain with a NiO-based
memristor,” Applied Physics Letters, vol. 103, p. 133701, sep 2013.

Bibliography 220

[59] S. Porro, A. Jasmin, K. Bejtka, D. Conti, D. Perrone, S. Guastella, C. F. Pirri,
A. Chiolerio, and C. Ricciardi, “Low-temperature atomic layer deposition of TiO
2 thin layers for the processing of memristive devices,” Journal of Vacuum Science
& Technology A: Vacuum, Surfaces, and Films, vol. 34, p. 01A147, jan 2016.

[60] T. D. Dongale, S. V. Mohite, A. A. Bagade, P. K. Gaikwad, P. S. Patil, R. K.
Kamat, and K. Y. Rajpure, “Development of Ag/WO3/ITO thin film memristor
using spray pyrolysis method,” Electronic Materials Letters, vol. 11, pp. 944–948,
nov 2015.

[61] L. Gao, I.-T. Wang, P.-Y. Chen, S. Vrudhula, J.-s. Seo, Y. Cao, T.-H. Hou, and
S. Yu, “Fully parallel write/read in resistive synaptic array for accelerating on-
chip learning,” Nanotechnology, vol. 26, p. 455204, nov 2015.

[62] C. La Torre, A. Kindsmüller, D. J. Wouters, C. E. Graves, G. A. Gibson, J. P.
Strachan, R. S. Williams, R. Waser, and S. Menzel, “Volatile HRS asymmetry
and subloops in resistive switching oxides,” Nanoscale, vol. 9, no. 38, pp. 14414–
14422, 2017.

[63] S. Park, S. Jung, M. Siddik, M. Jo, J. Lee, J. Park, W. Lee, S. Kim, S. M. Sadaf,
X. Liu, and H. Hwang, “Memristive switching behavior in Pr0.7Ca0.3MnO3 by
incorporating an oxygen-deficient layer,” physica status solidi (RRL) - Rapid Re-
search Letters, vol. 5, pp. 409–411, nov 2011.

[64] A. Herpers, C. Lenser, C. Park, F. Offi, F. Borgatti, G. Panaccione, S. Menzel,
R. Waser, and R. Dittmann, “Spectroscopic Proof of the Correlation between
Redox-State and Charge-Carrier Transport at the Interface of Resistively Switch-
ing Ti/PCMO Devices,” Advanced Materials, vol. 26, pp. 2730–2735, may 2014.

[65] Z. Q. Wang, H. Y. Xu, X. H. Li, H. Yu, Y. C. Liu, and X. J. Zhu, “Synaptic Learn-
ing and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in
an Amorphous InGaZnO Memristor,” Advanced Functional Materials, vol. 22,
pp. 2759–2765, jul 2012.

[66] J. Park, M. Kwak, K. Moon, J. Woo, D. Lee, and H. Hwang, “TiO x -Based RRAM
Synapse With 64-Levels of Conductance and Symmetric Conductance Change by
Adopting a Hybrid Pulse Scheme for Neuromorphic Computing,” IEEE Electron
Device Letters, vol. 37, pp. 1559–1562, dec 2016.

[67] H. Young Jeong, S. Kyu Kim, J. Yong Lee, and S.-Y. Choi, “Role of Interface
Reaction on Resistive Switching of Metal/Amorphous TiO2/Al RRAM Devices,”
Journal of The Electrochemical Society, vol. 158, no. 10, p. H979, 2011.

[68] M. Zhao, B. Gao, J. Tang, H. Qian, and H. Wu, “Reliability of analog resistive
switching memory for neuromorphic computing,” Applied Physics Reviews, vol. 7,
p. 011301, mar 2020.

[69] S. Arrhenius, “Über die dissociationswärme und den einfluss der temperatur
auf den dissociationsgrad der elektrolyte,” Zeitschrift für Physikalische Chemie,
vol. 4U, no. 1, pp. 96–116, 1889.

Bibliography 221

[70] S. Arrhenius, “Über die reaktionsgeschwindigkeit bei der inversion von rohrzucker
durch säuren,” Zeitschrift für Physikalische Chemie, vol. 4U, no. 1, pp. 226–248,
1889.

[71] A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi, D. Ielmini, A. Lacaita,
and R. Bez, “Reliability Study of Phase-Change Nonvolatile Memories,” IEEE
Transactions on Device and Materials Reliability, vol. 4, pp. 422–427, sep 2004.

[72] M. Zhao, H. Wu, B. Gao, Q. Zhang, W. Wu, S. Wang, Y. Xi, D. Wu, N. Deng,
S. Yu, H.-Y. Chen, and H. Qian, “Investigation of statistical retention of fila-
mentary analog RRAM for neuromophic computing,” in 2017 IEEE International
Electron Devices Meeting (IEDM), vol. 2017, pp. 39.4.1–39.4.4, IEEE, dec 2017.

[73] B. Chen, Y. Lu, B. Gao, Y. Fu, F. Zhang, P. Huang, Y. Chen, L. Liu, X. Liu,
J. Kang, Y. Wang, Z. Fang, H. Yu, X. Li, X. Wang, N. Singh, G. Q. Lo, and D. L.
Kwong, “Physical mechanisms of endurance degradation in TMO-RRAM,” in
2011 International Electron Devices Meeting, pp. 12.3.1–12.3.4, IEEE, dec 2011.

[74] S. Subhechha, R. Degraeve, A. Belmonte, L. Goux, G. Luca Donadio, P. Rous-
sel, K. De Meyer, J. Van Houdt, and G. S. Kar, “Understanding Endurance in
TiN/a-Si/TiOx/TiN RRAM Devices,” in 2018 IEEE International Memory Work-
shop (IMW), pp. 1–4, IEEE, may 2018.

[75] S. Subhechha, R. Degraeve, P. Roussel, L. Goux, S. Clima, K. De Meyer, J. Van
Houdt, and G. S. Kar, “Kinetic defect distribution approach for modeling the
transient, endurance and retention of a-VMCO RRAM,” in 2017 IEEE Interna-
tional Reliability Physics Symposium (IRPS), vol. 1, pp. 5A–5.1–5A–5.6, IEEE,
apr 2017.

[76] U. Celano, C. Gastaldi, S. Subhechha, B. Govoreanu, G. Donadio, A. Franquet,
T. Ahmad, C. Detavernier, O. Richard, H. Bender, L. Goux, G. S. Kar, P. van der
Heide, and W. Vandervorst, “Non-filamentary (VMCO) memory: A two-and
three-dimensional study on switching and failure modes,” in 2017 IEEE Inter-
national Electron Devices Meeting (IEDM), pp. 39.1.1–39.1.4, IEEE, dec 2017.

[77] S. Yu, Z. Li, P.-Y. Chen, H. Wu, B. Gao, D. Wang, W. Wu, and H. Qian, “Binary
neural network with 16 Mb RRAM macro chip for classification and online train-
ing,” in 2016 IEEE International Electron Devices Meeting (IEDM), pp. 16.2.1–
16.2.4, IEEE, dec 2016.

[78] M. Zhao, H. Wu, B. Gao, X. Sun, Y. Liu, P. Yao, Y. Xi, X. Li, Q. Zhang,
K. Wang, S. Yu, and H. Qian, “Characterizing Endurance Degradation of Incre-
mental Switching in Analog RRAM for Neuromorphic Systems,” in 2018 IEEE
International Electron Devices Meeting (IEDM), vol. 2018-Decem, pp. 20.2.1–
20.2.4, IEEE, dec 2018.

[79] A. Grossi, E. Vianello, M. M. Sabry, M. Barlas, L. Grenouillet, J. Coignus,
E. Beigne, T. Wu, B. Q. Le, M. K. Wootters, C. Zambelli, E. Nowak, and S. Mitra,
“Resistive RAM Endurance: Array-Level Characterization and Correction Tech-
niques Targeting Deep Learning Applications,” IEEE Transactions on Electron
Devices, vol. 66, pp. 1281–1288, mar 2019.

Bibliography 222

[80] C. Pan, M. Xie, J. Hu, Y. Chen, and C. Yang, “3M-PCM: Exploiting Multiple
Write Modes MLC Phase Change Main Memory in Embedded Systems,” in Pro-
ceedings of the 2014 International Conference on Hardware/Software Codesign
and System Synthesis, (New York, NY, USA), pp. 1–10, ACM, oct 2014.

[81] Y. Yamaga, Y. Deguchi, S. Fukuyama, and K. Takeuchi, “5x Reliability Enhanced
40nm TaOx Approximate-ReRAM with Domain-Specific Computing for Real-
time Image Recognition of IoT Edge Devices,” in 2018 IEEE Symposium on VLSI
Technology, vol. 2018-June, pp. 109–110, IEEE, jun 2018.

[82] P.-Y. Chen, B. Lin, I.-T. Wang, T.-H. Hou, J. Ye, S. Vrudhula, J.-s. Seo, Y. Cao,
and S. Yu, “Mitigating effects of non-ideal synaptic device characteristics for on-
chip learning,” in 2015 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 194–199, IEEE, nov 2015.

[83] S. Kim, S. Choi, and W. Lu, “Comprehensive Physical Model of Dynamic Resis-
tive Switching in an Oxide Memristor,” ACS Nano, vol. 8, pp. 2369–2376, mar
2014.

[84] S. Larentis, F. Nardi, S. Balatti, D. C. Gilmer, and D. Ielmini, “Resistive Switching
by Voltage-Driven Ion Migration in Bipolar RRAM—Part II: Modeling,” IEEE
Transactions on Electron Devices, vol. 59, pp. 2468–2475, sep 2012.

[85] Y. Jeong, S. Kim, and W. D. Lu, “Utilizing multiple state variables to improve
the dynamic range of analog switching in a memristor,” Applied Physics Letters,
vol. 107, p. 173105, oct 2015.

[86] Y.-F. Wang, Y.-C. Lin, I.-T. Wang, T.-P. Lin, and T.-H. Hou, “Characterization and
Modeling of Nonfilamentary Ta/TaOx/TiO2/Ti Analog Synaptic Device,” Scien-
tific Reports, vol. 5, p. 10150, sep 2015.

[87] M. Das, A. Kumar, R. Singh, M. T. Htay, and S. Mukherjee, “Realization of synap-
tic learning and memory functions in Y 2 O 3 based memristive device fabricated
by dual ion beam sputtering,” Nanotechnology, vol. 29, p. 055203, feb 2018.

[88] R. Degraeve, A. Mallik, D. Garbin, J. Doevenspeck, A. Fantini, D. Rodopoulos,
P. Roussel, B. Govoreanu, P. Hendrickx, L. Di Piazza, J. Stuijt, S. Schaafsma,
P. Debacker, G. Donadio, H. Hody, L. Goux, G. S. Kar, A. Furnemont, A. Mocut,
and D. Verkest, “Opportunities and Challenges of Resistive RAM for Neuromor-
phic Applications,” in 2018 IEEE International Symposium on the Physical and
Failure Analysis of Integrated Circuits (IPFA), vol. 2018-July, pp. 1–5, IEEE, jul
2018.

[89] W. Wu, H. Wu, B. Gao, P. Yao, X. Zhang, X. Peng, S. Yu, and H. Qian, “A
Methodology to Improve Linearity of Analog RRAM for Neuromorphic Comput-
ing,” in 2018 IEEE Symposium on VLSI Technology, vol. 2018-June, pp. 103–104,
IEEE, jun 2018.

[90] S. Chandrasekaran, F. M. Simanjuntak, R. Saminathan, D. Panda, and T.-Y. Tseng,
“Improving linearity by introducing Al in HfO 2 as a memristor synapse device,”
Nanotechnology, vol. 30, p. 445205, nov 2019.

Bibliography 223

[91] K. Moon, M. Kwak, J. Park, D. Lee, and H. Hwang, “Improved Conductance Lin-
earity and Conductance Ratio of 1T2R Synapse Device for Neuromorphic Sys-
tems,” IEEE Electron Device Letters, vol. 38, pp. 1023–1026, aug 2017.

[92] I.-T. Wang, C.-C. Chang, L.-W. Chiu, T. Chou, and T.-H. Hou, “3D Ta/TaO x /TiO
2 /Ti synaptic array and linearity tuning of weight update for hardware neural
network applications,” Nanotechnology, vol. 27, p. 365204, sep 2016.

[93] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn, and
W. D. Lu, “A fully integrated reprogrammable memristor–CMOS system for ef-
ficient multiply–accumulate operations,” Nature Electronics, vol. 2, pp. 290–299,
jul 2019.

[94] P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim+: An integrated device-to-algorithm
framework for benchmarking synaptic devices and array architectures,” in 2017
IEEE International Electron Devices Meeting (IEDM), pp. 6.1.1–6.1.4, IEEE, dec
2017.

[95] S. Yu, Ximeng Guan, and H.-S. P. Wong, “On the stochastic nature of resistive
switching in metal oxide RRAM: Physical modeling, monte carlo simulation, and
experimental characterization,” in 2011 International Electron Devices Meeting,
pp. 17.3.1–17.3.4, IEEE, dec 2011.

[96] M. Gupta, “Thermal noise in nonlinear resistive devices and its circuit representa-
tion,” Proceedings of the IEEE, vol. 70, no. 8, pp. 788–804, 1982.

[97] S. Yu, R. Jeyasingh, Yi Wu, and H.-S. Philip Wong, “Understanding the conduc-
tion and switching mechanism of metal oxide RRAM through low frequency noise
and AC conductance measurement and analysis,” in 2011 International Electron
Devices Meeting, pp. 12.1.1–12.1.4, IEEE, dec 2011.

[98] Z. Fang, H. Y. Yu, W. J. Fan, G. Ghibaudo, J. Buckley, B. DeSalvo, X. Li, X. P.
Wang, G. Q. Lo, and D. L. Kwong, “Current Conduction Model for Oxide-Based
Resistive Random Access Memory Verified by Low-Frequency Noise Analysis,”
IEEE Transactions on Electron Devices, vol. 60, pp. 1272–1275, mar 2013.

[99] E. Simoen, B. Kaczer, M. Toledano-Luque, and C. Claeys, “Random Telegraph
Noise: From a Device Physicist’s Dream to a Designer’s Nightmare,” ECS Trans-
actions, vol. 39, pp. 3–15, sep 2011.

[100] D. Veksler, G. Bersuker, L. Vandelli, A. Padovani, L. Larcher, A. Muraviev,
B. Chakrabarti, E. Vogel, D. C. Gilmer, and P. D. Kirsch, “Random telegraph
noise (RTN) in scaled RRAM devices,” in 2013 IEEE International Reliability
Physics Symposium (IRPS), pp. MY.10.1–MY.10.4, IEEE, apr 2013.

[101] Z. Chai, Characterisation of Novel Resistive Switching Memory Devices. Phd
thesis, Liverpool John Moores University, 2017.

[102] Z. Chai, J. Ma, W. D. Zhang, B. Govoreanu, J. F. Zhang, Z. Ji, and M. Jur-
czak, “Probing the Critical Region of Conductive Filament in Nanoscale HfO 2
Resistive-Switching Device by Random Telegraph Signals,” IEEE Transactions
on Electron Devices, vol. 64, pp. 4099–4105, oct 2017.

Bibliography 224

[103] J. Ma, Z. Chai, W. D. Zhang, J. F. Zhang, Z. Ji, B. Benbakhti, B. Govoreanu,
E. Simoen, L. Goux, A. Belmonte, R. Degraeve, G. S. Kar, and M. Jurczak, “In-
vestigation of Preexisting and Generated Defects in Nonfilamentary a-Si/TiO 2
RRAM and Their Impacts on RTN Amplitude Distribution,” IEEE Transactions
on Electron Devices, vol. 65, pp. 970–977, mar 2018.

[104] Z. Chai, P. Freitas, W. Zhang, F. Hatem, J. F. Zhang, J. Marsland, B. Govoreanu,
L. Goux, and G. S. Kar, “Impact of RTN on Pattern Recognition Accuracy of
RRAM-Based Synaptic Neural Network,” IEEE Electron Device Letters, vol. 39,
pp. 1652–1655, nov 2018.

[105] X. Peng, S. Huang, H. Jiang, A. Lu, and S. Yu, “DNN+NeuroSim V2.0: An
End-to-End Benchmarking Framework for Compute-in-Memory Accelerators for
On-chip Training,” mar 2020.

[106] S. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P.-Y. Chen, H. Yeon, S. Yu, and
J. Kim, “SiGe epitaxial memory for neuromorphic computing with reproducible
high performance based on engineered dislocations,” Nature Materials, vol. 17,
pp. 335–340, apr 2018.

[107] L. Zhang, Study of the Selector Element for Resistive Memory. Phd thesis, KU
Leuven, 2015.

[108] F. Hatem, J. F. Zhang, J. Marsland, P. Freitas, L. Goux, G. S. Kar, Z. Chai,
W. Zhang, A. Fantini, R. Degraeve, S. Clima, D. Garbin, J. Robertson, and Y. Guo,
“Endurance improvement of more than five orders in Ge x Se 1-x OTS selectors by
using a novel refreshing program scheme,” in 2019 IEEE International Electron
Devices Meeting (IEDM), no. 1, pp. 35.2.1–35.2.4, IEEE, dec 2019.

[109] Z. Chai, W. Zhang, R. Degraeve, S. Clima, F. Hatem, J. F. Zhang, P. Freitas,
J. Marsland, A. Fantini, D. Garbin, L. Goux, and G. S. Kar, “Evidence of filamen-
tary switching and relaxation mechanisms in Ge x Se 1-x OTS selectors,” in 2019
Symposium on VLSI Technology, no. 1, (Kyoto), pp. T238–T239, IEEE, jun 2019.

[110] T. M. Mitchell, Machine Learning. McGraw-Hill, 1st ed., 1997.

[111] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep Neural Networks for
Acoustic Modeling in Speech Recognition: The Shared Views of Four Research
Groups,” IEEE Signal Processing Magazine, vol. 29, pp. 82–97, nov 2012.

[112] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with
Neural Networks,” Advances in Neural Information Processing Systems, vol. 4,
pp. 3104–3112, sep 2014.

[113] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly
Learning to Align and Translate,” 3rd International Conference on Learning Rep-
resentations, ICLR 2015 - Conference Track Proceedings, pp. 1–15, sep 2014.

Bibliography 225

[114] R. Collobert, “Deep learning for efficient discriminative parsing,” in Proceed-
ings of the 14th International Con- ference on Artificial Intelligence and Statistics
(AISTATS), vol. 15, (Fort Lauderdale, FL, USA), pp. 224–232, 2011.

[115] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection,” ACM Computing
Surveys, vol. 41, pp. 1–58, jul 2009.

[116] H. Luo, P. L. Carrier, A. Courville, and Y. Bengio, “Texture Modeling with
Convolutional Spike-and-Slab RBMs and Deep Extensions,” Journal of Machine
Learning Research, vol. 31, pp. 415–423, nov 2012.

[117] C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An experimental comparison
of performance measures for classification,” Pattern Recognition Letters, vol. 30,
pp. 27–38, jan 2009.

[118] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educational and
Psychological Measurement, vol. 20, pp. 37–46, apr 1960.

[119] I. H. Witten and E. Frank, “Data mining: practical machine learning tools
and techniques with java implementations,” Acm Sigmod Record, vol. 31, no. 1,
pp. 76–77, 2002.

[120] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. EBL-
Schweitzer, Wiley, 2014.

[121] G. Lebanon and J. D. Lafferty, “Cranking: Combining Rankings Using Con-
ditional Probability Models on Permutations,” in Proceedings of the Nineteenth
International Conference on Machine Learning, ICML ’02, (San Francisco, CA,
USA), pp. 363–370, Morgan Kaufmann Publishers Inc., 2002.

[122] G. W. BRIER, “VERIFICATION OF FORECASTS EXPRESSED IN TERMS
OF PROBABILITY,” Monthly Weather Review, vol. 78, pp. 1–3, jan 1950.

[123] I. J. Good, “Rational Decisions,” in Breakthroughs in Statistics., pp. 365–377,
New York, NY, USA: Springer, 1992.

[124] I. J. Good, “Corroboration, Explanation, Evolving Probability, Simplicity and
a Sharpened Razor,” The British Journal for the Philosophy of Science, vol. 19,
no. 2, pp. 123–143, 1968.

[125] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, vol. 29. MIT Press,
2016.

[126] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[127] M. A. Cauchy, “Méthode générale pour la résolution des systèmes d’équations
simultanées,” Comptes rendus hebdomadaires des séances de l’Académie des Sci-
ences, vol. 25, no. 2, pp. 536–538, 1847.

Bibliography 226

[128] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The Annals
of Mathematical Statistics, vol. 22, pp. 400–407, sep 1951.

[129] B. Polyak, “Some methods of speeding up the convergence of iteration methods,”
USSR Computational Mathematics and Mathematical Physics, vol. 4, pp. 1–17,
jan 1964.

[130] T. P. Xiao, C. H. Bennett, B. Feinberg, S. Agarwal, and M. J. Marinella, “Ana-
log architectures for neural network acceleration based on non-volatile memory,”
Applied Physics Reviews, vol. 7, p. 031301, sep 2020.

[131] F. Rosenblatt, “The Perceptron - A Perceiving and Recognizing Automaton,”
tech. rep., 1957.

[132] F. Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms,” tech. rep., Cornell Aeronautical Lab Inc, Buffalo, NY, dec
1961.

[133] J. Zhu, T. Zhang, Y. Yang, and R. Huang, “A comprehensive review on emerging
artificial neuromorphic devices,” Applied Physics Reviews, vol. 7, p. 011312, mar
2020.

[134] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, pp. 533–536, oct 1986.

[135] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks,” 2nd International Confer-
ence on Learning Representations, ICLR 2014 - Conference Track Proceedings,
pp. 1–22, dec 2013.

[136] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, “Identi-
fying and attacking the saddle point problem in high-dimensional non-convex op-
timization,” Advances in Neural Information Processing Systems, vol. 4, pp. 2933–
2941, jun 2014.

[137] I. J. Goodfellow, O. Vinyals, and A. M. Saxe, “Qualitatively characterizing neu-
ral network optimization problems,” 3rd International Conference on Learning
Representations, ICLR 2015 - Conference Track Proceedings, dec 2014.

[138] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun, “The Loss
Surfaces of Multilayer Networks,” in Proceedings of the 18th International Con-
ference on Artificial Intelligence and Statistics (AISTATS), vol. 38, (San Diego,
CA, USA), 2015.

[139] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,” Journalism Practice, vol. 10,
pp. 730–743, feb 2015.

[140] X. Glorot, Y. Bengio, Z. Liu, H. Wang, L. Weng, and Y. Yang, “Understanding
the difficulty of training deep feedforward neural networks,” in Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics

Bibliography 227

(Y. W. Teh and M. Titterington, eds.), vol. 9 of Proceedings of Machine Learning
Research, (Chia Laguna Resort, Sardinia, Italy), pp. 249–256, PMLR, 2010.

[141] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification,” in 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), vol. 2015 Inter, pp. 1026–1034,
IEEE, dec 2015.

[142] R. A. Jacobs, “Increased rates of convergence through learning rate adaptation,”
Neural Networks, vol. 1, pp. 295–307, jan 1988.

[143] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization.,” Journal of machine learning research,
vol. 12, no. 7, 2011.

[144] T. Tieleman, G. Hinton, and Others, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural networks for
machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[145] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” 3rd
International Conference on Learning Representations, ICLR 2015 - Conference
Track Proceedings, pp. 1–15, dec 2014.

[146] Y. LeCun, “Generalization and network design strategies,” tech. rep., University
of Toronto, 1989.

[147] Zhou and Chellappa, “Computation of optical flow using a neural network,” in
IEEE International Conference on Neural Networks, no. 86, pp. 71–78 vol.2,
IEEE, 1988.

[148] J. H. Holland, “Genetic algorithms and the optimal allocation of trials,” SIAM
journal on computing, vol. 2, no. 2, pp. 88–105, 1973.

[149] A. E. Eiben, P. E. Raué, and Z. Ruttkay, “Genetic algorithms with multi-parent
recombination,” No. June, pp. 78–87, 1994.

[150] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep Learn-
ing with Limited Numerical Precision,” IEEE Transactions on Neural Networks,
vol. 1, pp. 71–80, feb 2015.

[151] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A
Survey of Quantization Methods for Efficient Neural Network Inference,” in Low-
Power Computer Vision, pp. 291–326, Boca Raton: Chapman and Hall/CRC, jan
2022.

[152] D. Soudry, I. Hubara, and R. Meir, “Expectation backpropagation: Parameter-
free training of multilayer neural networks with continuous or discrete weights,”
Advances in Neural Information Processing Systems, vol. 2, no. January, pp. 963–
971, 2014.

Bibliography 228

[153] Z. Cheng, D. Soudry, Z. Mao, and Z. Lan, “Training Binary Multilayer Neural
Networks for Image Classification using Expectation Backpropagation,” pp. 1–8,
mar 2015.

[154] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training Deep
Neural Networks with binary weights during propagations,” NIPS, p. 10, nov
2015.

[155] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net: Train-
ing Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients,”
vol. 1, pp. 1–13, jun 2016.

[156] G. E. Hinton, “Neural networks for machine learning.,” 2012.

[157] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized
Neural Networks: Training Neural Networks with Low Precision Weights and
Activations,” Journal of Machine Learning Research, vol. 18, pp. 1–30, sep 2016.

[158] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan, “Training Deep
Neural Networks with 8-bit Floating Point Numbers,” Advances in Neural Infor-
mation Processing Systems, vol. 2018-Decem, pp. 7675–7684, dec 2018.

[159] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko, “Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2704–2713, IEEE, jun 2018.

[160] A. Fan, P. Stock, B. Graham, E. Grave, R. Gribonval, H. Jegou, and A. Joulin,
“Training with Quantization Noise for Extreme Model Compression,” 2020.

[161] E. Stromatias and J. S. Marsland, “Supervised learning in Spiking Neural Net-
works with limited precision: SNN/LP,” in 2015 International Joint Conference
on Neural Networks (IJCNN), vol. 1407.0265, pp. 1–7, IEEE, jul 2015.

[162] S. Dhar, J. Guo, J. J. Liu, S. Tripathi, U. Kurup, and M. Shah, “A Survey of
On-Device Machine Learning: An Algorithms and Learning Theory Perspective,”
ACM Transactions on Internet of Things, vol. 2, pp. 1–49, aug 2021.

[163] K. Crammer, A. Kulesza, and M. Dredze, “Adaptive regularization of weight
vectors,” Advances in neural information processing systems, vol. 22, 2009.

[164] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature detec-
tors,” pp. 1–18, jul 2012.

[165] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, “Neural Networks with
Few Multiplications,” 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings, pp. 1–9, oct 2015.

[166] M. Kim and P. Smaragdis, “Bitwise Neural Networks,” vol. 37, jan 2016.

Bibliography 229

[167] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet
Classification Using Binary Convolutional Neural Networks,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 9908 LNCS, pp. 525–542, 2016.

[168] E. van den Berg, B. Ramabhadran, and M. Picheny, “Training variance and per-
formance evaluation of neural networks in speech,” in 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2287–
2291, IEEE, mar 2017.

[169] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications,” 2017.

[170] Y. Yang, L. Deng, S. Wu, T. Yan, Y. Xie, and G. Li, “Training high-performance
and large-scale deep neural networks with full 8-bit integers,” Neural Networks,
vol. 125, pp. 70–82, may 2020.

[171] L. Cambier, A. Bhiwandiwalla, T. Gong, M. Nekuii, O. H. Elibol, and H. Tang,
“Shifted and Squeezed 8-bit Floating Point format for Low-Precision Training of
Deep Neural Networks,” vol. 8, pp. 1–12, 2020.

[172] S. Wiedemann, T. Mehari, K. Kepp, and W. Samek, “Dithered backprop: A
sparse and quantized backpropagation algorithm for more efficient deep neural
network training,” in 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), vol. 2020-June, pp. 3096–3104, IEEE, jun
2020.

[173] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised learning
using graphics processors,” in Proceedings of the 26th Annual International Con-
ference on Machine Learning - ICML ’09, (New York, New York, USA), pp. 1–8,
ACM Press, 2009.

[174] A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, B. Catanzaro, and N. Andrew,
“Deep learning with COTS HPC systems,” in Proceedings of the 30th Interna-
tional Conference on Machine Learning (S. Dasgupta and D. McAllester, eds.),
vol. 28 of Proceedings of Machine Learning Research, (Atlanta, Georgia, USA),
pp. 1337–1345, PMLR, 2013.

[175] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam, N. Ge,
R. S. Williams, J. Yang, and H. P. Labs, “Dot-Product Engine for Neuromorphic
Computing: Programming 1T1M Crossbar to Accelerate Matrix-Vector Multipli-
cation,” IEEE Design Automation Conference, pp. 1—-6, 2016.

[176] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME:
A Novel Processing-in-Memory Architecture for Neural Network Computation in
ReRAM-Based Main Memory,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), pp. 27–39, IEEE, jun 2016.

Bibliography 230

[177] G. W. Burr, R. M. Shelby, S. Sidler, C. di Nolfo, J. Jang, I. Boybat, R. S. Shenoy,
P. Narayanan, K. Virwani, E. U. Giacometti, B. N. Kurdi, and H. Hwang, “Experi-
mental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000
Synapses) Using Phase-Change Memory as the Synaptic Weight Element,” IEEE
Transactions on Electron Devices, vol. 62, pp. 3498–3507, nov 2015.

[178] M. Bavandpour, M. R. Mahmoodi, and D. B. Strukov, “Energy-Efficient Time-
Domain Vector-by-Matrix Multiplier for Neurocomputing and Beyond,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 66, pp. 1512–1516,
sep 2019.

[179] M. J. Marinella, S. Agarwal, A. Hsia, I. Richter, R. Jacobs-Gedrim, J. Niroula,
S. J. Plimpton, E. Ipek, and C. D. James, “Multiscale Co-Design Analysis of En-
ergy, Latency, Area, and Accuracy of a ReRAM Analog Neural Training Accel-
erator,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 8, pp. 86–101, mar 2018.

[180] M. N. Bojnordi and E. Ipek, “Memristive Boltzmann machine: A hardware ac-
celerator for combinatorial optimization and deep learning,” in 2017 Fifth Berkeley
Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop
(E3S), vol. 2018-Janua, pp. 1–3, IEEE, oct 2017.

[181] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,
M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A Convolutional Neural
Network Accelerator with In-Situ Analog Arithmetic in Crossbars,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), pp. 14–26, IEEE, jun 2016.

[182] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision tuning of
state for memristive devices by adaptable variation-tolerant algorithm,” Nanotech-
nology, vol. 23, p. 075201, feb 2012.

[183] E. J. Merced-Grafals, N. Dávila, N. Ge, R. S. Williams, and J. P. Strachan,
“Repeatable, accurate, and high speed multi-level programming of memristor
1T1R arrays for power efficient analog computing applications,” Nanotechnology,
vol. 27, p. 365202, sep 2016.

[184] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang,
R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan, “Memristor-Based Ana-
log Computation and Neural Network Classification with a Dot Product Engine,”
Advanced Materials, vol. 30, p. 1705914, mar 2018.

[185] M. R. Mahmoodi and D. Strukov, “An ultra-low energy internally analog, exter-
nally digital vector-matrix multiplier based on NOR flash memory technology,” in
Proceedings of the 55th Annual Design Automation Conference, vol. Part F1377,
(New York, NY, USA), pp. 1–6, ACM, jun 2018.

[186] S. N. Truong and K.-S. Min, “New Memristor-Based Crossbar Array Architec-
ture with 50-% Area Reduction and 48-% Power Saving for Matrix-Vector Mul-
tiplication of Analog Neuromorphic Computing,” JSTS:Journal of Semiconductor
Technology and Science, vol. 14, pp. 356–363, jun 2014.

Bibliography 231

[187] Y. Zhang, X. Wang, and E. G. Friedman, “Memristor-Based Circuit Design for
Multilayer Neural Networks,” IEEE Transactions on Circuits and Systems I: Reg-
ular Papers, vol. 65, pp. 677–686, feb 2018.

[188] P. Narayanan, A. Fumarola, L. L. Sanches, K. Hosokawa, S. C. Lewis, R. M.
Shelby, and G. W. Burr, “Toward on-chip acceleration of the backpropagation
algorithm using nonvolatile memory,” IBM Journal of Research and Development,
vol. 61, no. 4, pp. 1–11, 2017.

[189] A. Fumarola, P. Narayanan, L. L. Sanches, S. Sidler, J. Jang, K. Moon, R. M.
Shelby, H. Hwang, and G. W. Burr, “Accelerating machine learning with Non-
Volatile Memory: Exploring device and circuit tradeoffs,” in 2016 IEEE Interna-
tional Conference on Rebooting Computing (ICRC), pp. 1–8, IEEE, oct 2016.

[190] S. Agarwal, T.-T. Quach, O. Parekh, A. H. Hsia, E. P. DeBenedictis, C. D. James,
M. J. Marinella, and J. B. Aimone, “Energy Scaling Advantages of Resistive Mem-
ory Crossbar Based Computation and Its Application to Sparse Coding,” Frontiers
in Neuroscience, vol. 9, pp. 1–9, jan 2016.

[191] E. Rosenthal, S. Greshnikov, D. Soudry, and S. Kvatinsky, “A fully ana-
log memristor-based neural network with online gradient training,” in 2016
IEEE International Symposium on Circuits and Systems (ISCAS), vol. 2016-July,
pp. 1394–1397, IEEE, may 2016.

[192] D. Kadetotad, Z. Xu, A. Mohanty, P.-Y. Chen, B. Lin, J. Ye, S. Vrudhula, S. Yu,
Y. Cao, and J.-s. Seo, “Parallel Architecture With Resistive Crosspoint Array for
Dictionary Learning Acceleration,” IEEE Journal on Emerging and Selected Top-
ics in Circuits and Systems, vol. 5, pp. 194–204, jun 2015.

[193] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A Pipelined ReRAM-Based
Accelerator for Deep Learning,” in 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 541–552, IEEE, feb 2017.

[194] C. Lammie, W. Xiang, and M. Rahimi Azghadi, “Modeling and simulating in-
memory memristive deep learning systems: An overview of current efforts,” Ar-
ray, vol. 13, p. 100116, mar 2022.

[195] M. Imani, M. Samragh Razlighi, Y. Kim, S. Gupta, F. Koushanfar, and T. Ros-
ing, “Deep Learning Acceleration with Neuron-to-Memory Transformation,” in
2020 IEEE International Symposium on High Performance Computer Architec-
ture (HPCA), pp. 1–14, IEEE, feb 2020.

[196] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S. Williams,
P. Faraboschi, W.-m. Hwu, J. P. Strachan, K. Roy, and D. S. Milojicic, “PUMA: A
Programmable Ultra-efficient Memristor-based Accelerator for Machine Learning
Inference,” Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pp. 715–
731, jan 2019.

Bibliography 232

[197] M.-Y. Lin, H.-Y. Cheng, W.-T. Lin, T.-H. Yang, I.-C. Tseng, C.-L. Yang, H.-W.
Hu, H.-S. Chang, H.-P. Li, and M.-F. Chang, “DL-RSIM: A Simulation Frame-
work to Enable Reliable ReRAM-based Accelerators for Deep Learning,” in Pro-
ceedings of the International Conference on Computer-Aided Design, (New York,
NY, USA), pp. 1–8, ACM, nov 2018.

[198] X. Ma, G. Yuan, S. Lin, C. Ding, F. Yu, T. Liu, W. Wen, X. Chen, and Y. Wang,
“Tiny but Accurate: A Pruned, Quantized and Optimized Memristor Crossbar
Framework for Ultra Efficient DNN Implementation,” in 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC), vol. 2020-Janua, pp. 301–306,
IEEE, jan 2020.

[199] G. Yuan, X. Ma, C. Ding, S. Lin, T. Zhang, Z. S. Jalali, Y. Zhao, L. Jiang,
S. Soundarajan, and Y. Wang, “An Ultra-Efficient Memristor-Based DNN Frame-
work with Structured Weight Pruning and Quantization Using ADMM,” in 2019
IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED), vol. 2019-July, pp. 1–6, IEEE, jul 2019.

[200] C. Lammie and M. R. Azghadi, “MemTorch: A Simulation Framework for Deep
Memristive Cross-Bar Architectures,” in 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), vol. 2020-Octob, pp. 1–5, IEEE, oct 2020.

[201] C. Lammie, W. Xiang, B. Linares-Barranco, and M. Rahimi Azghadi, “Mem-
Torch: An Open-source Simulation Framework for Memristive Deep Learning
Systems,” Neurocomputing, vol. 485, pp. 124–133, may 2022.

[202] X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “DNN+NeuroSim: An End-to-
End Benchmarking Framework for Compute-in-Memory Accelerators with Versa-
tile Device Technologies,” in 2019 IEEE International Electron Devices Meeting
(IEDM), vol. 2019-Decem, pp. 32.5.1–32.5.4, IEEE, dec 2019.

[203] A. Lu, X. Peng, W. Li, H. Jiang, and S. Yu, “NeuroSim Simulator for Compute-
in-Memory Hardware Accelerator: Validation and Benchmark,” Frontiers in Arti-
ficial Intelligence, vol. 4, no. June, pp. 1–10, 2021.

[204] M. J. Rasch, D. Moreda, T. Gokmen, M. Le Gallo, F. Carta, C. Goldberg,
K. El Maghraoui, A. Sebastian, and V. Narayanan, “A Flexible and Fast PyTorch
Toolkit for Simulating Training and Inference on Analog Crossbar Arrays,” in
2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and
Systems (AICAS), pp. 1–4, IEEE, jun 2021.

[205] X. Dong, C. Xu, N. Jouppi, and Y. Xie, “NVSim: A Circuit-Level Performance,
Energy, and Area Model for Emerging Non-volatile Memory,” in Emerging Mem-
ory Technologies, vol. 9781441995, pp. 15–50, New York, NY: Springer New
York, 2014.

[206] Y.-S. Fan, L. Zhang, D. Crotti, T. Witters, M. Jurczak, and B. Govoreanu, “Direct
Evidence of the Overshoot Suppression in Ta¡sub¿2¡/sub¿O¡sub¿5¡/sub¿-Based
Resistive Switching Memory With an Integrated Access Resistor,” IEEE Electron
Device Letters, vol. 36, pp. 1027–1029, oct 2015.

Bibliography 233

[207] L. Goux, A. Fantini, R. Degraeve, N. Raghavan, R. Nigon, S. Strangio, G. Kar,
D. J. Wouters, Y. Y. Chen, M. Komura, F. De Stefano, V. V. Afanas’Ev, and M. Ju-
rczak, “Understanding of the intrinsic characteristics and memory trade-offs of
sub-µA filamentary RRAM operation,” Digest of Technical Papers - Symposium
on VLSI Technology, vol. 88, no. 2011, pp. 2012–2013, 2013.

[208] M. E. Pereira, J. Deuermeier, P. Freitas, P. Barquinha, W. Zhang, R. Martins,
E. Fortunato, and A. Kiazadeh, “Tailoring the synaptic properties of a-IGZO mem-
ristors for artificial deep neural networks,” APL Materials, vol. 10, p. 011113, jan
2022.

[209] I. The MathWorks, Curve Fitting Toolbox. Natick, Massachusetts, United State,
2022.

[210] MATLAB, List of library models for curve and surface fitting,
2022. [Online]. Available: https://www.mathworks.com/help/curvefit/
list-of-library-models-for-curve-and-surface-fitting.html. [Accessed: 30-
Jan-2023].

[211] MATLAB, Create datastore for large collections of data, 2022. [Online]. Avail-
able: https://www.mathworks.com/help/matlab/ref/datastore.html [Accessed: 31-
Jan-2023].

[212] MATLAB, layerGraph - Graph of network layers for deep learning, 2022.
[Online]. Available: https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.
layergraph.html [Accessed: 31-Jan-2023].

[213] I. The MathWorks, Deep Learning Toolbox. Natick, Massachusetts, United State,
2022.

[214] MATLAB, dlnetwork - Deep learning network for custom training loops,
2022. [Online]. Available: https://www.mathworks.com/help/deeplearning/ref/
dlnetwork.html [Accessed: 31-Jan-2023].

[215] MATLAB, trainingOptions - Options for training deep learning neural network,
2022. [Online]. Available: https://www.mathworks.com/help/deeplearning/ref/
trainingoptions.html [Accessed: 31-Jan-2023].

[216] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Lo-
calization,” International Journal of Computer Vision, vol. 128, pp. 336–359, oct
2016.

[217] MATLAB, gradCAM - Explain network predictions using Grad-CAM, 2022.
[Online]. Available: https://www.mathworks.com/help/deeplearning/ref/gradcam.
html [Accessed: 01-Feb-2023].

[218] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T.
Chen, and M.-J. Tsai, “Metal–Oxide RRAM,” Proceedings of the IEEE, vol. 100,
pp. 1951–1970, jun 2012.

https://www.mathworks.com/help/curvefit/list-of-library-models-for-curve-and-surface-fitting.html
https://www.mathworks.com/help/curvefit/list-of-library-models-for-curve-and-surface-fitting.html
https://www.mathworks.com/help/matlab/ref/datastore.html
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layergraph.html
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layergraph.html
https://www.mathworks.com/help/deeplearning/ref/dlnetwork.html
https://www.mathworks.com/help/deeplearning/ref/dlnetwork.html
https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html
https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html
https://www.mathworks.com/help/deeplearning/ref/gradcam.html
https://www.mathworks.com/help/deeplearning/ref/gradcam.html

Bibliography 234

[219] D. Ielmini, “Brain-inspired computing with resistive switching memory
(RRAM): Devices, synapses and neural networks,” Microelectronic Engineering,
vol. 190, pp. 44–53, 2018.

[220] M. Kirton and M. Uren, “Noise in solid-state microstructures: A new perspective
on individual defects, interface states and low-frequency (1/ ƒ) noise,” Advances
in Physics, vol. 38, pp. 367–468, jan 1989.

[221] F. M. Puglisi, N. Zagni, L. Larcher, and P. Pavan, “A new verilog-A compact
model of random telegraph noise in oxide-based RRAM for advanced circuit
design,” in 2017 47th European Solid-State Device Research Conference (ESS-
DERC), pp. 204–207, IEEE, sep 2017.

[222] S. Balatti, S. Ambrogio, A. Cubeta, A. Calderoni, N. Ramaswamy, and
D. Ielmini, “Voltage-dependent random telegraph noise (RTN) in HfOx resistive
RAM,” in 2014 IEEE International Reliability Physics Symposium, pp. MY.4.1–
MY.4.6, IEEE, jun 2014.

[223] MATLAB, Lognormal Distribution, 2023. [Online]. Available: https://www.
mathworks.com/help/stats/lognormal-distribution.html [Accessed: 12-Sep-2023].

[224] M. Nielsen, Neural Networks and Deep Learning. 2015.

[225] J. Kang, Z. Yu, L. Wu, Y. Fang, Z. Wang, Y. Cai, Z. Ji, J. Zhang, R. Wang,
Y. Yang, and R. Huang, “Time-dependent variability in RRAM-based analog neu-
romorphic system for pattern recognition,” in 2017 IEEE International Electron
Devices Meeting (IEDM), pp. 6.4.1–6.4.4, IEEE, dec 2017.

[226] S. Choi, Y. Yang, and W. Lu, “Random telegraph noise and resistance switching
analysis of oxide based resistive memory,” Nanoscale, vol. 6, no. 1, pp. 400–404,
2014.

[227] F. M. Puglisi, L. Larcher, A. Padovani, and P. Pavan, “A Complete Statistical In-
vestigation of RTN in HfO2-Based RRAM in High Resistive State,” IEEE Trans-
actions on Electron Devices, vol. 62, pp. 2606–2613, aug 2015.

[228] A. Fantini, L. Goux, R. Degraeve, D. Wouters, N. Raghavan, G. Kar, A. Bel-
monte, Y.-Y. Chen, B. Govoreanu, and M. Jurczak, “Intrinsic switching variability
in HfO2 RRAM,” in 2013 5th IEEE International Memory Workshop, no. June
2016, pp. 30–33, IEEE, may 2013.

[229] A. Fantini, G. Gorine, R. Degraeve, L. Goux, C. Y. Chen, A. Redolfi, S. Clima,
A. Cabrini, G. Torelli, and M. Jurczak, “Intrinsic program instability in HfO2
RRAM and consequences on program algorithms,” in Technical Digest - Interna-
tional Electron Devices Meeting, IEDM, vol. 2016-Febru, pp. 7.5.1–7.5.4, IEEE,
dec 2015.

[230] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “RRAM-Based Ana-
log Approximate Computing,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 12, pp. 1905–1917, 2015.

https://www.mathworks.com/help/stats/lognormal-distribution.html
https://www.mathworks.com/help/stats/lognormal-distribution.html

Bibliography 235

[231] MATLAB, Weibull Distribution, 2023. [Online]. Available: https://www.
mathworks.com/help/stats/weibull-distribution.html [Accessed: 12-Sep-2023].

[232] S. Kim, M. Lim, Y. Kim, H.-D. Kim, and S.-J. Choi, “Impact of Synaptic De-
vice Variations on Pattern Recognition Accuracy in a Hardware Neural Network,”
Scientific Reports, vol. 8, p. 2638, feb 2018.

[233] S. Agarwal, R. B. Jacobs Gedrim, A. H. Hsia, D. R. Hughart, E. J. Fuller, A. A.
Talin, C. D. James, S. J. Plimpton, M. J. Marinella, R. B. Gedrim, A. H. Hsia,
D. R. Hughart, E. J. Fuller, A. A. Talin, C. D. James, S. J. Plimpton, and M. J.
Marinella, “Achieving ideal accuracies in analog neuromorphic computing using
periodic carry,” in 2017 Symposium on VLSI Technology, pp. T174–T175, IEEE,
jun 2017.

[234] S. N. Truong, K. V. Pham, W. Yang, S. Shin, K. Pedrotti, and K.-S. Min, “New
pulse amplitude modulation for fine tuning of memristor synapses,” Microelec-
tronics Journal, vol. 55, pp. 162–168, sep 2016.

[235] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. di Nolfo, S. Si-
dler, M. Giordano, M. Bodini, N. C. P. Farinha, B. Killeen, C. Cheng, Y. Jaoudi,
and G. W. Burr, “Equivalent-accuracy accelerated neural-network training using
analogue memory,” Nature, vol. 558, pp. 60–67, jun 2018.

[236] S. R. Nandakumar, M. Le Gallo, C. Piveteau, V. Joshi, G. Mariani, I. Boy-
bat, G. Karunaratne, R. Khaddam-Aljameh, U. Egger, A. Petropoulos, T. An-
tonakopoulos, B. Rajendran, A. Sebastian, and E. Eleftheriou, “Mixed-Precision
Deep Learning Based on Computational Memory,” Frontiers in Neuroscience,
vol. 14, may 2020.

https://www.mathworks.com/help/stats/weibull-distribution.html
https://www.mathworks.com/help/stats/weibull-distribution.html

	Declaration
	Abstract
	Main contributions
	Other contributions
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction & literature review
	1.1 Memory technology
	1.1.1 Conventional memory technology
	1.1.2 Emerging non-volatile memory
	1.1.3 Introduction to RRAM
	1.1.3.1 Switching model
	1.1.3.2 Nature of defects
	1.1.3.3 Operation scheme

	1.1.4 Key performance metrics
	1.1.4.1 Retention
	1.1.4.2 Endurance
	1.1.4.3 Nonlinearity
	1.1.4.4 Variability
	1.1.4.5 Noise
	1.1.4.6 Power
	1.1.4.7 Scalability
	1.1.4.8 Comparison between different eNVM

	1.2 Learning algorithms for neuromorphic systems
	1.2.1 Machine learning concepts
	1.2.1.1 The task T
	1.2.1.2 The performance measure P
	1.2.1.3 The experience E
	1.2.1.4 Gradient-based learning
	1.2.1.5 Feedforward Networks
	1.2.1.6 Backpropagation
	1.2.1.7 Challenges in optimization
	1.2.1.8 Optimization techniques for deep models
	1.2.1.9 Convolutional Neural Networks
	1.2.1.10 Genetic Algorithms

	1.2.2 Limited Precision algorithms
	1.2.2.1 Expectation Backpropagation
	1.2.2.2 Binarized Neural Networks
	1.2.2.3 Other Limited Precision Approaches

	1.3 Neuromorphic systems with non-volatile memories
	1.3.1 Architectures for inference
	1.3.1.1 VMM in crossbars
	1.3.1.2 Input signal encoding
	1.3.1.3 Synaptic bit slicing
	1.3.1.4 Signed computation

	1.3.2 Architectures for training
	1.3.2.1 Backpropagation in neuromorphic architectures
	1.3.2.2 Parallel weight update
	1.3.2.3 Batch training

	1.3.3 Neuromorphic simulation frameworks

	2 Devices and characterization methodology
	2.1 Devices
	2.2 Instrumentation
	2.3 DC measurements
	2.3.1 Stepped IV measurements
	2.3.2 DC RTN measurements

	2.4 AC Programming
	2.5 Neuromorphic interface and programming
	2.5.1 Identical pulse train programming
	2.5.2 Staged programming and linear response
	2.5.3 Neuromorphic programming GUI

	3 Simulation framework
	3.1 Variability analysis
	3.1.1 Data entry
	3.1.2 Analysis
	3.1.3 Non-idealities
	3.1.3.1 Discretization
	3.1.3.2 D2D
	3.1.3.3 C2C

	3.1.4 Plots

	3.2 NN definition
	3.2.1 Session Manager
	3.2.2 Options1
	3.2.2.1 Loading files
	3.2.2.2 NN Layers
	3.2.2.3 NN Training Options
	3.2.2.4 Others

	3.2.3 Options2
	3.2.3.1 Plot Options
	3.2.3.2 Weight Range Rescaling

	3.3 Summary

	4 Impact of RRAM non-idealities on inference
	4.1 Impact of RTN
	4.2 Impact of other read noises
	4.3 Impact of programming variability on inference
	4.4 Summary

	5 Impact of RRAM non-idealities on training
	5.1 Natural response and Non-idealities
	5.2 Impact of non-idealities during SET and RESET
	5.3 Linear response and Non-idealities
	5.4 Selective programming
	5.5 Impact of NN topology
	5.6 Impact of Learning Rate
	5.7 Dynamic weight range rescaling
	5.8 Summary

	6 Conclusions & future perspectives
	6.1 Conclusions
	6.1.1 Conclusions on inference
	6.1.2 Conclusions on training

	6.2 Future perspectives
	6.2.1 Extending the simulation framework
	6.2.2 Future perspectives for inference
	6.2.3 Future perspectives for training

	A Impact of learning rate
	B Impact of Dynamic Range Rescaling
	C Limited Precision training based on genetic algorithms
	C.0.1 Algorithm structure and typical results
	C.0.2 Impact of weight bitwidth
	C.0.3 Impact of mutation rate and activation functions
	C.0.4 Impact of read noise
	C.0.5 LP GA Conclusions

	Bibliography

