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 Abstract— Reliability- & variability-aware Design 

Technology co-optimization (RV-DTCO) becomes 

indispensable with advanced nodes. However, four key 

issues hinder its practical adoption: the lack of 

characterization technique that offer both accuracy and 

efficiency, the lack of defect model with long-term 

prediction capability, the lack of compact model 

compatible with most EDA platforms, and the low 

efficiency in circuit-level prediction to support frequent 

iterations during co-optimization. Demonstrating with 7nm 

technology, this work tackles these issues by developing 

an efficient characterization method for separating defects, 

introducing a comprehensive test-data-verified 

defect-centric physical-based model & an industry-friendly 

OMI-based compact model, and proposing a machine 

learning-assisted approach to accelerate circuit-level 

prediction. With these achievements, a RV-DTCO flow is 

established and demonstrated on 3nm GAA technology to 

bridge the material level to the circuit level. The work paves 

ways in boosting adoption of RV-DTCO in both circuit 

design & process development for ultimate nodes. 

Index Terms— Design Technology co-optimization (DTCO), 

FinFET, reliability, variability, Discharging-based multi-pulse 

technique (DMP), OMI, ST-GNN 

I. Introduction 

N the era of post-Moore where performance growth becomes 

difficult from simply the technology scaling, 

Design-Technology co-optimization (DTCO) has been 

considered indispensable [1]. Comparing with the optimization 

for power/performance/area (PPA), the incorporation of 

reliability and variability considerations becomes essential for 

mission-critical applications, such as those found in the 

automotive [2] and healthcare sectors [3]. While DTCO with 

time-zero variability has been well-established [4], addressing 
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time-dependent reliability and variability within the DTCO 

framework remains a challenging endeavor. Recent efforts 

have been made to develop a reliability- and variability-aware 

DTCO (RV-aware DTCO) flow to tackle these challenges 

[5]–[9]. However, for the practical adoption of the RV-aware 

DTCO flow, several critical issues need to be addressed and 

resolved, which include: 

i. Efficient and accurate characterization technique is 

required. Existing characterization methods can be broadly 

categorized into bottom-up and top-down approaches.  The 

bottom-up approach, such as random telegraph signal (RTS) 

[10], [11] and time-dependent defect spectroscopy (TDDS) 

technique [12], investigate the statistics of individual 

fluctuations in selected samples and thus are quite 

time-consuming. The top-down approach, such as extended 

measure-stress-measure (eMSM) [13], [14] and on-the-fly 

(OTF) [15], [16], captures the devices’ macroscopic 

degradation and relies on mathematical fitting to decompose 

the contributions of different types of traps, however, too many 

fitting parameters may lead to uncontrollable errors in 

long-term prediction. 

ii. Existing effects (reliability, variability) lack 

test-proven capability for long-term prediction, which is 

critical for analog & mixed-signal designs. Due to the 

stochastic nature of oxide defects, time-dependent variability 

induced by device degradation becomes critical, potentially 

impacting the end-of-life performance of circuits. 

Consequently, there is an urgent need for a test-proven 

prediction methodology that can accurately assess long-term 

variability, in addition to reliability. To the best of our 

knowledge, a comprehensive and reliable solution that 

addresses these challenges has yet to be developed. 

iii. Solutions based on the standard model interface are 

needed. As an interface for the modification of SPICE model 

parameters that is supported by mainstream simulators, the 

CMC open model interface (OMI) [17]–[19] has gradually 

become an industry standard platform for evaluating circuit 

reliability. By developing reliability models that are compatible 

with the standard interfaces such as OMI, the proposed 

solutions can be applied to various circuit simulators, thus 

reducing the support costs and improving accessibility for both 

suppliers and end-users alike. 

iv. A fast assessment methodology that applicable for 

(large-scale) circuit-level reliability is needed. Since 

RV-aware DTCO necessitates numerous iterations between 
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process and circuit design, efficient evaluation techniques are 

crucial for minimizing development time and costs. Traditional 

approaches employed in commercial EDA tools often require 

substantial computational resources for circuit-level reliability 

prediction, resulting in slow and time-consuming analyses. 

Therefore, developing a fast and efficient (large-scale) 

circuit-level reliability evaluation methodology would not only 

reduce costs but also significantly shorten the development 

period of DTCO, paving the way for rapid innovation and the 

implementation of reliable electronic devices in various 

applications. 

In this work, we proposed a novel RV-aware DTCO 

framework aiming to resolve above issues and accelerate the 

practical adoption of RV-aware co-optimization from material 

to circuit (Fig.1). This is made possible by achieving the 

following advances in this work:  

1) An analytical method is proposed to separate different 

types of defects directly from the measured degradation, 

enabling accurate characterization of each type of defect while 

eliminating the need for time-consuming and laborious 

statistical analysis. 

2) Proposed a defect-centric physical-based model that 

enables accurate long-term reliability and variability 

predictions, as well as an OMI-based compact model for 

effective simulation in the circuit level. 

3) The proposed physical model is not only verified by 

independent test results but the extracted trap properties can be 

well correlated to ab-initio calculation, which can be used in 

investigating the physical origins of traps and helpful for 

process optimization. 

4) Proposed a Machine learning (ML)-based approach for 

the fast circuit-level RV prediction, providing a feasible 

solution for accelerating iterative processes in the DTCO 

framework. 

Table.I summarizes the key advancements of our proposed 

framework over existing solutions in the field. 

II. ADVANCED DEFECT SEPARATION AND CHARACTERIZATION 

TECHNIQUE 

A. Discharging-based multi-pulse technique 

By trap filling and the following gradual discharging, the 

discharging-based multi-pulse technique (DMP) [20] has been 

shown as a powerful tool in understanding oxide traps in 

transistors with different structures [21], channel materials [22], 

and dielectrics [23]. The test pattern of DMP is shown in Fig.2. 

In the charging phase, the device under test (DUT) is prepared 

by biasing the gate to the desired stress level (Vgstress) for the 

pre-set time (Tstress) while connecting the other terminals 

(source, drain & substrate) to ground. In this work, the time 

duration of 10s, 100s, 1000s, and 10000s are used during stress 

phase. And then in the discharging phase, the gate voltage is 

lowered down by ΔV to the first discharging level, Vdisch1 = 

Vgstress - ΔV. This discharging phase will last for Tdisch, during 

which several Id-Vg measurements will be carried out. To 

reduce trap’s recovery during the measurement, Id-Vg curve is 

captured at the pulse edge within 7.5us. Once reaching Tdisch, 

the discharge voltage lowers down to Vdisch2 = Vgstress – 2* ΔV 

for another Tdisch. By repeating this procedure until VdischN 
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Fig.1. Reliability- & Variability-aware Design-Technology 
Co-optimization (RV-aware DTCO) methodology from material to circuit 
level proposed in this work. Based on the proposed defect-centric 
characterization and extraction technique, Physical-based and 
OMI-based aging model is established. ML-assisted prediction method 
is proposed to accelerate aging prediction of large-scale circuits. 

TABLE I 

This work 2022 IRPS [5] 2021 VLSI [6] 2019 TED [7] 2013 IEDM [8]

Experimental extraction of 

defect

Ab-initio verified

Independent-verified 

long-term physical 

model

Rel. / Var.

Compact model

Industry standard 

Interface(OMI)

Acceleration for fast iteration 

in DTCO flow
 

Advances of the existing solutions to address the challenges of 
RV-aware DTCO. Our proposed methodology includes all the listed 
features from Ab-initio calculation, experimental extraction of defect, 
reliability & variability simulation to acceleration technique for large-scale 
circuits assessment. 
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Fig.2. Illustration of the discharging-based multi-pulse (DMP) 
technique. In the charging phase, NBTI stress is applied to the DUT 
under desired stress level (Vstress) for pre-set time (Tstress). And in the 
discharging phase, gate voltage is lowered down step-by-step to 
gradually discharge the traps. Drain, source and substrate terminals 
should be connected to ground all the time except for Id-Vg 
measurement. 

TABLE II 

 
Detailed information of DMP test in this work. 
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reaches +1.0V in the Nth step. This VdischN is properly selected to 

ensure the probing of deep traps while not introducing extra 

e-trapping. As mentioned above, we call the test pattern of 

Fig.2 as one DMP test, if we repeat the DMP test on the same 

device, and each time the stress voltage (Vgstress) is greater than 

the last time, we call this test procedure as multi-DMP (m-DMP) 

test [23]–[25].  

In this work, we chose the industrial-grade 7nm pFinFETs 

for the demonstration. The test is carried out by using the 

Keysight B1530A equipped with waveform generator / fast 

measurement unit (WGFMU). The pulse IV is performed in 

linear region (Idlin) with Vd = -0.05V, and the threshold voltage 

Vth is monitored at a constant drain current of 1 μA × W/L. The 

testing temperature is 125 °C , and other detailed information of 

DMP test is shown in Table.II. 

B. DMP test result preprocessing 

After NBTI stress for preset stress voltage (Vstress) and stress 

time (Tstress), the traps are gradually detrapping under each 

discharge voltage (Vdisch) as shown in Fig.3a. By extracting the 

last point under each Vdisch, the relationship between the 

discharging voltage and the corresponding degradation can be 

obtained as shown in Fig.3b. Through the relationship between 

Ef -Ev and Vg -Vth obtained by calibrated TCAD simulation 

(Fig.4a), we can convert Vdisch -Vth -ΔVth to the energy level of 

Ef  with respect to Ev at the Si/interfacial layer (IL) interface, i.e. 

(Ef -Ev) [26], and then the trap’s density distribution against 

different energy levels can be obtained (Fig.4b). It is worth 

noting that such an energy level is the equivalent energy level 

that assumes the traps are located at the interface between the 

Si/IL, but not the true trap level in the system. Such 

transformation aims at the separation of different traps based on 

their energy profiles in the next section. 

C. Equivalent energy profile of different traps 

 The separation flow of different traps based on their 

equivalent energy profiles is shown in Fig.5: When the 
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Fig.3. (a) The discharging trace under each Vdisch in DMP test. (b)By 
extracting the last point under each Vdisch, the relationship between the 
discharging voltage and the corresponding degradation can be 
obtained. 
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Vth0 is the threshold voltage of a fresh device without suffering 

degradation. (b) By converting Vdisch -Vth0 -ΔVth to the Ef -Ev, the trap’s 

equivalent energy level can be obtained. (Vdisch is equivalent to Vg) 
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Fig.5. Proposed procedure to separate different types of traps. Based on DMP technique under different stress biases, three types of traps are 
clarified and separated. Type-A captures holes without changing energy levels while type-B shifts energy levels after hole capturing. Type-C 
presents constant energy levels and agree with interface states. 
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Fig.6. (a) The trap’s energy profiles under different charging bias. (b) 
When charging bias is low, the energy profiles at different Vgstress 
overlap well, , indicating that the trap energy level does not change after 
charging. (c) By shifting down the energy profiles of the higher bias and 
aligning them with profiles under lower bias, the energy profile of 
Type-A trap can be obtained. 
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charging bias (Vgstress) is low, the energy profiles extracted from 

discharging after filling at different Vgstress overlap well 

(Fig.6b), while they deviate from each other for higher Vgstress 

(Fig.5a & Fig.6a), suggesting that there exist two types of traps 

in the oxide for such phenomenon [22]. For Type-A traps, if 

filled at a certain voltage, it can also be released at the same 

voltage when the bias is lowered, indicating that the trap energy 

level does not change after charging. In contrast, Type-B traps 

need to be released at an energy level lower than where they are 

filled, implying that Type-B may shift energy levels to a deeper 

level after hole capturing and exhibit the nature of switching 

traps. Because Type-B can only be discharged at a much lower 

energy level, for every two neighboring curves, by shifting 

down the energy profiles of the higher bias and aligning them 

with profiles under lower bias, Type-B traps will be removed. 

As illustrated by the red points in Fig.6c, the aligned curve 

represents the energy profile of Type-A trap.  

According to the above method of separating Type-A, the 

Type-A traps extracted from multi-DMP measurements under 

different charging time is shown in Fig.5b, they overlap each 

other, suggesting the nature of fast saturation.  

We then subtract Type-A from the total degradation, as 

shown in Fig.5c&d, the remaining part contains both oxide 

traps and interface traps. What is worth noting is that even 

during discharging under different Ef -Ev, the threshold voltage 

(Vth) is always sensed at the constant current, which can be 

approximately considered as the same surface potential. 

Therefore, the contribution from interface traps (labeled as 

Type-C traps) in the measured Vth shift is the same for different 

Ef -Ev. The impact of interface traps can thus be removed 

through the mathematical differentiation with respect to the 

energy levels. As shown in Fig.5e, Type-B shows a broad 

distribution in energy levels and it cannot be fitted by a single 

Gaussian distribution. Therefore, we introduce a dual Gaussian 

distribution and a good fitting can be achieved, which indicates 

the existence of two types of oxide traps. We label the narrow 

one as Type-B1 and the wider one as Type-B2. By fitting with 

two Gaussian distributions and integrating along the energy 

levels, the total Type-B traps (Type-B1&Type-B2) can be 

extracted, as shown in Fig.5f. Finally, by subtracting Type-A, 

Type-B1, and Type-B2 from the total degradation in Fig.5g, 

Type-C can be obtained, exhibiting a constant value against 

energy level in Fig.5h, which seems that it is hard to be 

"discharged". However, just as mentioned above, its 

independence of energy level is just because of the same 

sensing level.   

D. Charging kinetics of different traps 

Understanding the charging kinetics of each type of traps can 

be critical for modelling long-term reliability and variability. 

To separate different traps from their charging kinetics, the 

extended measure-stress-measure (eMSM) sequence is adopted. 

The kinetics of Type-C trap (i.e. interface traps) should be 

extracted first from DMP test of different stress time as shown 

as ‘’ in Fig.7a. Since Type-A can quickly saturate (Fig.5b), 

the kinetics of Type-B at longer time can be derived by 

subtracting Type-C and the saturated Type-A (‘∆’ in Fig.7a). 

By assuming both Type-B and Type-C traps exhibit a power 

law relationship, and back-extrapolating them, the kinetics of 

the Type-A trap can be obtained (‘’ in Fig.7a) via subtracting 

Obtain Type- ’s kinetics  r m  MP test     di  erent 
stress time.

3

⚫Saturation time of Type-A was determined by DMP

Subtract Type- ’s kinetics and Type- ’s saturation

value from Total to obtain the kinetics of Type-B.

Extend Type-B and Type-C backward, and subtract 

them from Total to obtain the kinetics of Type-A.

2
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Fig.7. (a) The extracted charging kinetics of three types of traps under 
specific stress condition. (b) Charging kinetics extraction procedure of 
three types of traps. 
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Fig.8. The extracted charging kinetics of (a) Type-A traps, (b) Type-B 
traps and (c) Type-C traps with stress time under varying stress biases. 
The charging kinetics can be well fitted by power law relationship with 
the time exponent of 0.17. 

TABLE III 

Model Fitting parameters

Type-A
(2 state 

NMP)

                

                 

( <  > ,    
, ＜ ＞ , 

  ,     ,   )

Type-B
(3 state 

NMP)

               

                 

                

                 

( <  > ,    
, ＜ ＞ , 

  ,     ,   , A , B , τ , 

ꞵ)

Type-C
(power-

law)

——          
    ( A , m , n )

   

1’

   

1 2

1 2

      

 
Established Physical-based defect model for three types of traps and 
their corresponding parameters used for fitting. In these equations, p is 
the concentration of holes in the channel, Nv is effective density of states 
valance band, vth is the thermal velocity of the carriers within the 
channel, σ represents capture cross section, and ϑ denotes 
Wentzel-Kramers–Brillouin (WKB) tunneling factor, ε12 and ε21 denote 
the barrier heights for transitions between these two wells, respectively. 
Other parameters such as A, B, τ, β, m, n are fitting parameters. 
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Type-B and Type-C from the total degradation. Fig.7 

summarizes the entire extraction procedure. By repeating the 

procedure, the kinetics of different types of traps under 

different voltages can be obtained (Fig.8). 

E. Physical-based Defect Model 

After directly separating different types of traps from the 

experimental data following the characterization technique 

above, we can extract physical parameters of each trap 

according to their respective physical-based model by fitting. In 

this work, we assumed that, for each type of trap, its physical 

property including the energy level and the relaxation energy 

follows the Gaussian distribution. Their mean values and 

variances are obtained by fitting each trap’s charging kinetics 

and their equivalent energy level distributions (Fig.9&10) with 

their respective model in Table III. What is worth noting is that 

due to the incomplete discharging at each discharge phase in 

DMP test, we also put discharging time, discharging voltage of 

each discharge phase and the corresponding ΔVth into energy 

profile’s fitting.  

Type-A traps: Type-A traps capture a hole without altering 

their energy levels, which suggests that the microscopic 

structure undergoes negligible rearrangements. This behavior is 

consistent with the properties of structural defects that are 

widely observed in amorphous systems, where the disordered 

nature of these materials leads to a variety of defect states [27]. 

To better understand the trapping/de-trapping process of 

Type-A traps, a simplified two-state model based on the 

non-radiative multiphonon (NMP) theory is employed [28], 

[29]. This model effectively captures the fundamental 

mechanisms governing the transitions between the two states. 

The schematic of the two-state model is shown in Table.III, in 

which energy wells 1 and 2 represent the energy of two states 

before and after trapping, respectively. ε12 and ε21 denote the 

barrier heights for transitions between these two wells, 

respectively. Once the negative stress voltage is applied, the 

barrier height ε12 is lowered, which facilitates more holes jump 

over the barrier through thermal emission. To account for the 

distribution, a Gaussian distribution for the trap energy (ET) and 

relaxation energy (S) is assumed. As shown in Fig.9, the 

charging kinetics and equivalent energy level distribution of 

Type-A traps can be well described by the 2-state NMP model. 

Type-B traps: To account for the lattice relaxation process, 

the behaviors of both Type-B1 and Type-B2 traps are modelled 

by a three-state process as shown in Table.III, which captures 

the complex dynamics involved in the charging process and 

provides a more accurate representation of such type of traps. 

During charging, the trap needs to be initially activated from 

state 1’ to state 1, after which the charging can proceed from 

state 1 to state 2. By fitting the charging kinetics of Type-B 

traps (i.e. Type-B1&Type-B2 obtained from Fig.8(b)) and the 

DMP results of both Type-B1 and Type-B2 (data from Fig.5f), 

the model parameters can be determined. As demonstrated in 

Fig. 10a-c, the lines generated from the model exhibit a good 

agreement with the experimental results. It is worth noting that 

without considering the activation process (1’->1), the kinetics 

of Type-B traps cannot be well fitted, which further confirms 

the switching nature of Type-B traps, highlighting the necessity 

of incorporating this additional state into the modeling process. 

Type-C traps: As depicted in Fig. 8c, the degradation 

behaviour of Type-C traps can be described using the classical 

power law relationship. The time exponent is found to be 0.17, 

which is also broadly observed in recent years across multiple 

technologies by using the delay-corrected DCIV technique [30] 

or by probing Vth degradation under conditions where hole 

trapping is minimal. Historically, the time exponent was 

considered as a signature of interface state generation 

controlled by the Reaction-Diffusion (R-D) process. In this 

process, it is assumed that the Si-H bond breaks at the Si/IL 

interface and diffuses as a hydrogen molecule into the oxide 

[31]. However, theoretical studies have suggested that the Si-H 

bond can be rather stable [32], casting doubt on the validity of 

the R-D process as the primary mechanism. Recently, an 

alternative explanation has been proposed, suggesting that the 

breakage of Si-H bonds may be resulted from their reaction 

with atomic hydrogen originating from either the substrate [33] 

or the gate [34]. This reaction proceeds through an exothermic 

process: Si-H + H → Si- + H2. This new hypothesis provides a 

more plausible mechanism for the observed behaviour, taking 

into account the stability of the Si-H bond. 

III. AB-INITIO CALCULATION 

A. Discussion on the physical origin 

The trap level (ET) and relaxation energy (S) can be used as 

the signature to pursue the physical origin of the traps. 

Therefore, we can compare the ET and S values obtained by 

fitting the experimental data with the results calculated by 

ab-initio calculation for the defects of different configuration to 

explore the potential physical origin of the three types of traps. 

The formation energy of defects can be evaluated as 
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Fig.9. (a) The charging kinetics and (b) equivalent energy level 
distribution of Type-A traps can be well modelled by the two-state 
non-radiative multiphonon(NMP) theory. 
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Fig.10. (a) The charging kinetics of Type-B (B1&B2) traps, (b) 
equivalent energy level distribution of Type-B1 traps, and (c) equivalent 
energy level distribution of Type-B2 traps can be modelled by 
incorporating the activation state into the two-state NMP theory. 
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where   is the type, q is the charge state,  ),( qE   is the 

system  energy with defect and charge, E(host) is the energy of 

the perfect system, ni is the number of element, i  is the 

chemical potential relative to the element material, EVBM is the 

host valence band maximum (VBM).△V is the difference of 

electric potential between perfect and defect systems with a 

place far away from the defect. ET between the charge q1 and q2 

can be extracted from the Fermi level where the formation 

energy of q1 is equal to that of q2. S can be obtained through 

relaxing the configuration from the equilibrium for charge state 

q1 to the equilibrium for another charge state q2 [35]. 

For defects in SiO2, several candidates have been suggested, 

including the oxygen vacancies (Vo) [36], the hydrogen bridge 

(HB) and the hydroxyl E’ centers (HE)  [37]. ET and S have 

been systematically calculated in ref.37. The comparison 

between the theoretical and the experimental values is shown in 

Fig.11a&b. Both HB and HE defects have a considerable part 

of components within the Si bandgap. However, Type-A traps 

are situated below the Si valance band, and their energy levels 

are relatively deep. Consequently, these two defect types may 

not be suitable candidates for Type-A traps. Oxygen vacancies 

(Vo) are the only defects exhibiting deep energy levels. 

Although the energy level of Type-A traps is slightly shallower 

than that of Vo, considering the potential calculation error of 

0.5eV in density functional theory (DFT) [37], a strong 

correlation between Type-A and Vo is plausible. Furthermore, 

the experimental and theoretical values of S are in good 

agreement. Therefore, Type-A can be considered as the 

pre-existing trap originating from oxygen vacancy. From this 

perspective, this finding aligns with the aforementioned 

assertion that Type-A traps are structural defects introduced 

during the fabrication process due to imperfections.  

As depicted in the lower panel of Fig.11c, both Type-B1 and 

Type-B2 traps are shallower than Type-A traps. We 

constructed several potential defect structures commonly 

observed in high-k (HK) layers,  including oxygen vacancy (Vo) 

[38], Interstitial hydrogen (Hi) [39], Interstitial Nitrogen (Ni) 

[40] and Oxygen interstitials (Oi) [38]. The amorphous nature 

of the HK layer is also taken into consideration. The calculated 

results are presented in the upper panels of Fig.11c&d. The 

comparison with the experimental data suggests that 

Type-B1&B2 traps may originate from Ni and Hi, respectively. 

Since the concentration of H can be much larger than that of N, 

Type-B2 traps are far more abundant than Type-B1 traps, 

which is confirmed by the experimental data (Fig.5e-f).  

Interstitial H could be stabilized as either the hydrogen bridge 

(HB) or the hydroxyl E’, which undergoes a transition to the 

excited vibronic state after capturing a hole. By dissipating the 

excess energy through the multi-phonon emission process, they 

can relax to a lower energy level. 

IV. MODEL VALIDATION FOR PREDICTIVE CAPABILITY 

A. Validation for Reliability Predictive Capability 

Irrespective of the device geometry, degradation is perceived 

as an ensemble of traps of different types with different filling 

statuses. Once the average trap number of each type of traps is 

determined by the extracted areal density, the average 

degradation can be estimated by calculating the filling 

occupancy through the corresponding physical processes and 
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Fig.12. Comparisons of the proposed model and experiment data under 
(a) DC & AC conditions and (b) arbitrary waveform condition. All show 
good agreement between the prediction and the measurement.  
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Fig.11. Comparison of the Ab-initio calculation and experiment for (a) energy level and (b) relaxation energy of Type-A in the IL; (c) energy level and (d) 
relaxation energy of Type-B (B1&B2) in the HK layer. 
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summing up the results for all traps. 

To demonstrate the prediction capability of the proposed 

model, we calculated degradation kinetics under direct current 

(DC) conditions, alternating current (AC) conditions with 

varying duty factors (Fig.12a), and arbitrary waveform 

conditions (Fig.12b). The results were then compared with 

experimental data. The comparison for duty factor and 

frequency dependences is also shown in Fig.13. Good 

agreement between model’s predictions and the measured data 

serves as robust evidence supporting the validity of the 

proposed model. (“NOT FITTING” is used to highlight that 

good agreements are not from fitting data.) 

Traditionally, long-term reliability under low stress voltage 

conditions can be predicted through extrapolation using simple 

power-law [41], log-law [42], or saturation power-law [43] 

relationships against voltage and time. We extracted the 

relevant model parameters by fitting experimental data under 

high stress voltages (ranging from -1.4V to -1.7V), and 

compared our model with traditional methods under Vg = -1.2V 

and Tstress = 50ks, as illustrated in Fig.14. The results 

demonstrate that our model has good long-term reliability 

prediction capability, whereas the power-law method tends to 

overestimate device degradation, and both log-law and 

saturation power-law methods tend to underestimate it. 

B. Validation for Variability Predictive Capability 

When time-dependent variation (TDV) needs to be 

considered, the average threshold voltage shift (η) resulting 

from a single defect can be estimated through the charge sheet 

model. By assuming the Poisson-distributed trap number and 

the exponential-distributed Δ Vth fluctuation [44], [45], 

Monte-Carlo simulations can be performed to predict the 

temporal degradation for multiple devices over time. As shown 

in Fig.15, the red line represents the TDV measured on 

small-size devices under Vgstress = -1.3V, while the gray line 

represents the simulation results obtained through the 

aforementioned method. The red line essentially falls within the 

range of the gray line, indicating that our model also has good 

variability predictive capability. However, to establish a more 

accurate TDV model, it is necessary to obtain the average 

number of defects (N) for small devices and the average 

threshold voltage shift (η) caused by a single defect through 

statistical experimentation. This will be addressed and 

improved in our subsequent work, further refining the model's 

predictive capabilities. 

We emphasize that all model parameters were extracted from 

DC stress data and energy profiles in Fig.8-10 only. All the test 

data shown in Fig.12-15 were not used for fitting. Moreover, all 

the predictions using the proposed model are based on the 

single set of model parameters. 

V. OMI-BASED AGING MODEL 

To facilitate the circuit-level prediction with good 

compatibility with various circuit simulators and EDA 

platforms, the CMC (Compact Model Council) open model 

interface (OMI) is adopted. By simplifying the proposed model 

and assuming that the waveforms of each node can be 

approximated as square waves, we can model different 
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Fig.14. Comparison of our model with traditional models in long-term 
reliability prediction.  
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Fig.13. Comparisons of the proposed model and experiment data 
under AC conditions with different (a) duty factors and (b) frequencies. 
(c) The degradation is measured both under end of stress (EoS) and 
end of recovery (EoR). 
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Fig.15. Monte-Carlo simulation results of the temporal device-to-device 
variation (DDV) induced by device degradation. The red line essentially 
falls within the range of the gray line, indicating that our model also has 
good variability predictive capability. 

TABLE IV 
Stress stage Recovery stage

Type-A                    
 
  
 

      

        
       

Type-B1                  
  

      

         
        

Type-B2                  
  

                    

                       
        

Type-C                  
  ——

Age 

Rate

   =                 
   =

 

      
                         

   =           
 

Total TD =                             
 

Simplified OMI-based compact model for all types of traps, including the 
stress and recovery stages. In the stress stage, voltage is converted into 
the Age Rate (AR) with the exponential model and power-law model, the 
time kinetic of type-A was characterized by the stretch-exponential 
model,  and time kinetics of other types of traps were characterized by 
the power-law model. In the recovery stage, recovery rate (AR3) was 
characterized by an expression with stress time and stress voltage and 
recovery time. The total degradation (TD) is obtained by linear 
superposition of all types of traps. 
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operating voltages and fixed recovery voltages at 0V. The 

Simplified OMI-based compact model is presented in Table. 

IV. This compact model encompasses all characterized traps, 

and their kinetics can be divided into two stages: stress stage 

and recovery stage.  

During the stress stage, operating voltage is converted into 

the Age Rate (AR) with the exponential model for Type-A & 

Type-B traps and the power-law model for Type-C traps. Time 

kinetics are characterized by the stretch-exponential model for 

Type-A traps and the power-law model for other trap types. 

During the recovery stage, the recovery rate (AR3) is 

characterized by an expression incorporating stress time, stress 

voltage, and recovery time. Degradation after the recovery 

stage is determined by the pre-recovery degradation multiplied 

by AR3. Recovery is only considered for oxide traps while not 

for interface traps.  

The total degradation (TD) is obtained through the linear 

superposition of all trap types. This compact model enables 

handling of both stress and recovery stages with arbitrary 

workloads, making it a versatile tool for predicting and 

analyzing device degradation and circuit performance. 

To validate the accuracy of the OMI-based compact model, 

we integrate the model into the EDA environment and perform 

simulations under various operating voltages over an extended 

period in arbitrary waveform. Fig.16 shows the device 

degradation results calculated by both the defect-based physical 

model and the OMI-based compact model. It is evident from 

the figure that the results from both models are consistent under 

any working voltage over a long duration. Good agreement 

between the two methods demonstrates that the OMI-based 

compact model is well-suited for circuit-level reliability 

assessment.            

VI.  RV-AWARE DTCO DEMONSTRATION 

By integrating the developed method for the trap property 

extraction, the physical and compact modelling into the 

proposed DTCO flow, the co-optimization from material level 

to circuit level become possible (Fig.1). The proposed DTCO 

framework flow is demonstrated on 3nm Gate-All-Around 

(GAA) technology, considering both process and aging 

induced device variation.  

Fig.17 illustrates the 3D structure of the GAAFET, 

comprising 4 nanosheets with a thickness of 5 nm individually. 

The length (Lch) and width (Wch) of each nanosheet is 27 nm and 

35nm, respectively. The dielectric layer is composed of 

0.8-nm-thick SiO2 and 1.5-nm-thick HfO2. Related device 

parameters are listed in Table V. 

Based on TCAD simulation, the variation induced by 

random dopant fluctuation (RDF) [46], metal gate granularity 

(MGG) [47] and oxide thickness variation (TOV) [48] are taken 

into account in device time-zero performances simulation using 

the impedance field method [49]. The impedance field method 

(IFM) offers a highly convenient, efficient, and accurate 

technique for statistical variability analysis. The core essence of 

IFM is to treat randomness as perturbation of reference device. 

Rather than solving the Poisson and drift-diffusion equations 

for numerous random device realizations, a 3D TCAD solution 

is required only once for the reference device. The simulation 

process can be outlined in the following two steps: 

a. Conduct a perturbation simulation at each grid point, 

evaluating the variation of each relevant quantity; 

b. Calculate the linear current response of the TCAD 

solution based on the precomputed quantities to obtain the 

corresponding I-V characteristics, and subsequently compute 

the statistics for all relevant quantities. 
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Fig.16. Good agreement between the data calculated by Defect based 
physical model and OMI-based compact model, making it ready to use 
for circuit-level reliability assessment. 

 
Fig.17. Illustration of the nanosheet structure simulated in this work 

TABLE V 

Parameter of GAA PMOSFET Value

Length of Channel (Lch) 27nm

Width of Channel (Wch) 35nm

Thickness of Channel (Hch) 5nm

Thickness of Oxide (Tox, SiO2 + HfO2) 0.8nm + 1.5nm

Doping Conc. of Substrate (Nsub_D) 1015 cm-3

Doping Conc. of Source & Drain (Nsd_D) 1021 cm-3

Doping Conc. of Channel (Nch_D) 1017 cm-3

 
Related parameters of nanosheet structure in TCAD simulation. 
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Fig.18. (a) Simulated time-zero performances considering RDF, MGG 
and TOV variation sources. (b) The modulation of process variation on 
energy levels of different types of traps. (c)Simulated temporal device 
variations considering both process variation and aging induced 
variation by stochastic nature of each type of trap. 
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As is shown in Fig18a, the variation of Id-Vg curve induced 

by unsatisfactory process factors can be well simulated. Due to 

the modulation of process variation on the defect’s local 

electrical field, the alignment of defect energy levels with the 

valence band will be changed, even under identical gate biases, 

indicating the coupling between process and aging-induced 

variation (Fig.18b). By combining these two sources of 

variation, the device’s variation induced by aging & process 

induced variation can be predicted (Fig.18c).  

Extending to circuit level, Fig. 19 showcases circuits used to 

evaluate circuit-level reliability, including a 6T-SRAM cell 

(Fig.19a) and 5-stage ring oscillator (RO) (Fig.19b). To assess 

the reliability of the SRAM, we analyze the degradation of the 

static noise margin (SNM) over time. For the RO, we evaluate 

its reliability by examining the degradation of the output 

frequency with aging time and different operating voltages. 

Fig. 20(a) shows the degradation of SRAM. The green curve 

represents the initial SNM with a fresh device, and the dashed 

rectangle indicates the maximum noise tolerance. As the two 

pull-up transistors (M1&M4) degrade over time (with only 

PMOS degradation considered in the simulation), it becomes 

increasingly difficult for nodes Q and QB to transition from 

GND to VDD, necessitating a larger negative bias to drive M1 

and M4 to pull the nodes up to the VDD level.  Consequently, 

the butterfly curve shifts from green to red, and the solid 

rectangle, which represents the maximum noise tolerance, 

continually decreases. Fig.20(b) demonstrates the degradation 

of output frequency in the RO. As the transistors degrade, the 

inverter's driving ability weakens, and the propagation delay 

increases, resulting in a continuous decline in the RO's 

frequency.  When the operating voltage (VDD) is 0.7 V, the 

degradation of output frequency reaches nearly 10% after 10 

years. As VDD increases, the RO's lifetime correspondingly 

decreases. 

 The above results highlight the severity of circuit-level 

aging, underscoring the importance of identifying which type 

of trap causes such significant degradation. By pinpointing the 

source of this degradation, we can develop strategies to 

optimize the fabrication process and improve device reliability. 

Fig. 20c&d exhibit the contributions of each type of traps to 

the SRAM and RO cells, respectively. In the initial stage of the 

SRAM cell, the degradation is relatively small, as shown in Fig. 

20c. Type-B's contribution rapidly increases with aging time, 

with Type-B1 and Type-B2 accounting for approximately 40% 

and 60% after 0.5 years, respectively. Due to the saturation of 

Type-B1 and the growth of Type-B2, Type-B2's contribution 

rises to about 90% after 10 years. A similar situation occurs in 

the RO cell, where Type-B1 and Type-B2 are the primary 

contributors to circuit degradation, while the impacts of 

Type-A and Type-C can be largely disregarded.  

Consequently, to enhance circuit performance and reliability, 

it is crucial to eliminate Type-B traps (especially Type-B2) 

during the process optimization stage. 

VII. AI-ASSISTED PREDICTION 

Traditional approach of circuit-level aging simulation 

adopted in commercial EDA tools requires high computation 

resources. Besides, changing simulation conditions requires 

re-analysis of the circuit, which takes a long iteration time and 

significantly increases the cost. The above shortcomings may 

hinder its use for the large-scale circuit reliability-aware design.  

To address this challenge, a fast assessment methodology based 

on spatial-temporal graph neural network (ST-GNN) is 

proposed. By taking both the structural topology and dynamic 

operation of the circuit into consideration, reliability prediction 

can be achieved with both high accuracy and efficiency. 

In order to analyze circuits using GNN, it is necessary to 

convert circuits into graph. From circuit schematic diagram, the 

device can be treated as the node vector of the graph, and the 

connection between the device ports can be treated as the edge 

of the graph. The considered nodes include MOS transistors 

four terminals, without considering grounding, DC power 

supply, and AC sources. The impact factors on device 

reliability are included in the node feature. For example, 

transistor node Xg is composed of four features, namely 

effective channel length Leff, effective width Weff, gate source 

voltage Vgs, and drain source voltage Vds. To simplify the 
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Fig.19. Schematics of the simulated (a) 6T-SRAM cell and (b) ring 
oscillator (RO). By analyzing the SRAM static noise curve (SNM) and 
the output frequency of the RO to assess circuit-level reliability. 
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Fig.21. Illustration of how the topology of two-input AND is represented 
as a graph. 
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procedure, the circuit diagram is treated as an unweighted 

graph, with weight values only associated with each node while 

not with edges. Regarding to the edge of the graph, the 

connections of MOS transistors: gate, source, drain, and 

substrate is considered as the same type of edge. Fig.21 shows a 

dual input AND gate represented as an unweighted isomorphic 

undirected graph. 

To consider both the structural topology and dynamic 

operation information of the circuit, the ST-GNN includes 

GNN of spatial domain and improved CNN (Convolutional 

Neural Networks) of temporal domain. GraphSAGE is adopted 

as the GNN model [50], which is a classical model that applies 

the message passing paradigm. In addition, it is a universal 

graph neural network that samples and aggregates neighboring 

nodes and generates target node embeddings in a graph. The 

improved CNN model of time domain processes time series 

composed of node features at different simulation steps, taking 

changes of circuit device parameters in dynamic stress 

simulation into account. Improved CNN adds gate linear units 

GLU and residual connections methods on the basis of 

two-dimensional convolution [51]. The GLU algorithm has a 

fixed length time window, in which the time series features can 

be compressed using convolution operations, and output 

control based on time information can be achieved through 

gating. 

The ST-GNN framework consists of two blocks and one 

fully connected layer. Each block contains two GraphSAGE 

layers and one improved CNN layer. The GraphSAGE layer 

aggregates and updates nodes based on circuit diagram 

structural information. The improved CNN layer captures 

relevant temporal information in the temporal dimension. The 

fully connected layer is used to synthesize features and generate 

predicted values for device degradation. Besides, the standard 

library circuits with 45nm PTM are used for model training 

[52]. Fig.22 shows the model framework and the process of 

model training. 

From Table VI, it shows that the ST-GNN model achieves 

good performance in predicting aging values for different 

circuits and frequencies of AC source, with maximum 

percentage errors maintained within 2.3%. Fig.23 (a) shows the 

fitting curve between predicted data and data from 

conventional approach, which presents small deviations 

compared to each other under AC source with different 

frequency. In addition, Fig.23 (b) compares the calculation 

time of the traditional reliability model and the ST-GNN model, 

which indicates that the inference time of the ST-GNN 

framework model is significantly shorter than conventional 

approach for all batches of circuits, and the average 

acceleration ratio can reach over 200 times.   

In conclusion, the ST-GNN framework can balance 

prediction accuracy and time overhead, laying the groundwork 

for future aging prediction tasks of large-scale circuits. 

Furthermore, applying the ST-GNN framework to EDA to 

predict transistor aging will contribute to improving designers' 

circuit design efficiency and reducing the DTCO time efforts. 

VIII. CONCLUSION 

Four key issues, including efficient and accurate 

characterization technique, long-term prediction capability, 

compatibility in most EDA platforms, and the prediction 

efficiency to enable fast iteration, hindered the practical 

adoption of RV-aware DTCO. This work tackles them by 1) 

proposing an analytical method to separate different types of 

traps directly from the measured degradation, 2) proposing a 

unified defect-based model for accurate long-term reliability 

and variability aging prediction, 3) developing an OMI-based 

compact model for the circuit-level aging assessment, 4) 

developing an ML-assisted approach based on ST-GNN that 

enables the efficiency improvement by over 200 times 

compared with conventional methods. With these key advances, 

a new RV-aware DTCO flow is established, which bridges 

material properties to circuit design. 
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Fig.22. Training flow of the proposed ST-GNN framework. Both circuit 
topology and temporal information are considered. 

TABLE VI 

circuit Freq[Hz] max error [%]

DFFSR
5.00E+09 1.1752825

2.00E+09 1.149435

OAI21X1
5.00E+09 0.3736537

2.00E+09 0.5067706

FAX1
5.00E+09 2.2061551

2.00E+09 1.119634

MUX2X1 
5.00E+09 0.6838623

2.00E+09 1.0061294

NOR2X1
5.00E+09 0.3887624

2.00E+09 0.3836282

TBUFX2
5.00E+09 0.5663097

2.00E+09 1.4122184

XNOR2X1
5.00E+09 0.8741502

2.00E+09 0.3939159

XOR2X1
5.00E+09 0.6520148

2.00E+09 0.6376211
 

The prediction error of the proposed ST-GNN for various standard cells. 

 

(a) (b)

 
Fig.23. Comparison of the (a) prediction results and (b) time 
consumption between ST- GNN and conventional flow. 
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