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A B S T R A C T   

Accurate vessel traffic flow (VTF) prediction can enhance navigation safety and economic efficiency. To address 
the challenge of the inherently complex and dynamic growth of the VTF time series, a new hierarchical meth-
odology for VTF prediction is proposed. Firstly, the original VTF data is reconfigured as a three-dimensional 
tensor by a modified Bayesian Gaussian CANDECOMP/PARAFAC (BGCP) tensor decomposition model. Sec-
ondly, the VTF matrix (hour ✕ day) of each week is decomposed into high- and low-frequency matrices using a 
Bidimensional Empirical Mode Decomposition (BEMD) model to address the non-stationary signals affecting 
prediction results. Thirdly, the self-similarities between VTF matrices of each week within the high-frequency 
tensor are utilised to rearrange the matrices as different one-dimensional time series to solve the weak mathe-
matical regularity in the high-frequency matrix. Then, a Dynamic Time Warping (DTW) model is employed to 
identify grouped segments with high similarities to generate more suitable high-frequency tensors. The experi-
mental results verify that the proposed methodology outperforms the state-of-the-art VTF prediction methods 
using real Automatic Identification System (AIS) datasets collected from two areas. The methodology can 
potentially optimise relation operations and manage vessel traffic, benefiting stakeholders such as port au-
thorities, ship operators, and freight forwarders.   

1. Introduction 

The shipping industry has accounted for more than 80% of the total 
international trade in recent years, contributing to the prosperity of the 
world economy (Li and Yang, 2023; Zheng et al., 2022). The vigorous 
growth of the shipping industry has caused an increase in the frequency 
of water traffic, making it a common occurrence (Xin et al., 2023a,b; M. 
Zhang et al., 2023). Nevertheless, this growth has also led to a more 
complex water traffic situation, as well as the risk of water traffic acci-
dents (Jiang et al., 2022; H. Li et al., 2023; Li et al., 2022; Li and Yang, 
2023; M. Li et al., 2023). According to the global annual reports of in-
ternational maritime traffic accidents by the European Maritime Safety 
Agency (EMSA), the statistics of maritime traffic accidents and the 
number of accidents based on ship types are displayed in Fig. 1 (a) and 
(b), respectively. The trends from 2014 to 2020 indicate that cargo ships 
are at a much higher risk of accidents than passenger, fishing, service, 

and other ships (EMSA, 2022). Therefore, how to effectively enhance the 
safety of ship navigation has become a crucial issue in the research of 
water transportation. 

Vessel Traffic Flow (VTF) represents the number of vessels passing 
through a specific research zone within a designated time interval (Xiao 
et al., 2023). The interpretation of VTF data may differ significantly 
within the study area (Li et al., 2023). For example, VTF data on port 
waters can reflect the port’s busyness and economic indicators. With the 
outbreak of COVID-19, especially in 2020, the VTF of ports in various 
countries showed a downward trend, reflecting the gradual decline in 
import and export trade (Liu et al., 2023; Zhao et al., 2022). On the other 
hand, VTF data of channel waters can indicate traffic intensity. An in-
crease in VTF data expresses a higher number of ships sailing. However, 
due to the limited capacity of the channel, an excessive flow of ships can 
lead to an increased probability of accidents (Su et al., 2022; Xu and 
Zhang, 2022). In summary, VTF can reflect the traffic situation of a 
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specific research area to some extent, and the magnitude of the flow can 
also provide insights into determining the probability of accidents. 

In recent years, due to continuous innovations in data mining tech-
nology, research on VTF has been conducted from various perspectives, 
including VTF simulation (Goerlandt and Kujala, 2011; Park et al., 
2002), VTF feature extraction (Gao and Shi, 2019; Rong et al., 2022), 
and VTF prediction (D. Wang et al., 2021; Zhang et al., 2022). More 
specifically, VTF prediction enables the acquisition of flow data within a 
study area for a certain period in the future (Xiao et al., 2020, 2022). 
Hence, VTF-based prediction data becomes a vital element in forecasting 
the likelihood of accidents in that particular area. In other words, it is 
crucial to ensure the efficiency and safety of maritime transportation 
systems by achieving accurate information about near-term VTF data in 
realistic water traffic networks. 

It is of utmost importance to forecast future trends by analysing the 
development characteristics of historical data for VTF prediction. 
Automatic Identification System (AIS) transmitters have been mandated 
to be installed on all international voyage vessels of no less than 300 
gross tonnages, as well as passenger vessels (Chen et al., 2022; Li et al., 
2023a; Robards et al., 2016; Rong et al., 2020). Consequently, the AIS 
data of the vessels passing through a channel and a port, including vessel 
location, course, and speed, can be received through the AIS base sta-
tions and/or satellites to calculate the VTF in the study area, as illus-
trated in Fig. 2. Therefore, data-driven methods become a feasible 
technical solution to VTF prediction. However, the accurate and reliable 
prediction of VTF data is challenging. A considerable challenge in 
obtaining reliable prediction data is that the dynamic growth of VTF 
often exhibits complex and non-stationary characteristics. Additionally, 
emergencies such as accidents, channel closures, or severe weather 
significantly impact the reliability of VTF data prediction. Consequently, 
recent efforts have focused on exploring new and revised methods to 
enhance prediction capacity and address the challenges associated with 
VTF data prediction. 

VTF belongs to time series data, and hence conventional Machine 
Learning (ML) (Jin et al., 2021; Tang et al., 2019), Neural Networks 
(NN) (Dikshit et al., 2022; Do et al., 2019), and Deep Learning (DL) 
(Wang et al., 2019; Yin et al., 2022) are the most general and effective 
prediction methods. In particular, when dealing with a substantial vol-
ume of historical VTF data and facing high data volatility, DL methods 
tend to outperform other approaches in predicting future data (Liang 
et al., 2022). However, a common drawback of most time series pre-
diction methods is their limited ability to effectively capture the internal 
relationship between the specific historical and current data during the 
modelling process. The above problem no doubt reduces the accuracy 
and stability of VTF prediction. Following big data technology, 
large-scale and multi-dimensional spatiotemporal datasets are 

increasingly prevalent in real applications. Thus, a growing number of 
studies focus on predicting high-dimensional data. For example, the 
original time series (i.e., one-dimensional (1D) time series) could be 
reconfigured into a three-dimensional tensor. The essence is that 
spatiotemporal time series data often display strong relevance and 
shared potential patterns, such as VTF time series with recurring tem-
poral peaks (Chen and Sun, 2022). As a result, tensor factorisation in 
time series prediction has garnered significant attention. Specifically, 
Salakhutdinov and Mnih (2008) proposed the Bayesian matrix method. 
Moreover, Chen et al. (2019b) designed a Bayesian probabilistic matrix 
factorisation method for higher dimensional tensors, called a Bayesian 
Gaussian CANDECOMP/PARAFAC (BGCP) method, which could effec-
tively handle tasks of imputing and predicting three-dimensional tensor 
data. Therefore, the BGCP method is selected as the foundational 
framework for in-depth exploration of the three-dimensional (3D) VTF 
prediction problem. 

This study aims to develop a hierarchical method that enables high 
prediction accuracy and strong stability for VTF data prediction in the 
maritime industry. The following content is outlined as follows. The 
state-of-the-art methods for VTF prediction are reviewed, and the con-
tributions of our study are summarised in Section 2. Section 3 is the 
preparatory part, which introduces the principles of Bidimensional 
Empirical Mode Decomposition (BEMD) (Chen et al., 2013; Hou et al., 
2019), BGCP, and Dynamic Time Warping (DTW) methods to provide 
the necessary background information. This paper proposes a new 
optimised hierarchical prediction methodology based on these three 
algorithms. Section 4 describes the technical principles of the proposed 
hierarchical prediction methodology. A comprehensive experiment in 
Section 5 using four different VTF datasets is conducted to compare the 
VTF prediction performance with 17 established methods. Section 6 
outlines the conclusions and outlines future directions. 

2. Literature review 

It is necessary to develop VTF prediction to explore knowledge dis-
covery in maritime traffic management. Especially in recent years, the 
popularisation of AIS equipment and the maturity of data acquisition 
technology has allowed researchers to analyse VTF in target waters 
using AIS data. Hence, the data-driven VTF prediction methods have 
gained significant attention and become the mainstream prediction 
scheme. 

In this section, a critical analysis of the VTF prediction research is 
conducted from three perspectives: traditional ML-based methods in 
Section 2.1, NN and DL-based methods in Section 2.2, as well as tensor 
factorisation methods in Section 2.3. All three types of methods can be 
used to predict future traffic through the characteristics of historical VTF 

Fig. 1. The result of global maritime accidents from 2014 to 2020 by the EMSA, (a) the statistics of maritime traffic accidents and deaths, and (b) traffic accident data 
based on different ship types. 
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data. Finally, the novel contributions of this study are revealed through 
a critical analysis of the current state of the art in the field. 

2.1. Traditional ML methods in VTF prediction 

In the early stages of VTF prediction research, scholars used tradi-
tional ML methods, also known as statistical methods, to conduct 
research (Li and Yang, 2023). These methods assume a specific corre-
lation between historical data and forecast data. Meanwhile, VTF data 
generally changes periodically over time. Thus, mathematical methods 
can be developed through parameter estimation and curve fitting to 
predict VTF data. 

The simple and commonly used ML methods have been applied to 
predict research data, for instance, linear regression (Sousa et al., 2007) 
and variance analysis models (Makowski et al., 2006). However, they 
are generally not effective in non-stationary time series prediction. 
Because of the complex features of the VTF data, there have been many 
studies in the literature on other traditional ML methods, such as Kal-
man Filtering (KF) (He et al., 2019; Muruganantham et al., 2016; Oku-
tani and Stephanedes, 1984; Xu et al., 2017), Grey theory-based Models 
(GM) (Kayacan et al., 2010; J. Wang et al., 2021), Markov Model (MM) 
(Lin et al., 2023; Zou et al., 2022), Kernel Density Estimation (KDE) 
(Jiang et al., 2019; Zhang et al., 2022), AutoRegressive Integrated 
Moving Average (ARIMA) (Liu et al., 2022; Weng et al., 2019), Support 
Vector Machine (SVM) (Gao et al., 2023; Mokhtarimousavi et al., 2019; 
Zhang and Wu, 2022), and Bayesian forecasting model (Bürkner et al., 
2020; Du et al., 2022; Chen and Sun, 2022). 

The principles of the above methods in solving the VTF prediction 
problem are different. The KF can estimate the future trend of VTF under 
the uncertainty of its historical development characteristics and influ-
ential factors. However, if the historical data has poor regularity, the 
prediction accuracy based on the KF will be significantly reduced. The 
GM identifies the different degrees of development trends between VTF 
data at different historical time points. Based on the overall change rule 
of the original VTF data, the sequence data with strong regularity is 
regenerated. Finally, the future development trend of VTF can be pre-
dicted by establishing the corresponding differential equation model. 
However, if the VTF data has frequent mutations, the prediction accu-
racy of the data may be reduced due to an error accumulation problem. 
MM is a method to predict the probability of events, which is a type of 
random process. However, the method has a disadvantage in solving the 
VTF prediction problem. When the information of the stochastic process 
at time t0 is known, the changing trend of t (t > t0) is only related to the 
state of t0, and it has had no relationship with the states at any other 
time. Therefore, the MM-based VTF prediction results may be 

inaccurate. The main principle of KDE is to infer the overall distribution 
using limited samples. The distribution characteristics of the VTF data 
can be captured by calculating the probability density function of the 
sample data through the KDE method, enabling the prediction of future 
data based on these characteristics. However, in cases where the VTF 
data exhibits non-periodic changes or the change characteristics are not 
evident, the KDE method cannot effectively estimate the global char-
acteristics, leading to reduced prediction accuracy. The essence of the 
ARIMA is to predict future traffic through a linear combination of VTF 
historical and current data. SVM is a binary classification approach. 
When applied to VTF prediction, SVM employs historical data as 
training samples to construct control functions that capture the patterns 
of historical data changes. The Bayesian forecasting model relies on 
Bayesian statistics for prediction. This model differs from conventional 
ML methods as it leverages both model and data information and 
effectively exploits prior knowledge during the data prediction process. 

The aforementioned traditional ML methods can make relatively 
accurate predictions when the fluctuation of VTF data is significant. 
Furthermore, several extensional versions of these methods have been 
extensively employed to improve the accuracy of time series prediction 
even further. For instance, the conventional ARIMA model has under-
gone significant improvements, such as Kohonen-ARIMA (KARIMA) 
(Van Der Voort et al., 1996), Seasonal ARIMA (SARIMA) (Williams and 
Hoel, 2003), ARIMA with Generalized Autoregressive Conditional Het-
eroscedasticity (ARIMA-GARCH) (Chen et al., 2011), and Online 
Change-Point-Based model (OCPB) (Comert and Bezuglov, 2013). SVM, 
being a classic and widely adopted ML method, has undergone various 
upgrades, including SVM with Grey Wolf Algorithm (GWO-SVM) (Zhou 
et al., 2022), SVM with Slime Mold Algorithm (SMA-SVM) (Zhao et al., 
2023), and SVM with Whale Optimization Algorithm (WOA-SVM) (Kong 
et al., 2020). Scholars have made significant efforts to optimise tradi-
tional ML methods, improving their prediction accuracy to some extent. 

Scholars have also begun to use the NN and DL methods for VTF 
prediction, motivated by the continuous development of NN and DL 
concepts and technologies. Although NN and DL also belong to ML 
methods, they leverage the characteristics of VTF data by constructing 
training networks. In network training, a loss function continuously 
optimises the weight value to infinitely reduce a prediction error. 
Therefore, compared with traditional ML methods, NN and DL ap-
proaches can better predict VTF data with high volatility. The devel-
opment and application of the ML methods in VTF prediction are 
introduced and discussed in detail in Section 2.2. 

Fig. 2. Overview of terrestrial and satellite AIS networks by collecting AIS data.  
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2.2. NN and DL methods in VTF prediction 

In recent years, NN and DL methods are playing an increasingly 
important role in VTF data prediction. Most NN structures consist of an 
input, hidden, and output layer and have strong self-learning abilities, 
making them well-suited for non-stationary time series data and com-
plex VTF prediction. Recent studies reveal that NN methods have been 
applied to the prediction of VTF data, including Back Propagation 
Neural Network (BPNN) (Yi et al., 2021), Wavelet Neural Network 
(WNN) (Chen et al., 2021), Grey Neural Network (GNN) (Pang et al., 
2020), Fuzzy Neural Network (FNN) (Chan and Dillon, 2013), Elman 
Neural Network (ENN) (Wei, 2019), Generalized Regression Neural 
Network (GRNN) (Celikoglu and Cigizoglu, 2007), and Probabilistic 
Neural Network (PNN) (Nguyen et al., 2022). Meanwhile, Li et al. 
(2019) applied the widely-used NN methods (i.e., WNN, ENN, FNN, 
BPNN, and GRNN) to predict the Port Cargo Throughput (PCT) and VTF 
time series. Their network structure is shown in Fig. 3. In addition, they 
improved the prediction framework of traditional NN methods and 
proposed similarity grouping-guided NN methods, which could improve 
the prediction accuracy of complex PCT and VTF. Scholars often 
enhance the prediction accuracy of time series data by optimising classic 
and commonly used networks. Chen et al. (2021) integrated the particle 
swarm optimization algorithm into WNN, which solves the problems of 
slow convergence and local optimization. Their improved network 
reduced the prediction error by 14.99% compared to the original WNN. 
Z. Zhang et al. (2019) used Self-Adaptive Particle Swarm Optimization 
(SAPSO) algorithm to adjust the structural parameters of BPNN, 
resulting in the SAPSO-BP network, which accurately and stably pre-
dicted the VTF change trend of the Los Angeles Port Area. Sadeghi--
Niaraki et al. (2020) developed Elman Recurrent Neural Network called 
GA-MENN for short-term traffic flow prediction. The core concept 
involved optimising the Elman Recurrent Neural Network using Genetic 
Algorithm and considering qualitative factors like weather conditions 
and workdays during training. Kaffash Charandabi et al. (2022) pro-
posed a GRNN adjusted by a self-organizing map to predict traffic ac-
cident risk. Their method comprehensively integrated 22 indicators (e. 
g., geographical characteristics, weather conditions, time conditions, 
driver characteristics, and driving conditions) affecting prediction ac-
curacy into the network. Through 30 different application scenarios, the 
proposed method demonstrated excellent performance in experimental 
analysis. Tang et al. (2021) combined a fuzzy rough set and FNN to 
address the missing data. This method utilised FNN for data classifica-
tion and predicted missing values based on fuzzy rough sets. The 
effectiveness of the new method was quantitatively evaluated using 
metrics such as Root Mean Square Error (RMSE), correlation coefficient, 
and relative accuracy. 

Compared to traditional ML methods, NN methods and their 
upgraded versions have shown improved accuracy in time series data 
prediction. However, the increasing complexity of time series data due 
to external environmental influences poses challenges for simple 
training networks to accurately learn these irregular features. Fortu-
nately, the advent of deep training networks has partially addressed the 

limitations of NN methods, providing opportunities to handle more 
complex time series data. 

DL was first proposed by Hinton et al. (Hinton and Salakhutdinov, 
2006), which originated from the research of NN, allowing for the 
development of networks with many hidden layers and massive training 
data to learn more valuable and complex features to improve the ac-
curacy of prediction and classification. Therefore, several mainstream 
DL network frameworks, such as Convolutional Neural Networks (CNN) 
(W. Zhang et al., 2019), Recurrent Neural Networks (RNN) (Suo et al., 
2020) and Attention Mechanisms (AM) (Sun et al., 2020), have attracted 
significant attention in VTF prediction, as displayed in Fig. 4 (Lim and 
Zohren, 2021). AM has been shown to improve long-term dependent 
learning compared with CNN and RNN. The attention layer uses 
dynamically generated weights (i.e., denoted by the red rows) to 
aggregate time characteristics, as shown in Fig. 4 (c), which allows the 
network node at the current time to focus directly on the network node 
at any time in the past, even if the time span is very long (Lim and 
Zohren, 2021). Overall, the development of NN and DL methods has 
significantly contributed to the accurate prediction of VTF data. 

RNN models have become popular for time series data prediction due 
to their capability to combine historical and current data through hidden 
states. Belhadi et al. (2020) introduced the application of RNN in 
long-term traffic flow prediction and proposed RNN-LF for long-term 
traffic flow prediction from multiple data sources. Furthermore, they 
implemented a new network model called GRNN-LF in the GPU parallel 
computing framework, significantly improving the operating efficiency. 
The issue of gradient vanishing (or explosion) hinders the performance 
of RNNs, which affects their prediction accuracy. To address this, LSTM 
(Yang et al., 2019) and GRU (Hussain et al., 2021) networks have been 
put forward, showing better performance in predicting VTF data. Dong 
(2022) used wavelet analysis to decompose the original VTF data into 
trend and interference terms. LSTM was then employed to predict these 
sequences separately, and the final result was obtained by summing the 
predicted values. Hussain et al. (2021) proposed a GRU-based network 
for hyperparameter adjustment and sliding window step size optimiza-
tion, effectively addressing the need for continuous manual adjustments 
of hyperparameters during network training. However, the LSTM and 
GRU methods belong to unidirectional networks that retain only past 
information. Bi-directional networks like Bi-LSTM (Li et al., 2021) and 
Bi-GRU (Huang et al., 2021) have better accuracy and stability since 
they retain both past knowledge and future information. Ma et al. 
(2022) combined the structures of LSTM and Bi-LSTM in a new network 
model, while Yu et al. (2021) proposed a short-term traffic flow pre-
diction method based on Bi-GRU to capture the periodic change attri-
butes of traffic flow data. 

A limitation in the practical training of RNN and its optimised net-
works is the requirement for consistent data sizes in the input layer. To 
overcome this issue, Sequence to Sequence (Seq2Seq) was proposed in 
2014, employing an Encoder-Decoder structure. The encoder converts 
the input sequence into a fixed-length vector, and the decoder generates 
an output sequence from this vector (Cho et al., 2014; Sutskever et al., 
2014). Seq2Seq has found wide applications in intelligent 

Fig. 3. The network structure diagram of five different NN methods. (a) BPNN, (b) WNN, (c) GRNN, (d) FNN, and (e) ENN.  
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recommendation, question answering, machine translation, information 
retrieval, and data prediction research. 

Researchers have introduced various variations of Seq2Seq, such as 
the spatio-temporal Seq2Seq network (STSSN) (Cao et al., 2022), which 
uses an Enhanced Diffusion Convolutional Network (EDCN) and a 
Temporal Convolutional Network (TCN) in its encoder and decoder. Hao 
et al. (2019) embedded an attention mechanism in Seq2Seq to conduct 
short-term passenger traffic flow prediction, enhancing the training 
network’s ability to capture long-term dependencies. Additionally, 
hybrid DL methods like CNN-LSTM networks (Narmadha and Vijaya-
kumar, 2021) effectively capture the spatial and temporal characteris-
tics of VTF time series data. The combinations of CNN and other RNNs 
(e.g., iGRU, Bi-LSTM, and Bi-GRU) are also widely used in the prediction 
research of time series data (Ma et al., 2023; Méndez et al., 2023; Wang 
et al., 2022). 

NN and ML can learn the historical characteristics of VTF based on 
the network training model and then predict future data. However, 
existing training networks have one drawback, that is, they cannot 
effectively reflect the internal relationship between specific historical 
and current data, leading to a significant deviation in predicting VTF 
data. To address this problem, new solutions are needed by exploring 
high-dimensional data prediction, such as using tensor factorisation to 
impute and predict three-dimensional tensor data. Section 2.3 describes 
the development and applications of the tensor factorisation methods in 
VTF prediction. 

2.3. Tensor factorisation methods in VTF prediction 

The emergence of big data has contributed to the applications of 
large-scale and multi-dimensional spatiotemporal datasets due to the 
high relevance and shared potential patterns of spatiotemporal time 
series data (i.e., VTF time series with repeating temporal peaks) (Chen 
and Sun, 2022). This idea has inspired numerous studies to utilize tensor 
factorisation methods in analysing large-scale VTF data, which involves 
the projection of the original 1D data onto a three-dimensional tensor (i. 
e., hour ✕ day ✕ week). Compared to traditional ML, NN, and DL 
methods, the most significant advantage of tensor factorisation methods 
is their ability to treat all historical data as a whole and explore the 
development characteristics of the data from a global perspective. 

The initial applications focused on tensor data imputation. For 
example, Liu et al. (2013) proposed three classic decomposition 
methods to compensate for missing values in tensors, namely Simple 
Low-Rank Tensor Completion (SiLRTC), Fast Low-Rank Tensor 
Completion (FaLRTC), and High accuracy Low-Rank Tensor Completion 
(HaLRTC). SiLRTC employed a straightforward implementation princi-
ple and utilised block coordinate descent to obtain the global optimal 
solution. FaLRTC transformed the non-smoothing problem into a 
smoothing problem using a smoothing scheme for processing. HaLRTC 
effectively applied the alternating direction method of multipliers to 
achieve high-precision interpolation results. SiLRTC exhibited the least 
ideal interpolation accuracy compared to the other two techniques. 
Several studies have reorganized multi-variable traffic flow data into 
four-dimensional tensors to complete missing values in the original data. 
(Tan et al., 2016). Chen et al. (2019a) proposed the Bayesian Augmented 

Tensor Factorisation (BATF) method, utilising variational Bayes to learn 
model parameters automatically. A new tensor factorisation method is 
utilised to complete the missing traffic flow data, called high-order 
singular value decomposition with soft thresholding core (Gong and 
Zhang, 2020). Baggag et al. (2021) proposed a new Temporal Regular-
ized Tensor Factorisation (TRTF) method, which fully takes into account 
the temporal dependence and spatial attributes between traffic tensor 
data. Tensor factorisation using Alternating Least Square (TF-ALS) is a 
new decomposition method that provides a theoretical analysis to limit 
approximation errors and improve interpolation accuracy (Ma and 
Solomonik, 2022). The fundamental concept behind this approach in-
volves decomposing the initial traffic flow data into its main trend and 
residual components, followed by individual processing of these two 
components using the tensor decomposition technique. Tensor factor-
isation methods are also used in Spatial-Temporal Bi-directional Resid-
ual Optimization (ST-BiRT) to address the issue of the missing value in 
traffic flow data. Compared to other methods, the innovation of the 
ST-BiRT focuses on a well-designed two-way residual structure, signif-
icantly reducing the model error. The ST-BiRT method can be imple-
mented with better accuracy and robustness in dealing with rate 
problems and missing scenarios (Li et al., 2022). 

The issue of traffic flow tensor prediction is similar to the one of 
completing missing values to a certain extent. While data missing value 
completion processes any time node of an entire time series data, the 
prediction handles the data on the future time nodes based on the whole 
time series. Prediction can be considered as an interpolation problem of 
missing values. Therefore, the tensor factorisation methods can be 
effectively applied to traffic flow tensor prediction. For instance, a 
compact tensor factorisation method is used to cluster and predict the 
temporal evolution of global congestion allocation in large-scale urban 
transport networks (Han and Moutarde, 2016). In another study, the 
urban traffic flow is reorganized into a four-dimensional (i.e., 4D) 
tensor, incorporating location, time of day, day of the week, and week of 
the month. Meanwhile, the proposed method estimates the correlation 
of each tensor dimension and uses a gradient descent strategy to opti-
mise the prediction method, which can address the problem of data 
sparsity from the perspective of spatial and temporal traffic modes (Yang 
et al., 2020). Another advantage of using the tensor factorisation 
methods for VTF tensor data prediction is that they can handle missing 
values in the historical VTF data, which is not possible in conventional 
methods. Therefore, many scholars use this approach to predict 
high-dimensional data tensors. 

Most aforementioned tensor factorisation methods often suffer from 
issues related to data interpolation and prediction. Specially, these 
methods only offer point estimation for interpolation or prediction tasks, 
which may cause interpolation errors or low prediction accuracy (Chen 
and Sun, 2022). To address the above problems and avoid over-fitting, 
an effective combination of Bayesian treatment and the tensor factor-
isation methods is proposed. For example, the Bayesian Tensor Factor-
isation (BTF) method could set the CANDECOMP/PARAFAC (CP) rank 
(Zhao et al., 2015) automatically. As an optimised version of the BTF 
method, the BGCP method is proposed to infer the posterior distribution 
of missing values (Chen et al., 2019b). Compared with other tensor 
factorisation methods, it could effectively complete the tasks of 

Fig. 4. The architectural diagrams of the three main DL methods mentioned. From left to right: (a) CNN method, (b) RNN method, (c) Attention-based method (red 
arrow indicates the attention weight). 
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three-dimensional tensor data imputation and prediction. Hence, this 
paper chooses the BGCP method as the basic framework to solve the 3D 
VTF prediction problem. In Section 5.4, quantitative experiments will be 
conducted to validate that BGCP outperforms other tensor factorisation 
methods of the same type in terms of accuracy and stability when car-
rying out VTF prediction tasks. However, the original 1D VTF data may 
be affected by some unexpected factors (e.g., climatic factors, collision 
accidents, and economic factors) in the development over time, making 
the data highly volatile. High-quality and stable prediction results 
cannot be obtained if the BGCP method is directly used to predict the 
original VTF tensor. Therefore, the paper develops the original BGCP 
method and introduces a novel prediction framework that can be used to 
effectively address the non-stationary and complex VTF prediction 
problem. The contributions of our proposed hierarchical method in VTF 
prediction are summarised in Section 2.4. 

2.4. Contributions of our study 

The proposed hierarchical method, BEMD-DTW-BGCP, decomposes 
the VTF tensor into high- and low-frequency tensors, and takes advan-
tage of the inherent self-similarity between the VTF matrices of each 
week within the high-frequency tensor. To create a more appropriate 
high-frequency tensor for the BGCP model, a DTW method is employed 
to select the segments with significant similarities. The final prediction 
results are obtained by combining the predicted high- and low- 
frequency tensors. The proposed method shows superior prediction ac-
curacy and robustness performance compared to other methods, as 
demonstrated in experiments on spatiotemporal VTF datasets. 

The main contributions of the proposed method are listed below.  

(1) A hierarchical methodology is proposed to predict non-stationary 
time series with satisfied performance, involving matrix decom-
position, similarity grouping, and feature combination.  

(2) A new matrix decomposition method based on BEMD is applied to 
transfer the original VTF tensor into high- and low-frequency 
tensors, while the inherent self-similarity of the high-frequency 
tensor is extracted by DTW to improve prediction accuracy.  

(3) A new comprehensive comparative analysis with 17 other 
methods is implemented to evaluate the accuracy and robustness 
of the proposed hierarchical methodology in VTF prediction.  

(4) A new evaluation method is proposed to evaluate the prediction 
performance via coarse-grained (i.e., RMSE and Mean Absolute 
Percentage Error (MAPE)) and fine-grained (i.e., the Mean Rela-
tive Error (MRE) and the Standard Deviation of Relative Error 
(SDRE)) features. 

The primary advantage of the proposed method is its capacity to take 
full advantage of the BEMD-based property decomposition for matrices 
and DTW-based similarity grouping, while effectively accomplishing the 
task of 3D tensor data prediction using the BGCP method. As a result, the 
new hierarchical prediction framework can enhance accuracy and 
robustness in various applications. 

3. Preliminary 

A hierarchical prediction methodology is proposed based on the 
BEMD, DTW, and BGCP algorithms. Therefore, this section mainly in-
troduces the principles of these three algorithms as a preliminary part, 
which will pave the way for the optimised hierarchical prediction 
method presented in Section 4. 

3.1. Overview of BEMD-based matrix decomposition 

Huang et al. (1998) first proposed the Empirical Mode Decomposi-
tion (EMD) algorithm in 1998 to adaptively analyse the non-stationary 
signals (i.e., time series data). A signal is decomposed by the 

algorithm into a restricted set of Intrinsic Mode Functions (IMFs) 
spanning from high to low frequencies, along with a residue. This pro-
cess could be defined as follows: 

x(t)=
∑N

p=1
cp(t) + rN(t), (1)  

where x(t) denotes the time series data, N is the number of IMFs, cp(t)
expresses the pth IMF. rN(t) represents the residual signal, which is the 
mean trend of the original data x(t). 

Each IMF has to meet two conditions.  

(1) The total count of zero crossing and extreme points in the signal 
dataset needs to be equivalent or at least one difference.  

(2) The average value of the upper and lower envelopes, represented 
by the local minimum and maximum, at any given point in the 
signal must be zero. 

The EMD algorithm is an effective method for decomposing signals, 
particularly non-stationary time series data. The BEMD algorithm is 
created to decompose a matrix into high-frequency and low-frequency 
components, along with a few residues, leveraging the success of EMD 
in 1D signal analysis. The BEMD process works in a comparable manner 
to EMD, serving as a logical extension of EMD to a two-dimensional (2D) 
space. Specifically, the detailed operation of sifting the Bidimensional 
Intrinsic Mode Functions (BIMFs) of a given matrix could be summarised 
as follows. 

Step 1. The positions of the extrema (local maxima and minima) are 
located in a decomposed matrix MD1

0 = M(x,y). 

Step 2. The upper and lower 2D envelopes are generated by 2D 
interpolation based on the maximum and minimum point sets, denoting 
as eu(x, y) and el(x,y), respectively. 

Step 3. The local mean em(x, y) is calculated by averaging the two 
envelopes above, which could be defined as 

em(x, y)=
eu(x, y) + el(x, y)

2
, (2)   

Step 4. Subtract the local average from the original matrix 

MDl
k(x, y)=MDl

k− 1(x, y) − em(x, y), (3)   

Step 5. Repeat the process from Steps 1 - 4 until the stop condition is 
met. The MDl

k(x, y) is output as a BIMF. In addition, the criterion 
adopted to stop the process depends on the normalized Standard Devi-
ation (SD) between MDl

k(x, y) and MDl
k− 1(x,y). To be more specific, the 

SD could be defined as 

SD=
∑m

x=0

∑n

y=0

(⃒⃒MDl
k− 1(x, y) − MDl

k(x, y)
⃒
⃒

MDl
k− 1(x, y)

)2

< η, (4)  

where m and n represent the number of rows and columns in the matrix, 
k is the iteration number, and l is the index corresponding to the lth 
BIMF. The numerous tests show that the best range η is between 0.3 and 
0.5. 

Step 6. When meeting the stop criterion, the BIMF(B1(x, y)) could be 
defined from Step 4 as. 

B1(x, y)=MDl
k(x, y), (5)   

Step 7. According to Eq. (5), the BIMF is obtained. The 
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residue(R1(x, y)) is then defined as 

R1(x, y)=MDl
0(x, y) − B1(x, y), (6)   

Step 8. The next BIMF is calculated from Step 1. In addition, the res-
idue will be used as the input matrix to obtain the next BIMF, which 
could be defined as 

MDl− 1
0 (x, y)=R1(x, y), (7) 

The BEMD algorithm can generate multiple BIMFs from the input 
matrix by repeating Steps 1 - 8. The filtering process is considered to be 
completed when there are no more extreme points in the residual ma-
trix. Additionally, the BEMD algorithm requires two conditions to 
decompose a matrix, which is the same as the conditions for the EMD 
algorithm to decompose 1D time series. The original matrix M(x, y) is 
decomposed into a series of BIMFs and a residue that could be defined 
as. 

M(x, y)=
∑L

q=1
Bq(x, y)+RL(x, y). (8)  

where Bq(x, y) is the qth BIMF and RL(x, y) represents the residue. The 
BEMD algorithm is selected to reconstruct 1D VTF data into a 2D matrix. 

3.2. Overview of DTW-based similarity grouping 

Similarity measure has played an essential role in time series analysis 
in recent years, which significantly affects the quality of data mining 
(Liang et al., 2021). The Euclidean distance is a widely employed 
approach for describing the similarity between two distinct time series. 
However, it is sensitive to the outliers of time series. DTW is an opti-
mization distance measure to compute the similarity between two 
different time series by dynamic programming to find the minimum 
distance. DTW can better identify corresponding points with similar 
geometric shapes than the Euclidean distance (Li et al., 2020), making 
the distance (similarity) measurements more accurate. Meanwhile, DTW 
can measure the similarity distance between two time series with 
different lengths. However, the Euclidean distance can only handle 
two-time series data with the same length. Therefore, the DTW method 
has extensive applications in various fields, including data clustering, 
feature extraction, voice identification, etc. 

Let X = {x1, x2,⋯, xM} and Y = {y1, y2, y3,⋯, yN} denote two 
different time sequences with the lengths M and N, respectively. Given a 
M × N matrix ω with the ω(s, t) is the distance d(xs, yt) between the two 
points xs and yt . In addition, the d(xs, yt) corresponds to the weighted 
Euclidean distance. To align two time sequences, the shortest path 
corresponds to the best match. More specifically, the warping path could 
be calculated by 

DTW(X,Y)= γ(s, t), (9)  

where the minimum cumulative distance could be given by 

γ(s, t)= d(xs, yt) + min{γ(s − 1, t − 1), γ(s − 1, t), γ(s, t − 1)}. (10) 

The smaller the distance, the more similar these two time sequences. 
In this paper, the matrix of each week is transformed from a high- 
frequency tensor into a 1D series. Subsequently, the grouped segments 
with high DTW-based similarities are selected to form more suitable 
high-frequency tensors for the BGCP, thereby improving prediction 
performance. 

3.3. Overview of BGCP-based tensor prediction 

In this subsection, a multi-dimensional data tensor decomposition 
called the BGCP method is introduced to solve traffic data imputation 

problems. VTF data prediction can be regarded as a particular data 
imputation problem. Hence, this study selects the BGCP method as a 
primary research framework. The previous applications of tensor 
decomposition have mainly focused on data imputation, with no prior 
use of this model in VTF data prediction. In contrast, 1D VTF time series 
data is rearranged as a 3D tensor to be predicted based on the BGCP 
method. 

The BGCP model can be transferred into a sum of r rank-one 
component tensors, and r is defined as the original tensor’s CANDE-
COMP/PARAFAC (CP) rank. The BGCP model is summarised in the 
following two parts (Chen et al., 2019b). 

Gaussian assumption: Given a matrix Z ∈ Rm×n×f with missing (or 
predicted) entries with m is the number of divided time intervals, n in-
dicates the days of the week, and f represents the number of weeks in the 
dataset. Then, factorisation can be applied to reconstruct the missing (or 
predicted) values within Z, which could be defined as follows. 

zijt ∼N

(
∑r

s=1
gishjsxts, δ− 1

)

, ∀i, j, t, s ∈ {1,⋯, r}, (11)  

where N( ⋅) is a Gaussian distribution, and the vector gs ∈ Rm, hs ∈ Rn, 
xs ∈ Rf are columns of latent factor matrices. In addition, gis, hjs, xts are 
their elements, and δ denotes precision. 

Bayesian framework: To introduce the Bayesian framework, the 
BGCP method sets conjugate Gaussian-Wishart priors for hyper- 
parameters ηx ∈ Rr and Θx ∈ Rr×r, which could be defined as follows. 

ηx ∼ N
(
η0, (λ0Θx)

− 1)
, (12)  

Θx ∼ Wishart(W0, h0), (13)  

where ηx is normally distributed with a mean η0 and a variance (λ0Θx)
− 1. 

Θx follows Wishart distribution. W0 denotes the degrees of freedom 
parameter, which determines the number of random variables that are 
being squared and summed to generate the Wishart random matrix. h0 
represents the scale matrix parameter, which is a positive definite ma-
trix. It influences the dispersion and spread of the generated Wishart 
random matrix. 

The X ∈ Rn1×n2×n3 is given a partially observed tensor. Gibbs sam-
pling is applied to implement Bayesian inference. 

Concerning hyper-priors, the initialization values are set as η0 = 0, 
λ0 = 1, W0 = I, and h0 = r. In addition, I and r are the identity matrix 
and low rank, respectively. 

The Ŵ
(k)
0 and ĥ

(k)
0 are calculated as shown. 

Ŵ
(1)
0 =

(
n1S(1) + W − 1

0

)− 1
+

(
n1λ0

n1 + λ0

(
g(1) − η0

)(
g(1) − η0

)T
)− 1

, (14)  

ĥ
(1)
0 = n1 + h0, (15)  

where g(1) and S(1) denote two statistics, defined as 

g(1) =
∑n1

i1=1
g(1)

i1 , (16)  

S(1) =
1
n1

∑n1

i1=1

(
g(1)

i1 − g(1)
)(

g(1)
i1 − g(1)

)T
, (17) 

Samples Θ(k) follows Wishart distribution. The η̂(k) and Θ̂
(k)

are 
calculated as shown. 

η̂(1)
=

1
n1 + λ0

n1
(
g(1) + λ0η0

)
, (18)  

Θ̂
(1)

= (n1 + λ0)Θ(1), (19) 
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Samples η(k) follows Gaussian distribution. The η̂(k)
ik 

(the value at the 

row ik in the kth ̂η(k)) and Θ̂
(k)
ik 

(the value at the row ik in the kth Θ̂
(k)

) are 
calculated as shown. 

Θ̂
(1)
i1 = δε

∑n2

i2=1

∑n3

i3=1
qi

(
g(2)

i2 ⊗ g(3)
i3

)(
g(2)

i2 ⊗ g(3)
i3

)T
+Θ(1), (20)  

η̂(1)
i1 =

(
Θ(1)

i1

)− 1
(

δε
∑n2

i2=1

∑n3

i3=1
xi

(
g(2)

i2 ⊗ g(3)
i3

)
)

+
(

Θ̂
(1)
i1

)− 1
Θ(1)η(1), (21) 

Samples g(k)ik 
follows Gaussian distribution. Based on placing a flex-

ible conjugate Gamma prior over δε. 

δ ∼ Gamma(p0, q0), (22)  

where δ represents precision, p0 and q0 are the shape parameter and rate 
parameter. In addition, p̂0 and q̂0 are calculated by 

p̂0 =
1
2
∑

i∈Φ
qi + p0, (23)  

q̂0 =
1
2
∑

i∈Φ
(xi − x̂i)

2
+ q0, (24)  

where Φ is the index set of the observed entries. 

4. Methodology 

This section describes the newly proposed hierarchical methodology 
for VTF data prediction. Section 4.1 presents the hierarchical steps and 
overall framework from a macro perspective, while Section 4.2 delves 
into the detailed application of each step in the hierarchical methodol-
ogy for VTF prediction. 

4.1. The whole framework 

The proposed hierarchical prediction methodology for VTF predic-
tion is illustrated in Fig. 5. This paper calculates the VTF time series 
based on AIS data, including time stamps and vessel trajectories. The 
original 1D VTF dataset is then rearranged as a 3D tensor, and the 
proposed methodology consists of three steps. 

The first step is to decompose each matrix (hour of the day and day) 
in the VTF tensor using the BEMD method to obtain the BIMF1 and 
residues components, which represent high- and low-frequency com-
ponents, respectively. These components are then used to construct 
high- and low-frequency tensors. 

The low-frequency tensor is composed of stable data, which can be 
predicted directly by the BGCP method to achieve high-precision pre-
diction results. However, the data in the high-frequency tensor is 
irregular and random, which means that the use of the BGCP method to 
predict it would not yield high-precision results. Therefore, this paper 
measures the similarity of each VTF matrix in the high-frequency tensor 
based on the DTW method. The VTF tensor is converted into 1D 

Fig. 5. The flowchart of our proposed hierarchical prediction methodology.  
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sequence data, and the similarity distance is calculated between the last 
sequence data and other sequence data, with the last data sequence 
representing the prediction data node. The new high-frequency tensor is 
regrouped based on the similarity measurement results, resulting in 
higher self-similarity and decreasing data irregularity and volatility. The 
BGCP method performs better prediction accuracy and stability when 
used to predict the new high-frequency tensor. 

Finally, the prediction results of high- and low-frequency tensors are 
summed to obtain the prediction result. The proposed hierarchical 
methodology takes into account the spatial and temporal characteristics 
of VTF while addressing the impact of data volatility on prediction ac-
curacy and stability. Thus, the BEMD-DTW-BGCP method is suitable for 
complex VTF prediction tasks. 

4.2. The proposed hierarchical prediction method 

Following the overview of the hierarchical framework in Section 4.1, 
this section describes the three steps (i.e., N1–N3) within the context of 
VTF prediction. 

N1. VTF matrix decomposition based on BEMD. 
The original 1D spatiotemporal VTF time series is rearranged as a 3D 

tensor (hour ✕ day ✕ week). Hence, the resulting tensor consists of 
several VTF matrices (hour ✕ day). Using the BEMD method, each VTF 
matrix in tensor is decomposed into high-frequency component (i.e., Ch) 
and low-frequency component (i.e., Cl). The decomposed high- and low- 
frequency matrices form high- and low-frequency tensors, respectively. 
Fig. 6 shows the high- and low-frequency components obtained when 
the VTF matrix is decomposed into two layers (i.e., BIMF1 and residue). 

N2. Similarity grouping and tensor prediction. 
To address the prediction difficulty in high-frequency tensors, the 

inherent self-similarities between VTF matrices of each week within the 
high-frequency tensor are extracted and fully taken into account. Spe-
cifically, each week of the VTF matrix Ch(i) from the high-frequency 
tensor is rearranged as 1D time series Th(i), respectively. In particular, 
i represents ith (week) VTF matrix. The DTW distance between the last 
time series (to be predicted) and other time series is calculated by the 
following content, DTWvec = {DTW(Th(1), Th(N), ), DTW(Th(2), Th(N)),

⋅ ⋅ ⋅,DTW(Th(N − 1),Th(N))}, and N denotes the number of VTF matrices 
from the high-frequency tensor. 

It is crucial to reconstruct the reconstruction of a new and appro-
priate high-frequency tensor to be used with the BGCP method for 
achieving accurate prediction results. A suitable threshold is needed to 
be set to measure the similarity of the other matrices to the Ch(N) in this 
paper. This threshold determines which matrices are similar enough to 

Ch(N) to form a more suitable high-frequency tensor for the BGCP 
method to predict. Within the proposed framework, only high-similarity 
segments are extracted to guarantee accuracy and robustness. 

N3. Combination. 
The high-frequency tensor is predicted using the newly proposed 

BEMD-DTW-BGCP hierarchical methodology to improve prediction ac-
curacy and robustness. The prediction results are obtained by inte-
grating the predicted high- and low-frequency tensors. The proposed 
hierarchical prediction method can generate a more accurate result by 
benchmarking with 17 state-of-the-art VTF prediction models, as 
demonstrated in Section 5. 

5. Experimental results and discussion 

To measure the prediction accuracy and robustness of the proposed 
hierarchical methodology, a comparative analysis with 17 established 
prediction methods is conducted based on the realistic VTF time series, 
including tensor factorisation methods (i.e., HaLRTC, TF-ALS, TRTF, 
BATF, BGCP, and BEMD-BGCP), traditional mathematical methods (i.e., 
GM(1,1) and ARIMA), ML methods (i.e., SVM), NN methods (i.e., BPNN 
and WNN), and DL methods (i.e., RNN, LSTM, GRU, Bi-LSTM, Bi-GRU, 
and CNN-LSTM). 

5.1. Experimental dataset description 

The VTF data is derived from AIS data, including the time stamp and 
vessel trajectory, obtained from two water areas: Wuhan Yangtze River 
Bridge (WYRB) and Caofeidian District (CD). When a vessel’s trajectory 
passes through a specific water area, the VTF of that water area is 
increased by one. The WYRB and CD areas represent inland and coastal 
waters, respectively. The effectiveness of the proposed hierarchical 
prediction model is validated through these two experiments, which 
involve different geographical features. In practical application sce-
narios, AIS devices are only responsible for transmitting and receiving 
data signals and do not correct the accuracy of data information. 
Consequently, there may be errors in the data collected by AIS-receiving 
devices. If original AIS data is used directly to calculate VTF, it will cause 
significant errors. Therefore, it is necessary to preprocess the data to 
obtain high-quality data. Detailed information on AIS data preprocess-
ing and VTF calculation processes will be presented in Sections 5.1.1 and 
5.1.2, respectively. 

5.1.1. AIS data preprocessing 
This paper focuses on the preprocessing process of AIS data, mainly 

Fig. 6. Visual effect of VTF matrix decomposition based on the BEMD method. BIMF1 and Residue represent high- and low-frequency components, respectively.  
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addressing the issue of noise in the original trajectory data and pre-
paring for calculating VTF data. As shown in Fig. 7 (a), the noise data is 
distributed among other channels, adversely impacting the accuracy of 
VTF data statistics in those channels. Therefore, before conducting VTF 
counting, the data preprocessing work involves denoising the original 
trajectory and obtaining a high-quality trajectory, visually illustrated in 
Fig. 7 (b). 

The denoising process of the original vessel trajectory data consists of 
two aspects: identifying noisy data and reconstructing noisy data. The 
clustering algorithm (Yang et al., 2022) can effectively solve this prob-
lem. The essence is to divide all trajectory points into two categories: 
normal points and noise points. Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) (Yu et al., 2022) is used in this study 
as it is an effective and widely used clustering algorithm. The DBSCAN 
algorithm classifies trajectory points into three categories, including 
core points, boundary points, and noise points. Both core and boundary 
points belong to normal data, and their classification depends on two 
super parameters, Eps and Minpts. A trajectory point is considered a core 
point if it has more than Minpts data points within the radius Eps. 
Conversely, if there are fewer than Minpts data points, the trajectory 
point is defined as a boundary point, indicating that it falls within the 
area of a core point. If a trajectory point is neither a core point nor a 
boundary point, it is classified as a noise point. 

The DBSCAN algorithm can effectively identify noise points in the 
original vessel trajectory data, as shown in Fig. 8 and Fig. 9. If noise data 
is directly removed, it will affect the distribution structure of vessel 
trajectories. Hence, this paper will use the time information of noise 
points and the trajectory points of adjacent times to repair the noise 
data, which essentially involves a linear interpolation process. It can be 
expressed as follow, 

lt = lt− 1 +(t − (t − 1)) ×
(

lt+1 − lt− 1

(t + 1) − (t − 1)

)

(25)  

where t is the current time of the noise point. Lt-1 and lt+1 represent the 
longitude (or latitude) data of two adjacent time points t-1 and t+1 of 
the noise data, respectively. Lt is the result (longitude or latitude) of 
linear interpolation calculation at time t. Fig. 8 (b) and Fig. 9 (b) illus-
trate the restoration results of noise data in the two experimental water 

areas. In conclusion, DBSCAN and linear interpolation algorithms 
effectively identify and repair vessel trajectory data with noise, thereby 
facilitating accurate VTF data statistics. 

5.1.2. VTF data generation 
High-quality AIS data can be used to calculate VTF time series within 

the WYRB and CD study areas, with a time span from April 5, 2021 to 
June 27, 2021. This paper has set two distinct edges to calculate VTF 
data based on the vessel navigation directions of each research area. The 
edges, labelled E1, E2, E3, and E4, are to count VTF data in these two 
water areas, as illustrated in Fig. 10 (a) and (b). Consequently, there are 
two sets of VTF data for each water area, resulting in four datasets for the 
prediction experiment (i.e., dataset E1, dataset E2, dataset E3, and 
dataset E4). Table 1 displays the longitude and latitude of all nodes (i.e., 
N1, N2, N3, N4, N5, and N6) in Fig. 10, with each edge determined by two 
nodes. 

AIS data is analysed to track the movement of vessels passing 
through different cross-sections (i.e., E1, E2, E3, and E4) in specific 
research areas. The analysis is based on the time stamp, trajectory, and 
heading information provided in the AIS data. A day is divided into 12 2- 
h periods for traffic flow statistics. The trajectory of a vessel passing 
through a cross-section is used to determine the time node to which the 
flow data belongs. This process results in the collection of VTF data for 
12 time nodes per day. The statistical period for VTF data is 84 days, 
starting from April 5, 2021 to June 27, 2021. Each VTF dataset com-
prises 1008 flow data points. The trends in the VTF time series are 
presented in Fig. 11. 

The VTF time series from E1 to E4, which reflects actual vessel traffic, 
is based on a 12-week spatiotemporal dataset. The original 1D time se-
ries data is transformed into a three-dimensional tensor with dimensions 
of 12 ✕ 7 ✕ 12. The first dimension indicates 12 2-h periods in a day, 
while the second dimension represents seven days a week. Therefore, 
the flow data for each week form a VTF matrix of 12 ✕ 7. The final tensor 
data consists of 12 VTF matrices and is presented visually in Fig. 12. 

Fig. 12 depicts the visualisation of VTF tensors from the four distinct 
research datasets, revealing that the distribution of VTF data is irregular 
due to the highly volatile and random nature of flow data over time. To 
enhance prediction accuracy, this study utilises the BEMD method to 
decompose each matrix in the VTF tensor into high- and low-frequency 

Fig. 7. The visual illustration of trajectory data denoising, (a) vessel trajectory data with noise and (b) trajectory data after removing noise. In particular, the cyan- 
blue dots denote noisy data. 
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matrices. These decomposed matrices are then recombined into tensors, 
resulting in separate high-frequency and low-frequency tensors, as 
shown in Fig. 13. 

5.2. Performance indexes on vessel traffic flow prediction 

The fine-grained and coarse-grained results are combined to assess 
the overall prediction performance. For quantitatively evaluating the 
fine-grained result of 12 different time periods, the MRE and the SDRE 
are selected in this study. These two indexes can measure the prediction 
performance of the proposed prediction framework for VTF data at 
different time nodes. The mathematical formulations are defined as 
follows. 

To quantitatively analyse the prediction performance, 

MRE=
1
n
∑n

i=1

|x − x̂i|

x
, (26)  

SDRE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
|x − x̂i|

x
− MRE

)2
√

. (27)  

where n is the number of running times of each method. To ensure 
prediction robustness, each prediction model will run ten times in our 
experiment. x and x̂i are the actual and ith predicted VTF data, 
respectively. The prediction performance can be represented by the MRE 
and SDRE values, where smaller values indicate better performance. To 
comprehensively evaluate the prediction performance of the proposed 
method under multiple time nodes by the coarse-grained result, the 
RMSE and MAPE indexes are chosen, defined below. 

Fig. 8. The visual illustration of vessel trajectory data denoising in the WYRB area, (a) trajectory data with noise and (b) trajectory data after removing noise. In 
particular, the red boxes represent noisy data. 

Fig. 9. The visual illustration of vessel trajectory data denoising in the CD area.  
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
m
∑m

j=1

(
yj − yj

)2

√
√
√
√ , (28)  

MAPE =
1
m
∑m

j=1

⃒
⃒
⃒
⃒
⃒

yj − yj

yj

⃒
⃒
⃒
⃒
⃒
. (29)  

where yj and yj are jth actual VTF data and the average prediction result, 
respectively. m is the overall number of prediction data. The lower 
RMSE and MAPE values indicate a better prediction result. 

5.3. Comparison with other prediction methods 

This paper conducts comparative experiments by selecting 17 
established methods to verify the superior performance of the proposed 
hierarchical method in VTF prediction tasks. According to the classifi-
cation principles of VTF prediction methods described in Section 2, these 
comparison methods are divided into four categories. Specifically, it 
includes three traditional ML methods (i.e., GM(1,1), ARIMA, and SVM), 
two NN methods (i.e., BPNN and WNN), six DL methods (i.e., RNN, 
LSTM, GRU, Bi-LSTM, Bi-GRU, and CNN-LSTM), and six tensor factor-
isation methods (i.e., HaLRTC, TF-ALS, TRTF, BATF, BGCP, and BEMD- 
BGCP). To facilitate understanding, the design logic of this comparative 
experiment is presented in Fig. 14. 

The following are the details of these 17 comparative methods.  

(a) GM(1,1) (Wang et al., 2010): GM is widely used due to its ease of 
implementation (Chen and Huang, 2013). It uses the formula y(t) 
= p(t) ✕ q(t) to perform data prediction tasks. In particular, p(t) is 
a nonlinear function representing the factors affecting the time 

series data, while q(t) is an accumulative function used to accu-
mulate the influence of historical data to fit the data better.  

(b) ARIMA (Liu et al., 2022): A time series prediction method 
combining the autoregressive and sliding average models con-
taining three hyperparameters (i.e., p, d, and q). p is an autore-
gressive term representing how much historical data is used to 
predict future values. d is the difference item, indicating how 
many times the difference is used to make the time series data 
tend to a stable state. q is the moving average term, which reflects 
how many historical errors are used to predict future data.  

(c) SVM (Zhang and Wu, 2022): It is a two-classification method 
which takes historical data as training samples and builds control 
functions to fit the change characteristics of historical data.  

(d) BPNN (Yi et al., 2021) and WNN (Chen et al., 2021): BPNN is the 
most fundamental network model in the NN methods. This 
method iterates continuously through the training network to 
search for the changing characteristics of historical data, thereby 
completing the data prediction task. 

WNN is an upgraded version of BPNN that replaces the sigmoid 
activation function with a wavelet function.  

(e) RNN (Suo et al., 2020), LSTM (Yang et al., 2019) and GRU 
(Hussain et al., 2021): RNN can transmit the changing charac-
teristics of historical data over time during training to the current 
moment, known as a feedforward network with memory ability. 
LSTM is an optimised version of RNN that utilises three gating 
structures (i.e., forget, input, and output gates). GRU is a 
simplified version of LSTM, having only two gating structures: 
the update gate and the reset gate, as opposed to the three gating 
structures in LSTM.  

(f) Bi-LSTM (Li et al., 2021) and Bi-GRU (Huang et al., 2021): To 
further optimise network structure for LSTM and GRU, both 
forward and backward time-varying features are exploited in 
training the network to facilitate the development of bidirec-
tional deep networks.  

(g) CNN-LSTM (Narmadha and Vijayakumar, 2021): The hybrid 
structure, known as the CNN-LSTM or multi-view network, is a 
prominent deep learning model. It combines CNN and LSTM 
networks, where CNN captures spatial views, and LSTM captures 
temporal views. This innovative approach has been widely 
adopted by researchers to create a novel network architecture. 

Fig. 10. Visualisation of realistic AIS-based vessel trajectories and different nodes, (a) visualisation in Wuhan Yangtze River Bridge and (b) visualisation in Cao-
feidian District. In particular, the pink arrow indicates the vessel’s course in the channel. The brown line segments are two edges for counting VTF data, which is 
determined by the blue nodes. 

Table 1 
Statistical and geometrical information of six nodes in WYRB and CD water 
areas.  

Water Areas Node Longitude(o) Latitude(o) 

WYRB N1 114.2772 30.5552 
N2 114.2818 30.5527 
N3 114.2877 30.5494 

CD N4 118.4290 38.8567 
N5 118.4259 38.8361 
N6 118.4227 38.8154  

W. Xing et al.                                                                                                                                                                                                                                    



Ocean Engineering 286 (2023) 115687

13

(h) HaLRTC (Liu et al., 2013), TF-ALS (Ma and Solomonik, 2022), 
TRTF (Baggag et al., 2021), BATF (Chen et al., 2019a) and BGCP 
(Chen et al., 2019b): They are five classic and commonly used 
tensor factorisation methods. During the execution of prediction 
tasks, the original 1D VTF time series dataset is rearranged into a 
3D tensor (hour ✕ day ✕ week) as input data for these tensor 
factorisation methods. Based on the BGCP, BEMD-BGCP and 

BEMD-DTW-BGCP prediction frameworks are further developed 
to improve the prediction performance.  

(i) BEMD-BGCP: It is proposed by combining the BEMD algorithm 
with the BGCP model as one of the comparative models. The 
BEMD algorithm is adopted to decompose the VTF matrix (hour 
✕ day) of each week from the VTF tensor into high- and low- 
matrices. Its essence is to decompose the original tensor into 
high- and low-frequency tensors. The BGCP model is applied to 

Fig. 11. The growing trends of VTF time series data in four different datasets from April 5, 2021 to June 27, 2021, (a) dataset E1, (b) dataset E2, (c) dataset E3, and (d) 
dataset E4. 

Fig. 12. Visualisation of VTF tensors (i.e., three-dimension) from four different datasets. From left to right: (a) dataset E1, (b) dataset E2, (c) dataset E3, and (d) 
dataset E4. 
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predict both high- and low-tensor directly. The prediction results 
are obtained by integrating the predicted high- and low- 
frequency tensors. Consequently, BEMD-BGCP can perform 
more efficiently than the single BGCP method. In particular, it is a 
simplified version of the hierarchical prediction method, and its 
role in comparative experiments is primarily to confirm the sig-
nificance of the hierarchical method in calculating the self- 
similarity between VTF matrices using DTW with high- 
frequency tensors. 

(j) BEMD-DTW-BGCP: The proposed hierarchical prediction frame-
work extends the two-step BEMD-BGCP prediction method by 
leveraging the inherent self-similarities between VTF matrices of 
each week within high-frequency tensor. This three-step frame-
work predicts the low-frequency tensor using the BGCP model 
while rearranging each week’s matrix from the high-frequency 
tensor as a 1D time series. Additionally, the grouped segments 
with high DTW-based similarities are selected to generate more 
proper high-frequency tensors for the BGCP method to enhance 
prediction accuracy. Finally, the predicted high- and low- 
frequency tensors are integrated to obtain the prediction results. 

5.4. Prediction results of different methods 

The VTF time series data on the April 27, 2021 with 12 VTF data 
points (i.e., from time points 997 (00:00–02:00) to 1008 (22:00–24:00)) 
are used as the predicted datasets to access the prediction results. 

To minimise the effect of randomness, 18 prediction models are 
executed ten times, and the MRE and SDRE values are determined based 
on the results of these ten results. The fine-grained quantitative results of 
18 different prediction models for 12 time nodes are shown and 
compared in Figs. 15–18. The results measure the prediction accuracy 
and robustness for 12 different VTF data nodes on April 27, 2021. 
Specifically, the experiments in Figs. 15–18 are based on datasets E1 to 
E4, respectively. Additionally, to comprehensively evaluate the predic-
tion accuracy and robustness of the newly proposed method across 
multiple time nodes, the coarse-grained indexes RMSE and MAPE are 
applied as quality metrics, and the results of different indicators are 
presented in Table 2. 

According to the experimental results in Figs. 15–18 and Table 2 and 
it is evident that the GM(1,1) and ARIMA methods perform poorly in 
terms of prediction accuracy under almost all conditions. In particular, 
the GM(1,1) method has the worst effect in all prediction experiments. 
On the other hand, the SVM method generally yields more precise 

Fig. 13. The VTF tensor decomposition visualized result based on the BEMD method with BIMF1 (a high-frequency tensor) and residue (a low-frequency tensor).  

Fig. 14. The scheme of the comparative methods. The blue box indicates the method category, while the red box expresses the 18 models in the compari-
son experiment. 
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prediction results than the GM(1,1) and ARIMA methods, although it 
performs worse than ARIMA in some specific time nodes (e.g., Fig. 17 
(a), (c), (e), (f), and Fig. 18 (f), (g), and (k)). The NN methods (i.e., BPNN 

and WNN) can predict the future trend based on the development 
characteristics of historical VTF data. However, the prediction results 
are worse than those of the SVM method in most cases due to the 

Fig. 15. Prediction results (MRE ± SDRE) of VTF data based on different methods (i.e., GM(1,1), ARIMA, SVM, BPNN, WNN, RNN, LSTM, GRU, Bi-LSTM, Bi-GRU, 
CNN-LSTM, HaLRTC, TF-ALS, TRTF, BATF, BGCP, BEMD-BGCP and BEMD-DTW-BGCP) in dataset E1. 

Fig. 16. Prediction results (MRE ± SDRE) of VTF data based on different methods in dataset E2.  
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substantial volatility of VTF data. The WNN and BPNN methods exhibit 
similar prediction accuracy. 

DL methods (RNN) are more effective in learning the characteristics 
of highly volatile data, especially since the RNN method can add 

historical data features to the current time point for learning based on 
the hidden state, thereby significantly improving prediction accuracy for 
time series data. In comparison to NN methods, RNN has better pre-
diction accuracy. LSTM and GRU networks can mitigate the gradient 

Fig. 17. Prediction results (MRE ± SDRE) of VTF data based on different methods in dataset E3.  

Fig. 18. Prediction results (MRE ± SDRE) of VTF data based on different methods in dataset E4.  
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vanishing problem to ensure robust prediction, with the latter being a 
simplified version of the former. Consequently, LSTM and GRU 
outperform the original RNN regarding VTF time series data prediction 
accuracy. LSTM and GRU belong to unidirectional networks that only 
retain past information. Bi-directional networks can preserve past and 
future information at any given moment by combining two hidden 
states. Overall, the prediction accuracy and stability of Bi-LSTM and Bi- 
GRU surpass those of the original LSTM and GRU. CNN-LSTM is a hybrid 
DL network structure that can simultaneously capture the spatial and 
temporal characteristics of VTF time series data, leading to less predic-
tion error than NN methods (i.e., BPNN and WNN) and other DL 
methods (i.e., RNN, LSTM, GRU, Bi-LSTM, and Bi-GRU). 

This paper’s research focuses on tensor factorisation prediction 
methods. These methods transform 1D time series data into 3D tensors, 
allowing for the analysis of historical data from a global perspective. It is 
a significant advantage compared to other prediction methods. Ac-
cording to the coarse-grained quantitative evaluation results presented 
in Table 2, tensor factorisation methods outperform traditional ML, NN, 
and single DL methods across all four VTF datasets in terms of predictive 
performance. However, the HaLRTC method has higher RMSE and 
MAPE than the hybrid DL method (CNN-LSTM) in datasets E1 and E2. On 
the other hand, the TF-ALS method only has the smallest RMSE and 
MAPE compared to the CNN-LSTM in dataset E4. It is worth noting that 
the TRTF, BATF, and BGCP methods consistently demonstrate superior 
predictive effects than CNN-LSTM in any situation. While ML, NN, and 
single DL methods only explore the temporal characteristics of historical 
VTF data, CNN-LSTM can capture the temporal attributes and simulta-
neously extract spatial features during data training, resulting in supe-
rior predictive performance compared to general DL and some tensor 
factorisation methods. Regarding comparison with HaLRTC, TF-ALS, 
TRTF and BATF methods, BGCP consistently achieves the smallest 
RMSE and MAPE in all datasets. Additionally, Figs. 15–18 reflect that 
BGCP obtains the minimum MRE and SDRE prediction results for most 
time nodes in each dataset, indicating its high accuracy and stable re-
sults in VTF prediction tasks. Through comparative experiments be-
tween these methods, it has been verified that the BGCP method 
outperforms the others in terms of higher and more consistent accuracy 
in dealing with the VTF prediction problem. This result justifies the 
adoption of the BGCP method as the foundation for optimising the hi-
erarchical prediction approach proposed in this paper. Therefore, the 
hierarchical prediction method proposed in this paper improves and 
optimises the BGCP-based approach to achieve more accurate pre-
dictions in VTF data analysis. 

The BEMD-BGCP method takes advantage of the BEMD method’s 

features, which can decrease the uncertainty in the original data by 
decomposing non-stationary tensors into high- and low-frequency ten-
sors. By using DTW to group segments with high similarities, the pro-
posed hierarchical prediction methodology generates more suitable 
high-frequency tensors. These high-frequency tensors are then factor-
ised using the BGCP method to obtain accurate and stable prediction 
results, making the prediction performance of the BEMD-DTW-BGCP 
method better than the BGCP and BEMD-BGCP methods. In summary, 
the experimental results show that the newly proposed hierarchical 
methodology is effective in predicting non-stationary VTF datasets in the 
maritime industry. 

6. Conclusions and future research 

To improve the VTF prediction accuracy for intelligent traffic man-
agement, a hierarchical prediction framework called BEMD-DTW-BGCP 
is proposed in this paper. Since the same dataset can be represented in 
different structures (i.e., 1D time series, 2D matrix, and 3D tensor), the 
initial 1D VTF time series is transformed into a 3D tensor (hour ✕ day ✕ 
week). Then, the original VTF matrix (hour ✕ day) of each week within 
tensor is decomposed into high- and low-frequency matrices by the 
BEMD model. The original VTF tensor is similarly decomposed into 
high- and low-frequency tensors. To leverage the inherent self- 
similarities between VTF matrices of each week within high-frequency 
tensor, these matrices are further rearranged into 1D time series and 
select grouped segments with high similarities by DTW to form a more 
proper high-frequency tensor for the BGCP model. It can improve the 
prediction accuracy of tensors. The low-frequency tensor can be directly 
predicted using the BGCP model due to its solid mathematical regularity. 
The results of predicted high- and low-frequency tensors are combined 
to generate the prediction outcomes. The proposed BEMD-DTW-BGCP 
model is compared with 17 established prediction methods by ana-
lysing VTF data in the WYRB inland waters and the CD coastal waters to 
demonstrate its effectiveness and robustness by the higher accuracy and 
lower error. The proposed hierarchical prediction methodology holds 
tremendous potential for producing satisfactory performance in pre-
dicting maritime traffic flow. 

Future research content could focus on developing a GPU- 
accelerated ensemble method, extending the applicability of the pro-
posed hierarchical methodology to supervise VTF in a broader context. 
To enhance the method’s efficiency in handling big data, it is imperative 
to implement the prediction method using a GPU parallel framework. 
The GPU-based parallel computing framework can map each data in the 
VTF tensor to different threads. The GPU-based parallel computing 

Table 2 
Comparison of 18 methods against the RMSE and MAPE indexes for VTF data on April 27, 2021 in WYRB and CD.  

Dataset E1 E2 E3 E4 

Evaluation Metrics RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

Model GM(1, 1) 6.5340 0.3940 5.9901 0.3932 4.8124 0.2751 5.3388 0.3030 
ARIMA 5.4132 0.3200 4.3274 0.2803 3.9393 0.2071 3.9868 0.2325 
SVM 3.8375 0.2412 3.5088 0.2305 3.6890 0.1942 3.5599 0.2056 
BPNN 3.6147 0.2335 3.7000 0.2418 3.3803 0.1811 3.4877 0.2001 
WNN 3.7100 0.2391 3.7425 0.2402 3.4805 0.1840 3.6622 0.2061 
RNN 2.8289 0.1801 2.8120 0.1860 2.7928 0.1435 2.7554 0.1579 
LSTM 2.4386 0.1535 2.0699 0.1426 2.4657 0.1266 2.4408 0.1356 
GRU 2.1629 0.1399 1.9101 0.1327 2.2749 0.1126 2.2020 0.1249 
Bi-LSTM 2.0406 0.1250 1.7341 0.1170 2.0130 0.1023 1.9545 0.1078 
Bi-GRU 1.7518 0.1115 1.6731 0.1146 1.9196 0.0955 1.8096 0.1016 
CNN-LSTM 1.3634 0.0858 1.1555 0.0783 1.3987 0.0706 1.3910 0.0770 
HaLRTC 1.3293 0.0869 1.4243 0.0872 1.3621 0.0635 1.2272 0.0704 
TF-ALS 1.3355 0.0866 1.3940 0.0854 1.5866 0.0739 1.2141 0.0695 
TRTF 1.0440 0.0672 0.9633 0.0659 1.2399 0.0578 0.9314 0.0531 
BATF 0.9752 0.0638 0.9507 0.0635 1.3036 0.0606 0.9384 0.0538 
BGCP 0.9499 0.0602 0.8691 0.0579 1.1703 0.0547 0.8853 0.0502 
BEMD-BGCP 0.8026 0.0531 0.7771 0.0517 1.0615 0.0493 0.8596 0.0496 
BEMD-DTW-BGCP 0.6246 0.0410 0.6051 0.0401 0.9103 0.0424 0.7326 0.0428  
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framework can map each data in the VTF tensor to different threads. The 
hierarchical methodology can be encapsulated within multiple kernel 
functions, executed by each thread to predict future VTF data in the 
research waters. Such parallel computing can significantly improve 
prediction speed and facilitate real-time forecasting in large-scale 
datasets. By leveraging the power of GPU parallelism, the hierarchical 
method can efficiently handle vast amounts of data, making it more 
practical for real-world applications in VTF supervision. Additionally, 
the development trend of VTF in two adjacent geographical spaces may 
have a mutual influence. Therefore, it is crucial to explore further op-
timisations for the prediction method that will enable the collaborative 
prediction framework of VTF in adjacent geographical areas. 

CRediT authorship contribution statement 

Wenbin Xing: Investigation, Software, Validation, Formal analysis, 
Visualization, Writing – original draft. Jingbo Wang: Investigation, 
Software, Validation, Formal analysis, Visualization, Writing – original 
draft. Kaiwen Zhou: Investigation, Software, Validation, Formal anal-
ysis, Visualization, Writing – original draft. Huanhuan Li: Conceptu-
alization, Methodology, Data curation, Software, Investigation, 
Supervision, Writing – original draft, Writing – review & editing. Yan Li: 
Conceptualization, Methodology, Data curation, Software, Investiga-
tion, Validation, Formal analysis, Visualization, Writing – original draft, 
Writing – review & editing. Zaili Yang: Conceptualization, Methodol-
ogy, Resources, Supervision, Project administration, Funding acquisi-
tion, Writing – original draft, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This work is supported by the European Research Council (ERC) 
under the European Union’s Horizon 2020 research and innovation 
programme (TRUST CoG 2019 864724) and Royal Society International 
Exchanges 2021 Cost Share (NSFC) (IEC\NSFC\211211). 

References 

Baggag, A., Abbar, S., Sharma, A., Zanouda, T., Al-Homaid, A., Mohan, A., Srivastava, J., 
2021. Learning spatiotemporal latent factors of traffic via regularized tensor 
factorization: imputing missing values and forecasting. IEEE Trans. Knowl. Data Eng. 
33, 2573–2587. https://doi.org/10.1109/TKDE.2019.2954868. 

Belhadi, A., Djenouri, Y., Djenouri, D., Lin, J.C.-W., 2020. A recurrent neural network for 
urban long-term traffic flow forecasting. Appl. Intell. 50, 3252–3265. https://doi. 
org/10.1007/s10489-020-01716-1. 

Bürkner, P.-C., Gabry, J., Vehtari, A., 2020. Approximate leave-future-out cross- 
validation for Bayesian time series models. J. Stat. Comput. Simulat. 90, 2499–2523. 
https://doi.org/10.1080/00949655.2020.1783262. 

Cao, S., Wu, L., Wu, J., Wu, D., Li, Q., 2022. A spatio-temporal sequence-to-sequence 
network for traffic flow prediction. Inf. Sci. 610, 185–203. https://doi.org/10.1016/ 
j.ins.2022.07.125. 

Celikoglu, H.B., Cigizoglu, H.K., 2007. Public transportation trip flow modeling with 
generalized regression neural networks. Adv. Eng. Software 38, 71–79. https://doi. 
org/10.1016/j.advengsoft.2006.08.003. 

Chan, K.Y., Dillon, T.S., 2013. On-Road sensor configuration design for traffic flow 
prediction using fuzzy neural networks and taguchi method. IEEE Trans. Instrum. 
Meas. 62, 50–59. https://doi.org/10.1109/TIM.2012.2212506. 

Chen, C., Hu, J., Meng, Q., Zhang, Y., 2011. Short-time traffic flow prediction with 
ARIMA-GARCH model. In: 2011 Ieee Intelligent Vehicles Symposium (Iv). Ieee, New 
York, pp. 607–612. https://doi.org/10.1109/ICCE.2011.5722766. 

Chen, C.-I., Huang, S.-J., 2013. The necessary and sufficient condition for GM(1,1) grey 
prediction model. Appl. Math. Comput. 219, 6152–6162. https://doi.org/10.1016/j. 
amc.2012.12.015. 

Chen, J., Chen, H., Zhao, Y., Li, X., 2022. FB-BiGRU: a Deep Learning model for AIS- 
based vessel trajectory curve fitting and analysis. Ocean Eng. 266, 112898 https:// 
doi.org/10.1016/j.oceaneng.2022.112898. 

Chen, Q., Song, Y., Zhao, J., 2021. Short-term traffic flow prediction based on improved 
wavelet neural network. Neural Comput. Appl. 33, 8181–8190. https://doi.org/ 
10.1007/s00521-020-04932-5. 

Chen, W.-K., Lee, J.-C., Han, W.-Y., Shih, C.-K., Chang, K.-C., 2013. Iris recognition based 
on bidimensional empirical mode decomposition and fractal dimension. Inf. Sci. 221, 
439–451. https://doi.org/10.1016/j.ins.2012.09.021. 

Chen, X., He, Z., Chen, Y., Lu, Y., Wang, J., 2019a. Missing traffic data imputation and 
pattern discovery with a Bayesian augmented tensor factorization model. Transport. 
Res. C Emerg. Technol. 104, 66–77. https://doi.org/10.1016/j.trc.2019.03.003. 

Chen, X., He, Z., Sun, L., 2019b. A Bayesian tensor decomposition approach for 
spatiotemporal traffic data imputation. Transport. Res. C Emerg. Technol. 98, 73–84. 
https://doi.org/10.1016/j.trc.2018.11.003. 

Chen, X., Sun, L., 2022. Bayesian temporal factorization for multidimensional time series 
prediction. IEEE Trans. Pattern Anal. Mach. Intell. 44, 4659–4673. https://doi.org/ 
10.1109/TPAMI.2021.3066551. 

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., 
Bengio, Y., 2014. Learning Phrase Representations Using RNN Encoder-Decoder for 
Statistical Machine Translation. https://doi.org/10.48550/arXiv.1406.1078. 

Comert, G., Bezuglov, A., 2013. An online change-point-based model for traffic 
parameter prediction. IEEE Trans. Intell. Transport. Syst. 14, 1360–1369. https:// 
doi.org/10.1109/TITS.2013.2260540. 

Dikshit, A., Pradhan, B., Santosh, M., 2022. Artificial neural networks in drought 
prediction in the 21st century-A scientometric analysis. Appl. Soft Comput. 114, 
108080 https://doi.org/10.1016/j.asoc.2021.108080. 

Do, L.N.N., Vu, H.L., Vo, B.Q., Liu, Z., Phung, D., 2019. An effective spatial-temporal 
attention based neural network for traffic flow prediction. Transport. Res. C Emerg. 
Technol. 108, 12–28. https://doi.org/10.1016/j.trc.2019.09.008. 

Dong, Z., 2022. Prediction of ship traffic flow based on wavelet decomposition and 
LSTM. In: 2022 7th International Conference on Cloud Computing and Big Data 
Analytics (ICCCBDA). Presented at the 2022 7th International Conference on Cloud 
Computing and Big Data Analytics. ICCCBDA), pp. 88–93. https://doi.org/10.1109/ 
ICCCBDA55098.2022.9778881. 

Du, L., Gao, R., Suganthan, P.N., Wang, D.Z.W., 2022. Bayesian optimization based 
dynamic ensemble for time series forecasting. Inf. Sci. 591, 155–175. https://doi. 
org/10.1016/j.ins.2022.01.010. 

EMSA, 2022. Preliminary Annual Overview of Marine Casualties and Incidents 2014- 
2020 [WWW Document]. URL. https://www.emsa.europa.eu/publications/item/ 
4378-preliminary-annual-overview-of-marine-casualties-and-incidents-2014-2020. 
html (accessed May.30.22).  

Gao, R., Li, R., Hu, M., Suganthan, P.N., Yuen, K.F., 2023. Dynamic ensemble deep echo 
state network for significant wave height forecasting. Appl. Energy 329, 120261. 
https://doi.org/10.1016/j.apenergy.2022.120261. 

Gao, M., Shi, G.-Y., 2019. Ship spatiotemporal key feature point online extraction based 
on AIS multi-sensor data using an improved sliding window algorithm. Sensors 19, 
2706. https://doi.org/10.3390/s19122706. 

Goerlandt, F., Kujala, P., 2011. Traffic simulation based ship collision probability 
modeling. Reliab. Eng. Syst. Saf. 96, 91–107. https://doi.org/10.1016/j. 
ress.2010.09.003. 

Gong, C., Zhang, Y., 2020. Urban traffic data imputation with detrending and tensor 
decomposition. IEEE Access 8, 11124–11137. https://doi.org/10.1109/ 
ACCESS.2020.2964299. 

Han, Y., Moutarde, F., 2016. Analysis of large-scale traffic dynamics in an urban 
transportation network using non-negative tensor factorization. Int. J. ITS Res. 14, 
36–49. https://doi.org/10.1007/s13177-014-0099-7. 

Hao, S., Lee, D.-H., Zhao, D., 2019. Sequence to sequence learning with attention 
mechanism for short-term passenger flow prediction in large-scale metro system. 
Transport. Res. C Emerg. Technol. 107, 287–300. https://doi.org/10.1016/j. 
trc.2019.08.005. 

He, W., Zhong, C., Sotelo, M.A., Chu, X., Liu, X., Li, Z., 2019. Short-term vessel traffic 
flow forecasting by using an improved Kalman model. Cluster Comput. 22, 
S7907–S7916. https://doi.org/10.1007/s10586-017-1491-2. 

Hinton, G.E., Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural 
networks. Science 313, 504–507. https://doi.org/10.1126/science.1127647. 

Hou, W.-L., Jia, R.-S., Sun, H.-M., Zhang, X.-L., Deng, M.-D., Tian, Y., 2019. Random 
noise reduction in seismic data by using bidimensional empirical mode 
decomposition and shearlet transform. IEEE Access 7, 71374–71386. https://doi. 
org/10.1109/ACCESS.2019.2920021. 

Huang, M., Zhu, M., Xiao, Y., Liu, Y., 2021. Bayonet-corpus: a trajectory prediction 
method based on bayonet context and bidirectional GRU. Digit. Commun. Netw. 7, 
72–81. https://doi.org/10.1016/j.dcan.2020.03.002. 

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., 
Liu, H.H., 1998. The empirical mode decomposition and the Hilbert spectrum for 
nonlinear and non-stationary time series analysis. Proceedings of the Royal Society 
of London. Series A: Math. Phys. Eng. Sci. 454, 903–995. https://doi.org/10. 
1098/rspa.1998.0193. 

Hussain, B., Afzal, M.K., Ahmad, S., Mostafa, A.M., 2021. Intelligent traffic flow 
prediction using optimized GRU model. IEEE Access 9, 100736–100746. https://doi. 
org/10.1109/ACCESS.2021.3097141. 

Jiang, P., Fan, Z., Pan, M., Hu, W., 2022. Research of traffic flow saturation on waters of 
the coastal ship routing system. Ocean Eng. 263, 112417 https://doi.org/10.1016/j. 
oceaneng.2022.112417. 

Jiang, Y., Huang, G., Yang, Q., Yan, Z., Zhang, C., 2019. A novel probabilistic wind speed 
prediction approach using real time refined variational model decomposition and 

W. Xing et al.                                                                                                                                                                                                                                    

https://doi.org/10.1109/TKDE.2019.2954868
https://doi.org/10.1007/s10489-020-01716-1
https://doi.org/10.1007/s10489-020-01716-1
https://doi.org/10.1080/00949655.2020.1783262
https://doi.org/10.1016/j.ins.2022.07.125
https://doi.org/10.1016/j.ins.2022.07.125
https://doi.org/10.1016/j.advengsoft.2006.08.003
https://doi.org/10.1016/j.advengsoft.2006.08.003
https://doi.org/10.1109/TIM.2012.2212506
https://doi.org/10.1109/ICCE.2011.5722766
https://doi.org/10.1016/j.amc.2012.12.015
https://doi.org/10.1016/j.amc.2012.12.015
https://doi.org/10.1016/j.oceaneng.2022.112898
https://doi.org/10.1016/j.oceaneng.2022.112898
https://doi.org/10.1007/s00521-020-04932-5
https://doi.org/10.1007/s00521-020-04932-5
https://doi.org/10.1016/j.ins.2012.09.021
https://doi.org/10.1016/j.trc.2019.03.003
https://doi.org/10.1016/j.trc.2018.11.003
https://doi.org/10.1109/TPAMI.2021.3066551
https://doi.org/10.1109/TPAMI.2021.3066551
https://doi.org/10.48550/arXiv.1406.1078
https://doi.org/10.1109/TITS.2013.2260540
https://doi.org/10.1109/TITS.2013.2260540
https://doi.org/10.1016/j.asoc.2021.108080
https://doi.org/10.1016/j.trc.2019.09.008
https://doi.org/10.1109/ICCCBDA55098.2022.9778881
https://doi.org/10.1109/ICCCBDA55098.2022.9778881
https://doi.org/10.1016/j.ins.2022.01.010
https://doi.org/10.1016/j.ins.2022.01.010
https://www.emsa.europa.eu/publications/item/4378-preliminary-annual-overview-of-marine-casualties-and-incidents-2014-2020.html
https://www.emsa.europa.eu/publications/item/4378-preliminary-annual-overview-of-marine-casualties-and-incidents-2014-2020.html
https://www.emsa.europa.eu/publications/item/4378-preliminary-annual-overview-of-marine-casualties-and-incidents-2014-2020.html
https://doi.org/10.1016/j.apenergy.2022.120261
https://doi.org/10.3390/s19122706
https://doi.org/10.1016/j.ress.2010.09.003
https://doi.org/10.1016/j.ress.2010.09.003
https://doi.org/10.1109/ACCESS.2020.2964299
https://doi.org/10.1109/ACCESS.2020.2964299
https://doi.org/10.1007/s13177-014-0099-7
https://doi.org/10.1016/j.trc.2019.08.005
https://doi.org/10.1016/j.trc.2019.08.005
https://doi.org/10.1007/s10586-017-1491-2
https://doi.org/10.1126/science.1127647
https://doi.org/10.1109/ACCESS.2019.2920021
https://doi.org/10.1109/ACCESS.2019.2920021
https://doi.org/10.1016/j.dcan.2020.03.002
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1109/ACCESS.2021.3097141
https://doi.org/10.1109/ACCESS.2021.3097141
https://doi.org/10.1016/j.oceaneng.2022.112417
https://doi.org/10.1016/j.oceaneng.2022.112417


Ocean Engineering 286 (2023) 115687

19

conditional kernel density estimation. Energy Convers. Manag. 185, 758–773. 
https://doi.org/10.1016/j.enconman.2019.02.028. 

Jin, H., Gu, Z.-M., Tao, T.-M., Li, E., 2021. Hierarchical attention-based machine learning 
model for radiation prediction of WB-bga package. IEEE Trans. Electromagn C. 63, 
1972–1980. https://doi.org/10.1109/TEMC.2021.3075020. 

Kaffash Charandabi, N., Gholami, A., Abdollahzadeh Bina, A., 2022. Road accident risk 
prediction using generalized regression neural network optimized with self- 
organizing map. Neural Comput. Appl. 34, 8511–8524. https://doi.org/10.1007/ 
s00521-021-06549-8. 

Kayacan, E., Ulutas, B., Kaynak, O., 2010. Grey system theory-based models in time 
series prediction. Expert Syst. Appl. 37, 1784–1789. https://doi.org/10.1016/j. 
eswa.2009.07.064. 

Kong, D., Chen, Y., Li, N., Duan, C., Lu, L., Chen, D., 2020. Tool wear estimation in end 
milling of titanium alloy using NPE and a novel WOA-SVM model. IEEE Trans. 
Instrum. Meas. 69, 5219–5232. https://doi.org/10.1109/TIM.2019.2952476. 

Li, H., Liu, J., Yang, Z., Liu, R.W., Wu, K., Wan, Y., 2020. Adaptively constrained 
dynamic time warping for time series classification and clustering. Inf. Sci. 534, 
97–116. https://doi.org/10.1016/j.ins.2020.04.009. 

Li, H., Ren, X., Yang, Z., 2023. Data-driven Bayesian network for risk analysis of global 
maritime accidents. Reliab. Eng. Syst. Saf. 230, 108938. https://doi.org/10.1016/j. 
ress.2022.108938. 

Li, J., Xu, L., Li, R., Wu, P., Huang, Z., 2022. Deep spatial-temporal bi-directional residual 
optimisation based on tensor decomposition for traffic data imputation on urban 
road network. Appl. Intell. 52, 11363–11381. https://doi.org/10.1007/s10489-021- 
03060-4. 

Li, H., Yang, Z., 2023. Incorporation of AIS data-based machine learning into 
unsupervised route planning for maritime autonomous surface ships. Transp. Res. 
Part E Logist. Transp. Rev. 176, 103171. https://doi.org/10.1016/j.tre.2023.103171 
. 

Li, H., Yang, Z., 2023. Ship trajectory prediction based on machine learning and deep 
learning: A systematic review and methods analysis. Eng. Appl. Artif. Intell. 
Accepted. 

Li, H., Yang, Z., 2023. Towards safe navigation environment: The imminent role of 
spatio-temporal pattern mining in maritime piracy incidents analysis. Reliab. Eng. 
Syst. Saf. 238, 109422. https://doi.org/10.1016/j.ress.2023.109422. 

Li, L., Yang, Y., Yuan, Z., Chen, Z., 2021. A spatial-temporal approach for traffic status 
analysis and prediction based on Bi-LSTM structure. Mod. Phys. Lett. B 35, 2150481. 
https://doi.org/10.1142/S0217984921504819. 

Li, M., Mou, J., Chen, P., Chen, L., van Gelder, P.H.a.J.M., 2023. Real-time collision risk 
based safety management for vessel traffic in busy ports and waterways. Ocean Coast 
Manag. 234, 106471 https://doi.org/10.1016/j.ocecoaman.2022.106471. 

Li, H., Jiao, H., Yang, Z., 2023a. AIS data-driven ship trajectory prediction modelling and 
analysis based on machine learning and deep learning methods. Transp. Res. Part E 
Logist. Transp. Rev. 175, 103152. https://doi.org/10.1016/j.tre.2023.103152. 

Li, H., Lam, J.S.L., Yang, Z., Liu, J., Liu, R.W., Liang, M., Li, Y., 2022. Unsupervised 
hierarchical methodology of maritime traffic pattern extraction for knowledge 
discovery. Transp. Res. Part C Emerg. Technol. 143, 103856. https://doi.org/10.101 
6/j.trc.2022.103856. 

Li, Y., Liang, M., Li, H., Yang, Z., Du, L., Chen, Z., 2023. Deep learning-powered vessel 
traffic flow prediction with spatial-temporal attributes and similarity grouping. Eng. 
Appl. Artif. Intell. 126, 107012. https://doi.org/10.1016/j.engappai.2023.107012. 

Li, Y., Liu, R.W., Liu, Z., Liu, J., 2019. Similarity grouping-guided neural network 
modeling for maritime time series prediction. IEEE Access 7, 72647–72659. https:// 
doi.org/10.1109/ACCESS.2019.2920436. 

Liang, M., Liu, R.W., Li, S., Xiao, Z., Liu, X., Lu, F., 2021. An unsupervised learning 
method with convolutional auto-encoder for vessel trajectory similarity 
computation. Ocean Eng. 225, 108803. https://doi.org/10.1016/j.oceaneng.2021 
.108803. 

Liang, M., Liu, R.W., Zhan, Y., Li, H., Zhu, F., Wang, F.Y., 2022. Fine-grained vessel 
traffic flow prediction with a spatio-temporal multigraph convolutional network. 
IEEE Trans. Intell. Transp. Syst. 23, 23694–23707. https://doi.org/10.1109/ 
TITS.2022.3199160. 

Lim, B., Zohren, S., 2021. Time-series forecasting with deep learning: a survey. Philos. 
Trans. R. Soc. A-Math. Phys. Eng. Sci. 379, 20200209 https://doi.org/10.1098/ 
rsta.2020.0209. 

Lin, M., You, Y., Wang, W., Wu, J., 2023. Battery health prognosis with gated recurrent 
unit neural networks and hidden Markov model considering uncertainty 
quantification. Reliab. Eng. Syst. Saf. 230, 108978. https://doi.org/10.1016/j. 
ress.2022.108978. 

Liu, D., Chen, H., Tang, Y., Liu, C., Cao, M., Gong, C., Jiang, S., 2022. Slope 
micrometeorological analysis and prediction based on an ARIMA model and data- 
fitting system. Sensors 22, 1214. https://doi.org/10.3390/s22031214. 

Liu, J., Musialski, P., Wonka, P., Ye, J., 2013. Tensor completion for estimating missing 
values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35, 208–220. https:// 
doi.org/10.1109/TPAMI.2012.39. 

Liu, L., Shibasaki, R., Zhang, Y., Kosuge, N., Zhang, M., Hu, Y., 2023. Data-driven 
framework for extracting global maritime shipping networks by machine learning. 
Ocean Eng. 269, 113494 https://doi.org/10.1016/j.oceaneng.2022.113494. 

Ma, C., Dai, G., Zhou, J., 2022. Short-term traffic flow prediction for urban road sections 
based on time series analysis and LSTM_BILSTM method. IEEE Trans. Intell. 
Transport. Syst. 23, 5615–5624. https://doi.org/10.1109/TITS.2021.3055258. 

Ma, C., Zhao, Y., Dai, G., Xu, X., Wong, S.-C., 2023. A novel STFSA-CNN-GRU hybrid 
model for short-term traffic speed prediction. IEEE Trans. Intell. Transport. Syst. 24, 
3728–3737. https://doi.org/10.1109/TITS.2021.3117835. 

Ma, L., Solomonik, E., 2022. Accelerating alternating least squares for tensor 
decomposition by pairwise perturbation. Numer. Lin. Algebra Appl. 29, e2431 
https://doi.org/10.1002/nla.2431. 

Makowski, D., Naud, C., Jeuffroy, M.-H., Barbottin, A., Monod, H., 2006. Global 
sensitivity analysis for calculating the contribution of genetic parameters to the 
variance of crop model prediction. Reliab. Eng. Syst. Saf. 91, 1142–1147. https:// 
doi.org/10.1016/j.ress.2005.11.015. 
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