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Megan Watson,b Megan Wilson,b Tom Arnote and Rod Scottf†

Abstract

BACKGROUND: Using microalgae for wastewater treatment offers an environmentally friendly method to produce microalgal
biomass that can be used for many applications. However, the biochemical characteristics of microalgal biomass vary from spe-
cies to species, from strain to strain, and between different growth stages within the same species/strain. This study utilized
portable attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy to determine the composition of
freeze-dried microalgal biomass corresponding to eight different locally isolated microalgae and a reference strain that were
grown in wastewater and then harvested at the log and stationary phases, respectively.

RESULTS: The results showed that the portable ATR-FTIR spectroscopy offered a rapid, non-destructive, and accurate technique
for monitoring changes in the biochemical composition of algal biomass at stationary and log phases, as well as quantifying
their main constituents. For qualitative analysis of species, two machine learning analytics (MLAs; correlation in wavenumber
space and principal component analysis) were able to differentiate betweenmicroalgae isolates in both their stationary and log
phases. For quantification, univariate or multivariate regression offered accuracy in quantifying key microalgal constituents
related to proteins, lipids, and carbohydrates. In this sense, multivariate methods showed more accuracy for quantifying car-
bohydrates, yet proteins and lipids were more accurately quantified with univariate regression. Based on quantification, the
highest relative content of carbohydrates in the log phase was for Jordan-23 (Jo-23; Desmodesmus sp.), whereas the highest
content in the stationary phase was that for Jordan-29 (Jo-29; Desmodesmus sp). Regarding the relative lipid content in the
log phase, Jo-23 had the highest lipid content, while the highest content in the stationary phase was for Jo-29.

CONCLUSION: ATR-FTIR spectroscopy offered a rapid and sustainable method for monitoring themicroalgal biomass produced
during wastewater treatment processes.
© 2023 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Soci-
ety of Chemical Industry (SCI).
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NOMENCLATURE

ATR-FTIR Attenuated total reflectance-Fourier transform
infrared

BSA Bovine serum albumin
CCAP collection of algae and protozoa
GTP Glycerol tripalmitatete
Jo-2 Jordan_2 (Desmodesmus sp.)
Jo-4 Jordan_4 (Desmodesmus sp.)
Jo-12 Jordan_12 (Coelastrella sp.)
Jo-18 Jordan_18 (Desmodesmus subspicatus – Chodat –

Hegewald and Schmidt.)
Jo-23 Jordan_23 (Desmodesmus sp.)
Jo-29 Jordan_29 (Desmodesmus sp.)
Jo-34 Jordan_34 (Tetradesmus obliquus –Turpin- Wynne)
Jo-40 Jordan-40 (Chlorella sorokiniana Shihira & Krauss)
L Log phase
MLAs Machine learning analytics
MSC Multiplicative scatter correction
PCA Principal component analysis
PLSR Partial least square regression
PP Polyphosphate
R. s Reference strain (Tetradesmus obliquus CCAP 276/7

–Turpin- Wynne)
RMSE Root mean square error
RMSEC Root mean square error of calibration
RMSEP Root mean square error of prediction
S Stationary phase
(SD) FTIR Second derivative FTIR
SPP Sodium polyphosphate
TGA Thermogravimetric analysis

INTRODUCTION
Microalgae are a diverse group of microorganisms that use car-
bon dioxide and light to synthesize their food and produce oxy-
gen. They do not compete with plants for freshwater resources
or arable land because they can grow in brackish water,1-3 waste-
water, and non-arable land.4-8 These characteristics make them
suitable for the production of biomass that can be used as
bioenergy,9-12 feed,13,14 fertilizers,15-17 food,18,19 and pharmaceu-
tical compound manufacturing.20,21

The biochemical composition of microalgal biomass
(e.g. protein, lipid, carbohydrates, phenolic contents) varies
between different species22-24 and within the same species
between different strains.25 In addition, growth regulators,
growth stage, and growth conditions (such as light intensity,
temperature, and nutrient availability) affect the chemical
properties of microalgal biomass.26-29 Thus, the biochemical
characteristics of the microalgal biomass determine its
applications.
Since many factors affect the biochemical composition of green

microalgae, it is important to find rapid, simple, and non-
destructive methods to monitor microalgal biomass composition.
Fourier transform infrared (FTIR) offers these advantages and does
not need large amounts of dried biomass, making it feasible to
use in monitoring the biochemical composition during experi-
ments. Moreover, this technique does not require a multistep pro-
cedure to extract biochemical compounds, and it can
simultaneously detect several biochemical compounds in the
same spectrum.30 In addition, the presence of a rigid cell wall for
many algal species affects the efficiency of the biochemical

compound extraction and the accuracy of the extraction
outcomes.31,32 A complete characterization of microalgal biomass
through FTIR, thermogravimetric analysis (TGA), and an analysis of
the percentage of the elemental composition of carbon, hydro-
gen, nitrogen, and sulfur (CHNS) has been conducted for four
microalgal species for biofuel generation and nutrient removal.33

The lipid productivity in two microalgae (Chlamydomonas sp. and
Monoraphidium contortum) under various nutrient conditions was
studied using second derivative (SD) FTIR. In this respect, SD spec-
tral analysis showed a high production of lipids for both species
under nutrient-deplete conditions.34 FTIR was an efficient and reli-
able method to determine the carbohydrate and lipid contents of
Chlamydomonas reinhardtii and Scenedesmus subspicatus grown
in nitrogen-limiting conditions.35 Furthermore, FTIR was applied
in parallel with chemometrics for detecting grazers in microalgal
cultures.36 Since the invasion of predators can destroy the micro-
algal culture within a couple of days,37 the combination of FTIR
with two machine learning analytics (MLAs) can act as an early
detection tool for real-time and early detection of algal grazers.36

Moreover, this technique shows a specific chemical signature for
each substance based on the functional groups present within
said substance. As algal samples consist mainly of carbohydrates,
proteins, and lipids that are strongly absorbed in the infrared
region, FTIR serves as an ideal technique for their analysis.38

The combination of FTIR and chemometrics allows for mixtures
of key constituents (carbohydrates, lipids, and proteins) to be
quantified and for their uses to be assessed for industry sectors,
such as bioenergy, food, green chemicals, cosmetics, and thera-
peutics. Furthermore, the application of MLAs, such as the correla-
tionmethod, principal component analysis (PCA), and partial least
square regression (PLSR), was undertaken. The correlation
method and PCA allowed for the qualitative analysis of different
microalgae species by revealing information about patterns
between their spectra.35,39,40 In addition, PLSR assisted in quanti-
fying constituents (for example, carbohydrates, lipids, and pro-
teins) in microalgae. As PLSR is a regression algorithm, it was
crucial to have different concentrations of constituents in a PLSR
model; different concentrations can be made by preparing differ-
ent mixtures of the constituents and/or any other constituents of
variable range.41,42 This has been extensively applied tomedicinal
constituents.43-45 Subsequently, this approach was adopted for
microalgae constituents.
Jordan is one of the most water-scarce countries in the world.46

Improving the quality of their treated wastewater is very impor-
tant for safe reuse in agriculture and industry. The safe reuse of
treatedwastewater helps to reduce the existing stress on freshwa-
ter resources in the country.47 This research is a second phase of a
previous study, in which local green microalgae were isolated
from Jordan, and their efficiency for wastewater treatment was
assessed at a laboratory-scale based on their specific growth rate,
specific nutrient removal rate from wastewater, and settleability
by gravity. The removal of excess nutrients from the wastewater
depends on how fast these nutrients can grow.48 As an environ-
mentally and economically friendly method to be applied in
high-rate algal ponds (HRAP) in the future, the biomass of these
microalgae is intended to be used as a by-product to reduce the
cost of the wastewater treatment process. Since the produced
microalgal biomass can be used as a slow-releasing fertilizer or
as animal feed, it is worth noting that before applying the bio-
mass, it should not have a high concentration of persisting
organic pollutants or heavy metals.49 In addition, the biomass
can be converted into biofuel.50
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Therefore, this research used portable ATR-FTIR spectroscopy
with MLAs to determine microalgal constituents in log and sta-
tionary phases. The microalgae evaluated were obtained from
eight different local green microalgae isolates from Jordan, in
addition to a reference strain obtained from a culture collection
known for its efficiency in removing nutrients from water.

MATERIALS AND METHODS
Materials
Eight different local green microalgal isolates from Jordan and a
reference strain obtained from a culture collection were evaluated
(Table 1). For carbohydrate, protein, and lipid references, the fol-
lowing chemicals were used as models: glucose, sucrose, bovine
serum albumin (BSA; CAS number 9048–46-8), glycerol tripalmi-
tate (GTP; CAS number 555–44-2), and sodium polyphosphate
(SPP; CAS number 10361–03-2); all were purchased from Sigma-
Aldrich.

Sample preparation
The isolated green microalgae were grown in triplicate in real
municipal wastewater beside a reference species bought from
the culture collection of algae and protozoa (CCAP): T. obliquus
CCAP 276/7. The wastewater in this experiment was collected
from a wastewater treatment plant in the UK and modified to
become similar to real wastewater in Jordan, with the following
characteristics: Phosphate (PO4-P), 5.8 mg L−1; Ammonium (NH4-N),
20.15 mg L−1; Nitrate (NO3-N), 24.35 mg L−1; the Total nitrogen
was 45.2 mg L−1. Then, the water was filtered through GF/C fil-
ter paper and sterilized using ozone gas for 15 min, followed by
pumping filtered air for 20 min. The samples were grown at a
temperature of 22 °C, with light intensity of 130–
150 μmol·photons·m−2·s−1, light: dark cycle in hours of 16:8,
and they were supplied with 2.5% CO2 gas and seeded at ca.
1.0 × 106 cells mL−1.
The growth of the samples wasmonitored by cells count using a

Guava easyCyte™ flow cytometer (Millipore, Hayward, CA 94545,
USA); when the samples were mid-log phase and in the stationary
phase after 10 days of growth, 200 mL were collected and the
cells were harvested by centrifugation at 3200 × g for 5 min.
The algal pellets were washed twice with deionized water, then
resuspended in deionized water, frozen as droplets in liquid

nitrogen, and freeze-dried (Freezdryer Modylyo, Edwards, Britain;
Vacuum pump RV8, Edwards, England).
For quantitative analysis, three different mixtures were pre-

pared; binary, ternary, and quaternarymixtures containing the fol-
lowing constituents were prepared: BSA, glucose, GTP, and SPP
(Table 2). In addition, two mixtures were made based on the stan-
dard addition of either BSA or glucose to algal samples.42 Details
of mixtures are listed below:

(1) Mixture 1: Binary mixture of glucose and SPP.
(2) Mixture 2: Ternary mixture of BSA, glucose, and SPP.
(3) Mixture 3: Quaternary mixture of BSA, glucose, GTP, and SPP.
(4) Mixture 4: Standard addition of BSA to freeze-dried algae

powder, such as the algae of all eight species.
(5) Mixture 5: Standard addition of glucose to freeze-dried algae

powder, such as the microalgae of all eight species.

FTIR analysis
FTIR spectra were collected using the Bruker Alpha FTIR spectrom-
eter equipped with ATR diamond holder (Fig. 1). Each spectrum

Table 1. Details of samples used in the study

Isolate
Log Phase (L; 3 biological replicates A, B & C) Stationary Phase (S; 3 biological replicates A, B & C)

Jordan_2 (Jo-2) Jo-2_A/L Jo-2_B/L Jo-2_C/L Jo-2_A/S Jo-2_B/S Jo-2_C/S

Jordan_4 (Jo-4) Jo-4_A/L Jo-4_B/L Jo-4_C/L Jo-4_A/S Jo-4_B/S Jo-4_C/S
Jordan_12 (Jo-12) Jo-12_A/L Jo-12_B/L Jo-12_C/L Jo-12_A/S Jo-12_B/S Jo-12_C/S
Jordan_18 (Jo-18) Jo-18_A/L Jo-18_B/L Jo-18_C/L Jo-18_A/S Jo-18_B/S Jo-18_C/S
Jordan_23 (Jo-23) Jo-23_A/L Jo-23_B/L Jo-23_C/L Jo-23_A/S Jo-23_B/S Jo-23_C/S
Jordan_29 (Jo-29) Jo-29_A/L Jo-29_B/L Jo-29_C/L Jo-29_A/S Jo-29_B/S Jo-29_C/S
Jordan_34 (Jo-34) Jo-34_A/L Jo-34_B/L Jo-34_C/L Jo-34_A/S Jo-34_B/S Jo-34_C/S
Jordan_4 0(Jo-40) Jo-40_A/L Jo-40_B/L Jo-40_C/L Jo-40_A/S Jo-40_B/S Jo-40_C/S
Reference Strain (R. s) R.s_A/L R.s_B/L R.s_C/L R.s_A/S R.s_B/S R.s_C/S

Note: Jordan_2, Desmodesmus sp.; Jordan_4, Desmodesmus sp.; Jordan_12, Coelastrella sp.; Jordan_18, Desmodesmus subspicatus; Jordan_23, Desmo-
desmus sp.; Jordan_29, Desmodesmus sp.; Jordan_34, Tetradesmus obliquus; Jordan_40, Chlorella sorokiniana; Reference strain, Tetradesmus obliquus
CCAP 276/7.

Table 2. Mixtures used in this study

MN Nc Constituents Nv

MN1 2 Glucose 11
SPP

MN2 3 BSA 15
Glucose
SPP

MN3 4 BSA 17
Glucose
GTP
SPP

MN4 2 Algae species 12
BSA

MN5 2 Algae species 12
Glucose

Abbreviations: MN, mixture number; Nc, Number of constituents; Nv,
number of vials. In all cases, the calibration range was 0–100% m/m
of each constituent.
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was the sum of 16 scans over the wavenumber range
400–4000 cm−1 and with the optical resolution 4 cm−1.
Algal samples, raw materials, and the mixture of raw materials

were stored in glass vials prior to measurements. They were mea-
sured as received by placing a few milligrams of each sample on
the ATR crystal sample interface. Three measurements were taken
from each sample after being mixed for 2 min on a vortex mixer.
Three spectra were taken for each measurement.

Qualitative and quantitative analysis
FTIR Spectra were exported in Matlab 2022a, where qualitative
and quantitative analyses were applied. Prior to spectral interpre-
tation, a baseline correction of spectra wasmade usingmultiplica-
tive scatter correction (MSC). MSC corrected changes in the offset
that resulted from different factors relating to sample properties
and environmental conditions. This was achieved by the construc-
tion of a new spectrum that is a linear combination of the original
spectrum (Eqn 1).51

yMSC,i=
yi−að Þ
b

ð1Þ

Where,

yMSC,i is the corrected spectrum value,
i is the number,
yi is the original spectrum,
a is the intercept of the line,
b is the slope of the line.

Correlation method
The correlation method measured the momentum product
between two or more spectra (Eqn 2).51

rp=
∑ Ai−A
� �

Bi−B
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ Ai−A
� �2q

∑ Bi−B
� �2 ð2Þ

Where,

rp is the momentum product,
A is the first spectrum and A its mean,

B is the second spectrum and B its mean,
i is the corrected spectrum value.

In this respect, the correlation method measured the similarity
of the spectra of the compared samples. The range of correlation
is −1 to +1, where −1 indicates dissimilarity and + 1 is identical.
The threshold adopted for the correlation coefficient (r) value
was 0.95; hence, r values above 0.95 were considered a match
and vice versa. Type I errors and type II errors were investigated
for evaluation of the correlation method. A type I error was
encountered when an algal sample gave an r value <0.95 against
its own species. A type II error wasmet when an algal sample gave
an r value >0.95 against a different species.51

Principal component analysis (PCA)
PCA is amultivariate classification technique that clusters samples
according to variances among the samples. In this case, PCA
reduces the dimension of the data into scores and loadings. Thus,
PC1 has the highest variance, PC2 the second highest not related
to the first, and so on. The scores show the distribution of the data
in a multidimensional space, whereas the loadings show the
important absorbance values that relate to significant constitu-
ents within the PCA model. In this respect, PCA was used to visu-
alize the clustering of algal samples and constituents. The model
was evaluated by considering type I errors and type II errors; in
this model, a type I error was observed when a sample was not
clustered with its species and a type II error was observed when
a sample was clustered with different species.
The relationship between the spectra, scores, and loadings is

described in Eqn 3.52

X=T×P+Q ð3Þ

Where,

X is the original data matrix,
T represents the scores,
P represents the loadings,
Q represents the residuals.

Partial least square regression (PLSR)
PLSR was applied as a multivariate quantitative analytic consider-
ing the differences in the physicochemical properties in the mix-
tures.53 The principle of PLSR was similar to that of PCA but
applied to x and y variables; where x values were the absorbance
values and y values represented the concentration values. In this
respect, a PLSRmodel retrieved components in x values that were
related to y values and rejected unrelated components. The com-
ponents were retrieved based on finding factors that captured
variance among the data such that one factor was added at a time
in descending order. Hence, the first factor had the highest vari-
ance, the second had the second highest variance, and so on.52

X=T×P+E ð4Þ
c=T×q+ f ð5Þ

Where,

X is the absorbance at different wavenumbers,
c is the concentration,
q is the loading vector,
T represents the scores,

Figure 1. The Bruker Alpha FTIR spectrometer equipped with ATR dia-
mond holder.
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P represents the loadings,
E and f represent the residuals.

Three parameters were considered when evaluating the PLSR
model, including the regression correlation coefficient (r2) value,
and the root mean square error of calibration (RMSEC) and predic-
tion (RMSEP) (Eqns 6 and 7). Thus, the higher the r2 value, the
more accurate themodel; the lower the RMSEC and RMSEP values,
the more precision the model possesses. Moreover, the closeness
of RMSEC to RMSEP values indicated robustness of the models.51

RMSEC=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ y−yð Þ2

�

n−p−1

vuut ð6Þ

Where,

y is the % m/m of the calibration set,
ӯ is % m/m of each component,
n is the number of samples in the calibration set,
p is the number of factors used in the model.

RMSEP=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ y−yð Þ2

�

n−1

vuut ð7Þ

Where,

y is the % m/m of the prediction set,
ӯ is % m/m of each component,
n is the number of samples in the prediction set.

Univariate regression analysis
Quantitative analysis was conducted by univariate regression
models that were developed based on the binary, ternary, and
quaternary mixtures. The models were developed at key absor-
bances for carbohydrates, proteins, and lipids. For model evalua-
tion, accuracy and precision were considered by measuring r2

and root mean square error (RMSE) values. In this respect, the
higher the r2 and lower RMSE values, the more accurate and pre-
cise the model is. To reduce the peak absorption's fluctuation as a
result of the inhomogeneous thickness of the sample, amide I
(1724–1585 cm−1) was selected as an internal reference peak for
the evaluation of the carbohydrate and lipid contents relative to
protein.

RESULTS AND DISCUSSION
Advantages of using portable infrared spectroscopy
Portable ATR-FTIR spectroscopy offered a rapid, simple, and sus-
tainable approach when compared to laboratory-based tech-
niques.54 The ATR-FTIR spectrometer used (Fig. 1) could be

Figure 2. MSC-treated FTIR spectra of (a) BSA, (b) glucose, (c) GTP, and (d) SPP were measured using the Bruker Alpha FTIR spectrometer equipped with
ATR diamond holder.
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easily carried to the field provided a power supply is available. This
portability saves on the time and costs attributed to importing
samples to a laboratory. The instrument weight is about 2 kg
and it operates over variable temperature conditions. Moreover,
the instrument has the optionality to incorporate in-built spectral
libraries that offer identification on the spot. It is worth noting that
an FTIR spectrum can be acquired in less than a minute. Subse-
quently, if instant measurements are combined with in-built iden-
tification, the characterization of samples can be made within
minutes. This is advantageous when measuring a large number
of samples off-site. Moreover, the ease of measurement of sam-
ples by using portable instruments allows them to be run by
non-skilled personnel. It is the first research to evaluate the effi-
cacy of using portable FTIR for algal biomass evaluation. This tech-
nique is important for monitoring the variations in dried algal
biomass on the field for quality checks in the case of large-scale
microalgae growing facilities (for example, wastewater treatment
plants or microalgae producing facilities that have many ponds
for growing microalgae). Drying the biomass is essential to mini-
mize the degradation of the biomass and stabilize the biomass
before processing it, so this step is essential for microalgae bio-
mass production systems. In general, the biomass drying method
varies in capital expenditures, operating expense investments,
and depending on the end-product of the biomass; for example,
in high-value products (pharmaceuticals), fast and energy-
intensive methods could be applied (such as lyophilization, spray,

fluidized bed).55 On the other hand, if biofuel is the end-product,
energy input must be minimized to make the process more eco-
nomically viable and competitive with fossil fuels; for example,
solar drying is very convenient for countries (like Jordan) that
receive plenty of sunlight hours all year round. In addition, other
factors should be considered based on the intended functional
product when the drying method is chosen, such as the nature
of the microalgal cell.55

Spectral quality
Raw materials
The spectral quality of the main constituents in algae were evalu-
ated in relation to number of peaks, absorption, absorption inten-
sity, and range. The absorption intensity varied between 0.1 and
0.6 absorbance units. SPP showed the lowest number of peaks
(n = 5) and its absorption range was limited to the fingerprint
region between 1200 and 400 cm−1 (Fig. 2).
The absorbance range of SPP was between 0.08 and 0.25 absor-

bance units. Likewise, BSA showed a low number of peaks (n = 6)
and weak absorbance in the range of 0.06 and 0.14 absorbance
units. On the other hand, glucose and GTP showed stronger
absorbance when the number of peaks and intensities were com-
pared. Glucose showed 24 peaks over the full wavenumber range
and had absorbance intensities between 0.04 and 0.3 absorbance
units. GTP was the strongest absorbing constituent and showed
24 peaks in the range of 0.02–0.49 absorbance units.

Figure 3. MSC-treated FTIR spectra of the (a) log phase and (b) stationary phase of microalgae samples measured using the Bruker Alpha FTIR spectrom-
eter equipped with ATR diamond holder.
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Algal samples
When the algal biological replicates were compared, they showed
FTIR activity corresponding mainly to protein and GTP. Key peaks

corresponding to BSA and GTP were seen at 3284, 2919, 2851,
1744, 1638, 1542, and 1012 cm−1. The aforementioned peaks cor-
responded to amine/NH (protein), methyl/methylene groups

Figure 4. Correlation coefficient values of the MSC-treated FTIR spectra of microalgae samples in log (blue) and stationary (red) phases against (a) BSA,
(b) glucose, (c) GTP, (d) SPP, and (e) sucrose. Measurements were conductedwith the Bruker Alpha FTIR spectrometer equippedwith ATR diamond holder.

Figure 5. PCA score plot of PCA model 1 applied to the MSC-treated FTIR spectra of microalgae samples (stationary and logs) over the full wavenumber
range.
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(CH/=CH) (GTP), ester group (GTP), amide I (protein), amide II (pro-
tein), and ether (COC) (GTP) respectively.56

The changes in carbohydrate, lipid, and protein contents could
be monitored by investigating of the IR spectra for the three bio-
logical replicates of the eight microalgal isolates and the refer-
ence strain in the log phase and stationary phase (after 10-day
growth). The samples' IR spectra showed an absorbance range
between 0.02 and 0.4 absorbance units over the full
range (Fig. 3). The FTIR spectra showed about 20 peaks corre-
sponding to proteins, lipids, and carbohydrates. The samples
showed a decrease in protein content and an increase in carbohy-
drate content by three-fold. Nonetheless, the lipid content was
constant in both log and stationary samples.

Qualitative analysis correlation in wavenumber space
The spectra of the algal samples were compared against the con-
stituents' spectra and other spectra. The pattern of correlation was
observed for samples that showed a decrease in BSA concentra-
tion in the stationary phase and an increase in lipids and sugars
(Fig. 4). The r value ranges of stationary and log samples against
BSA were in the range of 0.59–0.89 and 0.73–0.94, respectively.
Moreover, the r values of glucose, GTP, SPP, and sucrose against
stationary and log phases were in the range of 0.21–0.90 and
0.20–0.88, respectively.

Principal component analysis (PCA)
Two different PCAmodels were applied over two different ranges:
the first (PCA model 1) being the full range and the second (PCA
model 2) being the range of 900–1800 cm−1 that has the peaks
of interest for proteins, sugars, and lipids.57 PCA model
1 showed better discrimination between the log and stationary
phases of each species; thus, no type II error was observed.
However, type I errors were seen for both models. Hence, PCA
model 1 showed type I errors for two species of the log phase
(Jo-34 L and R.s L) and one species of the stationary phase
(Jo-23 S) (Fig. 5).
This could be related to noise in the spectra of the specific

samples where the majority of samples showed clear accuracy
of qualification.52 It is worth noting that the accuracy of identifica-
tion was related to the protein, lipid, and carbohydrate constitu-
ents and this was confirmed by the PC loading plot of PCA
model 1 (Fig. 6). Hence, both loading plots showed significant
contribution of bands corresponding to the full algal spectra that
showed key features of carbohydrates, lipids, and proteins. This, in
turn, confirmed the explainability of the PCA model where the
variances of the first two PCs corresponded to the full algal
spectra.58

On the other hand, PCAmodel 2 showed type I errors for Jo-34 L
at log phase and one species of the stationary phase (Jo-23 S). In
addition, PCA model 2 showed type II errors for two species with
overlapping scores (Fig. 7). These species were Jo-2 L (Desmodes-
mus sp.) and Jo-18 L (Desmodesmus subspicatus) and this could be
related to similarities in the spectra between both species within
the limited range of 900–1800 cm−1. Thus, the PCAmodel applied
over the full range offered more accuracy in discriminating sam-
ples than the limited range.
PCA model 2 did not show overlap between the stationary and

log phases of each sample and this confirmed the model's ability
to discriminate between both phases over the selected range.
Explainability of the model was featured in the loading that
showed key peaks to the constituents, where the highest peak
was seen around 1000 cm−1, thus contributing to COC group of
GTP (Fig. 8).56 Moreover, key contribution was seen around
1750 cm−1 that was related to ester group for lipids. This, in turn,
confirmed that lipid and protein constituents contributed to dif-
ferences among the different Jo samples.56

Quantitative analysis
Subsequently, univariate and multivariate regression models
were constructed for the quantification of the carbohydrate, pro-
tein, and lipid contents in the samples.

Univariate analysis
A total of 14 univariate regressionmodels were constructed at the
key absorbances for the main constituents in algal samples. These
included: bands at 1740 (ester), 2800 (methyl), 3000 (methylene)

Figure 6. (a) PC1 and (b) PC2 loading plots of PCA model 1 that were
applied to the MSC-treated FTIR spectra of microalgae samples (stationary
and logs) over the full wavenumber range.
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cm−1 for lipids; bands at 1650 (amide I) and 1540 (amide II) cm−1

for proteins; and bands at 1050 cm−1 for carbohydrates. Depend-
ing on the linearity of the key bands present in each mixture,

quantitative models were built based on carbohydrate, lipid, or
protein quantifications (Table 3 and Appendix I Figs A1–A6).
For binary mixtures, only glucose bands showed linearity and,

consequently, three models (M1 – M3) were constructed based
on the absorbances at 3212, 1048, and 1016 cm−1 (Fig. 9). In all
three cases, a calibration range of 10–90% m/m was used.
All three models showed high accuracy of calibration with r2

values of 0.96, 0.98, and 0.99, respectively. Nonetheless, there
was variation in the precision, where M3 (at 1016 cm−1) showed
the highest precision, followed by M2 (at 1048 cm−1) and M1
(at 3212 cm−1). This was justified by the RMSEC values obtained
for M3, M2, and M1 being 3.58, 4.13, and 5.94%m/m, respectively.
For ternary mixtures, models based on glucose and BSA were

constructed. Glucose models (M4 and M5) were constructed in
the range of 20–80% m/m at the absorbances of 993 and
1012 cm−1, respectively. Both models showed similar high accu-
racy and precision, with r2 and RMSEC values of 0.97 and 4%
m/m, respectively. Likewise, high accuracy and precision were
seen for BSA models (M6 and M7) constructed with the ternary
mixture in the range of 10–75% m/m. In this respect, the r2 and
RMSEC values for M6 and M7 were around 0.99 and 2.5–2.99%
m/m. This showed that the ternary mixtures had more accuracy
and precision than the binary mixtures. High accuracy and preci-
sion in the latter case could be attributed to using more variables
(three rather than two constituents in the mixture). However,
including more constituents did not indicate higher accuracy
and precision in all cases, and that depended on the constituent
quantified and its IR activity. Hence, quaternary mixtures con-
structed with BSA, glucose, GTP, and SPP showed lower accuracy
and precision for glucose quantification than BSA and GTP quan-
tification. Glucose quantification at 993 and 1012 cm−1 gave r2

values of 0.93 and 0.94 and RMSE values of 12.3 and 7.39%
m/m, respectively. However, BSA quantification using models
based on quaternary mixtures (at 1650 and 1515 cm−1) showed
high accuracy and precision with r2 values of 0.97 and 0.98 and
RMSE values of 4.63 and 5.46% m/m, respectively. GTP also

Figure 7. PCA scores plot of PCA model 1 applied to the MSC-treated FTIR spectra of microalgae samples (stationary and logs) over the wavenumber
range of 900–1800 cm−1.

Figure 8. (a) PC1 and (b) PC2 loading plots of PCA model 1 that were
applied to the MSC-treated FTIR spectra of microalgae samples (stationary
and logs) over the wavenumber range of 900–1800 cm−1.
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showed accurate and precise quantitative models at 2913, 2849,
and 1730 cm−1. The aforementioned three models yielded r2

values of 0.98, 0.97, and 0.99, and RMSE values of 4.40, 5.18, and
3.24% m/m, respectively.

Multivariate analysis
Multivariate regression models based on PLSR were constructed
for quantification of glucose and SPP (Table 4).

PLSR models based on the binary mixture (MN1) of glucose and
SPP showed accurate quantifications that were dependent on the
concentration range and spectral range of the quantified analyte
in the mixture. Out of the 15 PLSR models applied to MN1, the
most accurate models for quantifying glucose and SPP were
obtained for the concentration range of 10–100% m/m of each
glucose and SPP. Thus, for glucose quantification, the PLSRM6 that
was applied over the wavenumber range of 1533.84–418.13 cm−1

showed r2C/r2V values and RMSEC/RMSEP values of 0.9613/0.9761

Table 3. Details of univariate regression models

N Mixture name Substance quantified Calibration range (% m/m) Wavenumber (cm−1) r2 RMSE (% m/m)

M1 Binary Glucose 10–90 3212 0.9563 5.94
M2 Binary Glucose 10–90 1048 0.9776 4.13
M3 Binary Glucose 10–90 1016 0.9848 3.58
M4 Tertiary Glucose 20–80 993 0.9701 4.16
M5 Tertiary Glucose 20–80 1012 0.9704 4.44
M6 Tertiary BSA 10–75 1644 0.9899 2.96
M7 Tertiary BSA 10–75 1515 0.9905 2.54
M8 Quaternary Glucose 5–80 993 0.9259 12.3
M9 Quaternary Glucose 5–80 1020 0.944 7.39
M10 Quaternary BSA 5–80 1650 0.9712 4.63
M11 Quaternary BSA 5–80 1515 0.9737 5.46
M12 Quaternary GTP 5–80 2913 0.9781 4.4
M13 Quaternary GTP 5–80 2849 0.9688 5.18
M14 Quaternary GTP 5–80 1730 0.9885 3.24

Abbreviations: N, model number; M, model; r2, regression correlation coefficient; %m/m, percentage mass per mass.

Figure 9. MSC-treated FTIR spectra of the binary mixture measured using the Bruker Alpha FTIR spectrometer equipped with ATR diamond holder.
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and 5.65/4.48% m/m, respectively. Likewise, the PLSRM7 that was
applied over the wavenumber ranges of 3544.9–2965.7 and
1533.84–418.13 cm−1 showed r2C/r2V values and RMSEC/RMSEP
values of 0.9613/0.9761 and 5.65/4.48% m/m, respectively. Simi-
larly, the PLSRM14 and PLSRM15 that were applied for SPP quan-
tification over the ranges of 1493.042–409.9746 and 3012.6–
2782.1, 1786.755–1672.533 and 1493.042–409.9746 cm−1

showed r2C/r2V values of 0.9719/0.995 and 0.9747/0.9954, respec-
tively. The latter two models showed RMSEC/RMSEP values of
4.79/3.37% m/m and 4.57/3.28% m/m, respectively. Hence, PLSR
models showed high accuracy and precision when based on
binary mixtures, especially in the range of 10–100%
m/m. Models based on the ternary mixture (MN2), which included
PLSRM16-PLSRM21, showed accurate quantifications for glucose
with r2C/r2V values in the ranges of 0.9631–0.9889 and 0.7963–
0.9657, respectively, and RMSEC/RMSEP values in the ranges of
3.93–7.04/6.32–9.77% m/m, respectively. Thus, out of these latter
models, PLSRM21 showed the closest RMSEP/RMSEC values and
r2C/r2V values and confirmed the reproducibility of the model.
On the other hand, quantification of BSA and SPP based on ter-
nary and quaternary mixtures did not yield accurate or precise
results. Moreover, quaternary models did not yield accurate nor
precise results for glucose quantification. This, in turn, could be
related to the low number of samples compared to the variables
assessed and that often results in overfitting of the PLSRmodels.59

Relative carbohydrate, lipid, and polyphosphate contents
Relative carbohydrate content was determined by the absorption
area ratio of the carbohydrates (1200–950 cm−1) band to the
amide I band (referred to as carbohydrates: amide I). Relative
lipids content was determined by the absorption area ratio of

the lipids band (1740 cm−1) to the amide I band (referred to as
lipids: amide I). Relative polyphosphate (PP) content was deter-
mined by the absorption area ratio of the band 1240 cm−1 to
the amide I band (referred to as polyphosphate: amide I).
One way ANOVA test was performed to compare the means of

the carbohydrate: amide I ratio and lipid: amide I ratio at the log
and stationary phases, followed by Tukey post Hoc test at
P = 0.05 to pinpoint any differences when using IBM SPSS statis-
tics 21 (Fig. 10). The aim was to find out which sample had the
highest relative carbohydrates content or relative lipids content
with a significant difference, along with the other samples in the
same phase. The results showed that Jo-23 has the highest mean
of carbohydrates: amide I ratio, with a significant difference
among the other isolates in the log phase. While in the stationary
phase, Jo-29 had the highest mean of carbohydrates: amide I
ratio, with significant differences from those of Jo-2, Jo-4, Jo-18,
Jo-34, and Jo-40 (Fig. 10(a)). The high carbohydrate content in
the biomass suggests that it can be used as a fermentation feed-
stock for bioethanol production.60 In comparison with lignocellu-
losic plants, the microalgae biomass has a lower content of
hemicellulose and lignin.61

For the lipids: amide I ratio at the log phase, Jo-23 had the high-
est mean of lipid: amide I ratio with a significant difference among
the other isolates. While in the stationary phase, there was an
increase in the relative lipids content (except for Jo-23), but there
was no significant difference in the increase between the samples.
High lipid content in the biomass suggests that biomass can be
used for biodiesel production.62

The samples were not normally distributed for the relative
polyphosphate content, so the median was compared using
Kruskal-Wallis Test to see if there was a significant difference at

Table 4. PLSR models based on binary and ternary mixtures

N Range Analyte
Analyte
(% m/m) F C:V r2C RMSEC r2V RMSEP

PLSRM1 Full range Binary Glucose 0–100 3 18:9 0.9567 5.38 0.9859 4.13
PLSRM2 Full range Binary Glucose 0–90 1 20:10 0.8789 9.99 0.9239 9.98
PLSRM3 Full range Binary Glucose 10–100 3 20:10 0.9586 5.84 0.9647 5.44
PLSRM4 Full range Binary Glucose 10–90 3 20:10 0.9567 5.38 0.9929 4.13
PLSRM5 3544. 9-2965.7 Binary Glucose 10–100 2 20:10 0.9506 6.38 0.9166 9.4
PLSRM6 1533.84–418.13 Binary Glucose 10–100 3 20:10 0.9613 5.65 0.9761 4.48
PLSRM7 3544. 9-2965.7, 1533.84–418.13 Binary Glucose 10–100 3 20:10 0.9569 5.96 0.9641 5.48
PLSRM8 Full range Binary SPP 0–100 6 26:13 0.944 8.09 0.8606 13.9
PLSRM9 Full range Binary SPP 0–90 5 24:12 0.9413 5.38 0.9754 4.94
PLSRM10 Full range Binary SPP 10–100 4 20:10 0.9686 5.09 0.9883 3.94
PLSRM11 Full range Binary SPP 10–90 3 18:9 0.9566 5.38 0.9858 4.13
PLSRM12 3012. 6-2782.1 Binary SPP 10–100 3 20:10 0.9419 6.93 0.9639 8.27
PLSRM13 1786.755–1672.533 Binary SPP 10–100 2 20:10 0.9115 8.55 0.9819 7.18
PLSRM14 1493.042–409.9746 Binary SPP 10–100 4 20:10 0.9719 4.79 0.995 3.37
PLSRM15 3012. 6-2782.1, 1786.755–1672.533,

1493.042–409.9746
Binary SPP 10–100 4 20:10 0.9747 4.57 0.9954 3.28

PLSRM16 Full range Tertiary Glucose 0–100 6 34:17 0.9641 7.04 0.9181 9.77
PLSRM17 Full range Tertiary Glucose 0–90 8 32:16 0.9736 5.69 0.9204 8.67
PLSRM18 Full range Tertiary Glucose 10–100 6 26:13 0.9704 6.53 0.9319 8.37
PLSRM19 Full range Tertiary Glucose 5–90 6 24:12 0.9631 6.27 0.9134 8.44
PLSRM20 932–1224 Tertiary Glucose 5–100 2 9:27 0.9889 3.93 0.7963 11.88
PLSRM21 932–1224 Tertiary Glucose 0–100 10 34:17 0.9808 5.35 0.9657 6.32

Note: F represents the number of components.
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P = 0.05; the difference among the samples was pinpointed
using multiple comparisons (stepwise step-down) by IBM SPSS
statistics 21. In the log phase, Jo-23 had the highest PP: amide I
ratio and it was significantly different from Jo-34 and the refer-
ence strain. In the stationary phase, the reference strain had the
highest PP: amide I ratio and was only significantly different
from Jo-4.

In this research, there is special interest in the relative polypho-
sphate content because phosphorus is an essential element that
plants need as a nutrient to grow and one that also is used in var-
ied industries. Since phosphate rock is non-renewable, it is crucial
to find ways of recycling the element. Therefore, microalgae bio-
mass can be used to recover and reuse the phosphorus from
wastewater and prevent its adverse effects on the water and

Figure 10. Statistical analysis for the mean and the median, and One way ANOVA test to compare the mean of (a) the carbohydrate: amide I ratio at the
log phase and the stationary phase; and (b) the lipid: amide I ratio at the log phase and the stationary phase, followed by Tukey post Hoc test at P = 0.05,
error bars represent the standard error (±SE) and n = 3. (c) Kruskal-Wallis Test at P = 0.05 for the PP: amide I at log phase and stationary phase. Asterix (*)
denotes the difference at the log phase, the number sign (#) denotes the difference at the stationary phase.
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environment;63 in addition, themicroalgal biomass can be used as
a slow-releasing fertilizer.16

CONCLUSIONS
The findings of the study showed the feasibility of portable ATR-
FTIR spectroscopy for the qualitative and quantitative determina-
tion of algal samples. When used in portable form, the technique
was shown to be rapid, non-destructive, and specific to determin-
ing algal samples and their constituents. The method showed
high accuracy and precision when using both qualitative and
quantitative approaches. Moreover, when FTIR was combined
with PCA, clustering was seen among samples, depending on
the growth phase for each species.
Microalgae are applied for wastewater treatment in the log

phase to ensure their active growth and efficient nutrient
removal. As was mentioned earlier, the microalgal biomass char-
acteristics vary depending on the environmental conditions and
water characteristics. Portable FTIR offers a rapid method for eval-
uating and monitoring the main characteristics of biomass when
applying microalgae for wastewater treatment. This will help in
determining the fate of the biomass.
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APPENDIX
Nominal versus predicted of models based on mixtures MN1-3.

Figure A1. Univariate regression of binary mixture (glucose quantifica-
tion) at 3212, 1048, and 1012 cm−1 (top to bottom).

Figure A2. Univariate regression of tertiary mixture (glucose quantifica-
tion) at 993 and 1012 cm−1 (top to bottom).
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Figure A4. Univariate regression of quaternary mixture (glucose quantifi-
cation) at 993 and 1020 cm−1 (top to bottom).

Figure A3. Univariate regression of tertiary mixture (BSA quantification)
at 1644 and 1515 cm−1 (top to bottom).
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Figure A5. Univariate regression of quaternary mixture (BSA quantifica-
tion) at 1650 and 1515 cm−1 (top to bottom).

Figure A6. Univariate regression of quaternary mixture (GTP quantifica-
tion) at 2849 and 1730 cm−1 (top to bottom).
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