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A B S T R A C T   

Maritime transport faces new safety challenges in an increasingly complex traffic environment 
caused by large-scale and high-speed ships, particularly with the introduction of intelligent and 
autonomous ships. It is evident that Automatic Identification System (AIS) data-driven ship tra-
jectory prediction can effectively aid in identifying abnormal ship behaviours and reducing 
maritime risks such as collision, stranding, and contact. Furthermore, trajectory prediction is 
widely recognised as one of the critical technologies for realising safe autonomous navigation. 
The prediction methods and their performance are the key factors for future safe and automatic 
shipping. Currently, ship trajectory prediction lacks the real performance measurement and 
analysis of different algorithms, including classical machine learning and emerging deep learning 
methods. This paper aims to systematically analyse the performance of ship trajectory prediction 
methods and pioneer experimental tests to reveal their advantages and disadvantages as well as 
fitness in different scenarios involving complicated systems. To do so, five machine learning 
methods (i.e., Kalman Filter (KF), Support Vector Progression (SVR), Back Propagation network 
(BP), Gaussian Process Regression (GPR), and Random Forest (RF)) and seven deep learning 
methods (i.e., Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gate 
Recurrent Unit (GRU), Bi-directional Long Short-Term Memory (Bi-LSTM), Sequence to Sequence 
(Seq2seq), Bi-directional Gate Recurrent Unit (Bi-GRU), and Transformer) are first extracted from 
the state-of-the-art literature review and then employed to implement the trajectory prediction 
and compare their prediction performance in the real world. Three AIS datasets are collected from 
the waters of representative traffic features, including a normal channel (i.e., the Chengshan Jiao 
Promontory), complex traffic (i.e., the Zhoushan Archipelago), and a port area (i.e., Caofeidian 
port). They are selected to test and analyse the performance of all twelve methods based on six 
evaluation indexes and explore the characteristics and effectiveness of the twelve trajectory 
prediction methods in detail. The experimental results provide a novel perspective, comparison, 
and benchmark for ship trajectory prediction research, which not only demonstrates the fitness of 
each method in different maritime traffic scenarios, but also makes significant contributions to 
maritime safety and autonomous shipping development.   
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Nomenclature 

Roman letters 
AIS Automatic Identification System 
AI Artificial Intelligence 
AR Autoregressive model 
ALSTM Accumulated Long Short-Term Memory 
Adam Adaptive Momentum Estimation algorithm 
AdaGrad Adaptive Gradient 
AED Average Euclidean Distance 
Bi-GRU Bi-directional Gate Recurrent Unit 
Bi-LSTM Bi-directional Long Short-Term Memory 
Bi-RMDN Bi-directional Circular Mixed Density Network 
BLSTM-RNN Bidirectional Long Short-Term Memory-Recursive Neural Network 
BP Back Propagation 
COG Course Over Ground 
C-LSTM Context-aware Long Short-Term Memory 
DBSCAN Density-Based Spatial Clustering of Applications with Noise 
DKF Discrete Kalman filter 
DLGWO Dimension Learning Grey Wolf Optimizer 
EKF Extended Kalman Filter 
ELM Extreme Learning Machine 
FD Fréchet Distance 
FDE Final Displacement Error 
GA Genetic Algorithm 
GAN Generative Adversarial Network 
GPR Gaussian Process Regression 
GRNN Generalized Regression Neural Network 
GRU Gate Recurrent Unit 
IMO International Maritime Organisation 
INS Inertial Navigation System 
IoT Internet of things 
KF Kalman Filter 
k-NN k-Nearest-Neighbours 
KMMC K-order Multivariate Markov Chain 
KOOS Korea Operational Oceanographic System 
LRM Linear Regression Model 
LSTM Long Short-Term Memory 
MAE Mean Absolute Error 
MASS Maritime Autonomous Ship Systems 
MDN Mixture Density Network 
MHP Multi-output Hybrid Predictor 
MLP Multi-Layer Perceptron 
MLNN Modular Logical Neural Networks 
MMSI Maritime Mobile Service Identify 
MPC Model Predictive Controller 
MP-LSTM Multi-step Prediction Long Short-Term Memory 
MSCNN Multi-Scale Convolutional Neural Network 
MSE Mean Square Error 
NAVDEC Navigation Decision Support System 
PF Particle Filter 
RAdam Rectified Adaptive Momentum Estimation 
RNN Recurrent Neural Network 
RBF Radial Basis Function 
RF Random Forest 
RMSProp Root Mean Square Prop 
Seq2seq Sequence to Sequence 
SMAPE Symmetric Mean Absolute Percentage Error 
SM-OMLSSVR Support Vector Regression Model based on a Selection Mechanism 
SOG Speed Over Ground 
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1. Introduction 

Facilitated by the development of digitalisation, cloud computing, big data mining, Artificial Intelligence (AI), and Internet of 
Things (IoT) technologies, shipping is undergoing a new industrial revolution within the context of Shipping 4.0 (Aiello et al., 2020; 
Chen et al., 2020b; Xiao et al., 2022). The era of intelligent shipping has generated a growing need for high-quality data and data 
mining technologies, involving data collection, preprocessing, compression, feature engineering, and network computing (Hu and 
Zhu, 2009; Li et al., 2017, 2020). It is essential to have real-time data mining and prediction for realising active perception, situational 
awareness, and navigation of Maritime Autonomous Surface Ships (MASS) (Capobianco et al., 2021). Moreover, it is urgently needed 
to implement online learning, real-time update, make decisions, and control independently in a fully functional ship autonomous 
navigation system (Yan et al., 2022). The development and practical application of MASS require multiple factors to be considered, 
including technology, regulations, cybersecurity, human factors, economic feasibility, environmental impact, and ethical consider-
ations (Kanwal et al., 2022). The sensors, navigation systems, and communication systems can accurately and reliably perform the 
tasks necessary for autonomous operation (Zhang et al., 2023). It, however, needs a robust and accurate trajectory prediction as the 
foundation to provide technical support. Its success is treated as the condition to realise ship environmental awareness (Alizadeh et al., 
2021; Bai et al., 2021; Li et al., 2023, 2023; Li et al., 2022a,b), situational awareness (Chen et al., 2014), collision avoidance (Huang 
et al., 2020; Johansen et al., 2016; Wang et al., 2020; Xin et al., 2023), autonomous navigation (Perera et al., 2015; Polvara et al., 
2018), route planning (Gao et al., 2023, 2021), and eventually maritime safety involving both manned ships and developing MASS 
(Volkova et al., 2021). 

Scholars have revealed that ship trajectory prediction technologies are mainly based on motion characteristics and historical 
trajectory data (Gao et al., 2021; Liu et al., 2022a; Shen et al., 2020; Zhang et al., 2022c,b). The prediction methods based on motion 
characteristics are used to predict the future positions of ships by kinematic equations (Filom et al., 2022). They need to take into 
account the environmental factors (e.g., water flow and wind), which dramatically increase the complexity and difficulty of modelling. 
Furthermore, they have exposed some limitations due to the uncertainty and randomness of moving ships. It is challenging to accu-
rately capture ship motion characteristics in the real world. The prediction methods based on historical trajectories have become the 
most commonly used, especially given the accessibility of Automatic Identification System (AIS) data over the past decade. The In-
ternational Maritime Organisation (IMO) requires all ships to be equipped with a ship-borne broadcast response system (i.e., AIS) to 
locate their real-time positions and ensure maritime safety (Li et al., 2022a,b). Meantime, the AIS system allows ships to send real-time 
static and dynamic data to nearby ships and onshore authorities through a high-frequency public wireless channel (Li et al., 2018; Liu 
et al., 2019). As a result, a large amount of ship trajectory data is generated constantly, including both static information (e.g., ship 
Maritime Mobile Service Identity (MMSI), length, and width), dynamic information (e.g., ship positions by latitude and longitude, 
Course Over Ground (COG) and Speed Over Ground (SOG)) (Zhang et al., 2018). Therefore, AIS data-driven methods are becoming 
increasingly popular in aiding ship trajectory prediction. 

Ship trajectory prediction is, however, complex and challenging since the sailing states of the own ships will be affected by their 
surroundings, including other ships, and their trajectories are dynamic and highly changeable (Liu et al., 2022b). It, therefore, 
stimulates the use of AI techniques in ship trajectory prediction research, including machine learning methods (i.e., Kalman Filter (KF), 
Support Vector Regression (SVR), Back Propagation network (BP), Gaussian Process Regression (GPR), and Random Forest (RF)), and 
deep learning methods (i.e., Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gate Recurrent Unit (GRU), Bi- 
directional Long Short-Term Memory (Bi-LSTM), Sequence to Sequence (Seq2seq), Bi-directional Gate Recurrent Unit (Bi-GRU), 
and Transformer). Although showing much attractiveness, the growing applications of these methods in maritime data mining areas 
raise concerns about their fitness in different voyage circumstances and the accuracy and robustness of the results obtained by one 
method that has possibly not been thoroughly evaluated to be the best-fit. After all, the risk stake of an error-prone method for ship 
trajectory prediction could result in catastrophic accidents involving multiple ships and environmental damages. It is urgent and 
necessary to conduct a new in-depth analysis of the existing ship trajectory prediction methods and develop an insightful benchmark to 
guide their future use in different maritime traffic scenarios. 

The future development of ship trajectory prediction requires improving accuracy, efficiency, and the ability to handle complex and 
uncertain situations, which are deemed as the trend of maritime traffic systems. Despite the fact that various mathematical models and 
algorithms, including highly competitive machine and deep learning methods, have been developed over the years to predict ship 
movements, a systematic review of the relevant literature still reveals a few research gaps that need to be addressed with urgency. 
Firstly, the solution to choosing the best-fit ship trajectory prediction method(s) against a specific voyage circumstance remains un-
explored. It is beneficial to develop a systematic analysis and evaluation of advanced prediction methods based on real datasets and to 
provide a benchmark for selecting the best AIS data-driven ship trajectory prediction method(s). Secondly, compared to machine 
learning, the performance of deep learning in ship trajectory prediction has not been comprehensively evaluated, having little 

SVM Support Vector Machine 
SVR Support Vector Progression 
TPNet Trajectory Proposal Network 
TSSPL Trajectory-based Similarity Search Prediction model 
VRAE Variational Recurrent Autoencoder 
VTS Vessel Traffic Service 
WoS Web of Science  
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experimental evidence being documented in the current literature. Thirdly, the criteria used to measure the performance of each 
prediction method and the advantages and disadvantages of each method in different scenarios have not been clearly defined in the 
existing literature. Lastly, the prediction ability of each method has not been fully tested in the real waters of representative features. 

To address these gaps, this paper aims to systematically analyse ship trajectory prediction methods and pioneer experimental tests 
to reveal their advantages and disadvantages as well as fitness in different scenarios involving complicated maritime traffic. To achieve 
it, the rest of this paper is organised as follows. Section 2 reviews the research on ship trajectory prediction systematically and 
summarises all the used methods, both classical and advanced (e.g., machine and deep learning), in the literature. The definitions and 
problem descriptions are described in Section 3 in detail. The trajectory datasets, experimental setup, and the comparative results 
obtained from all the prediction methods are presented in Section 4. Section 5 concludes the paper with the research limitations. 

2. Literature review 

This section conducts a systematic and critical review of the main ship trajectory prediction methods in the current relevant 
literature. It is found that the research methods for ship trajectory prediction are divided into two categories: based on motion 
characteristics and historical trajectory data. The methods in the first category commonly use a motion function to predict a ship’s 
future location based on an ideal environment and some pre-defined state assumptions. Therefore, this method has revealed significant 
limitations. The methods in the second category excavate the navigational features to project ship future movement. It is to predict the 
future motion trend and avoid collisions by mastering the motion rules and characteristics of ships. Moreover, the historical data-based 
methods are one kind of classical regression problem, which can be classified into machine learning and deep learning methods based 
on deep neural networks. 

2.1. A systematic literature review 

A systematic review was conducted through the Web of Science (WoS) Core Collection database to gain a comprehensive un-
derstanding of ship trajectory prediction research. The review process, content, and results are outlined in Fig. 1, which details the 
screening process, including the steps of retaining 67 journal papers from 1250 retrieved results. Keyword clustering analysis of the 67 
reserved results was performed to intuitively reveal their interrelatedness and the research foci within each cluster. Six groups had 
been formed, with each group being highlighted with a different colour to indicate their respective titles. Group #0 ‘recurrent neural 
networks’, Group #1 ‘attention mechanism’, Group #2 ‘deep learning’, and Group #4 ‘machine learning’ represent the applied 
methods based on AIS data in ship trajectory prediction. Additionally, Group #3 ‘meta-model based simulation optimization and Group 
#5 ‘real-time systems’ highlight the optimisation model and collision avoidance for MASS. 

The distribution of published journals from 2000 to 2022 was also analysed to show the development of ship trajectory prediction 
and to highlight the diversification of journal types and the global trend towards interdisciplinary research. A word cloud map was 
generated to identify the research highlights based on keyword frequency. The results showed that ship trajectory prediction research 
focused on different predictive models using AIS data, including deep learning and machine learning methods. The development trend 
of keywords over time was visualized to provide a deeper view and analysis of ship trajectory prediction, revealing that the latest 
development focuses on deep learning research in ship trajectory prediction. The challenge of selecting the best-fit method(s) in 
different traffic systems remains unexplored. 

Furthermore, data-driven applications and cooperative research in anomaly detection and anti-collision based on ship trajectory 
prediction are currently shown as spotlights. As a result, it is rational and beneficial to evaluate the performance of different machine 
learning and deep learning methods for ship trajectory prediction and to develop an effective benchmark for promoting their appli-
cations in the maritime sector. This systematical review finding further aids in justifying the motivation of the research work in this 
paper. 

2.2. Motion characteristics-based model 

According to the abovementioned systematic review, only three papers are refined based on motion characteristics. Despite the fact 
that motion feature-based models are highly interpretable, the review analysis results in Fig. 1 show that this area of research is sparse 
and yet the latest hotspot, possibly because of the aforementioned technical difficulties (e.g., the requirement of strong assumptions). 

A ship trajectory prediction model based on motion characteristics mainly uses ship movement and behaviour data to make the 
prediction of their future paths or trajectories (Last et al., 2019). It is used in such maritime operations as cargo shipping, fishing, and 
military operations. The prediction results are used for multiple purposes, including shipping route optimisation, the prediction of ship 
behaviours in crowded waterways, and maritime safety and security assurance. The models based on motion characteristics also 
incorporate environmental data to improve the accuracy of ship trajectory prediction (Wang et al., 2014). However, it is revealed that 
they are better in short-term ship trajectory prediction than long-term ones. Millefiori et al. (2016) developed a new method based on 
mean-reverting stochastic processes to forecast long-term ship states. The linear prediction component of the model, however, shows 
that when the ship undertakes a change in speed or direction, the accuracy of the prediction is greatly reduced. 

Although showing some attractiveness in terms of data training and computational efficiency, this group of prediction models are 
mainly suitable for predicting the uncertainty of ship movement in specific cases, such as search and rescue operations. It has been 
revealed that their applications heavily rely on an ideal operational environment, motion conditions, and state assumptions, making it 
challenging to meet the needs of real-world navigation of high-level generality. 
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Fig. 1. The systematic review process, content, and results.  
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2.3. Machine learning-based prediction models 

Within the context of the prediction models based on historical data, the systematic review results show that 36 journal papers are 
related to the use of machine learning methods in Section 2.1. There are various machine learning prediction methods (Fuentes, 2021), 
including regression models (e.g. Linear Regression Model (LRM) (Neri, 2019), autoregressive model (AR) (Qiang et al., 2020), SVR, 
and GPR), neural networks (e.g. Artificial Neural Network (ANN)), KF, RF, and so on. These models typically involve the collection and 
analysis of data on the velocity, acceleration, heading, and position of ships to train the associated machine learning algorithms. 

The LRM model is commonly used for time series prediction. It is real-time and straightforward; however, it is only suitable for 
short-term linear ship trajectory prediction and is simple to overfit. The KF model can estimate the state of moving targets and predict 
the trajectory point of the next timestamp by using new observation data. Generally, this method is only applicable to linear systems. 
Scholars have proposed some improved methods to improve its ability for ship trajectory prediction, including an Extended Kalman 
Filter (EKF) (Perera et al., 2012) for trajectory prediction, a combination of the KF method and a weighted fast marching square al-
gorithm for path planning of unmanned surface ships (Liu et al., 2017), an integration of the KF algorithm and video image processing 
for prediction (Chen et al., 2022), a Discrete Kalman filter (DKF) (Xie et al., 2007), and a developed EKF model (Raboaca et al., 2020) 
for radar data processing and prediction. However, these models often suffer from a shortcoming in long-term prediction and route 
planning because of their high error rates in long-term prediction. 

The SVR model is a regression method that combines Support Vector Machine (SVM) and regression. In the study of ship trajectory 
prediction, the main improved method includes an SVR with a Dimension Learning Grey Wolf Optimizer (DLGWO-SVR) model (Chen 
et al., 2021), an SVR optimised by an Adaptive Chaotic Differential Evolution (ACDE-SVR) model (Liu et al., 2019b), and an Online and 
Multiple Outputs Least-Squares Support Vector Regression Model based on a Selection Mechanism (SM-OM LSSVR) (Liu et al., 2020). 
SVR models commonly face criticism for the challenge of parameter selection and the computational costs associated with solving 
them. The GPR model is an improvement of Bayesian linear regression. Chen et al., (2021a) proposed a sparse GPR model to aid 
intelligent ship navigation, which solved the difficulty of how a kernel function method was complicated to apply in large datasets. 
However, the method is highly data-dependent, thus revealing limited predictive performance. Rong et al. (2019) put forward a 
nonparametric Bayesian prediction model based on the GPR to explain the uncertainty of lateral movement and predict the trajectory. 
Although this method can reduce the computation time using a sequential Cholesky decomposition algorithm, it fails when handling 
high-dimension data. After that, a combination of an LRM and a GPR prediction model was established by Rong et al. (2022) to predict 
the destination of a modelled ship and its trajectory during navigation, respectively. Although combining maritime traffic networks 
and a vessel trajectory prediction model to realise long-term prediction, the method still reveals its limitation in trajectory prediction 
accuracy on its dependency on the results of ship destination prediction. RF is a comprehensive algorithm with decision trees. It has a 
wide range of applications, such as the prediction of arrival ports and time of sailing ships (Karataş et al., 2021), destination ports 
(Zhang et al., 2020), and ship speed and trajectory prediction (Abebe et al., 2020). However, it is easy to overfit when dealing with 
some specific noise datasets. 

To date, many artificial neuron connections have been used to calculate ANN. ANN is one of the adaptive systems since the internal 
structure will change based on external information in most cases. According to its strong adaptability, the neural network has been 
applied to ship trajectory prediction, including its direct applications (Chen et al., 2020a; Volkova et al., 2021; Wen et al., 2020; Yan 
et al., 2022; Zhang et al., 2022) and the improved models such as Extreme Learning Machine (ELM) (Tu et al., 2022), Generalized 
Regression Neural Network (GRNN) (Borkowski, 2017), a Neuroevolution ANN (Lacki, 2016), and a Multi-Layer Perceptron (MLP) 
method (Valsamis et al., 2017). These models involve a high number of parameters, resulting in not only relatively poor interpret-
ability but also possibly high computational and spatial complexity. 

Due to such limitations, researchers put effort into addressing them with a hybrid approach of neural networks and other algo-
rithms. Xiao et al. (2022) combined a physical model, Modular Logical Neural Networks (MLNN), and Particle Filter (PF) to generate 
reliable prediction results for risk assessment and collision detection. Wang et al. (2022) proposed a hybrid modelling method based on 
the neural network to calibrate the model-based approach for ship navigation, planning, and collision avoidance in a complex 
environment. A Multi-output Hybrid Predictor (MHP) method was developed for ship collision avoidance and autonomous ship 
decision-making (Kanazawa et al., 2021). Papadimitrakis et al. (2021) developed a prediction model by combining Model Predictive 
Controller (MPC) and Radial Basis Function (RBF) neural network for multi-ship moving control and collision avoidance. Sun et al. 
(2022) developed an integrated learning framework to improve prediction accuracy and realise the maritime traffic control decision. 
Xiao et al. (2020) combined concurrent processing cluster design with a neural network to realise near real-time trajectory prediction 
for early warning of collision risk. Rhodes et al. (2007) implemented associative learning for trajectory prediction to detect abnormal 
behaviour of ships. The accuracy of this model is greatly affected by the resolution of the water grid. Luo and Zhang (2020) put forward 
a vessel trajectory prediction method based on the reinforcement learning method to analyse and predict the ship trajectory. It is no 
doubt that the hybrid approaches significantly improve the prediction ability of a neural network. However, some emerging issues 
were observed in their applications, including high calculation costs, high requirements for data quality, low calculation efficiency, 
and low generality. 

In addition to the above methods, scholars also use other machine learning methods to predict ship trajectories, such as a single- 
point neighbour search method (Murray and Perera, 2022) for ship behaviour prediction, an improved cultural particle swarm method 
(Zheng et al., 2021) for vessel steering angle prediction, the k-Nearest-Neighbours (k-NN) algorithm (Maskooki et al., 2021) for 
optimal navigation route selection, a second-order rational Bezier curve coefficients estimation method (Miller and Walczak, 2020), a 
Bayesian network (Tang et al., 2020) for vessel trajectory prediction, and an improved beetle antennae search algorithm (Xie et al., 
2019) for prediction and anti-collision. Furthermore, more advanced methods by the combination of the aforementioned models have 
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also been proposed and applied in ship trajectory prediction, including a K-order Multivariate Markov Chain (KMMC) model (Liu et al., 
2019), an exponential smoothing model (Sang et al., 2016), an image processing method (Wei, 2020), an agent-based simulation 
model (Pedrielli et al., 2020), and a Korea Operational Oceanographic System (KOOS) (Choi et al., 2020). Due to the fast growth of 
these methods in the field, a comparative analysis of their strengths and weaknesses to disclose their fitness in different voyage 
scenarios is needed. 

2.4. Deep learning-based prediction methods 

From the 28 deep learning-based ship trajectory prediction papers (Fig. 1), it is evident that deep learning methods allow for 
achieving high-precision results when dealing with complex and dynamic trajectory data due to their robust learning and adaptability 
capabilities. As a result, they exhibit remarkable performance in AIS data-driven ship trajectory prediction. 

RNN have only a short-term memory due to vanishing gradients. The LSTM model refers to the development of RNN and combines 
short-term and long-term memories through dedicated gate controls. It solves the problem of vanishing gradients to a certain degree in 
ship trajectory prediction. To handle complex trajectory problems, scholars have proposed many integrated models by LSTM, such as a 
multiple vessels prediction model (Ma et al., 2022), a combined model of wild bootstrapping techniques with LSTM (Venskus et al., 
2021), ship location prediction (Karataş et al., 2021), a Trajectory-based Similarity Search Prediction model (TSSPL) (Alizadeh et al., 
2021), a Context-Aware LSTM (C-LSTM) model (Mehri et al., 2021), a federated deep learning-based method (Conv LSTM) (Hammedi 
et al., 2022), an Accumulated Long Short-Term Memory (ALSTM) model (Ma et al., 2021), a Multi-step Prediction LSTM (MP-LSTM) 
model (Gao et al., 2021), and a Bidirectional Recurrent Mixture Density Network (Bi-RMDN) (Chen et al., 2020a,b,c) with long-term 
geographic context information. However, the LSTM and its improved models only retain past information because of their design. 

In contrast, a Bi-LSTM model can handle data from both the past and the future. This is achieved by processing input information in 
two directions: one from the future to the past and the other from the past to the future. Therefore, Bi-LSTM can store both forward and 
backward information. To date, many new hybrid models based on Bi-LSTM have been proposed to support ship trajectory prediction, 
including a trajectory prediction model combining data denoising and Bi-LSTM (Yang et al., 2022), a combination of the spectral 
clustering method and Bi-LSTM (Park et al., 2021), a new model by combing attention mechanism with Bi-LSTM (Ma et al., 2020), a 
new fusion model of combined convolution layers, Bi-LSTM, attention mechanism, and dense layers (Liu et al., 2021), a Bidirectional 
Long Short-Term Memory-Recursive Neural Network (BLSTM-RNN) model (Zhong et al., 2019), a Dual-pass Long Short-Term Memory 
network model (Hu et al., 2021). These models possess considerable computational complexity and limited generalisation capabilities. 

A Seq2seq model belongs to one of the Encoding-Decoding structures, which can map the input sequence to the output sequence 
with unequal lengths. Its improved models are proposed for ship trajectory prediction and real-time ship navigation, such as a 
combined model by RNN and Seq2seq (Capobianco et al., 2021), a Variational Recurrent Autoencoder Encoder and density-based 
clustering algorithm (Murray and Perera, 2021), and a Seq2seq model optimised by spatio-temporal features (You et al., 2020). 
Although these models alleviate the gradient descent problem, they are suitable for short-term trajectory prediction and have poor 
long-term trajectory prediction results. 

A GRU model has addressed the shortcomings of LSTM, and with fewer parameters, it can reduce the risk of overfitting. Suo et al. 
(2020) applied a GRU model to realise early warning in maritime navigation. However, it has a high calculation cost. Zhang et al. 
(2021) developed a ship trajectory prediction method based on GRU and Multi-Scale Convolutional Neural Network (MSCNN) to 
predict ship trajectories. The MSCNN model extracted the spatial–temporal characteristics effectively and predicted the trajectory 
accurately by combining GRU, attention mechanism, and an autoregressive (AR) model together. It solved the gradient dispersion 
problem. 

In addition to the above methods, Murray and Perera (2020) proposed a dual linear autoencoder model for trajectory prediction 
and ship collision avoidance. The training of this method required much fewer computational resources than the deep autoencoder, yet 
its prediction performance was comparable. Wang and He (2021) developed a trajectory prediction model based on Generative 
Adversarial Network (GAN), attention mechanism, and interaction module for ship motion behaviour analysis and navigation route 
planning. The interaction module was designed to process the trajectory information of a single ship into the relative motion infor-
mation of multiple vessels. Zhang et al. (2022a) applied GAN to enrich the types of abnormal trajectories in training sets to improve 
prediction accuracy. The model employed a dual-task network to enhance the efficiency of prediction for shipping bridge collision 
avoidance; however, it failed to take into account the influence of neighbouring ships on the target ship. To improve the accuracy of 
ship trajectory prediction, Huang et al. (2022) proposed a TripConvTransformer model consisting of three parts (global, local, and 
trend convolution), which utilizes a simplified transformer architecture and integrates meteorological data. Despite this, the use of K- 
means methods for discretization analysis proved to be ineffective in capturing the features of meteorological data. Nguyen and Fablet 
(2023) introduced a novel TrAISformer model to enhance the accuracy of prediction by incorporating long-term correlations of AIS 
trajectories through a probabilistic transformer structure. The efficacy of this model was validated on an AIS dataset spanning three 
months using a new evaluation function. 

2.5. Our contributions 

In light of the aforementioned research gaps, this study makes new contributions (i.e., C1-C4) as listed below. 
C1. Conduct the state-of-the-art survey and classified review analysis of the prediction methods of ship trajectories. 
This paper comprehensively reviews the literature related to ship trajectory prediction, extracts the most representative advanced 

prediction methods, and carries out a systematical method analysis based on the classified methods to reveal the current trends. To the 
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best of our knowledge, it is the first to classify the trajectory prediction research by machine learning and deep learning methods in 
detail. 

C2. Analyse all the advanced prediction methods and compare their performance against different scenarios to develop a 
benchmark for ship trajectory prediction. 

According to the above classified systematical retrieval results, twelve advanced methods are selected to conduct trajectory pre-
diction experimental comparison, analyse their time complexity, and summarise the feasibility to provide a benchmark for future ship 
prediction. While most relevant studies in the current literature are based on a single prediction algorithm or the combination of two 
methods, we propose a comprehensive experimental analysis and comparison of twelve prediction methods to provide a benchmark 
and reference for applied research by different stakeholders. 

C3. Employ six indicators to evaluate the performance of the twelve prediction methods to ensure the overall measurement of less 
bias. 

To have a comprehensive evaluation, six different indexes that are selected to quantitatively analyse the prediction performance, 
including Mean Absolute Error (MAE), Symmetrical Mean Absolute Percentage Error (SMAPE), Mean Square Error (MSE), Final 
Displacement Error (FDE), Fréchet Distance (FD), and Average Euclidean Distance (AED). Such a comprehensive evaluation provides a 
detailed objective for the twelve advanced methods and ensures their comparison is conducted from local and global perspectives. It is, 
therefore, among the first to consider the holistic prediction performance in machine learning and deep learning methods. 

C4. Conduct three experiments using real datasets from the waters and ports of representative traffic features to reveal the fitness of 
each method in comparison to different scenarios. 

The Chengshan Jiao Promontory, Zhoushan Archipelago, and Caofeidian port water areas are chosen to implement the comparison 
experiments to reveal the prediction performance of different methods. The classical busy water areas (including port) with the ship 
routing system and complex traffic flow can adequately evaluate the real prediction performance of the twelve advanced methods. 

3. Definitions and problem statements 

The section outlines the definitions and states the problems to support the experimental design and measurement of the prediction 
performance of the twelve chosen machine learning and deep learning methods using three historical ship trajectory datasets rep-
resenting different traffic features. The results will be presented in a comparative manner to provide a benchmark for prediction 
research for ship trajectory ships. 

3.1. Definitions 

Definition 1. Ship trajectory. A ship trajectory Traj is denoted as a sequence of timestamped points, i.e., Tra = {Po1,⋯,Poi,⋯,PoN}. 
Let Poi = {ti, lati, loni, sogi, cogi}, i = 1,⋯,N is the nth timestamped point. N indicates the length of the ship trajectory, while lati, loni, 
sogi, cogi and ti in Poi represents the longitude, latitude, SOG, COG and time, respectively. 

Definition 2. Ship trajectory dataset. Let TD = {Tra1,⋯,Traj,⋯,Tran}, j = 1,⋯, n denotes ship trajectory dataset, where n is the 
number of trajectories in this dataset. The jth trajectory in the dataset is Traj = {Poj

1,⋯,Poj
i,⋯,Poj

N}. 

3.2. Problem generation and statements 

Problem generation: Along with the above-analysed importance of obtaining accurate ship trajectories, it is also crucial to 
evaluate time series predictions for assessing the accuracy and reliability of forecasting models. Among the commonly used evaluation 
indexes, MSE, MAE, and SMAPE are widely employed for overall error analysis in time series prediction. However, ship trajectories, 
representing a special type of time series data, have intrinsic similarity and pattern information. Therefore, in addition to the above- 
mentioned indexes, FDE, FD, and AED are also used to evaluate the prediction accuracy based on local error and similarity analysis. 
Therefore, there are two research problems to be formulated and solved in this work. 

Problem 1. How to accurately predict the future positions of ships according to their historical trajectory by different 
machine and deep learning methods? 

To accurately predict the future positions of ships and have a comprehensive comparison of ship trajectory prediction, a one-step 
prediction standard is selected for the twelve prediction methods, and the step size of historical data input is set as 5. The information 
from the first four points is applied to predict the next point in the whole experiment. Then the prediction process is shown below 

ft(Poi+4) = ft(Poi,Poi+1,Poi+2,Poi+3), i = 1,⋯,N − 4.
t ∈ {KF, SVR,BP,GPR,RF,RNN, LSTM,GRU, Bi − LSTM,Bi − GRU,Transformer} (1)  

where ft() denotes the prediction function based on the twelve different prediction methods. 
Problem 2. How to measure the prediction performance of different methods? 
To assess the overall prediction performance of ship trajectories, a novel approach that combines global and local error and 

similarity analysis is proposed. This approach enables a comprehensive evaluation of the accuracy and similarity of the predicted ship 
trajectories. It allows for analysing the strengths and weaknesses of each method, providing valuable insights for improving the ac-
curacy and reliability of ship trajectory predictions. 

To comprehensively assess the results of the twelve prediction methods, the six evaluation indexes (i.e., MSE, MAE, SMAPE, FDE, 
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FD, and AED) are chosen. Specifically, MSE, MAE, and SMAPE are used to evaluate the overall error. FDE assesses the local error, while 
FD and AED measure the similarity between the actual and predicted trajectories. The best predictive performance of the twelve 
methods is to find the minimum function in these six evaluation results. The optimal model is 

Optimal f ←min{MSE ∩ MAE ∩ SMAPE ∩ FDE ∩ FD ∩ AED} (2)  

4. Experiment and discussion 

The prediction performance of the twelve methods, KF, GPR, SVR, BP, RF, RNN, LSTM, GRU, Bi-LSTM, Bi-GRU, Seq2seq, and 
Transformer, is conducted on the three representative and real AIS datasets. The prediction results are visually displayed and compared 
to provide valuable findings and implications (e.g., anti-collision and automatic controlling in hybrid traffic). Meantime, six evaluation 
indexes are selected to quantitatively analyse and compare the experimental results to assess the trajectory prediction performance of 
the twelve methods on different trajectories. Furthermore, the time complexity of the twelve methods is analysed in detail. As shown in 
Fig. 2, the flowchart of the experiment includes three parts: data preprocessing, trajectory prediction, and performance evaluation. 

Fig. 2. The experimental flowchart.  
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4.1. Dataset and experimental settings 

4.1.1. The description of three water areas 
Three real AIS datasets in the Chengshan Jiao Promontory, Zhoushan Archipelago, and Caofeidian port water areas are chosen to 

analyse and compare the twelve prediction methods in the waters with different traffic features, respectively. As one classical coastal 
water area, Chengshan Jiao Promontory suffers from complex traffic flow and complicated natural environments. Followed by the 
high-density traffic and multiple encounter situations, the risk of accidents (e.g., collision and grounding) increases. A ship routing 
system is introduced to reduce accidents, ensure navigational safety, and prevent ship pollution. Therefore, the AIS data from the 
Chengshan Jiao Promontory water area is chosen as the first dataset to compare the performance of the twelve different prediction 
methods. 

The Zhoushan Archipelago water area is attached to the Ningbo-Zhoushan port, which has been the busiest port in the world in 
terms of overall cargo throughput for 13 consecutive years (Dong et al., 2018). It includes more than 160 large-scale and 100 super- 
large deep-water berths with the highest traffic flow density in China. Meantime, 300,000-ton ships can enter and leave the area freely, 
while super-large ships above 400,000-ton can enter and leave the area at a high tide. The deep-water berths, port, and complicated 
environment make this area one of the busiest water areas in the world. Therefore, the AIS data from sophisticated traffic flow in the 
Zhoushan Archipelago water area is selected as the second dataset to verify the performance of the twelve different prediction 
methods. 

The Caofeidian port area boasts the highest traffic density in the western Bohai Sea, making it an ideal location for the estab-
lishment of a large deep-water port. It is abundant in both economic and geographical resources and boasts favourable conditions for 
constructing multiple deep-water terminals, making it an ideal location for rational development. In our study, a third experiment is 
conducted using AIS data from this area to verify the effectiveness of the twelve prediction methods. 

Table 1 
The details of two experimental datasets.  

Water areas Time Number of vessel 
trajectories 

Number of timestamped 
points 

Boundary 
points 

Longitude 
(o) 

Latitude 
(o) 

Chengshan Jiao Promontory Jul. 2018 4967 3,795,208 Left top  122.5833  37.7500     
Right bottom  123.1667  37.1667 

Zhoushan Archipelago water 
area 

23rd and 24th Apr. 
2018 

7612 7,890,322 Left top  121.5056  31.0994     

Right bottom  123.6126  29.5607 
Caofeidian Port water area 1st to 10th Jun. 

2018 
3606 5,936,451 Left top  118.2500  39.1166     

Right bottom  118.9167  38.7167  

Fig. 3. Visualisation of trajectory dataset in the Chengshan Jiao Promontory area and the nine tested trajectories.  
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4.1.2. Datasets description 
Three water areas with different features in terms of traffic flow and data sizes allow the comparative analysis of the twelve 

methods in terms of their prediction performance to evaluate their applicability and guide their future applications. The details of the 
three experimental datasets are listed in Table 1. 

The dataset for each water area is divided into two parts, with 90% of the data randomly selected as training data and the remained 
10% for testing. Furthermore, nine trajectories with various characteristics from different channels in the test datasets are chosen in 
three water areas to visualise, compare, and analyse the prediction performance. 

The original three datasets are conducted data preprocessing (i.e., noises, incomplete data, and anomaly data) in this study to 

Fig. 4. Visualisation of trajectory dataset in the Zhoushan Archipelago water area and the nine tested trajectories.  

Fig. 5. Visualisation of trajectory dataset in the Caofeidian port area and the nine tested trajectories.  
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ensure the availability of data and the quality of model training (Liang et al., 2022; Zhang et al., 2022a,b). Finally, 2000 ships with 
1,495,208 trajectory points are reserved from the original dataset in the Chengshan Jiao Promontory water area. 

The visualisation result of the experimental dataset is shown in Fig. 3, represented by grey lines. The classification characteristics of 
ship trajectories in the Chengshan Jiao Promontory water area are apparent under the content of the ship routing (traffic separation) 
system. Furthermore, the nine randomly selected tested trajectories should include various features in different waterways to visualise 
the prediction analysis. Therefore, the nine representative trajectories are chosen from different channels as the test dataset for 
subsequent prediction performance comparison. Their MMSI of the chosen nine ship trajectories with different key characteristics are 
241407000, 241408000, 249020000, 353816000, 412362000, 412536000, 412550870, 412551020, and 413,115,000 (numbered 
1–9 in the following experiments), respectively. The colourful lines are the selected nine trajectories from Fig. 3. It is obvious that the 
ship trajectories in the Chengshan Jiao Promontory water area are relatively simple trajectories. 

To further verify the prediction performance of the twelve methods and ensure the feasibility and credibility of the experimental 
results, the real AIS data of the Zhoushan Archipelago water area is also selected. The dataset after data preprocessing contains 4840 
ships, with a total of 4,116,922 coordinate points, displayed in grey colour in Fig. 4. Nine ship trajectories with varying characteristics 
have been selected from the dataset for testing the model, as shown in the colourful curves in Fig. 4. This selection method is similar to 
the one used in the Chengshao Jiao water area. The selected ship trajectories for the following experiments are identified by the 
following MMSI numbers: 354336000, 374728000, 412081720, 412427003, 412439059, 413559862, 900404567, 901401525, and 
999,968,766 (numbered 1–9 in the second experiment). 

Given the frequent anchoring and berthing of ships at the Caofeidian Port, it is necessary to conduct comprehensive data pro-
cessing. The final experimental dataset contains 1216 ship trajectories with a total of 2,924,261 data points after data preprocessing. 
The data collected from this unique port area can help demonstrate the prediction performance of the twelve methods and enhance the 
validity of the experimental results. Similar to the selection of testing trajectories in the previous two datasets, nine ship trajectories are 
selected based on the various characteristics and channels. The dataset is visualised in grey colour in Fig. 5, while the test trajectories 
are displayed with colourful curves. The MMSIs of the selected test trajectories are 212250000, 309972000, 412429910, 413272610, 
413272710, 413505370, 414238000, 414369000, and 414400890, marked by numbers 1–9 in the third experiment. 

The comparison of the visualisations in Figs. 3-5 further highlights the unique features of each of the three test water areas. Fig. 3 
represents an area with a designated ship routing scheme, Fig. 4 depicts a complex and changeable water area, and Fig. 5 illustrates the 
complex traffic within a port area. These three representative datasets can be used to demonstrate the effectiveness and identify the 
advantages and disadvantages of the twelve prediction methods in different trajectories with various characteristics. 

4.1.3. Hyperparameter setting 
The five deep learning-based models are implemented based on a Pytorch framework. The Adaptive Momentum Estimation al-

gorithm (Adam) is applied to update each model’s parameters in the training process. The Adam algorithm combines the advantages of 
the Root Mean Square Prop (RMSProp) algorithm and the Adaptive Gradient (AdaGrad) algorithm. It takes advantage of the first-order 
and second-order moment estimation of each parameter gradient, which can dynamically adjust the learning rate of each parameter 
depending on the loss function. 

The relevant hyperparameters are listed in Table 2, which are consistent across seven deep learning models used in the experiment 
to ensure comparable results. In particular, the number of nodes in the hidden layer of the BP model is determined to be 15 through the 
experimental comparison result. Therefore, the other six models (i.e., RNN, LSTM, GRU, Bi-LSTM, Bi-GRU, and Transformer) have 128 
nodes in the hidden layer, while BP has 15 nodes. An early stop mechanism is also set in the algorithm. When the learning rate decays 
to less than 10-6 or the testing effect of the model with ten consecutive iterations does not increase, it is proved that the model has 
converged and the training will stop automatically. 

The performance comparison of the models is implemented based on statistical error analysis. Table 3 displays the optimal 
convergence count of the seven models during the three experiments. 

All numerical experiments in this study are performed on a 3.60 GHz Intel Core i9-11900U CPU, 1080Ti GPU with 32 GB memory 
using 64-bit windows 10. All algorithms are in Python 3.9 programs. 

Table 2 
Relevant hyperparameter setting.  

Learning Rate Epoch Dropout Hidden size Input/output dimensions Hidden layer  

0.0001 100  0.5 128 (15) 2 1  

Table 3 
The convergence counts of different methods in the three experiments.  

Water area RNN LSTM GRU Seq2Seq Bi-LSTM Bi-GRU Transformer 

Chengshan Jiao Promontory 34 23 46 32 24 53 72 
Zhoushan Archipelago 47 34 52 38 35 45 94 
Caofeidian port 38 18 37 26 31 51 85  
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4.2. Evaluation indexes 

This paper uses six evaluation indexes to quantify the trajectory prediction performance of the twelve prediction methods from 
global and local perspectives. The use of one or two indices to measure the performance of prediction methods has been criticised in 
previous research for its tendency to introduce biases and skew the results (Wu and Lin, 2019). Thus, it is advisable to consider a range 
of relevant factors and metrics to arrive at a comprehensive evaluation. 

MSE is the most commonly used regression loss function. It is to find the square sum of the distance between the predicted value and 
the true value. MAE is another loss function for regression models and indicates the absolute sum of the difference between the target 
and the predicted values. It only measures the average module length of the prediction error without considering the direction. MSE 
calculation is simple, while MAE has better robustness to outliers. The combination of the two indexes can improve the detection of the 
deviation between the predicted and actual values of the model, thereby evaluating the model’s degree of fit more accurately. SMAPE 
is expressed as a percentage, independent of the proportion, and can be used to compare the prediction results of different proportions. 
FDE represents the average Euclidean distance difference between the predicted and real endpoint locations, which can reasonably 
evaluate the accumulation of model errors. FD can describe the similarity of path spaces, which takes into account the factor of path 
space distance. AED can measure the average distance between two trajectories in space. The above six indicators can comprehensively 
evaluate the quality of model prediction results from different perspectives. The smaller the calculation result of the corresponding 
index, the better the prediction performance of a prediction method. 

To evaluate the predictive performance of a method, it is necessary to compare the predicted ship trajectories with the actual 
historical ones. The specific formulas of the six indicators are given by: 

MSE =
1
n

∑n

i=1
(pi − ri)

2
, (3)  

MAE =
1
n

∑n

i=1
|pi − ri|, (4)  

SMAPE =
1
n

∑n

i=1

|pi − ri|

(|pi| − |ri|)/2
, (5)  

FDE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(pn − rn)
2

√

, (6)  

FD = max
i∈[1,n]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(pi(lat) − ri(lat))2
+ (pi(lon) − ri(lon))2

√

, (7)  

AED =
1
n
∑n

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(pi(lat) − ri(lat))2
+ (pi(lon) − ri(lon))2

√

, (8) 

where pi and ri is the prediction and real result of the ith point, respectively. pi(lon) and pi(lat) are the longitude and latitude of the 
ith prediction point, respectively. ri(lon) and ri(lat) are the corresponding longitude and latitude of the ith real sample trajectory point, 
respectively. n is the number of trajectory points in the test samples. 

4.3. Visualisation and comparison of prediction results in the Chengshan Jiao Promontory water area 

4.3.1. Visualisation of prediction results 
The best predictive results in five deep learning methods are received and are used to further compare with the performance of the 

five machine learning methods. The prediction results in the nine different test trajectories of the Chengshan Jiao Promontory water 
area from the twelve different algorithms are displayed in Fig. 6. As shown in Fig. 6, the result of the RF and BP methods are the worst. 
It can be clearly seen that the results of the deep learning methods are generally better than those obtained from the machine learning 
methods. 

To further compare the deep learning and machine learning methods and draw up their advantages and disadvantages, the results 
are separately visualized in Figs. 7 and 8. Fig. 7 shows the prediction results of the five deep learning methods, while Fig. 8 presents the 
results of the five machine learning methods, respectively. The fitting degrees of the deep learning methods and the original trajectory 
are higher, and the performance of the machine learning methods is relatively poor. 

Finally, to specifically understand which method has the best predictive performance among all methods, Fig. 9 illustrates the 
prediction result of the twelve methods on nine test trajectories. The first row in Fig. 9 is the result of four machine learning methods (i. 
e., BP, GPR, KF, and RF), the second row is the result of four deep learning methods (i.e., SVR, LSTM, RNN, and Seq2Seq), and the third 
row is the two other methods (i.e., Bi-LSTM, GRU, Bi-GRU, and Transformer) with the best prediction performance in the two cate-
gories, respectively. Among the machine learning methods, the prediction result of the BP neural network is the worst, and the RF 
model will have a large deviation locally. Among the deep learning methods, the effects of RNN, LSTM, and Seq2seq are significantly 
worse than the other three methods. 
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Fig. 6. Visualisation of the prediction results of the twelve methods on the nine test trajectories in the Chengshan Jiao Promontory water area.  
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Fig. 7. Visualisation of the prediction results of the seven deep learning methods on the nine test trajectories in the Chengshan Jiao Promontory 
water area. 
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Fig. 8. Visualisation of the prediction results of five machine learning methods on the nine test trajectories in the Chengshan Jiao Promontory 
water area. 
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Fig. 9. Visualisation of all test trajectories in the Chengshan Jiao Promontory water area of each method.  
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Table 4 
Results of the six evaluation indexes in the Chengshan Jiao Promontory water area.  

Traj Index KF GPR SVR BP RF RNN LSTM GRU Seq2seq Bi-LSTM Bi-GRU Transformer 

1 MSE(/102)  0.0032  0.0035  0.0005  0.0154  0.0008  0.0050  0.0016  0.00015  0.0014  0.00014  0.00009  0.00006  
MAE  0.0038  0.0041  0.0017  0.0091  0.0012  0.0043  0.0033  0.0009  0.0029  0.0007  0.0007  0.0006  
SMAPE  0.0044  0.0055  0.0021  0.0189  0.0014  0.0060  0.0050  0.0012  0.0041  0.0011  0.0010  0.0009  
FDE  0.0222  0.0310  0.0059  0.0359  0.0243  0.0362  0.0104  0.0031  0.0169  0.0060  0.0034  0.0002  
FD  0.0222  0.0310  0.0059  0.0359  0.0436  0.0362  0.0201  0.0188  0.0188  0.0064  0.0050  0.0032  
AED  0.0064  0.0064  0.0028  0.0150  0.0022  0.0067  0.0049  0.0013  0.0046  0.0011  0.0011  0.0009 

2 MSE(/102)  0.0004  0.0006  0.0001  0.0030  0.0002  0.0007  0.0005  0.00001  0.0005  0.00002  0.000016  0.00002  
MAE  0.0013  0.0017  0.0007  0.0041  0.0007  0.0017  0.0017  0.0003  0.0017  0.0004  0.0003  0.0004  
SMAPE  0.0016  0.0023  0.0009  0.0088  0.0012  0.0024  0.0023  0.0004  0.0026  0.0006  0.0005  0.0006  
FDE  0.0095  0.0078  0.0021  0.0043  0.0006  0.0071  0.0101  0.0005  0.0089  0.0013  0.0012  0.0003  
FD  0.0095  0.0095  0.0030  0.0117  0.0155  0.0126  0.0138  0.0017  0.0089  0.0017  0.0017  0.0021  
AED  0.0021  0.0028  0.0010  0.0068  0.0011  0.0027  0.0026  0.0004  0.0026  0.0006  0.0005  0.0006 

3 MSE(/102)  0.0014  0.0022  0.0003  0.0092  0.0006  0.0028  0.0009  0.00003  0.0013  0.00007  0.00004  0.00006  
MAE  0.0029  0.0033  0.0013  0.0073  0.0009  0.0034  0.0021  0.0003  0.0026  0.0006  0.0005  0.0006  
SMAPE  0.0038  0.0043  0.0017  0.0153  0.0017  0.0045  0.0028  0.0005  0.0038  0.0008  0.0006  0.0008  
FDE  0.0132  0.0161  0.0043  0.0081  0.0011  0.0144  0.0196  0.0007  0.0183  0.0022  0.0024  0.0008  
FD  0.0159  0.0210  0.0092  0.0251  0.0397  0.0263  0.0292  0.0088  0.0183  0.0085  0.0081  0.0070  
AED  0.0046  0.0053  0.0021  0.0120  0.0016  0.0054  0.0034  0.0005  0.0041  0.0010  0.0008  0.0009 

4 MSE(/102)  0.0026  0.0028  0.0003  0.0100  0.0007  0.0038  0.0012  0.0001  0.0010  0.00011  0.00007  0.00005  
MAE  0.0033  0.0035  0.0014  0.0076  0.0011  0.0036  0.0029  0.0007  0.0025  0.0006  0.0006  0.0005  
SMAPE  0.0037  0.0045  0.0016  0.0155  0.0012  0.0047  0.0041  0.0010  0.0031  0.0008  0.0008  0.0007  
FDE  0.0189  0.0265  0.0051  0.0305  0.0017  0.0305  0.0077  0.0026  0.0137  0.0051  0.0030  0.0002  
FD  0.0193  0.0265  0.0056  0.0305  0.0480  0.0305  0.0160  0.0150  0.0155  0.0051  0.0039  0.0038  
AED  0.0057  0.0056  0.0023  0.0126  0.0020  0.0058  0.0045  0.0012  0.0040  0.0010  0.0010  0.0008 

5 MSE(/102)  0.0010  0.0010  0.0002  0.0023  0.0004  0.0009  0.0019  0.0002  0.0013  0.00016  0.00015  0.00014  
MAE  0.0027  0.0026  0.0010  0.0033  0.0014  0.0020  0.0040  0.0010  0.0033  0.0009  0.0009  0.0009  
SMAPE  0.0040  0.0042  0.0016  0.0069  0.0021  0.0030  0.0063  0.0016  0.0055  0.0015  0.0014  0.0014  
FDE  0.0078  0.0107  0.0017  0.0122  0.0010  0.0126  0.0085  0.0024  0.0075  0.0023  0.0019  0.0004  
FD  0.0100  0.0111  0.0084  0.0122  0.0113  0.0130  0.0136  0.0088  0.0122  0.0085  0.0088  0.0086  
AED  0.0040  0.0038  0.0016  0.0055  0.0022  0.0029  0.0057  0.0015  0.0048  0.0014  0.0013  0.0013 

6 MSE(/102)  0.0025  0.0056  0.0004  0.0707  0.0011  0.0081  0.0016  0.00013  0.0072  0.00013  0.00007  0.0001  
MAE  0.0041  0.0065  0.0018  0.0185  0.0015  0.0069  0.0031  0.0010  0.0065  0.0008  0.0007  0.0009  
SMAPE  0.0062  0.0107  0.0035  0.0421  0.0034  0.0119  0.0053  0.0017  0.0148  0.0013  0.0012  0.0016  
FDE  0.0206  0.0203  0.0055  0.0176  0.0021  0.0190  0.0313  0.0017  0.0250  0.0036  0.0040  0.0020  
FD  0.0210  0.0213  0.0070  0.0650  0.0488  0.0369  0.0390  0.0066  0.0250  0.0056  0.0066  0.0074  
AED  0.0066  0.0100  0.0028  0.0311  0.0025  0.0104  0.0047  0.0015  0.0109  0.0013  0.0011  0.0014 

7 MSE(/102)  0.0022  0.0045  0.0003  0.0485  0.0007  0.0069  0.0032  0.00013  0.0044  0.00025  0.0001  0.0001  
MAE  0.0041  0.0057  0.0013  0.0154  0.0009  0.0064  0.0046  0.0009  0.0052  0.0013  0.0008  0.0007  
SMAPE  0.0066  0.0096  0.0027  0.0352  0.0015  0.0136  0.0092  0.0015  0.0115  0.0028  0.0014  0.0013  
FDE  0.0105  0.0165  0.0055  0.0246  0.0003  0.0280  0.0162  0.0007  0.0206  0.0040  0.0013  0.0002  
FD  0.0144  0.0177  0.0078  0.0564  0.0543  0.0280  0.0276  0.0115  0.0206  0.0083  0.0080  0.0081  
AED  0.0064  0.0091  0.0021  0.0260  0.0014  0.0099  0.0073  0.0014  0.0085  0.0020  0.0011  0.0011 

8 MSE(/102)  0.0039  0.0079  0.0004  0.0432  0.0011  0.0064  0.0032  0.00017  0.0076  0.00013  0.00008  0.00009  
MAE  0.0046  0.0071  0.0017  0.0158  0.0014  0.0064  0.0045  0.0011  0.0072  0.0009  0.0008  0.0008  
SMAPE  0.0060  0.0098  0.0029  0.0323  0.0030  0.0099  0.0066  0.0018  0.0144  0.0012  0.0013  0.0014  
FDE  0.0175  0.0163  0.0050  0.0133  0.0016  0.0154  0.0246  0.0032  0.0198  0.0028  0.0026  0.0013  
FD  0.0175  0.0171  0.0058  0.0520  0.0699  0.0274  0.0292  0.0048  0.0207  0.0047  0.0045  0.0041  
AED  0.0079  0.0117  0.0027  0.0247  0.0024  0.0098  0.0069  0.0016  0.0110  0.0014  0.0012  0.0013 

9 MSE(/102)  0.0075  0.0141  0.0008  0.0649  0.0013  0.0121  0.0051  0.0003  0.0074  0.00046  0.0002  0.0002  
MAE  0.0073  0.0094  0.0023  0.0188  0.0014  0.0090  0.0059  0.0014  0.0073  0.0018  0.0011  0.0011  
SMAPE  0.0104  0.0136  0.0040  0.0378  0.0022  0.0159  0.0097  0.0020  0.0131  0.0033  0.0019  0.0021  
FDE  0.0166  0.0248  0.0061  0.0332  0.0576  0.0389  0.0210  0.0016  0.0025  0.0056  0.0023  0.0007  
FD  0.0187  0.0252  0.0083  0.0659  0.0576  0.0389  0.0296  0.0074  0.0025  0.0081  0.0075  0.0070  
AED  0.0117  0.0157  0.0036  0.0298  0.0024  0.0133  0.0092  0.0022  0.0011  0.0027  0.0017  0.0018  
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4.3.2. Comparative analysis of evaluation indexes 
To further evaluate the prediction performance, the results of six indexes of twelve prediction methods are listed in Table 4. The 

smaller the value, the better the prediction performance. The best results in each method are presented in bold. From the compre-
hensive comparison, the best results of the six evaluation indexes mainly occurred in the columns of GRU, Bi-GRU, and Transformer. It 
is evident that the whole performance of these three deep learning methods is better than machine learning methods. Table 4 also 
indicates the quantitative extent of the comparative advantage of one method over another in relation to a specific evaluation index. It 
presents the distinctive strengths of each method in Chengshan Jiao Promontory water or similar bodies of water in a numerical 
fashion. The three methods with the best performance measurement values should be recommended for ship trajectory prediction in 
future. 

The visualisation results of different evaluation indexes are displayed in Fig. 10. It can be seen that the BP neural network has the 
worst predictive performance (i.e., the largest error rate) in nine test trajectories on six evaluation indexes, followed by the RNN 
method, the GRP method, and the Seq2seq method. On the contrary, the Transformer and Bi-GRU have the best prediction perfor-
mance on the six indicators, followed by Bi-LSTM and GRU. 

The results of the eleven methods (besides BP) with the six evaluation indexes in the nine test trajectories are shown in Fig. 11 to 
compare the index results more clearly. Regarding the nine test trajectories, the prediction performance of the Transformer, Bi-GRU, 
Bi-LSTM, and GRU methods are all better. They are not sensitive to the trajectory shape. On the other hand, the RNN, GPR, RF, LSTM, 
and Seq2seq methods are sensitive to the trajectory shapes, revealing their robustness in practical applications. 

Fig. 10. Visualisation of the six index results in the Chengshan Jiao Promontory water area.  
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Fig. 11. Visualising six index results in the Chengshan Jiao Promontory water area except for the BP method.  
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4.4. Visualisation and comparison of prediction results in the Zhoushan Archipelago water area 

4.4.1. Visualisation of prediction results 
The AIS dataset in the Zhoushan Archipelago water area shows more complicated trajectories, and it is also selected for training and 

testing to further demonstrate the performance of the twelve prediction methods in complex traffic systems. The predictive results of 
the twelve methods in the nine test trajectories are displayed in Fig. 12. It is obvious that the performance of RF and BP is the worst. To 
show and compare the performance of different methods clearly, the prediction results of the deep learning and machine learning 
methods are presented in Fig. 13 and Fig. 14, respectively. The predicted results in Fig. 13 are in good agreement with the ground truth 
(i.e., the real trajectories), while the results in Fig. 14 have a large deviation. Therefore, from the comparison of Fig. 13 and Fig. 14, it is 
evident that for complex trajectories, the prediction performance of the deep learning methods is better than that of one of the machine 
learning methods. Moreover, the prediction performance of the BP and RF methods is the worst in Fig. 14. 

Fig. 15 illustrates the prediction results of the twelve methods on the nine test trajectories. It is evident that the SVR method has the 
best prediction performance in machine learning methods, while the Transformer and Bi-GRU are the best in deep learning methods. 
The overall prediction performance ranking is SVR, GPR, KF, BP, and RF in machine learning, while Transformer, Bi-GRU, GRU, Bi- 
LSTM, LSTM, and Seq2seq in deep learning methods. 

Fig. 12. The prediction results of the nine test trajectories in the Zhoushan Archipelago water area.  
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Fig. 13. The prediction results for the seven deep learning methods of the nine test trajectories in the Zhoushan Archipelago water area.  
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Fig. 14. The prediction results for the five machine learning methods of the nine test trajectories in the Zhoushan Archipelago water area.  
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4.4.2. Comparative analysis of evaluation indexes 
The results of six evaluation indexes of the twelve methods in the Zhoushan Archipelago water area are listed in Table 5, and the 

smaller each index value, the better the prediction performance. The smallest error values are marked in bold. It is evident that Bi-GRU, 
GRU, and Transformer have better predictive performance than other methods from Table 5. Beyond the state-of-the-art knowledge in 
the field, these experimental results, for the first time, provide experimental evidence that in the ship trajectory prediction in complex 
waters, deep learning methods are, in general, better than machine learning ones. More importantly, it discloses that Bi-GRU, GRU, and 
Transformer are the best in complicated waters, and their superiority over the other methods is quantitatively visualised. 

The visualisation of the results of the six evaluation indexes is listed in Fig. 16. Similarly, the prediction performance of the BP 
method is the worst, with the largest error value in the five indexes. To better compare the performance of the other nine methods, the 
results are further visualised in Fig. 17. Firstly, the RF, RNN, and Seq2seq methods are sensitive to complex and curved trajectories. 
Secondly, the performance of the Transformer and Bi-GRU is the best. Therefore, the comparative experiments in the Zhoushan Ar-
chipelago water area verify the performance of different methods while revealing new findings, such as the RF and RNN methods’ 
feature on complex trajectories. 

4.5. Visualisation and comparison of prediction results in the Caofeidian port area 

4.5.1. Visualisation of prediction results 
Unlike the previous two case analyses, the AIS dataset in this section relates to the traffic in port waters (i.e., the Caofeidian Port 

water), which has shown a significant difference in terms of various AIS data features (e.g., speed and COG). Fig. 18 visualises the 
results of twelve prediction methods, showcasing their ability and the generalizability of the findings in this paper. Among the twelve 
methods, BP, GPR, and RF exhibit poor performance. 

Similarly, the prediction results of the machine and deep learning methods are first compared in Fig. 19 and Fig. 20. The com-
parison results indicate that the Transformer and Bi-GRU exhibit superior predictive performance in ship trajectory prediction, sur-
passing all other methods in the Caofeidian port area. However, it should be noted that the predictive performance of machine learning 
methods is influenced by the complexity of the trajectories. 

To determine the method with the best predictive performance, Fig. 21 compares the prediction results of the twelve methods on 
nine test trajectories. Similar to the previous two datasets, the first row displays the results of the BP, GPR, KF, and RF methods, the 
second row shows the results of the SVR, LSTM, RNN, and Seq2Seq methods, and the third row showcases the results of Bi-LSTM, GRU, 
Bi-GRU, and Transformer with the best prediction performance in their respective categories. Among the machine learning methods, 
the BP neural network performed the worst, with the KF model exhibiting large deviations locally. Among the deep learning methods, 
RNN, LSTM, and Seq2Seq exhibit notably poorer performance compared to the other three methods. 

Fig. 15. Visualisation of the prediction results of each method in the nine test trajectories in the Zhoushan Archipelago water area.  
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Table 5 
Results of six evaluation indexes in the Zhoushan Archipelago water area.  

Traj Index KF GPR SVR BP RF RNN LSTM GRU Seq2seq Bi-LSTM Bi-GRU Transformer 

1 MSE(/102)  0.0267  0.0289  0.0039  3.1137  0.2166  0.0958  0.0287  0.0002  0.0345  0.0010  0.0002  0.0002  
MAE  0.0104  0.0099  0.0044  0.1091  0.0051  0.0172  0.0082  0.0007  0.0092  0.0028  0.0008  0.0009  
SMAPE  0.0139  0.0135  0.0052  0.1269  0.0052  0.0188  0.0125  0.0012  0.0114  0.0069  0.0013  0.0017  
FDE  0.0185  0.0210  0.0129  0.2787  0.2222  0.0516  0.0909  0.0088  0.0174  0.0021  0.0022  0.0018  
FD  0.1213  0.1189  0.0469  0.4741  0.6316  0.1696  0.0909  0.0559  0.0832  0.0494  0.0540  0.0548  
AED  0.0177  0.0171  0.0078  0.1953  0.0100  0.0311  0.0129  0.0011  0.0159  0.0043  0.0012  0.0014 

2 MSE(/102)  0.0742  0.0748  0.0031  1.1953  0.0621  0.1686  0.0751  0.0008  0.0227  0.0023  0.0002  0.0002  
MAE  0.0153  0.0148  0.0043  0.0791  0.0040  0.0240  0.0162  0.0016  0.0096  0.0039  0.0012  0.0010  
SMAPE  0.0223  0.0221  0.0062  0.1471  0.0099  0.0309  0.0271  0.0029  0.0148  0.0081  0.0024  0.0022  
FDE  0.1440  0.1322  0.0162  0.1001  0.0036  0.1759  0.0116  0.0045  0.0744  0.0193  0.0056  0.0124  
FD  0.1450  0.1339  0.0218  0.3902  0.4177  0.1759  0.0867  0.0196  0.0746  0.0257  0.0119  0.0182  
AED  0.0254  0.0253  0.0070  0.1239  0.0078  0.0414  0.0242  0.0025  0.0156  0.0057  0.0019  0.0016 

3 MSE(/102)  0.0157  0.0100  0.0004  0.1170  0.0136  0.0153  0.0055  0.0001  0.0026  0.0006  0.00008  0.00009  
MAE  0.0082  0.0061  0.0016  0.0250  0.0019  0.0076  0.0040  0.0006  0.0034  0.0020  0.0007  0.0006  
SMAPE  0.0170  0.0109  0.0030  0.0543  0.0049  0.0107  0.0083  0.0010  0.0059  0.0053  0.0014  0.0013  
FDE  0.0164  0.0066  0.0028  0.0529  0.0003  0.0051  0.0017  0.0002  0.0032  0.0038  0.0006  0.0004  
FD  0.0416  0.0401  0.0195  0.1233  0.1249  0.0453  0.0371  0.0168  0.0244  0.0160  0.0170  0.0175  
AED  0.0139  0.0106  0.0025  0.0390  0.0035  0.0129  0.0058  0.0009  0.0052  0.0032  0.0010  0.0010 

4 MSE(/102)  0.0173  0.0135  0.0021  1.6062  0.1379  0.0513  0.0510  0.0011  0.0173  0.0026  0.00035  0.0005  
MAE  0.0089  0.0077  0.0038  0.1083  0.0054  0.0154  0.0115  0.0013  0.0081  0.0038  0.0011  0.0013  
SMAPE  0.0197  0.0170  0.0073  0.2169  0.0148  0.0274  0.0244  0.0031  0.0161  0.0110  0.0023  0.0028  
FDE  0.0415  0.0483  0.0129  0.3235  0.1831  0.0873  0.0931  0.0045  0.0641  0.0038  0.0044  0.0059  
FD  0.1015  0.0582  0.0326  0.3236  0.3974  0.0880  0.0992  0.0400  0.0646  0.0345  0.0385  0.0414  
AED  0.0135  0.0115  0.0062  0.1673  0.0104  0.0240  0.0166  0.0021  0.0121  0.0068  0.0017  0.0021 

5 MSE(/102)  0.0591  0.0532  0.0115  0.9393  0.0417  0.0818  0.01874  0.0109  0.0443  0.0138  0.0110  0.0110  
MAE  0.0141  0.0125  0.0052  0.0555  0.0067  0.0139  0.0066  0.0046  0.0125  0.0055  0.0048  0.0050  
SMAPE  0.0181  0.0158  0.0075  0.0636  0.0097  0.0157  0.0102  0.0072  0.0183  0.0084  0.0072  0.0076  
FDE  0.0542  0.0558  0.0272  0.3094  0.0242  0.0945  0.0815  0.0047  0.0884  0.0085  0.0049  0.0103  
FD  0.1577  0.1616  0.1308  0.3097  0.2525  0.1614  0.1219  0.1271  0.1464  0.1328  0.1277  0.1263  
AED  0.0243  0.0217  0.0087  0.1016  0.0117  0.0252  0.0107  0.0074  0.0203  0.0091  0.0078  0.0082 

6 MSE(/102)  0.0442  0.0282  0.0009  0.3699  0.0164  0.0356  0.0159  0.0006  0.0119  0.0018  0.0004  0.0005  
MAE  0.0146  0.0124  0.0027  0.0462  0.0030  0.0144  0.0063  0.0018  0.0085  0.0035  0.0014  0.0016  
SMAPE  0.0283  0.0210  0.0052  0.1085  0.0051  0.0221  0.0149  0.0043  0.0171  0.0083  0.0028  0.0033  
FDE  0.0244  0.0304  0.0084  0.1813  0.0016  0.0420  0.0612  0.0018  0.0316  0.0008  0.0046  0.0044  
FD  0.0792  0.0403  0.0133  0.1813  0.1542  0.0447  0.0612  0.0117  0.0337  0.0153  0.0115  0.0109  
AED  0.0242  0.0204  0.0040  0.0720  0.0055  0.0231  0.0094  0.0030  0.0128  0.0053  0.0023  0.0026 

7 MSE(/102)  0.0081  0.0075  0.0011  0.5990  0.0130  0.0329  0.0219  0.00016  0.0093  0.0009  0.000156  0.0003  
MAE  0.0068  0.0057  0.0027  0.0591  0.0016  0.0110  0.0077  0.0007  0.0054  0.0023  0.0008  0.0011  
SMAPE  0.0123  0.0105  0.0044  0.1175  0.0033  0.0166  0.0162  0.0017  0.0109  0.0065  0.0016  0.0020  
FDE  0.0344  0.0389  0.0114  0.2511  0.3405  0.0713  0.0769  0.0079  0.0551  0.0032  0.0031  0.0047  
FD  0.0447  0.0412  0.0127  0.2511  0.3405  0.0727  0.0772  0.0126  0.0551  0.0102  0.0106  0.0432  
AED  0.0099  0.0087  0.0041  0.0939  0.0026  0.0178  0.0112  0.0012  0.0085  0.0041  0.0012  0.0017 

8 MSE(/102)  0.0691  0.0300  0.0061  0.6991  0.0634  0.0187  0.0191  0.0043  0.0238  0.0153  0.00562  0.0054  
MAE  0.0153  0.0119  0.0045  0.0584  0.0057  0.0113  0.0076  0.0029  0.0105  0.0083  0.0041  0.0039  
SMAPE  0.0389  0.0277  0.0124  0.1748  0.0163  0.0238  0.0233  0.0081  0.0298  0.0247  0.0119  0.0114  
FDE  0.1398  0.0730  0.0111  0.0695  0.0028  0.0212  0.0178  0.0035  0.0381  0.0163  0.0063  0.0017  
FD  0.1457  0.0856  0.1036  0.2553  0.5374  0.0704  0.0803  0.1065  0.1168  0.1129  0.1100  0.1107  
AED  0.0267  0.0203  0.0076  0.1052  0.0104  0.0180  0.0138  0.0048  0.0177  0.0148  0.0071  0.0067 

9 MSE(/102)  0.0578  0.0292  0.0015  0.6796  0.0103  0.0446  0.0235  0.00018  0.0143  0.0050  0.00023  0.0004  
MAE  0.0144  0.0117  0.0033  0.0599  0.0013  0.0156  0.0065  0.0009  0.0069  0.0054  0.0011  0.0012  
SMAPE  0.0324  0.0229  0.0076  0.1713  0.0034  0.0281  0.0184  0.0026  0.0180  0.0157  0.0028  0.0032  
FDE  0.0413  0.0500  0.0162  0.2663  0.3023  0.0688  0.0964  0.0094  0.0578  0.0039  0.0056  0.0096  
FD  0.1371  0.0798  0.0162  0.2675  0.3120  0.0736  0.0964  0.0124  0.0644  0.0191  0.0097  0.0124  
AED  0.0218  0.0182  0.0050  0.1029  0.0024  0.0240  0.0108  0.0016  0.0111  0.0094  0.0017  0.0020  
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4.5.2. Comparative analysis of evaluation indexes 
Table 6 presents the results of the twelve prediction methods based on six evaluation indexes, where lower values indicate higher 

accuracy. The minimum error for each method is highlighted in bold. A detailed comparison reveals that GRU and Bi-GRU consistently 
exhibit the best performance across all six evaluation indexes. These findings suggest that, in the port area dataset, deep learning 
methods, particularly GRU and Bi-GRU, outperform machine learning methods. 

The results of the six evaluation indexes in a port water dataset are presented in Fig. 22, indicating that trajectory prediction in port 
waters is more complex than in other areas. The BP, Seq2Seq, RNN, and RF methods exhibit the worst prediction performance, with 
large error values for each index. Conversely, the Bi-GRU, GRU, SVR, Transformer, and Bi-LSTM methods demonstrate the best 
performance. These comparative experiments conducted in three different water areas highlight the efficacy of various prediction 
methods. 

Fig. 23 displayed the results of nine methods (excluding BP) based on the six evaluation indexes for nine test trajectories, providing 
a more straightforward comparison of the index results. Across the nine test trajectories, the Bi-GRU, Transformer, Bi-LSTM, and GRU 
methods consistently exhibit better prediction performance and are less sensitive to the shape of the trajectory. In contrast, the RF, 
RNN, LSTM, and Seq2Seq methods are more sensitive to the trajectory shape, highlighting their practical robustness. 

4.6. Time complexity 

The concept of time complexity can be used to measure how the execution time of a program changes with the size of its input, 
making it a valuable metric for evaluating the performance of the twelve prediction methods. The time complexity of the 12 prediction 

Fig. 16. The results of the six evaluation indexes in the Zhoushan Archipelago water area.  
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Fig. 17. The results of the six evaluation indexes in the Zhoushan Archipelago water area, except for the BP neural network.  
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models is shown in Table 7. KF algorithm is a linear transformation estimation in the time domain, so its time complexity is O(n). The 
training and testing process of the SVR depends on the dataset through a kernel function. Its time complexity is determined by two 
factors: the dimension of input vectors and the number of support vectors. Therefore, the time complexity of the SVR method is O(n2). 
The GPR method is a nonparametric model, and the time complexity of the GPR is O(n3). Hence, the GPR model is challenging to 
handle the large dataset. The calculation speed of the BP neural network depends on the number of hidden layer nodes, so its time 
complexity is O(n). RF includes a large number of identical decision trees as ensemble learning models, and its time complexity de-
pends on the number of trees and the number of training samples, which can be expressed as O(nlogn). 

The time complexity of a deep learning model depends on the specific structure of the model, specifically on the length of the input 
sequence, output sequence, and the number of neurons in the hidden layer. Due to the consistent input and number of hidden layer 
neurons of the seven deep learning models in this paper, their time complexity can be uniformly expressed as O(n2). 

4.7. The performance analysis of the twelve methods against different scenarios 

Compared with other methods, the experimental results have shown that the BP method has the worst prediction performance. To 
quantify the extent to which each prediction method performs in different scanerios, the BP method is selected as a benchmark for 
comparison to further investigate the relationship between the mean error rate and time complexity of all the twelve methods, as well 
as the mean accuracy rate and time complexity. By doing so, one can clearly see the fitness and superiority of one method over the 
others by a quantitative result. As a result, the comparative analysis can be conducted on a common measurable plate. 

The visualisation results of the relationship between the improved accuracy and the mean error rate with the time complexity of the 
twelve methods in three water areas are illustrated in Fig. 24 (a) and Fig. 24 (b), Fig. 24 (c) and Fig. 24 (d), Fig. 24 (e) and Fig. 24 (f) 
respectively. It can be seen from the two subplots Fig. 24 (a) and Fig. 24 (b) that the ranking of the performance of different methods is 
Transformer > Bi-GRU > Bi-LSTM > GRU > SVR > KF > Seq2seq > LSTM > RF > RNN > GPR > BP in the Chengshan Promontory 
water area. Similarly, it is evident that the ranking of the performance of the twelve methods is Bi-GRU > GRU > Transformer > Bi- 
LSTM > SVR > Seq2seq > LSTM > GPR > RNN > KF > RF > BP in the Zhoushan Archipelago water area from Fig. 24 (c) and Fig. 24 
(d). In the Caofeidian port area, the performance of the twelve methods is ranked as follows from the comparison result of Fig. 24 (e) 
and Fig. 24 (f): Bi-GRU > GRU > SVR > Transformer > Bi-LSTM > LSTM > GPR > RNN > KF > Seq2seq > RF > BP. More specially, 

Fig. 18. The prediction results of the nine test trajectories in the Caofeidian port area.  
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GPR is unsuitable for large data sets. Therefore, part of the data is selected to test their best performance. 
Compared with the mean prediction accuracy of the BP method, the results of the Transformer, Bi-GRU, Bi-LSTM, GRU, and SVR 

have increased by 91%, 90%, 88%, 87%, and 85% from Fig. 24 (a) in the Chengshan Promontory water area, respectively. Similarly, 
the results of the Bi-GRU, GRU, Transformer, Bi-LSTM, and SVR have increased by 93%, 92.1%, 92%, 91%, and 90% from Fig. 24 (c) in 
the Zhoushan Archipelago water area, respectively. In the water area of Caofeidian port, the results of Bi-GRU, GRU, SVR, Transformer, 
and Bi-LSTM have shown an increase of 93.4%, 93.1%, 92.6%, 91%, and 77.3%, respectively, compared to their performance in Fig. 24 
(e). The results in the Caofeidian port area further reveal that SVR performs better than the other deep learning methods with a small 
dataset. 

Furthermore, the prediction performance of the twelve methods against different scenarios is analysed to reveal valuable findings 
and implications. The relationship between the data volume and prediction accuracy is further explored to compare the prediction 
performance of the twelve methods, displayed in Fig. 25. Looking at the prediction performance on a small dataset, the Bi-GRU, GRU, 
SVR, Transformer, Bi-LSTM, LSTM, and GPR methods are ranked from the high to low, outperforming the other investigated methods. 
This suggests that these methods can be effective for handling small AIS datasets. For a medium-sized dataset, the Transformer, Bi- 
GRU, LSTM, GRU, SVR, KF, and LSTM methods show better prediction performance than the other methods. Thus, these methods 
can be selected for handling medium AIS datasets. Moreover, the prediction accuracy of the Bi-GRU, GRU, Transformer, Bi-LSTM, SVR, 
Seq2seq, and LSTM methods is ranked in decreasing order, and they are better than the others in a large AIS dataset. The comparison 
results demonstrate that deep learning methods are more effective than machine learning methods in handling medium-sized and big 
AIS datasets. Moreover, GPR is ineffective with medium-sized and large AIS datasets, leading to memory explosion. These methods can 
also serve as benchmarks for comparing the performance of novel prediction methods to aid future real-time ship trajectory prediction. 

4.8. Discussion 

Through the analysis of the experimental results, the prediction accuracy of most deep learning methods is higher than that of 
machine learning methods, with SVR being an exception in a small dataset. The deep learning algorithm becomes increasingly ad-
vantageous as the complexity of trajectories increases. 

Fig. 19. The prediction results for the seven deep learning methods of the nine test trajectories in the Caofeidian port area.  
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Fig. 20. The prediction results for the five machine learning methods of the nine test trajectories in the Caofeidian port area.  

Fig. 21. Visualisation of the prediction results of each method in nine test trajectories in the Zhoushan Archipelago water area.  

H. Li et al.                                                                                                                                                                                                               



TransportationResearchPartE175(2023)103152

31

Table 6 
Results of six evaluation indexes in the Caofeidian port area.  

Traj Index KF GPR SVR BP RF RNN LSTM GRU Seq2seq Bi-LSTM Bi-GRU Transformer 

1 MSE(/102)  0.0118  0.0075  0.0005  0.1032  0.0001  0.0211  0.0074  0.00006  0.0632  0.0065  0.0001  0.00008  
MAE  0.0058  0.0047  0.0007  0.0211  0.0002  0.0089  0.0065  0.0005  0.0111  0.0046  0.0006  0.0005  
SMAPE  0.0066  0.0050  0.0012  0.0218  0.0002  0.0096  0.0095  0.0004  0.0115  0.0046  0.0005  0.0005  
FDE  0.0539  0.0497  0.0027  0.0302  0.0007  0.0476  0.0503  0.0007  0.0278  0.0269  0.0022  0.0003  
FD  0.0539  0.0497  0.0042  0.1064  0.0218  0.0509  0.0503  0.0025  0.1089  0.0272  0.0030  0.0067  
AED  0.0103  0.0086  0.0032  0.0390  0.0004  0.0157  0.0103  0.0009  0.0198  0.0085  0.0010  0.0010 

2 MSE(/102)  0.0119  0.0075  0.0009  0.1005  0.0025  0.0199  0.0048  0.0004  0.0217  0.0061  0.0001  0.0002  
MAE  0.0058  0.0048  0.0016  0.0220  0.0007  0.0094  0.0037  0.0013  0.0060  0.0043  0.0006  0.0009  
SMAPE  0.0062  0.0048  0.0015  0.0249  0.0007  0.0094  0.0052  0.0013  0.0065  0.0041  0.0006  0.0009  
FDE  0.0391  0.0147  0.0022  0.1078  0.0016  0.0514  0.0268  0.0033  0.1048  0.0272  0.0009  0.0070  
FD  0.0491  0.0459  0.0073  0.1078  0.1344  0.0514  0.0452  0.0089  0.1048  0.0272  0.0072  0.0079  
AED  0.0104  0.0088  0.0028  0.0387  0.0013  0.0171  0.0059  0.0024  0.0103  0.0082  0.0010  0.0017 

3 MSE(/102)  0.0046  0.0029  0.0011  0.0318  0.0006  0.0061  0.0032  0.0001  0.0084  0.0021  0.0002  0.00011  
MAE  0.0047  0.0032  0.0015  0.0136  0.0007  0.0059  0.0038  0.0005  0.0048  0.0029  0.0009  0.0007  
SMAPE  0.0066  0.0040  0.0018  0.0185  0.0010  0.0075  0.0069  0.0007  0.0065  0.0033  0.0012  0.0010  
FDE  0.0293  0.0262  0.0022  0.0297  0.0022  0.0257  0.0271  0.0005  0.0149  0.0135  0.0012  0.0002  
FD  0.0295  0.0266  0.0060  0.0539  0.0502  0.0267  0.0271  0.0048  0.0574  0.0144  0.0052  0.0051  
AED  0.0075  0.0055  0.0018  0.0228  0.0011  0.0094  0.0061  0.0009  0.0074  0.0050  0.0015  0.0012 

4 MSE(/102)  0.0013  0.0002  0.0001  0.0110  0.0050  0.0001  0.0001  0.00004  0.0004  0.0001  0.00004  0.00003  
MAE  0.0029  0.0011  0.0001  0.0092  0.0022  0.0003  0.0004  0.0002  0.0013  0.0004  0.0003  0.0001  
SMAPE  0.0031  0.0014  0.0001  0.0115  0.0019  0.0004  0.0007  0.0003  0.0013  0.0004  0.0003  0.0002  
FDE  0.0043  0.0012  0.0000  0.0143  0.0001  0.0007  0.0002  0.0003  0.0013  0.0004  0.0004  0.0001  
FD  0.0216  0.0203  0.0176  0.0193  0.0598  0.0157  0.0180  0.0191  0.0232  0.0186  0.0188  0.0186  
AED  0.0051  0.0017  0.0001  0.0147  0.0044  0.0004  0.0006  0.0004  0.0026  0.0008  0.0006  0.0002 

5 MSE(/102)  0.0111  0.0087  0.0005  0.0208  0.0065  0.0041  0.0036  0.0002  0.0016  0.0017  0.0001  0.00003  
MAE  0.0077  0.0065  0.0016  0.0118  0.0016  0.0057  0.0047  0.0003  0.0034  0.0032  0.0006  0.0003  
SMAPE  0.0083  0.0069  0.0013  0.0190  0.0016  0.0079  0.0071  0.0004  0.0045  0.0037  0.0008  0.0004  
FDE  0.0132  0.0039  0.0021  0.0355  0.0001  0.0064  0.0047  0.0013  0.0042  0.0013  0.0012  0.0004  
FD  0.0180  0.0168  0.0082  0.0365  0.1399  0.0106  0.0223  0.0060  0.0179  0.0087  0.0058  0.0060  
AED  0.0138  0.0118  0.0053  0.0190  0.0031  0.0087  0.0076  0.0005  0.0054  0.0054  0.0011  0.0006 

6 MSE(/102)  0.0091  0.0068  0.0011  0.0060  0.0059  0.0030  0.0027  0.0004  0.0048  0.0017  0.0003  0.0017  
MAE  0.0064  0.0055  0.0015  0.0066  0.0034  0.0042  0.0038  0.0008  0.0043  0.0025  0.0009  0.0018  
SMAPE  0.0076  0.0067  0.0021  0.0119  0.0038  0.0056  0.0051  0.0009  0.0056  0.0032  0.0009  0.0023  
FDE  0.0126  0.0111  0.0030  0.0206  0.0406  0.0103  0.0125  0.0018  0.0153  0.0036  0.0013  0.0018  
FD  0.0389  0.0319  0.0226  0.0226  0.0406  0.0216  0.0228  0.0120  0.0301  0.0224  0.0119  0.0257  
AED  0.0107  0.0093  0.0025  0.0103  0.0062  0.0067  0.0059  0.0015  0.0072  0.0043  0.0015  0.0030 

7 MSE(/102)  0.0061  0.0013  0.0003  0.0537  0.0209  0.0095  0.0024  0.0002  0.0338  0.0023  0.0001  0.0002  
MAE  0.0050  0.0026  0.0008  0.0154  0.0027  0.0066  0.0037  0.0009  0.0111  0.0031  0.0005  0.0009  
SMAPE  0.0049  0.0032  0.0014  0.0153  0.0024  0.0074  0.0062  0.0009  0.0128  0.0034  0.0005  0.0009  
FDE  0.0152  0.0050  0.0009  0.0458  0.0001  0.0215  0.0112  0.0013  0.0467  0.0111  0.0001  0.0020  
FD  0.0176  0.0158  0.0098  0.0482  0.1897  0.0236  0.0135  0.0070  0.0499  0.0126  0.0068  0.0073  
AED  0.0093  0.0043  0.0015  0.0288  0.0052  0.0114  0.0053  0.0016  0.0186  0.0053  0.0008  0.0016 

8 MSE(/102)  0.0015  0.0011  0.0003  0.0049  0.0014  0.0018  0.0018  0.00006  0.0004  0.0009  0.00003  0.00002  
MAE  0.0027  0.0026  0.0008  0.0046  0.0005  0.0036  0.0035  0.0003  0.0017  0.0022  0.0003  0.0003  
SMAPE  0.0027  0.0037  0.0006  0.0067  0.0006  0.0048  0.0051  0.0004  0.0028  0.0026  0.0004  0.0005  
FDE  0.0043  0.0043  0.0006  0.0033  0.0001  0.0069  0.0077  0.0005  0.0026  0.0052  0.0003  0.0004  
FD  0.0125  0.0115  0.0037  0.0263  0.0683  0.0085  0.0081  0.0039  0.0071  0.0067  0.0040  0.0046  
AED  0.0049  0.0040  0.0009  0.0071  0.0010  0.0056  0.0052  0.0006  0.0027  0.0038  0.0006  0.0005 

9 MSE(/102)  0.0087  0.0021  0.0004  0.0683  0.0006  0.0093  0.0029  0.00003  0.002  0.0002  0.00005  0.00004  
MAE  0.005  0.003  0.0012  0.0188  0.006  0.0066  0.0034  0.0004  0.0029  0.0003  0.0005  0.0005  
SMAPE  0.0054  0.0036  0.0019  0.0227  0.0089  0.0067  0.004  0.0005  0.0032  0.0003  0.0006  0.0006  
FDE  0.0419  0.0225  0.0047  0.02  0.026  0.0379  0.0252  0.0009  0.0169  0.0012  0.0017  0.0024  
FD  0.042  0.0227  0.0073  0.0835  0.1603  0.0381  0.0254  0.0017  0.0198  0.0015  0.0022  0.0028  
AED  0.0089  0.0052  0.0018  0.0319  0.0012  0.0118  0.0058  0.0007  0.0051  0.0005  0.0009  0.0008  
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Fig. 22. The results of six evaluation indexes in the Caofeidian port area.  
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According to the experimental findings, it has been observed that the Transformer model does not perform the best on all datasets. 
The Transform model only surpasses other methods in the medium-sized dataset, indicating that it is proficient in identifying the 
characteristics and patterns present in such datasets. On the other hand, other methods perform better on smaller or larger datasets 
when it comes to short-term trajectory prediction. The Transformer model’s attention mechanism enables it to capture global 
contextual information and efficiently handle dependency relationships in long sequences, making it advantageous when dealing with 
longer sequences. 

Fig. 23. Visualising six index results in the Caofeidian port area except for the BP neural network.  

Table 7 
The time complexity of 12 prediction models.  

Method KF SVR GPR RF BP RNN 

Time complexity O(n) O(n2) O(n3) O(nlogn) O(n) O(n2)

Method LSTM GRU Seq2seq Bi-LSTM Bi-GRU Transformer 
Time complexity O(n2) O(n2) O(n2) O(n2) O(n2) O(n2)
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Bi-GRU outperforms the other methods in two experiments due to two reasons. Firstly, Bi-GRU’s bidirectional architecture enables 
it to incorporate ship trajectory information from both past and future inputs, which enhances its prediction capabilities. Secondly, it 
has fewer parameters than other models, which further improves its performance. These factors contribute to its superior performance 
in two experiments. The Bi-GRU and GRU models are adept at handling temporal information in sequences and exhibit remarkable 
memory capacity. Furthermore, they only rely on past information for predictions and do not require global contextual knowledge, 
which makes them ideal for predicting shorter sequences. 

GRU has fewer parameters than LSTM, and as a result, it trains data faster in trajectory prediction. One key advantage of the GRU 
model is its ability to handle vanishing gradients. Another advantage is that it requires less memory than LSTMs, which is particularly 
beneficial when working with larger models or limited computing resources. Additionally, GRU is often more interpretable than LSTM, 
as it has fewer parameters and simpler gating mechanisms, making it easier to understand how the model makes ship prediction 
predictions. 

Bi-LSTM also has a better prediction performance than five or six other methods depending on different scenarios due to its ability 
to capture long-term dependencies in sequential data and process the input data in both forward and backward directions to model 
bidirectional relationships. 

(a) the result of time complexity and improved 
accuracy in the first dataset

(b) the result of time complexity and mean error
in the first dataset

(c) the result of time complexity and improved 
accuracy in the second dataset

(d) the result of time complexity and mean error 
in the second dataset

(e) the result of time complexity and improved 
accuracy in the third dataset

(f) the result of time complexity and mean error 
in the third dataset

Fig. 24. Visualisation of the improved accuracy and mean error value with time complexity of twelve methods in the Chengshan Jiao Promontory 
water area (i.e., first dataset), Zhoushan Archipelago water area (i.e., second dataset), and Caofeidian port area (i.e., third dataset). 
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The comparison results of the three experiments reveal that SVR performs better with small and large AIS datasets than the case 
with a medium-sized dataset. SVR has its strength in handling both linear and nonlinear data and is robust to outliers. It can also work 
well with high-dimensional data, where the number of features is much larger than the number of samples. In addition, SVR has a solid 
theoretical foundation and a clear optimisation objective, which allows for better control over model complexity and overfitting. 

Additionally, the seq2seq model is typically unsuitable for modelling a small dataset (e.g., Caofeidian port area) compared to the 
cases with middle and large datasets. This is because the model requires an encoder and a decoder during processing, and the limited 
data available in small datasets may not provide enough information for accurate predictions. As a result, the prediction performance 
of the seq2seq model tends to be lower in small datasets than in larger ones. 

It is worth noting that the SVR model achieves the best prediction among the five advanced machine learning models, and its 
prediction ability is even better than the LSTM model in some trajectories. It is contrary to the previous findings in the relevant 
literature that deep learning methods outperform machine learning methods. The reason is that the prediction in this paper is a 
classical one-step prediction instead of multiple steps and long-term predictions. The multi-step and long-term prediction have 
relatively poor results in real cases. In long-term trajectory predictions, the benefits of using deep learning models become more 
evident as errors accumulate. However, it should be acknowledged that SVR demonstrates significant strengths in handling small data 
volumes and short-term predictions. Additionally, the training speed of the SVR model is faster, and it requires fewer data compared to 
the deep learning models analysed. Nonetheless, the experiments have also revealed some limitations of the SVR method. For example, 
when the sample size is substantial and the kernel function mapping dimension is high, the computation becomes too large and 
impractical to use. 

Short-term prediction is preferable for future real-time navigation, which is indispensable for a ship’s autonomous navigation 
system. According to the comprehensive visualisation results and comparative index results, the prediction accuracy of the deep 
learning methods in short-term ship trajectory prediction is ranked as follows: Bi-GRU > GRU > Transformer > Bi-LSTM > LSTM >
Seq2seq > RNN, while the ranking of the machine learning methods is SVR > KF > GPR > RF > BP. 

Trajectory prediction research in maritime traffic data mining is an important area that can support safe navigation. The perfor-
mance of different machine learning and deep learning prediction methods can vary depending on the specific problem and data being 
analysed within the context of maritime transportation. This study provides a benchmark method to support the realisation of real- 
time ship trajectory prediction and the development of the associated software. 

The prediction outcomes can serve as a reference for researchers to carry out further studies in the field of ship trajectory prediction 
first and other transport mode analysis later, including evaluating and comparing various methods, developing plans for safe routing, 
avoiding collisions, and innovating autonomous transport algorithms. The experimental results also aid in establishing a theoretical 
framework for algorithm designers and system developers to make informed decisions while implementing autonomous vehicles (e.g., 
MASS). The comparison of the twelve prediction techniques can create a useful method database for their future applications in 
maritime transportation. Additionally, the six evaluation indexes offer a comprehensive evaluation to gauge the performance of 
different prediction methods under different circumstances. Finally, these results and their implications can aid in effectively man-
aging and controlling the mixed traffic of manned ships and MASS. 

Fig. 25. The relationship between the data volume and prediction accuracy in twelve methods.  
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5. Conclusion 

Accurate ship trajectory predictions are crucial to develop smart maritime traffic systems and ensure maritime safety, especially in 
light of the growing prominence of MASS as the future of maritime transportation. This paper conducts a state-of-the-art literature 
review of ship trajectory prediction research, summarising the twelve advanced machine learning and deep learning methods from 
2000 to 2022. The prediction accuracy of these twelve models is evaluated using real datasets and analysed using six evaluation 
indexes to elaborate on their strengths and weaknesses. 

The findings of this study offer valuable insights for various stakeholders, such as route planners, collision avoidance systems, and 
developers of intelligent transportation. Algorithm designers and system developers can select the best prediction method against a 
specific application scenario. By gaining a better understanding of the benefits and limitations of current advanced trajectory pre-
diction methods, researchers can efficiently select the most suitable method for their research, saving time in the initial stages. 
Maritime administrative bodies can use them to make informed decisions on safe routes for navigation. 

The results indicate that traditional machine learning-based trajectory prediction methods are unable to keep pace with the 
growing demand for accuracy and real-time performance. In general, deep learning-based ship trajectory prediction methods have 
gained increasing attention and shown promising results. It is argued that these methods have a slow training speed, and their accuracy 
depends on the quality of model training. This study examined the effectiveness of five machine learning and seven deep learning 
(same parameter setting) methods in predicting ship trajectories. It found that in three experiments, Bi-GRU, GRU, and Transformer 
outperformed all other methods, demonstrating the effectiveness of deep learning in maritime transportation. Additionally, it found 
that SVR had better prediction performance than six or seven other methods in different cases, indicating that SVR is suitable for short- 
term ship trajectory prediction. However, different from the knowledge gained from the state-of-the-art prediction, the performance of 
Seq2seq in ship trajectory prediction is not as good as in other applications. 

A limitation of our study is that it only compares the twelve methods and does not take into account their developed/extended 
models (e.g., the hybrid models involving them). In the face of the ever-changing and complex maritime navigation environment, there 
is a need to enhance the accuracy and real-time performance of deep learning models for ship trajectory prediction. To address this 
challenge, future research in this field should focus on two main areas: developing novel deep learning-based prediction models and 
improving prediction accuracy through multi-source information fusion. 
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Karataş, G.B., Karagoz, P., Ayran, O., 2021. Trajectory pattern extraction and anomaly detection for maritime vessels. Internet Things 16, 100436. https://doi.org/ 

10.1016/j.iot.2021.100436. 
Lacki, M., 2016. Intelligent Prediction of Ship Maneuvering. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 10, 511–516. https://doi.org/10.12716/1001.10.03.17. 
Last, P., Hering-Bertram, M., Linsen, L., 2019. Interactive History-Based Vessel Movement Prediction. IEEE Intell. Syst. 34, 3–13. https://doi.org/10.1109/ 

MIS.2019.2954509. 
Li, Y., Bai, X., Wang, Q., Ma, Z., 2022b. A big data approach to cargo type prediction and its implications for oil trade estimation. Transp. Res. Part E Logist. Transp. 

Rev. 165, 102831 https://doi.org/10.1016/j.tre.2022.102831. 
Li, H., Liu, J., Liu, R.W., Xiong, N., Wu, K., Kim, T., 2017. A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis. 

Sensors 17, 1792. https://doi.org/10.3390/s17081792. 
Li, H., Liu, J., Wu, K., Yang, Z., Liu, R.W., Xiong, N., 2018. Spatio-Temporal Vessel Trajectory Clustering Based on Data Mapping and Density. IEEE Access 6, 

58939–58954. https://doi.org/10.1109/ACCESS.2018.2866364. 
Li, H., Liu, J., Yang, Z., Liu, R.W., Wu, K., Wan, Y., 2020. Adaptively constrained dynamic time warping for time series classification and clustering. Inf. Sci. 534, 

97–116. https://doi.org/10.1016/j.ins.2020.04.009. 
Li, H., Lam, J.S.L., Yang, Z., Liu, J., Liu, R.W., Liang, M., Li, Y., 2022a. Unsupervised hierarchical methodology of maritime traffic pattern extraction for knowledge 

discovery. Transp. Res. Part C Emerg. Technol. 143, 103856 https://doi.org/10.1016/j.trc.2022.103856. 
Li, H., Ren, X., Yang, Z., 2023. Data-driven Bayesian network for risk analysis of global maritime accidents. Reliab. Eng. Syst. Saf. 230, 108938 https://doi.org/ 

10.1016/j.ress.2022.108938. 
Liang, M., Liu, R.W., Zhan, Y., Li, H., Zhu, F., Wang, F.-Y., 2022. Fine-Grained Vessel Traffic Flow Prediction With a Spatio-Temporal Multigraph Convolutional 

Network. IEEE Trans. Intell. Transp. Syst. 23, 23694–23707. https://doi.org/10.1109/TITS.2022.3199160. 
Liu, C., Guo, S., Feng, Y., Hong, F., Huang, H., Guo, Z., 2019a. L-VTP: Long-Term Vessel Trajectory Prediction Based on Multi-Source Data Analysis. Sensors 19, 4365. 

https://doi.org/10.3390/s19204365. 
Liu, C., Li, Y., Jiang, R., Du, Y., Lu, Q., Guo, Z., Zhang, X., 2021. TPR-DTVN: A Routing Algorithm in Delay Tolerant Vessel Network Based on Long-Term Trajectory 

Prediction. Wirel. Commun. Mob. Comput. 2021, 1–15. 
Liu, J., Li, H., Yang, Z., Wu, K., Liu, Y., Liu, R.W., 2019. Adaptive Douglas-Peucker Algorithm With Automatic Thresholding for AIS-Based Vessel Trajectory 

Compression. IEEE Access 7, 150677–150692. https://doi.org/10.1109/ACCESS.2019.2947111. 
Liu, R.W., Liang, M., Nie, J., Lim, W.Y.B., Zhang, Y., Guizani, M., 2022a. Deep Learning-Powered Vessel Trajectory Prediction for Improving Smart Traffic Services in 

Maritime Internet of Things. IEEE Trans. Netw. Sci. Eng. 9, 3080–3094. https://doi.org/10.1109/TNSE.2022.3140529. 
Liu, R.W., Liang, M., Nie, J., Yuan, Y., Xiong, Z., Yu, H., Guizani, N., 2022b. STMGCN: Mobile Edge Computing-Empowered Vessel Trajectory Prediction Using Spatio- 

Temporal Multigraph Convolutional Network. IEEE Trans. Ind. Inform. 18, 7977–7987. https://doi.org/10.1109/TII.2022.3165886. 
Liu, Y., Liu, W., Song, R., Bucknall, R., 2017. Predictive navigation of unmanned surface vehicles in a dynamic maritime environment when using the fast marching 

method. Int. J. Adapt. Control Signal Process. 31, 464–488. https://doi.org/10.1002/acs.2561. 
Liu, J., Shi, G., Zhu, K., 2019b. Vessel Trajectory Prediction Model Based on AIS Sensor Data and Adaptive Chaos Differential Evolution Support Vector Regression 

(ACDE-SVR). Appl. Sci. 9, 2983. https://doi.org/10.3390/app9152983. 
Liu, J., Shi, G., Zhu, K., 2020. Online Multiple Outputs Least-Squares Support Vector Regression Model of Ship Trajectory Prediction Based on Automatic Information 

System Data and Selection Mechanism. IEEE Access 8, 154727–154745. https://doi.org/10.1109/ACCESS.2020.3018749. 
Luo, W., Zhang, G., 2020. Ship Motion Trajectory and Prediction Based on Vector Analysis. J. Coast. Res. 95, 1183–1188. https://doi.org/10.2112/SI95-230.1. 
Ma, J., Jia, C., Yang, X., Cheng, X., Li, W., Zhang, C., 2020. A Data-Driven Approach for Collision Risk Early Warning in Vessel Encounter Situations Using Attention- 

BiLSTM. IEEE Access 8, 188771–188783. https://doi.org/10.1109/ACCESS.2020.3031722. 
Ma, J., Jia, C., Shu, Y., Liu, K., Zhang, Y., Hu, Y., 2021. Intent prediction of vessels in intersection waterway based on learning vessel motion patterns with early 

observations. Ocean Eng. 232, 109154 https://doi.org/10.1016/j.oceaneng.2021.109154. 

H. Li et al.                                                                                                                                                                                                               

https://doi.org/10.1155/2020/7191296
https://doi.org/10.1109/JSEN.2020.3007809
https://doi.org/10.1007/s11042-022-11951-y
https://doi.org/10.1016/j.eswa.2013.09.042
https://doi.org/10.3390/sym13101956
https://doi.org/10.3390/sym13101956
http://refhub.elsevier.com/S1366-5545(23)00140-0/h0065
https://doi.org/10.2112/SI95-175.1
https://doi.org/10.1016/j.tre.2018.10.008
https://doi.org/10.1016/j.tre.2022.102722
https://doi.org/10.1016/j.tre.2021.102495
https://doi.org/10.1016/j.tre.2021.102495
https://doi.org/10.1016/j.oceaneng.2021.108956
https://doi.org/10.1016/j.oceaneng.2021.108956
https://doi.org/10.1016/j.ress.2022.108963
https://doi.org/10.1109/TITS.2022.3154158
https://doi.org/10.1109/ACCESS.2021.3055253
https://doi.org/10.1016/j.physa.2008.12.016
https://doi.org/10.1016/j.physa.2008.12.016
https://doi.org/10.1016/j.ssci.2019.09.018
https://doi.org/10.1016/j.ssci.2019.09.018
https://doi.org/10.1109/TITS.2016.2551780
https://doi.org/10.1109/JSEN.2021.3119069
http://refhub.elsevier.com/S1366-5545(23)00140-0/h0140
https://doi.org/10.1016/j.iot.2021.100436
https://doi.org/10.1016/j.iot.2021.100436
https://doi.org/10.12716/1001.10.03.17
https://doi.org/10.1109/MIS.2019.2954509
https://doi.org/10.1109/MIS.2019.2954509
https://doi.org/10.1016/j.tre.2022.102831
https://doi.org/10.3390/s17081792
https://doi.org/10.1109/ACCESS.2018.2866364
https://doi.org/10.1016/j.ins.2020.04.009
https://doi.org/10.1016/j.trc.2022.103856
https://doi.org/10.1016/j.ress.2022.108938
https://doi.org/10.1016/j.ress.2022.108938
https://doi.org/10.1109/TITS.2022.3199160
https://doi.org/10.3390/s19204365
http://refhub.elsevier.com/S1366-5545(23)00140-0/h0190
http://refhub.elsevier.com/S1366-5545(23)00140-0/h0190
https://doi.org/10.1109/ACCESS.2019.2947111
https://doi.org/10.1109/TNSE.2022.3140529
https://doi.org/10.1109/TII.2022.3165886
https://doi.org/10.1002/acs.2561
https://doi.org/10.3390/app9152983
https://doi.org/10.1109/ACCESS.2020.3018749
https://doi.org/10.2112/SI95-230.1
https://doi.org/10.1109/ACCESS.2020.3031722
https://doi.org/10.1016/j.oceaneng.2021.109154


Transportation Research Part E 175 (2023) 103152

38

Ma, H.e., Zuo, Y.i., Li, T., Lambert, A., 2022. Vessel Navigation Behavior Analysis and Multiple-Trajectory Prediction Model Based on AIS Data. J. Adv. Transp. 2022, 
1–10. 

Maskooki, A., Virjonen, P., Kallio, M., 2021. Assessing the prediction uncertainty in a route optimization model for autonomous maritime logistics. Int. Trans. Oper. 
Res. 28, 1765–1786. https://doi.org/10.1111/itor.12882. 

Mehri, S., Alesheikh, A.A., Basiri, A., 2021. A Contextual Hybrid Model for Vessel Movement Prediction. IEEE Access 9, 45600–45613. https://doi.org/10.1109/ 
ACCESS.2021.3066463. 

Millefiori, L.M., Braca, P., Bryan, K., Willett, P., 2016. Modeling vessel kinematics using a stochastic mean-reverting process for long-term prediction. IEEE Trans. 
Aerosp. Electron. Syst. 52, 2313–2330. https://doi.org/10.1109/TAES.2016.150596. 

Miller, A., Walczak, S., 2020. Maritime Autonomous Surface Ship’s Path Approximation Using Bézier Curves. Symmetry 12, 1704. https://doi.org/10.3390/ 
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