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Abstract

Detecting zero-day malware using dynamic analysis techniques has
proven to be far more effective than traditional signature-based meth-
ods. One specific approach that has emerged in recent years is the
use of graphs to represent executable behavior, which can be subse-
quently used to learn patterns. However, many current graph repre-
sentations omit key parameter information, meaning that the behav-
ioral impact of variable changes cannot be reliably understood. To
combat these shortcomings, we present a new method for malware
detection by applying a graph attention network on multi-edge direc-
tional heterogeneous graphs constructed from API calls*. The exper-
iments show the TPR and FAR scores demonstrated by our model,
achieve better performance than those from other related works.

Keywords: malware detection, dynamic analysis, deep learning, graph
representation.

*Source code and dataset: https://github.com/miamor/HAN-sec-new
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1 Introduction

The COVID-19 pandemic has led to rapid shifts in working patterns, with
remote working becoming the new norm globally. Unfortunately, this has
exposed a myriad of flaws with access technologies, security technologies and
user education. One of the threats that has thrived during the pandemic is
malware [1]. Despite the many cloud, network and endpoint based defensive
technologies available, it has re-emphasized its position as a continual and
significant security challenge [2].

The global pandemic has provided an ideal situation to demonstrate the
adaptability and rapid evolutionary capabilities of malware. COVID-19 has
been extensively leveraged as successful bait for many social engineering led
malware campaigns. This has resulted in an estimated 667% spike in phishing
emails, 105% growth in ransomware samples and 128% growth in new Trojans
over the past 12 months [1]. This in part helps to explain why the development
of effective detection techniques presents such a challenge. Furthermore, it is
estimated that 560,000 [2][3] new pieces of malware are detected every day, and
new evasion techniques are helping to drive this growth. Therefore, the need
to identify and categorize malware (both new and existing), in an effective
way, is clear.

Existing malware analysis techniques can typically be categorized into two
main types: static and dynamic [? ]. Static techniques such as binary fin-
gerprinting, packer detection and debugging, focus on the identification of
structural patterns and signatures within the binary without requiring its
execution. However, malware samples that employ obfuscation such as code
refactoring, NOP code insertion and encoding can easily circumvent such
techniques. Dynamic techniques can overcome the majority of such coun-
termeasures, as they primarily focus on the tracing and identification of
behavioral patterns exhibited by the binary during runtime [? ]. Despite being
less vulnerable to obfuscation, such techniques are not immune. Similarly,
dynamic approaches cannot replicate all possible environmental conditions to
capture an exhaustive list of possible behavioral patterns.

Manually analyzing a binary to identify malicious behavior is a highly
laborious and time-consuming process. Consequently, recent research projects
have aspired to increase the level of automation. One of the current research
areas of interest is the application of visualization approaches to better rep-
resent the vast and complex behavior of executing binaries. As a dynamic
technique, such approaches are able to construct behavioral representations
with a good level of accuracy. There have been various different approaches
proposed such as the use of greyscale images [4], RGB images [5], heat maps [6],
histograms [7] and most commonly call flow graphs [8]. The results achieved in
existing works have demonstrated promising levels of improvement over more
traditional approaches.

However, despite these improvements, behavioral obfuscation still poses a
significant technical challenge to these approaches. Simply, obfuscation (com-
monly used by metamorphic and polymorphic malware) introduces varying
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degrees of change. Without understanding the context behind these changes,
it is difficult to ascertain the reasoning (e.g. are additional calls designed to
render existing representations obsolete or do they serve a specific functional
purpose). One major limitation of current graph-based methods [9][10][11] is
the data used to generate the representations is usually abstract and frequently
omits important information, which may provide much needed context.

To address these limitations, this paper proposes a new graph-based rep-
resentation for binaries, which embeds various types of useful information
typically omitted by existing techniques. This information includes APIs used,
API calls, connection types and key arguments supplied to each API. The
benefit of this is the increased level of contextual understanding it offers. To
complement this method, a bespoke neural network model has been devised,
which has been trained on node-level and semantic-level embedding. The main
contributions of this work are as follows:

� A new method to represent a binary as a Multi-edge Directional Hetero-
geneous Graph (MDHG), which unlike existing methods, can retain more
important behavioral characteristics.

� A bespoke deep learning model to learn features from the constructed
graphs. This introduces an edge-weighing layer, along with data encod-
ing techniques, to focus on the arguments of each API, thus weighting the
importance of each call.

The remainder of this paper is organized as follows: Section 2 provides an
overview of related research focused on automated malware detection. Section
3 provides a detailed description of our proposed approach. Section 4 presents
and discusses the experiment configuration and the results achieved. Finally,
conclusions regarding the findings of this paper are drawn in Section 5.

2 Related Work

In an attempt to address the challenge of effective identification of malware,
there are many ongoing research projects seeking to develop new and improved
techniques. This section highlights some of the cutting-edge work pertinent to
the focus of this paper. Currently, the two main general categories of approach
for representing behavioral data are text-based and graph-based.

2.1 Text-Based Representations

For text-based methods, most involve the use of the use of machine learn-
ing (either shallow or deep learning) for either decisions or feature extraction.
Yu et al. [12] gave an overview of behavioral description methods including
XML-based, semantic description methods, description languages and sev-
eral text-based. Hongfa et al. [13] represented system call sequences with
their MIST instructions and used an n-gram algorithm to extract features.
In [14] Zhao et al. proposed the use of a control flow graph to generate an
execution tree and form an opcode stream. N-gram is also used to generate
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feature set afterwards. Sequence alignment algorithms was used in [15] for
common call sequence extraction. However, the complexity of sequence align-
ment algorithms was too large and computing time was too high. Based on
NLP techniques, Tran et al. in [16] enhanced the conventional ML algorithms
for API calls analysis by doc2vec, N-gram and TF-IDF methods. The n-gram
analysis method achieved some good results, but it faced the challenge of
optimizing the values of n and L. The current pace of malware development
requires models that can seek patterns and informative features autonomously.
Pascanu et al. in [17] were the first to use a hybrid model of RNN and a
machine learning classifier to predict the next API call. Kolosnjaji et al. in [18]
proposed a method to detect and classify malware in series of opcodes rep-
resentation, using a Convolutional Neural Network (CNN) and feed-forward
layers. This model used static analysis of portable executable files so hard to
detect malware with obfuscation and detection evasion techniques. RNN and
LSTM are also experimented with in various existing works but largely face
the same problems [9][19][20]. Homayoun et al. compared the use of LSTM
and CNN when identifying ransomware families through API call sequences,
concluding that LSTM offered increased accuracy [21]. Qin et al. [22] also pro-
pose an API call sequence-based detection for ransomware. Their method is
based on an adapted version of the TextCNN model.

2.2 Graphical Representations

An emerging trend observed in related research is the application of graph
neural networks, which has proven effective for both representing behavior
and for feature extraction. Anderson et al. [23] generated Markov chain graphs
from dynamic trace data, and applied graph kernels to acquire a similarity
matrix, which was sent to a Support Vector Machine (SVM). Naval et al. [24]
extracted system call traces by monitoring malware execution and transform-
ing the traces into Ordered System-Call Graphs (OSCGs). Another common
type of graph that is used frequently in visualizing malware behavior data
is Quantitative Data Flow Graph (QDFG) as introduced by Wüchner et al.
[10], however, this work only formalizes heuristics to identify malware. Work
by Hung et al. [11] outline an extended version of the traditional QDFG by
subsequently applying a Graph Convolutional Network (GCN). Although this
graph succeeded in expressing more informative data, it still lacks some details,
for example each entity is only identified by its type (i.e. process, file, reg-
istry, network) but does not contain any more data such as its name, path or
arguments etc.

In [25], System-call Dependency Graphs (ScD-graphs) and constructed
using traces captured through dynamic taint analysis. A set of detection
and classification techniques are then applied on a weighted directed graph.
Dynamic taint analysis is also used by Ding et al. [26], who use the data to
construct a graph of common behavioral features of malware families.

Zhang et al. propose the use of heterogeneous graphs for the detection of
malicious domains through the analysis of DNS traffic [27]. Their approach
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tackles the omission of important information from graphical representation
of domain names through the use of an attributed heterogeneous information
network.

Jiang et al. [28] also proposed the use of heterogeneous graphs to detect
Android malware. The graphs are used to represent the relationships between
code regions in Android apps, which enables the structural and semantic
features to be included.

It can be inferred that behavioral data contains different types of infor-
mation, including different API categories, different objects and resources
that the software influences. Therefore, this signifies that heterogeneous graph
would be a suitable format in which to illustrate behavioral data. Currently,
there is very little existing work investigating the use of heterogeneous graphs,
especially in malware detection problem. Shen Wang et al. [37] proposed the
use of heterogeneous graph for malware detection. The authors used invariant
graphs to capture the interactions between different pairs of system entities.
They used an adjacency matrix to store the structure of graph. In this way,
this graph can represent the relation between two entities by a single edge but
cannot store other important information between them such as the times that
a process called another process, or the quantity of information transferred.
We believe our work is the first to represent the most important behavioral
data of a program, as a heterogeneous graph.

3 Proposed Method

Throughout the remainder of this paper, we will use the term “dynamic behav-
ioral data” in reference to the primary source of data being utilized. In the
context of this paper, this specifically refers to the sequence of API calls (and
their associated data) observed from an executing binary. The data used in
this proposed method will be generated through the use of Cuckoo, the auto-
mated malware analysis sandbox. The methods presented in this paper are
based heavily upon those featured in our previously published work [11][30].

3.1 Graph Representation

The dynamic behavioral data captured is used to construct the Multi-edge
Directional Heterogeneous Graphs (MDHGs), subsequently an attention neu-
ral network (inspired by the work of Wang et al. [31]) is used to differentiate
between malicious and benign binaries.

Entities and Connections: The MDHGs are constructed using six types
of entities (graph nodes): Process, File, Registry, ProcessAPI, FileAPI and
RegistryAPI. There are also six types of connections that can be established
between the entities:

� Process-ProcessAPI: connection between a process handle (process entity)
and a Process API.
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� File-FileAPI: connection between a file handle (file entity) and a File API.
� Registry-RegistryAPI: connection between a registry handle (registry
entity) and a Registry API.

� Process-FileAPI: connection between a process handle and a File API.
� Process-RegistryAPI: connection between a process handle and a Registry
API

� Self-loop: A node can connect to itself, in order for its own features to be
taken into consideration.

It is important to note that some potential connections were not listed
previously, as they would never normally be made e.g. connections between a
file handle and a registry API, or between a registry handle and a file API.

All of the entities and connections used fall into 3 main categories: pro-
cess, file, and registry. The use of these categories was inspired by the work of
Wüchner et.al. [10], who determined that processes, files, sockets, and registry
keys are of great importance when identifying malicious behavior. There is no
restriction on the number of entity/node categories that can be used in the
generation of the MDHG. However, the restriction to 3 categories is used due
to limitations in the data being collected. If more categories of entities and
connections need to be represented, the feature space would increase signifi-
cantly, and therefore the limited amount of data available would be inadequate
for learning in a feature space of such size.

For each API call node (entity), only the name of the API is used for
feature encoding, and all arguments are placed in the edge data. Therefore,
there might be multiple connections to one single API call node. The MHDG
is directional, the principles to determine the direction of each connection
is similar to the work done by Hung et al. [11]. In the work, all API calls
that operate the task of opening, creating, writing, or any modifying actions
towards a file or registry would be the source nodes, and the destination nodes
would be the file or registry themselves. In other cases, this will be reversed (i.e.
the file or registry are the source node and the API calls are the destination
node). Fig. 1 shows an example of the behavioral analysis report returned by
Cuckoo from analyzing a malware sample.
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{
"category ": "process",
"status ": 1,
"stacktrace ": [],
"api": "WriteProcessMemory",
"return value": 1,
"arguments ": {

"process identifier ": 768,
"buffer ": "MZnu0090nu0000nu0003nu0000nu0000 ...",
"process handle ": "0 x0000007c",
"base address ": "0 x01000000"

},
"time": 1556629733.164881 ,
"tid": 3812,
"flags ":{}

}

Fig. 1: An example of a binary behavior report generated by Cuckoo

The example given in Fig. 1 is a small behavioral sample constructed using
2 nodes: a process entity (ID 768) and a ProcessAPI entity (WriteProcess-
Memory) (because this API belongs to category process). One edge exists from
the ProcessAPI entity to the process entity. The node features are generated
by encoding either the API name (if it is an API entity) or the name of its
type (e.g. whether it is a process/file/registry entity). For each connection,
the feature data is obtained from the flag fields of the API that the connec-
tion links to (or from). These flags fields are generated by Cuckoo giving an
insight into important information about that call.

In our paper, we define meta-path differently from the original work of
Wang et al. [31]. We do not define connections between two nodes of the
same type (for example movie-movie (connection between a “movie” node
with a “movie” node)) through a middle node of different types (such as
movie-actor-movie (2 “movie” nodes connected via an “actor” node) and movie-
director-movie (2 “movie” nodes connected via a “director” node). We only
define a type for the connection between two nodes directly. For example,
Process-ProcessAPI (connection between a “Process” node and a “Proces-
sAPI” node) through a “Process-ProcessAPI” edge (an edge that has the
type of “Process-ProcessAPI”), or it could be written as Process-(Process-
ProcessAPI)-ProcessAPI. After all, the importance of a heterogeneous graph
is the heterogeneity of the nodes and edges the graph can support.
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(a) Graph representation of a benign sample

(b) Graph representation of a malware sample

Fig. 2: Graph representation of a malware and benign sample.

Embedding Entities and Edges Argument: As mentioned earlier, insuf-
ficient data is a big problem and has a great effect on how graphs are
constructed, or more precisely what text data should be used for encoding,
and how it should be encoded. In this paper, we will test on both skip-gram
and TF-IDF encoding for node names (API names) and edge arguments (flags
fields of an API). Fig. 1 shows a representation of a malicious and benign
sample.

3.2 Malware Detection

Detecting malware from a constructed graph can be considered as a graph clas-
sification task. There are two main approaches for this task: graph embedding
(trying to find representations of graph nodes and edges) and graph feature
extraction (e.g. using graph convolutional neural networks). A recent survey
[32] grouped graph deep learning models into 5 categories: graph convolution,
graph attention, graph generative, graph spatial-temporal networks and graph
auto-encoders. Zhou et.al. [33] examined graph models in terms of the main
characteristics: graph types, training methods and propagation types; convolu-
tion and attention networks are both demonstrated to have contributed to the
propagation step. Hung et al. [11] used GCN to extract features from the graph
but this spectral approach requires training and detection on a specific graph
structure, since the learned filters depend on the Laplacian eigenbasis. Graph
attention network, instead of statically normalizing the sum of the features
using convolution operation like GCN, uses attention mechanism for weighting
neighbors features with feature dependent and structure-free normalization.
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For a heterogeneous graph, the most distinctive feature is the hetero-
geneity, where each type of connection or each type of node would have a
different importance in the overall consideration. Wang et al. [31] proposed
the heterogeneous graph attention network (HAN) which utilizes node-level
and semantic-level attentions and the model has the ability to consider node
and meta-path importance simultaneously.

When analyzing the behavior of malware, many calls between two entities
and related information may be very important and should be accounted for
when detecting malware. Inspired by the idea of Wang [31], we propose a new
approach, whereby the main contribution is the edge-weighing layers that can
learn the importance of each connection among a set of connections between
two nodes, since our graphs is multi-edge. The specifics of this process are
outlined below.

Table 1: Notations and Explanations
Notation Explanation

� Meta-path
h Node features
eijp Importance of node i to node j through path p

α�
ijp Weight of node pair i, j through path p

Pij Set of connections between node pair (i, j) (from node j to node i)

uijp Importance of path p in the set of connections from node j to node i
Uij Edge-level attention vector
lp Initial edge features

l
′
p Weighted edge features

Y ij
p Weight of path p
τi Weight of final node i
N� Meta-path based neighbors
q Semantic-level attention vector
w� Importance of meta-path �
β� Weight of meta-path �
Z� Semantic-specific node embedding
Z Graph Embedding

Edge-Weighting: In [31], embedding z�i of node i is computed by weighted-
aggregation of the embedding of its meta-path based neighbors:

z�i = σ(
∑

j∈N+i�

α�ij · hj)) (1)

a�ij =
exp(σ(aT� · [hi ∨ hj ]))∑
k∈N�i

exp(σ(aT� · [hi ∨ hk]
(2)

However, in our problem, each edge has features. Therefore, the importance
of node j to node i should be deduced not only from the embedding of node j
and node i, but also from the connection between these two nodes. Intuitively,
we would concatenate the features of edge p (between node j and node i) and
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calculate eijp (the importance of node j to node i through path p). Equation
2 would then become:

a�ij =
exp(σ(aT� · [hi ∨ lij ∨ hj ]))∑
k∈N�i

exp(σ(aT� · [hi ∨ lik ∨ hk]
(3)

This is the case when there is only one connection between node j and node
i, lp is therefore lij . However, graphs in our problem are multi-edge, which
means there could be multiple connections between two nodes. For example,
Fig. 3 exemplifies multiple calls to RegQueryValueExW but with different
arguments, therefore each call should have different importance values.

Although, we can still concatenate lp and hj as in equation 3, to acquire:

a�ijp =
exp(σ(aT� · [hi ∨ lp ∨ hj ]))∑

k∈N�i

∑
m∈Pik

exp(σ(aT� · [hi ∨ lm ∨ hk]
(4)

Fig. 3: The same API (RegQueryValueExW) is called from process id 2824
with different arguments.

This concatenation still enables the model to learn the importance of node
j to node i through path p, but note that this concatenation makes the graph
become a uni-edge graph, where node i has m connections to m other nodes
(having features hj ∨ lp; p ∈ m) instead of m connections to one node (having
features hj). However, the purpose of building a multi-edge graph is to expect
that the model could learn the importance of each edge in the set of connec-
tions between two nodes. In other words, we want to focus more on learning
the importance of the edge arguments.

Inspired by the idea of the attention network, we use an additional
attention layer to learn the importance of each edge in one set of connections:

uijp = attp(lp) = σ(UTij · lp + b) (5)
The weight coefficient of path p is the softmax of u:

Y ijp = softmax(uijp ) =
exp(σ(UTij · lp + b))∑
m∈Pijexp(σ(UT

ij ·lm+b)

(6)
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And the weighted embedding of path p:

l
′

p = Y ijp · lp (7)

Node-level Embedding: By replacing lp in equation 3 with l
′

p in equation
7 we calculate the importance of node j to node i through path p:

α�ijp = softmax(σ(aT� · [hi ∨ l
′

p ∨ hj ])) (8)
And the meta-path based embedding of node j:

z�i = σ(QT ·
∑
k∈N�i

∑
m∈Pik

α�ijp · [hi ∨ l
′

p]) (9)

Fig. 4 illustrates a node-level embedding being calculated by aggregating
the 3 meta-path based embeddings.

Fig. 4: Aggregation of meta-path based neighbors

Sematic-level Embedding: Once we have the node-level embedding, an
attention network is used for learning semantic meaning:

w�i =
1

V

∑
i∈V

qT · σ(W · z�i + b) (10)

β�i
= softmax(w�i

)

And the final embedding of node i:

Zi =

P∑
k=1

βoslashk
· z�k
i (11)

Graph Embedding: here are a variety of ways to obtain the graph embed-
ding after computing the embedding for the nodes. In this work, the final graph
embedding is obtained by accumulating the weighted final node embedding as
in 12.

Z =
∑
i∈V

τi · Zi (12)
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Table 2: Feature types in MFMAD dataset
Feature Name Description Extraction Method
Byte sequence Sequence of byte code Binary code
CFG Control Flow Graph Constructed from assembly code
ASM code Assembly code PE files disassembled using radare2
Image Image representation

of PE files
Binary code converted to greyscale
images as described in [22]
Convert binary code into a fixed-sized
color image as described in [37].

Behavior report .json description of PE
files’ behavior

Use Cuckoo to generate by executing
binary files in Windows 7 environment

MDHG representation
of API calls (our pro-
posed graph)

Constructed from behavior report
(Section 3).

4 Evaluation

4.1 Datasets

To evaluate our proposed solution, we will be using real-world malware sam-
ples. To accomplish this, we propose the Multiple Features for Malware
Analysis and Detection (MFMAD) dataset, which contains various features
(summarized in Table 1) extracted from PE files. The 8,109 PE files used
to generate this dataset were collated from numerous online sources such as
Virustotal and filtered by their Cuckoo score to ensure correct identification as
malware. The dataset is comprised of 1,685 benign and 6,424 malicious sam-
ples, meaning it is imbalanced. However, it is important to note that unlike
normal circumstances, the imbalance is reversed (i.e. the number of malware
samples is significantly higher than that of benign samples).

This dataset is actually an extended version of our previously published
work [11]. The dataset is divided into 4 sub-datasets, and in turn, each of
these is divided into subsets, as outlined in Table 2. It is important to note
that, within each sub-dataset, none of the samples are duplicated in any of
the subsets. The training-test ratio in each of the sub-datasets is 7:3.

Original Dataset (OD): We use the train/test subset for training and test-
ing. As shown in Table 3, this subset includes 1,088 samples in total, which is
composed of 655 malware and 433 benign samples, the same as in [11]. Sim-
ilarly, the unknown subset includes 637 malware samples that ClamAV was
unable to detect until 2/6/2019. The benign_555 and pack1 subsets are also
included, which consist of 555 benign and 4,620 malware samples respectively.
These two subsets do not contain any samples from the train/test subset.
Enhanced Dataset (ED): The enhanced train/test subset consists of 2,379
items, 988 of which are benign, the rest are malware. This enhanced subset
is made up by combining the original train/test subset, benign_555 subset,
and additional 741 malware samples, which are not duplicated in any other
set (i.e. original train/test, unknown or pack1 subset).
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Table 3: Feature types in MFMAD dataset

Sub-dataset Description
Malware (M)
Benign (B)

Total Subsets

Original
Dataset (OD)

The same dataset as
in [15], adding 555
benign samples.

5912 M
6900

train/test (655M,
433B)

unknown (637M)

988 B
pack1 (4620M)

benign_555 (555B)

Enhanced
Dataset (ED)

Enhancement of OD,
benign files are 433
Windows system files
and 555 samples.

6648 M
7636

enhanced train/test
(1391M, 988B)

988 B
unknown (637M)

pack1 (4620M)
Nosys
Dataset
(NSD)

None of the 1091
benign files are
Windows system files.

1119 M
2210 None

1091 B
Full Dataset
(FD)

Contains all types of
files.

1804 M
3489 None

1685 B

Table 4: Original Dataset Composition

Subset
Total No.
Samples

No. Malicious
Samples

No. Benign
Samples

Purpose

train/test 1088 655 433 -
train 761 463 298 Training
test 327 192 135 Testing

unknown 637 637 0 Testing
benign_555 555 0 555 Testing

pack1 4620 4620 0 Testing

Table 5: Enhanced Dataset Composition

Subset
Total No.
Samples

No. Malicious
Samples

No. Benign
Samples

Purpose

enhanced train/test 2379 1391 988 -
train 1665 954 711 Training
test 714 437 277 Testing

unknown 637 637 0 Testing
pack1 4620 4620 0 Testing

Nosys Dataset (NSD): This dataset does not contain any Windows system
files. The dataset composition is summarised in Table 5.

Full Dataset (FD). Note that “full” here does not mean “all samples in
the full dataset”, but implies all types of files (e.g. system files, normal,
known/unknown malware), which are randomly selected from full data. The
exact composition is detailed in Table 6.
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Table 6: Nosys Dataset Composition

Subset
Total No.
Samples

No. Malicious
Samples

No. Benign
Samples

Purpose

Nosys Dataset 2210 1119 1091 -
train 1565 783 782 Training
test 645 336 309 Testing

Table 7: Full Dataset Composition

Subset
Total No.
Samples

No. Malicious
Samples

No. Benign
Samples

Purpose

Full Dataset 3489 1804 1685 -
train 2616 1353 1263 Training
test 873 451 422 Testing

4.2 Test Scenarios

The evaluations undertaken in this paper are summarized below:

1. Train on Original Dataset: We evaluate on the test set of train/test subset
and unknown subset, to test the ability of the model in detecting zero-day
malware, and on benign_555 subset to examine the relations/similarities
between Windows system files and normal applications.

2. Train on Enhanced Dataset: We evaluate on the test set (of enhanced
train/test subset) to see if the FPR improves when enhancing benign sam-
ples in the training set (instead of using only Windows system files), and
the unknown subset to compare performance changes against Scenario 1.

3. Train on Nosys Dataset: We evaluate the model by training on the Nosys
Dataset and testing on a dataset that contains none of the Windows file
systems. We also test the model on 433 Windows system files from the
Original Datasets, combined with the result from Scenario 1 and 2 to con-
clude whether the significant difference between Windows system files and
other normal applications might confuse the model, thence leading to a
poor FPR.

4. Train on Full Dataset: In this scenario, we train and test the model using
the full dataset.

4.3 Implementation of Other Models

In order to compare our results against cutting-edge techniques proposed in
existing related research, we have also implemented several models based on
these devised solutions that are shown in Table 8.

4.4 Results

For the evaluation, we utilized two types of encoding for node names and
edges arguments: skip-gram and TF-IDF. For nodes names, since we only con-
sider 3 types of API to construct nodes, the vocabulary size for node names is
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Table 8: Implementations of other models
Method Features used Description
Asm_cnn OpCode. Created from assembly

code, which is retrieved by using
radare2 to disassemble PE files.

Apply a CNN 1D on
generated OpCode.
[45]

Asm_lstm Apply a LSTM net-
work on generated
OpCode. [45]

Img Image. Created from binary code. Apply a CNN on gen-
erated image. [45]

Ngram Use frequency of extracted n-grams as
feature vectors.

Apply an SVM on the
n-grams frequency. [64]

relatively small. It contains 31 words, 28 of which are APIs (from the three con-
sidered categories), the 4 remain words are: proc (for process entities), file (for
file entities), reg (for registry entities), and other (just in case a non-standard
entry occurs in the dataset, though this would be rare). The vocabulary size
for edge arguments is bigger, containing 138 words, one for each of the 137
cases covered, and a null entry for potentially unseen words. When using TF-
IDF encoding, we construct a 4-dimensional feature vector of each edge. For
skip-gram encoding, input is the whole argument string and the output is a
10-dimensional feature vector.

4.4.1 Training on the train set from Original Dataset

Benign files in the Original Dataset are Windows system files only. In this
scenario, we will train on train set (of train/test subset), then test on: test
set (of train/test subset), unknown, pack1, and benign_555 subset. Table 8
shows the evaluation of different models using various methods of encoding
node and edge data on the Original Dataset. The results show that using
edge-weighting gives the best performance on train/test subset, and that using
edge-weighing layers outperforms the original GAT model for heterogeneous
graphs as proposed by Wang et al. [31].

We have implemented a simple classifier on embedding sequences using
these skip-gram and TD-IDF encoders to investigate the performance of each
encoding method, the results from this are shown in Table 9. It is note-
worthy that the performance on the TF-IDF encoded data is quite poor on
benign_555. Additionally, encoding node data using skip-gram for benign_555
results in an even worse performance. This is because the sequences of nodes
names only does not convey much meaning, in a sense that there is not much
difference between the sequences of API being called by benign and malware
samples. As mentioned in Section 3, differences usually lie within the argu-
ments of each call. Also, this is just to help us understand how the encoding
method may affect our model, hence we just simply apply a classifier on
encoded sequences of API called (ordered by the appearance of that call in
the report generated by cuckoo). TF-IDF on the other hand considers the fre-
quency of separate words, and the way words are chosen from each sequence
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Table 11: Comparison of our model with other methods on Test set from
Original Dataset

Model ACC TPR FPR
Our model 92.66% 92.19% 6.67%
Cnn bytes 80.12% 75.00% 12.59%

MalGCN [11] 86.22% 88.02% 9.66%
Lstm bytes 78.59% 72.40% 12.59%

QDFG-GCN [11] 74.31% 87.05% 44.04%
Cnn asm 90.52% 96.35% 17.78%

QDFG-KNN [11] 62.37% 49.59% 15.49%
Lstm asm 88.69% 94.27% 19.26%
Cnn img 81.19% 87.24% 19.27%

DGCNN [34] 86.24% 90.15% 19.77%
Ngram 79.88% 96.65% 44.80%

Table 12: Comparison of our model and others on unknown subset
Engine Acc Engine Acc
Lstm asm 98.58% ESET-NOD32 77.75%
Ngram 97.80% K7GW 74.21%
Cnn asm 97.01% Endgame 74.08%
Cnn img 96.69% K7AntiVirus 73.95%

Our model 89.64% Invincea 73.43%
MalGCN 84.03% CrowdStrike 72.38%

McAfee-GW631 82.59% Sophos 70.29%
Fortinet 82.59% AVG 69.63%
Cnn bytes 82.22% GData 69.24%
Lstm bytes 79.17% Rising 68.06%
Microsoft 78.93% Avira 67.54%
McAfee 77.75% VBA32 67.28%

is the same in every circumstance, therefore can detect from an early stage
which calls seem to be abnormal.

Table 10 and Table 12 present comparisons of our best model (using skip
gram encoding for node names and TF-IDF encoding for edge arguments) and
other published methods on two subsets: test set from train/test subset and
the unknown subset. The results of other methods are derived from published
literature [11],[34] and from our implementation demonstrated in Section 4.2
(due to a lack of source code for other methods). Note that from now on,
unless specified, “our model” refers to the 1st model in Table 9 (using skip
gram encoding for node names and TF-IDF encoding for edge arguments).
Table 10 shows that our best model outperformed the existing methods in all
of the assessed metrics.

Table 12 is the comparison on unknown subset to test the ability of detect-
ing new (zero-day) malware. Note that our implementations of the other four
methods have higher accuracies (True Positive Rate (TPR)), however, run-
ning these models on the benign_555 subset to measure the False Positive
Rate (FPR) gives very poor performance (Table 12). Although our model has
the lowest value of FPR, it is still quite high.
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Table 13: Comparison of our model and others on benign_555 subset
Engine FPR
Lstm asm 97.78%

Our model 21.29%
Cnn bytes 92.04%
Cnn asm 97.78%
Ngram 100%

Lstm bytes 92.48%
Cnn img 100%

Table 14: Results of our models on pack1 and benign_555 subset
Pack1

(4620 M)
Benign_555
(555 B)

ACC TPR FPR ACC TPR FPR
Skip-gram + TF-IDF (1st) – 81.28% – – – 21.29%

Skip-gram (2nd) – 95.30% – – – 29.53%
TF-IDF (3rd) – 82.42% – – – 21.77%

Skip-gram (no edge-weighing) (4th) – 59.65% – – – 26.24%
TF-IDF (no edge-weighing) (5th) – 49.65% – – – 16.25%

When we conducted experiments to evaluate our models (trained on
train/test subset from Original Dataset) on pack1 and benign_555 subsets,
all models still yield a high TPR on the pack1 subset. However, they achieve
a poor FPR on the benign_555 subset. The results are shown in Table 13.

It can also be inferred from this table that combining skip-gram and TF-
IDF encoder (using skip-gram to encode edge arguments and TF-IDF to
encode nodes names) does not achieve the best results in both subsets, but it
offers superior stability, hence it is considered more promising. Test scenarios
demonstrated in subsequent sections will attempt to investigate further into
the high FPR issue.

4.4.2 Training on the train set from Enhanced Dataset

We could see from Table 13 that all models result in considerably higher FPRs
on benign_555, when compared with the train/test subset. We hypothesize
that this is caused by differing DLL usage behaviors between the benign_555
and train/test subsets. More specifically, benign_555 samples all require exter-
nal DLLs to be loaded in order to execute. Additionally, the benign samples
in the train/test subset are Windows system files, with many calls to system
DLLs, performing actions very similar to malware (e.g. changing important
registry values, retrieving OS information). Therefore, we have trained and
evaluated our model on the Enhanced Dataset, the results of which are shown
in Table 14. It can be seen Table 14 that our model (when trained on the
Enhanced train/test subset) causes a slight decline in TPR on the unknown
subset, but achieves improved results with the other subsets.
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Table 15: Evaluation result of our model training with Enhanced Dataset
Dataset/testset ACC TPR FPR

Enhanced train/test
Train 96.22% 96.02% 3.52%

Test 93.00% 92.68% 6.45%
Unknown – 88.23% –
Pack1 – 90.77% –

Table 16: Results from train and evaluating on the Nosys Dataset
Train Test Sys files

ACC TPR FPR ACC TPR FPR FPR
Our model 94.20% 93.56% 5.15% 89.71% 85.37% 6.10% 13.21%
Asm_cnn 97.86% 98.93% 3.20% 97.33% 98.43% 3.77% 76.91%
Asm_lstm 93.80% 99.87% 12.25% 94.97% 99.06% 9.12% 65.82%
Bytes_cnn 99.36% 100% 1.37% 98.01% 100% 4.21% 77.60%
Bytes_lstm 85.85% 86.10% 14.44% 88.56% 77.99% 16.84% 39.96%

Img 77.92% 82.89% 27.03% 80.82% 85.85% 24.21% 15.94%

Table 17: Train and evaluate on Full Dataset
Train Test

ACC TPR FPR ACC TPR FPR
Our model 92.23% 90.21% 3.13% 90.02% 87.50% 4.30%
Asm_cnn 96.69% 99.22% 5.99% 93.77% 96.52% 7.90%
Asm_lstm 92.90% 98.70% 13.27% 91.13% 97.01% 12.46%
Bytes_cnn 98.88% 99.82% 2.20% 95.80% 96.52% 4.68%
Bytes_lstm 92.67% 97.84% 13.29% 88.4% 96.02% 16.72%

Img 86.38% 92.99% 20.65% 81.89% 93.03% 24.92%

4.4.3 Training on the train set from Nosys

In this experiment, we train on train subset of Nosys Dataset, and evaluate
on both subsets, and 433 Windows system files (from train/test subset of the
Original Datasets). The results obtained are presented in Table 15.

We can infer that the significant difference between Windows system files
and other normal applications might confuse the model, thus leading to the
poor FPRs (model trained with Windows system files fails to recognize benign
samples as normal, and vice versa, model trained with non-system files does
not perform well on detecting system files as benign). One more detail that
we can deduce is that our model is more stable in all scenarios (although in
some cases it does not achieve the best result), irrespective of the size or the
composition of dataset.

4.4.4 Training on the train set from the Full Dataset

Final test scenario is to train and evaluate on the Full Dataset, the results
obtained are shown in Table 16.
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{
"markcount ": 2,
"families ": [],
"description ": "Allocates execute permission to another process

indicative of possible code
injection",

"severity ": 3,
"marks": [

{
"call": {

"category ": "process",
"status ": 1,
"api": "NtAllocateVirtualMemory",
"return_value ": 0,
"arguments ": {

"process_identifier ": 2508,
"region_size ": 36864 ,
[...]

},
"time": 1556598469.154953 ,
"tid": 2468,
"flags": {

"protection ": "PAGE_EXECUTE_READWRITE",
"allocation_type ": "MEM_COMMIT MEM_RESERVE"

}
},
[...]

},
...

]
}

Fig. 5: A signature for malicious activity according to YARA rules

From multiple test cases, we can infer that our model, in all cases, outper-
formed in terms of stability and in some cases, surpasses the TPR and FPR
of other approaches.

5 Discussion

5.1 Edge-weighing

For a more intuitive evaluation and deeper understanding, we have visualized
the weights of each edge produced by our model.

Fig. 5 shows an example of a signature for malicious activity of a malware
sample. The signature is generated along with with Cuckoo report, by applying
YARA rules which are contributed by the community. The call to NtAllocat-
eVirtualMemory API is indicated as malicious when it requires not only read,
write but also execute permissions, and its allocation type is MEM_COMMIT
and MEM_RESERVE. The graph of this malware after edge-weighing layers
is illustrated in Fig. 6.

As can be seen from Fig. 6, our model has been able to learn the importance
of the API call using the parameters protection and allocation_type, similar
to the signature from the Cuckoo report. It can be inferred that distinctive
behaviors that humans can manually analyze and label as malicious activities,
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Fig. 6: Visualization of edge after weighting

"call": {
"category ": "misc",
"status ": 1,
"api": "GetComputerNameA",
"return_value ": 1,
"arguments ": {

"computer_name ": "WIN7X86 -PC"
},
"flags": {}

}

Fig. 7: A query for the computer name

"call": {
"category ": "system",
"status ": 1,
"api": "LookupPrivilegeValueW",
"return_value ": 1,
"arguments ": {

"system_name ": "",
"privilege_name ": "SeDebugPrivilege"

},
"flags": {}
}

}

Fig. 8: Check for the Locally Unique Identifier on the system for a suspicious
privilege

could be learned automatically using this approach. However, we expect the
model could learn not only behaviors that humans can explicitly see but also
those that are more abstract that prove difficult or impossible for humans to
manually analyze.

5.2 Information Used for Embedding

For now, only three types of API are represented in our graph, therefore,
some important information might be overgeneralized. For example, the two
behaviors shown in Fig. 7 and Fig. 8 are considered malicious activities:

The above two calls belong to category misc and system. Our model is
unable to take these specific calls into consideration. To evaluate the effects
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Table 18: The most distinctive API for detecting malicious behaviors
API category API category

NtDuplicateObject system ReadProcessMemory process
URLDownloadToFileW network CreateServiceW service
MoveFileWithProgressTransactedW file ControlService service
NtCreateUserProcess process NtCreateProcess process
GetComputerNameW misc ShellExecuteExW process
URLDownloadToFileW network NtCreateProcessEx process
NtSetInformationFile file RegSetValueExW registry
CreateProcessInternalW process InternetSetOptionA network
NtProtectVirtualMemory process LdrGetDllHandle system
RtlCreateUserProcess process CryptExportKey crypto
MoveFileWithProgressW file RegOpenKeyExW registry
NtAllocateVirtualMemory process RegSetValueExA registry
NtDeviceIoControlFile file RegOpenKeyExA registry
SetWindowsHookExW system SetFileAttributesW file
EnumServicesStatusW service InternetReadFile network
SetWindowsHookExA system GetUserNameA misc
LdrGetProcedureAddress system RegQueryValueExA registry
GetComputerNameA misc RegQueryValueExW registry
GetAdaptersAddresses network OpenServiceA service
ObtainUserAgentString network NtTerminateProcess process
CryptGenKey crypto NtOpenProcess process
NtDelayExecution synchronisation InternetOpenW network
NtClose system Process32FirstW process
NtCreateKey registry NtCreateFile file
NtWriteFile file InternetOpenA network
OpenServiceW service Process32NextW process
CryptEncrypt crypto NtLoadDriver system
CreateServiceA service CryptHashData crypto
LdrLoadDll system NtOpenFile file
NtSetValueKey registry

of each API category on our model’s malware detection ability, we have lever-
aged malware analyzing expertise to narrow down the most distinctive APIs
for detecting malicious behaviors. The list of these APIs with their correspond-
ing category is described in Table 18. The number of those APIs grouped by
category is presented in Table 19. Note that these categories are organized
by Cuckoo, of which there are 16 in total: certificate, crypto, exception, file,
iexplore, misc, netapi, network, ole, process, registry, resource, services, syn-
chronization, system and ui. Other sandboxes might have different methods
of grouping APIs.

It is not just the overgeneralization of the API that can cause issues for the
model. The flags field used conveys a limited amount of information. For exam-
ple, the action demonstrated in Fig. 9 would highly be a suspicious behavior
since it is trying to register itself to execute whenever Windows starts, which
is a common covert activity of malware:

Currently, our graph only encodes the flag field, however, the impor-
tance it not specifically within flag field, but the accompanying regkey in
the arguments section, which specifies the registry path this API is trying
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Table 19: Number of interesting APIs by category
Category Total API
crypto 4
file 8
misc 3

network 8
process 13
registry 8
service 7

synchronization 1
system 8

"category ": "registry",
"status ": 1,
"stacktrace ": [],
"api": "RegSetValueExA",
"return_value ": 0,
"arguments ": {

"key_handle ": "0 x00000078",
"value": "c:\\ windows \\ system32 \\ mssrv32.exe",
"regkey_r ": "ImagePath",
"reg_type ": 1,
"regkey ": "HKEY_LOCAL_MACHINE \\ SYSTEM \\ ControlSet001 \\ services \\

msupdate \\ ImagePath"
},
"time": 1556598470.626408 ,
"tid": 2512,
"flags": {

"reg_type ": "REG_SZ"
}

},

Fig. 9: An activity of a malware trying to install itself for auto-run at Windows
startup

to modify. Similarly, when changing the content of a file, the distinctive
information used to distinguish between malware and benign samples is often
the path to which the API is referring, or the value the API is trying to
set. With path-based information, we cannot simply use n-gram or similar
encoding methods, since the paths vary. One solution is to encode each part
of the path and assign a corresponding severity level. For example, the path
HKEY_LOCAL_MACHINE\\SYSTEM\\ControlSet001\\services\\msupd-
ate\\ImagePath, would be divided into 4 parts as follows:

1. HKEY_LOCAL_MACHINE\\
2. SYSTEM\\
3. ControlSet001\\services\\msupdate\\
4. ImagePath

Here, 1. would be the root element separated by \\, which indi-
cates the category of the registry, (i.e. HKEY_CLASSES_ROOT,
HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE, HKEY_USERS,
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HKEY_CURRENT_CONFIG). Each value would be assigned a cor-
responding severity, in this case HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE would be 1 and the others 0. This is because
these two root category contain paths to important registry entries that mal-
ware usually interferes with (e.g. the path to set auto-start applications). 2.
would be the child element of the root registry object. This element would be
assigned a severity level according to its presence on a blacklist. Any elements
contained within this list would be set to 1, otherwise they would be set to 0.
3. Regular expressions would be used to detect the presence of certain words
in another blacklist, or to compute the number of elements separated by \\.
There is considerable diversity in the strategy to encode the path and this is
just one example of a possible solution.

5.3 Graph Embedding

As mentioned in Section 3, there are multiple methods for generating the
graph embedding. Our model currently only uses the weighted-sum of all the
nodes to represent the graph embedding. However, this approach would omit
temporal information about API execution, in other words, the sequence of
each API being called. Now, intuitively, the solution might be to concatenate
the nodes’ embedding in the order of time they are executed. Yet, it is complex
to determine the exact execution sequence if multiple APIs have the same time
field value, as demonstrated in Fig. 10. Another hurdle is to decide whether to
order the nodes just by time of execution or also by the process calling them.
The first option would be to ignore the relationship between the caller and
the node being called, and consider only the time the nodes are called. The
latter groups all nodes being called by the same process, and then orders each
group of nodes by the time they are called.

In previous works, there are already some efforts to represent the graph as
a sequence of nodes to apply an RNN on. However, these works mostly use
walking algorithms such as RandomWalk or DeepWalk to choose the order of
the nodes [35][35]. He et al. proposed a modified random walk on heterogeneous
graph in [36]. Yet, all these models are not either designed for, or evaluated
on malware detection tasks, and the information of the nodes in these papers
does not contain temporal data. Nevertheless, these approaches do produce
promising results.

6 Conclusions & Future Work

As with other deep learning approaches, our proposed solution is designed
to complement existing well-established methods (e.g. signature-based detec-
tion). One of the main reasons for this is the fact that a sandbox environment
is required, which means that real-time analysis and protection for every file
is impossible. Moreover, not every executable can be activated in a virtual-
ized environment due to anti-virtualization techniques, or the fact that some
executable files require human interaction, especially those that are benign.
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Fig. 10: An example of 10 API containing the same value for time field

With the continuous increase in the level of threat posed by malware, it
is obvious that new and more effective solutions are required. This paper has
outlined several key challenges in the field of automated malware detection
that need to be addressed.

In order to address these challenges, this paper has outlined two novel con-
tributions that will allow for the identification of malware based largely on
their API calls. Firstly, a new method to represent executable file as a multi-
edge directional heterogeneous graph was proposed. This allows for the fusion
of important data that provides additional context to the behavioral repre-
sentation, and weightings to quantify the significance of specific behaviors.
Secondly, a neural network-based deep learning model was been developed
to identify malicious files using the graphs constructed. Our proposed solu-
tion was evaluated using a dataset crafted from Cuckoo analysis reports of
real-world malware samples. To demonstrate the benefits of our solution, it
was evaluated against implementations of other cutting-edge techniques. The
results obtained show improved results in both accuracy and the false positive
rate. The accuracy of the proposed solution was then compared to existing
malware detection engines when identifying 0-day samples. The results showed
that although our solution was not the most accurate, it was able to offer
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performance that is comparable with leading methods. Despite the promising
results, there are limitations with our devised strategy of representing behav-
iors, which we have discussed in Section 4. For our future work, our primary
objective is to overcome these limitations in the hope of further improving
upon the results obtainable by our approach.
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