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ABSTRACT
Quantitative structure−activity relationship (QSAR) models are power-
ful in silico tools for predicting the mutagenicity of unstable com-
pounds, impurities and metabolites that are difficult to examine 
using the Ames test. Ideally, Ames/QSAR models for regulatory use 
should demonstrate high sensitivity, low false-negative rate and wide 
coverage of chemical space. To promote superior model development, 
the Division of Genetics and Mutagenesis, National Institute of Health 
Sciences, Japan (DGM/NIHS), conducted the Second Ames/QSAR 
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International Challenge Project (2020–2022) as a successor to the First 
Project (2014–2017), with 21 teams from 11 countries participating. The 
DGM/NIHS provided a curated training dataset of approximately 
12,000 chemicals and a trial dataset of approximately 1,600 chemicals, 
and each participating team predicted the Ames mutagenicity of each 
trial chemical using various Ames/QSAR models. The DGM/NIHS then 
provided the Ames test results for trial chemicals to assist in model 
improvement. Although overall model performance on the Second 
Project was not superior to that on the First, models from the eight 
teams participating in both projects achieved higher sensitivity than 
models from teams participating in only the Second Project. Thus, 
these evaluations have facilitated the development of QSAR models.

imbalancedtoxicity data; 
model performance

Introduction

Regulatory bodies are interested in using in silico methods to address animal welfare issues, 
reduce costs, and obtain information regarding chemicals that are difficult to purify for in vivo 
and in vitro tests. In silico models, such as quantitative structure−activity relationships 
(QSARs), can be used to predict the biological activities of chemicals from their structure. 
A type of QSARs is Ames/QSAR, which is based on the Ames test data and can predict the 
mutagenicity of a chemical. Ames/QSAR models are currently used to predict the mutageni-
city of impurities in pharmaceuticals [1] and other chemicals, such as pesticides and their 
metabolites [2].

Many of the currently available Ames/QSAR models were developed using publicly 
available Ames datasets, such as that of Hansen et al. [3], which includes data on more 
than 5,000 chemicals, the EURL ECVAM Genotoxicity and Carcinogenicity Consolidated 
Database of Ames-Positive Chemicals [4,5] and Ames-Negative Chemicals [6], European 
Food Safety Authority Genotoxicity Database [7]; other various other genotoxicity datasets 
[8–10]. Although these Ames/QSAR models have high accuracy for predicting the muta-
genicity of existing chemicals (in the public domain), they have lower accuracy [11], and 
particularly sensitivity, for detecting new Ames-positive compounds. The use of imbalanced 
datasets with unequal numbers of Ames-positive and -negative chemicals [12] has con-
tributed to this lack of model performance; balanced accuracy ((sensitivity + specificity)/2) 
may be a better measure of performance against unbalanced proprietary datasets [13]. 
However, the primary factor limiting model performance is insufficient coverage of the 
chemical space and mutagenic mechanisms in the training sets or mutagenicity expert 
rules. Thus, improved Ames/QSAR models with high sensitivity, low false-negative rate and 
wide coverage of chemical space are needed in the regulatory setting.

To improve the predictivity of Ames/QSAR models, especially model sensitivity, the 
Division of Genetics and Mutagenesis, National Institute of Health Sciences, Japan (DGM/ 
NIHS), conducted the First Ames/QSAR International Challenge Project (hereafter ‘the First 
Project’) from 2014 to 2017 [14]. The project involved 12 teams, mainly QSAR model vendors, 
from seven countries who were asked to use their Ames/QSAR models to predict the 
mutagenicity of approximately 12,000 new chemicals, after which the DGM/NIHS compared 
predicted results with the results of the actual Ames test data to derive various model 
performance metrics. While the ability of these QSAR models to predict the mutagenicity of 
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new chemicals was improved by this project [14], the extent was limited because the 
participants were not provided adequate Ames test information by the DGM/NIHS.

From 2020 to 2022, the DGM/NIHS conducted the Second Ames/QSAR International 
Challenge Project (hereafter ‘the Second Project’), again with the aim of evaluating and 
improving the performance of Ames/QSAR models. This time several changes were made. 
More academic and other non-commercial entities took part, and deep-learning models, as 
well as conventional QSAR models, were examined. The training dataset included the 
approximately 12,000 chemicals used in the First Project, and a trial dataset comprised of 
1,589 new chemicals. The training dataset were curated and was also provided in addition to 
mutagenicity results for multiple test strains without and with metabolic activation, the 
solvents used and the test chemical purity. By making these changes, we expect the 
Second Project to facilitate further improvements in the predictive ability of currently available 
Ames/QSAR models.

Here we summarize the results from the Second Project and describe the outstanding 
issues to be solved for the successful use of Ames/QSAR models in the regulatory setting.

Materials and methods

Overview of the First and Second Project

The essential characteristics of the First and Second Projects are summarized in Table 1. 
The First Project was conducted from 2014 to 2017 and involved 12 teams from seven 
countries. The study comprised three phases, an initial trial phase (Phase I) and two 
training and trial phases (Phase II and Phase III). A dataset of approximately 12,000 new 
chemicals was used, of which 4,000 were used in each phase. Most Ames/QSAR models 
were categorized as statistical or rule-based. The Second Project was conducted from 
2020 to 2022, with 19 teams participating in 2020 and two additional teams joining in 
2021. The teams were from academia and non-commercial institutions in addition to 
QSAR vendors. Nine teams that participated in the First Project also participated in the 
Second Project. All teams participating in the Second Project are listed in Table 2. The 
Second Project involved one phase using both a training dataset comprised of the 
approximately 12,000 chemicals from the First Project and a trial dataset of 1,589 new 
chemicals.

Table 1. Overview of the First and Second Ames/QSAR International Challenge Projects.
　 First Project Second Project

Aim QSAR tool improvements
Date 2014–2017 2020–2022
Participants 12 teams (7 countries) 21 teams (11 countries)

Mainly QSAR venders QSAR venders/academia/non-commercial entities
Training dataset Phase I: none Chemicals used the First Project

Phase II: 3,902 chemicals
Phase III: 3,902 + 3,802 chemicals

Trial dataset Phase I: 3,902 chemicals 1,589 new chemicals
Phase II: 3,802 chemicals
Phase III: 4,409 chemicals

Models analysed Statistical and rule-based models Statistical, rule-based and machine-learning models
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Training and trial datasets

Data source
Since 1979, the Ministry of Health, Labour and Welfare (MHLW) in Japan has stipulated 
under the Industrial Safety and Health Act (ANEI-HOU) that producers of new chemical 
substances and importers of chemicals in amounts greater than 100 kg per year must 
conduct hazard investigations prior to manufacture or import as part of these investiga-
tions, and therefore Ames tests must be conducted and reported [15]. The Ames data 
used in both the First Project and the Second Project were obtained from the MHLW and 
comprised Ames class (A, B or C), chemical name and molecular structure. In the First 
Project, no other information was provided, such as bacterial strain, solvent or cytotoxi-
city. Class A or ‘strong positive’ indicates that the chemical induces more than 1,000 
revertant colonies per milligram of at least one Ames test strain in the presence or 
absence of metabolic activation. Class B indicates that the tested chemical induces at 
least a 2-fold increase in revertant colonies but fewer than induced by class A compounds 
compared to the negative control in at least one Ames strain with or without metabolic 
activation. Finally, class C or ‘negative’ indicates a < 2-fold increase in revertant colonies 
(non-mutagenic). In Japan, Ames test data are confidential for chemicals in class B or C, 
while a list of class A chemicals is publicly available [16] All participants agreed in writing 
to uphold the confidentiality of the results. Additional details are provided in the report 
from the First Project [14].

Training dataset originated from the First Project
The training dataset used in the Second Project was created by combining the three 
subsets used in the three phases of the First Project. This combined dataset contained 

Table 2. Teams participating in the Second Project.
Team no. Team name Country Note*

1 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (SIOC, 
CAS)

China

2 Altox Ltd. Brazil
3 MN-AM Germany/ 

USA
(i)

4 Instem USA (i)
5 Istituto di Ricerche Farmacologiche Mario Negri IRCCS (IRFMN) Italy (i)
6 IdeaConsult Ltd. Bulgaria (i)
7 MultiCASE Inc. USA (i)
8 Lhasa Ltd. UK (i)
9 Istituto Superiore di Sanità (ISS) Italy (i)
10 Gifu University Japan
11 Massachusetts Institute of Technology USA
12 Simulations Plus, Inc. USA (i)
13 Chemotargets Spain
14 LMC – Bourgas University Bulgaria (i)
15 The University of Sydney Australia
16 Meiji Pharmaceutical University Japan
17 Liverpool John Moores University UK
18 Evergreen AI, Inc. Canada
19 Politecnico di Milano Italy
20 National Center for Toxicological Research U.S. Food and Drug Administration 

(NCTR/FDA)
USA

21 National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Japan

*(i): team also participated in the First Project.
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chemical structure information on approximately 12,000 new chemicals as SDF files with 
a corresponding list of SMILES notations [17]. The chemical structures in the training 
dataset included salts (e.g. [Na+]). The list was curated and additional information related 
to the Ames test was introduced to improve QSAR models (See section ‘Data curation’). If 
the mutagenicity (class A, B or C) of duplicated chemicals in the training set was the same, 
only the older Ames data was listed as a part of the training set. If the mutagenicity (class 
A, B or C) of duplicated chemicals in the training set was different, we did not use the 
results of such a chemical as part of the training set. Stereoisomers were treated as 
different chemicals in the training set as, on some occasions, the mutagenicity is not 
always same in the stereoisomers. Similarly, if the mutagenicity (class A, B or C) of 
matching pairs of parent compounds and their salt in the training set was the same, 
only the older Ames test data was listed as a part of the training set. If the mutagenicity 
(class A, B or C) of such matching pairs in the training set was different, we did not use 
these chemicals as part of the training set.

Trial dataset generated from new chemicals
By the onset of the Second Project, 5,303 additional compounds were registered as ANEI- 
HOU new chemicals by the MHLW as a result of Ames class and chemical structure 
information being available. This list was curated to exclude chemicals unsuitable for 
evaluating Ames mutagenicity by chemical structure-based QSAR predictions. After 
structural curation, chemicals with undefined SMILES notations (e.g. oils, extracts, poly-
mers), duplicate chemicals, metal ions and mixtures with undefined components were 
also removed. Finally, 1,589 ANEI-HOU new chemicals were included as the trial dataset 
for the Second Project. In addition, minor components (e.g. salts, counterions and solvent 
molecules) were removed from the 1,589 chemical structures.

Table 3 shows the proportions of trial dataset chemicals in each Ames class. Like the 
training dataset, the majority of chemical (about 85%) were class C (non-mutagenic). The 
training dataset including Ames class was sent to each participating team for the devel-
opment of their QSAR models. Simultaneously the trial dataset was sent to each partici-
pating teams without the Ames class results. The results of all predictions (for trial 
chemicals) were then reported to the DGM/NIHS. The DGM/NIHS calculated the perfor-
mance metrics of each QSAR model and disclosed the actual Ames test data of the trial 
chemicals to the participating teams.

Ames/QSAR performance evaluations

As in the First Project [14], the prediction from the QSAR models were compared 
to the actual Ames test data, generating the prediction performance metrics 
defined in Table 4. Hereafter, the predicted results are classified as ‘true positive’ 
or TP when the measured Ames result is either class A or B (positive) and the 

Table 3. Number of chemicals in the Ames classes in the trial set 
for the Second Project.

Class A Class B Class C Total

80 (5.0) 156 (9.8) 1,353 (85.1) 1,589 (100)

Expressed as numbers (%).
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model prediction is positive,‘true negative’ or TN when the measured Ames result 
is class C (negative) and the model prediction is negative, ‘false positive’ or FP 
when the measured Ames result is class C (negative) and the model prediction is 
positive and ‘false-negative’ (FN) when the measured Ames result is either class 
A or B (positive) and the model prediction is negative. For the evaluation, Ames 
classes A and B were combined into a single ‘positive’ class to calculate all 
performance metrics except for sensitivity, which was divided into A-sensitivity, 
the ability to detect strong Ames-positive (class A) compounds, and sensitivity, the 
ability to detect Ames-positive (class A or B) compounds.

Results and discussion

Data curation

In the First Project, we only provided the Ames test results (class A, B or C) for the 
chemicals. In the Second Project, teams were also provided with the molecular weight, 
purity and solvent used as well as the Ames test results for five bacterial strains with and 
without metabolic activation (Table 5) to aid in the development of QSAR models. As in 
the First Project, cytotoxicity and dose – response data were not provided.

Table 6 listed the curation of the training dataset (see also [18] for an overview). First, 
the DGM/NIHS confirmed all class A and B chemicals, including those with FN predictions 
as well as class C chemicals with FP predictions by most teams in the First Project. Of the 

Table 4. Performance metrics used to evaluate Ames/QSAR model performance.
Performance metric Calculation and description

A-Sensitivity (A-Sens.) TPA/(TPA + FN)
Measures the ability to correctly predict strongly Ames-positive compounds (class A).

Sensitivity (Sens.) TP/(TP + FN)
Measures the ability to correctly predict Ames-positive compounds (class A or B).

Specificity (Spec.) TN/(FP + TN)
Measures the ability to predict Ames-negative compounds (class C).

Accuracy (Acc.) (TP + TN)/(TP + TN + FP + FN)
Assesses overall prediction performance by returning the fraction of compounds that 

were correctly classified.
Balanced Accuracy (BA) (Sens. + Spec.)/2

Assesses overall model performance while giving each class equal weight.
Mathews Correlation 

Coefficient (MCC)
[(TP * TN) − (FP * FN)]/[(TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)]1/2

Assesses overall model performance.
Values can range from − 1 to 1, unlike the other metrics in this table that range from 0 

to 1.
Coverage (Cov.) (TP + TN + FP + FN)/Total

Assesses the proportion of compounds for which the model can make positive or 
negative prediction.

Positive Prediction Value (PPV) TP/(TP + FP)
Indicates how frequently positive predictions are correct.

Negative Prediction Value 
(NPV)

TN/(TN + FN)
Indicates how frequently negative predictions are correct.

F1-Score 2*(Recall * Precision)/(Recall + Precision)
Indicates the harmonic mean of Recall and Precision, where Recall = Sensitivity and 

Precision = PPV.

TPA: True positive for class A (prediction is positive and Ames test result is class A); TP: True positive (prediction is positive 
and Ames test result is class A or B); TN: True negative (prediction is negative and Ames test result is class C). FN: False- 
negative (prediction is negative and Ames test result is class A or B); FP: False positive (prediction is positive and Ames 
test results is class C).

988 A. FURUHAMA ET AL.



Ta
bl

e 
5.

 S
am

pl
e 

of
 t

ra
in

in
g 

da
ta

 p
ro

vi
de

d 
to

 t
he

 p
ar

tic
ip

an
ts

 o
f t

he
 S

ec
on

d 
Pr

oj
ec

t*
.

−
S9

+
S9

Cl
as

s
Ch

em
ic

al
 n

am
e

Ch
em

ic
al

 s
tr

uc
tu

re
M

ol
. w

ei
gh

t
Pu

rit
y 

(%
)

So
lv

en
t

TA
10

0
TA

15
35

W
P2

uv
rA

TA
98

TA
15

37
TA

10
0

TA
15

35
W

P2
uv

rA
TA

98
TA

15
37

C
16

3.
2

C
21

6.
4

98
.3

TH
F

C
C

C
C

C
C

C
C

C
C

B
42

0.
1

99
.4

Ac
et

on
e

C
C

C
C

C
B

B
C

C
C

C
51

5.
7

C
23

66
.2

B
14

8.
0

99
.7

D
M

SO
C

C
C

C
C

B
C

B
C

C

C
26

4.
1

A
20

3.
0

99
.8

D
M

SO
C

C
C

C
C

A
C

C
B

C

*T
he

 c
he

m
ic

al
 n

am
es

 a
nd

 s
tr

uc
tu

re
s 

w
er

e 
pr

ov
id

ed
 to

 th
e 

pa
rt

ic
ip

an
ts

 u
nd

er
 a

 c
on

fid
en

tia
lit

y 
ag

re
em

en
t. 

M
ol

. w
ei

gh
t, 

pu
rit

y 
an

d 
so

lv
en

t i
nd

ic
at

e 
th

e 
m

ol
ec

ul
ar

 w
ei

gh
t o

f t
he

 tr
ai

ni
ng

 c
he

m
ic

al
, 

th
e 

ch
em

ic
al

 p
ur

ity
 o

f t
he

 s
am

pl
e 

us
ed

 in
 t

he
 A

m
es

 te
st

 a
nd

 th
e 

so
lv

en
t u

se
d 

fo
r t

he
 A

m
es

 te
st

, r
es

pe
ct

iv
el

y.
 −

S9
 a

nd
 +

S9
 in

di
ca

te
 th

at
 t

he
 fi

ve
 s

tr
ai

ns
 w

er
e 

te
st

ed
 w

ith
ou

t (
–)

 a
nd

 w
ith

 (+
) 

m
et

ab
ol

ic
 a

ct
iv

at
io

n.
 A

m
es

 c
la

ss
 A

 is
 s

tr
on

gl
y 

po
si

tiv
e,

 c
la

ss
 B

 is
 p

os
iti

ve
 a

nd
 c

la
ss

 C
 is

 n
eg

at
iv

e 
fo

r 
m

ut
ag

en
ic

ity
.

SAR AND QSAR IN ENVIRONMENTAL RESEARCH 989



10,694 test reports available to the DGM/NIHS for the First Project, 1,565 (about 15%) were 
included for the Second Project. Of these, 60 changed (these were chemical reassigned to 
other classes) according to expert reviews by the DGM/NIHS. Thus, the final training 
dataset for the Second Project comprised 12,134 chemicals, including 649 class 
A chemicals, 1,100 class B chemicals and 10,385 class C chemicals. It is important to 
note that this curation did not change the class determination under ANEI-HOU, and the 
decision to use the curated data for model development was left to each participating 
team. The DGM/NIHS also provided the teams with the list of class changes and the 
underlying reasons.

Model diversity

The 21 participating teams submitted from one to five sets of predicted results for each of 
the 1,589 chemicals in the trial dataset (positive, negative, equivocal, out-of-domain or no 
call, etc). Basically, DGM/NIHS did not make any restriction to the models which the 21 
teams developed and used to predict the mutagenicity of the 1,598 chemicals. Only 
a positive versus negative classification was requested (A/B versus C rather than A versus 
B versus C) because teams were able to use other training data containing only positive 
versus negative information as well as training data provided by the DGM/NIHS. In addition 
to the predicted results, the teams were asked to enter details of their models on a model 
information sheet with the following fields: Date, QSAR Builder name, QSAR model name, 
QSAR model version, training data (required), training data description, explicit model 
algorithm and Notes (optional). The response in the ‘Training data’ field was selected 
from (1) release model (training data provided in the Second Project were not used for 
model development), (2) release model + all NIHS data (all training data were used for 
model development) and (3) release model + selected NIHS data (only some of the NIHS 
training data were used for model development). Additionally, in Appendix 
I (Supplementary material), each model is fully described, in addition providing more details 
of the training data as well as model algorithms. Furthermore, each team was asked to 
select the model with the best performance metrics. Hereafter, this model is referred to as 
that selected before access to the Ames test results. Once the teams were informed of the 
Ames test results, they were again asked to select the most predictive model. Hereafter, this 
model is referred to as that selected after access to the Ames test results.

Table 6. Curation of the training dataset used in the Second Project.
Class A Class B Class C Total

(I) Chemicals used in the First Project 672 1,085 10,383 12,140
(II) Ames study report missing 44 164 1,238 1,446
(III) Reports for curation (= I − II) 628 921 9,145 10,694
(IV) Curation completed on March 2020 628 921 16 1,565
Curation not completed (= III − IV)*1 0 0 9,129 9,129
Number of modified reports 26 18 16
Change after modification*2 −23 15 −6
Provided training dataset (March 2020) 649 1,100 10,385 12,134

*1Curation was performed by the DGM/NIHS members. The participating teams were not provided with detailed 
information on the noncurated chemicals. 

*2Six chemicals were not assigned to class A, B, or C.
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The 21 teams submitted predicted Ames results using a total of 50 Ames/QSAR models (the 
summarized model information sheets are available in Appendix I). One of the 21 teams 
(Laboratory of Mathematical Chemistry, Bourgas University) submitted positive versus nega-
tive and in-domain versus out-of-domain data separately, thus generating two sets of 
performance metrics (one with in-domain versus out-of-domain data, and one including 
only in-domain data). Therefore, 51 sets of predicted results were considered in the analyses. 
The performance metrics of these 51 datasets are presented in Appendix II (Supplementary 
material).

The models were categorized as expert rule-based or statistical. Some teams 
provided the predicted results for statistical models and/or rule-based models that 
are currently used under the ICH M7 guideline. Machine-learning (ML) models, 
including deep-learning artificial neural networks (ANNs), were categorized as 
statistical models and considered they are not based in conventional statistical 
methods but considered a family of statistical learning algorithms that emulates 
the learning pattern in the human brain with trained neurons by statistical algo-
rithms [19].

ANNs and other ML algorithms (K-Nearest Neighbours, Genetic algorithms-Gas 
etc.) are cited in Chapter 3 - Unambiguous Algorithms in the guideline ‘OECD 
principles for the Validation for Regulatory Purposes of (Q)SAR Models’ [20]. 
Although a neural network is one example of a larger class of ML algorithms 
[21], ‘deep-learning’ was a keyword frequently used in the model information 
sheets completed by the participating teams. This subject will not be discussed 
further here, as the intention is only to provide an overview of the Second Project. 
In addition, some teams developed more than one model using the same algo-
rithm but different training data or introduced additional techniques for managing 
unbalanced genotoxicity data (see model information sheets).

The models selected by each team before and after access to the Ames test 
results (Tables 7 and 8) were evaluated in this article because the 51 models (as 
shown in Appendices I and II) were too diverse for analysis of overall performance. 
As explained in the footnotes of Table 7 and Appendix II, three teams (Altox Ltd., 
Simulations Plus Inc. and NCTR/FDA) did not select a single model before access to 
the Ames test results. Rather, Altox Ltd. selected models only after access to the 
results, while Simulations Plus Inc. selected three models (S+MUT_NIHS_ABC, S 
+MUT_NIHS_AC and S+MUT_NIHS) and used two (S+MUT_NIHS_ABC and S 
+MUT_NIHS_AC) to generate a single set of performance metrics by averaging. 
Finally, NCTR/FDA selected two models developed by two independent groups. 
Thus, only 21 ( = 21 − 1 + 1) models selected before accessing the Ames test results 
were evaluated. The names of the 21 models and corresponding performance 
metrics are summarized in Tables 7 and 9. As explained in the footnotes of 
Table 8 and Appendix II, NCTR/FDA selected two models after access to the Ames 
test results, while all other teams selected only one, so 22 models ( = 21 + 1) were 
evaluated after Ames tests results were made available. The names of the 22 models 
and corresponding performance metrics are summarized in Tables 8 and 10. The 
model evaluations included comparisons of those selected before or after access to 
the Ames test results as well as comparisons with models reported in the First 
Project (listed in Table 11).
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Performance of the selected models

In addition to the performance metrics derived in the First Project, the harmonic mean of 
recall (sensitivity) and precision (positive prediction value, PPV), or F1-score, was intro-
duced in the Second Project (see Table 4). For a high F1-score, both FN and FP must be 
low [12]. The ratio of class A and B positives to class C negatives was around 15:85 for both 
the training dataset (1749:10385) and trial dataset (238:1353), comparable to the First 
Project (1757:10383) [14]. Due to this imbalance in Ames test results, however, accuracy 
alone ([TP + TN]/all classifications) cannot be used as a measure of model performance; 
therefore, additional metrics are needed. Compared to TN and FP, the counts and ratios of 
TP and FN are always smaller in a dataset containing predominantly negative results. In 
such cases, changing TP has little effect on accuracy. Balanced accuracy also remains 
stable when the number of FN results is much higher than the number of TP results [12], 
although balanced accuracy does not depend on the balance of the dataset. Thus, the 
introduction of the F1-score allowed us to focus on TP when evaluating the models. The 
F1-score can also be calculated using sensitivity and PPV, so F1-scores were also calcu-
lated for the First Project using the values from Tables 5–7 in Honma et al. [14] and 
compared to those obtained for the Second Project.

Together with the performance metrics in Tables 9 and 10, receiver operating char-
acteristic (ROC) graphs (Figure 1) indicated that sensitivity and specificity were correlated, 
except for the values obtained using Model no. 17–1 (Table 9), for which sensitivity was 
high when specificity was low and vice versa. In addition, the A-sensitivity was higher than 

Table 7. Models selected by each team BEFORE access to Ames test results for the trial chemicals.
Model no.*1 Team name Before being informed of the results

1 SIOC, CAS CISOC-PSMT (SIOC, CAS, China)
3 MN-AM ChemTunes. ToxGPS Ames NIHS_v2
4 Instem Leadscope 2nd QSAR Challenge Consensus Model
5–1 IRFMN Mutagenicity (Ames test) CONSENSUS model (18k) version 0.9.1
6 IdeaConsult Ltd. AMBIT DeepN v4.85
7 MultiCASE Inc. PHARM_BMUT model version (1.8.0.0.17691.350)
8 Lhasa Ltd. Sarah Nexus v.3.0.1 with 2068 NIHS chemicals
9*2 ISS in vitro Mutagenicity (Ames test) by ISS- modified2020
10 Gifu University xenoBiotic 0.9q
11 Massachusetts Institute of 

Technology
Chemprop

12–1*3 Simulations Plus Inc. Average of S+MUT_NIHS_ABC model and S+MUT_NIHS_AC 
model

13 Chemotargets CHMT_GBoostSC
14 LMC – Bourgas University TIMES_AMES 17.17.3 (in domain TIMES model)
15–1 The University of Sydney DRSpicySTiM-Ensemble
16–1 Meiji Pharmaceutical University MMI-STK2
17–1 Liverpool John Moores University DL
18 Evergreen AI, Inc. Avalon
19 Politecnico di Milano GCN
20-a NCTR/FDA (one of two best models) DeepAmes
20-b NCTR/FDA (one of two best models) Decision Forest
21 NIBIOHN GNN(kMoL)_bestbalanced

*1The model number encodes the team number shown in Table 2 and whether the model was selected before (1) or after 
(2) access to the Ames test results. Letters indicate that more than one model was selected by a team (see NCTR/FDA). 
Team no. 2 selected a model only after access to the Ames test results. 

*2in vitro Mutagenicity (Ames test) by ISS- modified2020 is not publicly available. 
*3Performance metrics were calculated as the average of values generated by two models (S+MUT_NIHS_ABC and S 

+MUT_NIHS_AC) among the three submitted models (S+MUT_NIHS_ABC, S+MUT_NIHS_AC and S+MUT_NIHS).
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the general sensitivity for all models except Model no.17–1. Greater A-sensitivity is 
expected because strong positive mutagenicity (class A) can be predicted with greater 
sensitivity and lower error than positive mutagenicity (class A + B). However, A-sensitivity 
and sensitivity were still highly correlated for the selected models. The F1-score was also 
strongly correlated with Matthew’s correlation coefficient (MCC), which assesses overall 
model performance. Thus, we concluded that the F1-score could be used as an alternative 
to MCC for assessing the performance of Ames/QSAR models. In addition, specificity and 
accuracy were strongly correlated, which is expected given the high proportion of FN 
results generated from the negative data-dominant trial dataset.

Performance evaluations of the models selected before access to the Ames test results 
(Table 9) were used for external validation. The three well-adjusted models were Model 
no. 7 (F1-score of 49.7%, A-sensitivity of 71.4%, sensitivity of 50.8% and specificity of 
91.5%), 14 (51.1%, 95.7%, 58.0% and 88.6%, respectively) and 16–1 (51.6%, 71.3%, 53.4% 
and 90.7%, respectively). In this article, the well-adjusted models are defined as the F1- 
scores, A-sensitivities, sensitivities and specificities of these three models were substan-
tially higher than the averages of all 21 models (F-score = 42.2%, A-sensitivity = 62.2%, 
sensitivity = 46.3%, specificity = 87.5%) but not including MCC at this stage. Further, these 
three models yielded higher accuracy and balanced accuracy, although not always 
greater coverage (Table 9). Equivocal predictions are not treated here. The coverage of 
QSAR models should be discussed if we plan further Projects.

The three teams reported using different training sets (Model no. 7, release model +  
selected NIHS data; Model no. 14, release model only; Model no. 16–1, release model +  
selected NIHS data) and methodologies for developing the models (Model no. 7 and 16–1, 
statistical; Model no. 14, rule-based).

Table 8. Models selected by each team AFTER access to Ames test results for the trial chemicals.
Model no.*1 Team name After being informed of the results

1 SIOC, CAS CISOC-PSMT (SIOC, CAS, China)
2–2*2 Altox Ltd. GeneTox-iS – Prototype - Decision tree core v.1.0
3 MN-AM ChemTunes. ToxGPS Ames NIHS_v2
4 Instem Leadscope 2nd QSAR Challenge Consensus Model
5–2 IRFMN NCSTOXVega-0.18 version 0.18
6 IdeaConsult Ltd. AMBIT DeepN v4.85
7 MultiCASE Inc. PHARM_BMUT model version (1.8.0.0.17691.350)
8 Lhasa Ltd. Sarah Nexus v.3.0.1 with 2068 NIHS chemicals
9*3 ISS in vitro Mutagenicity (Ames test) by ISS- modified2020
10 Gifu University xenoBiotic 0.9q
11 Massachusetts Institute of Technology Chemprop
12–2 Simulations Plus Inc. S+MUT_NIHS
13 Chemotargets CHMT_GBoostSC
14 LMC – Bourgas University TIMES_AMES 17.17.3 (in domain TIMES model)
15–2 The University of Sydney GreedyMBAK
16–2 Meiji Pharmaceutical University MMI-VOTE1
17–2 Liverpool John Moores University RF model2
18 Evergreen AI, Inc. Avalon
19 Politecnico di Milano GCN
20-a NCTR/FDA (one of two best models) DeepAmes
20-b NCTR/FDA (one of two best models) Decision Forest
21 NIBIOHN GNN(kMoL)_bestbalanced

*1Model number encodes team number shown in Table 2 and whether the model was selected before (1) or after (2) 
access to Ames test results. Letters indicate that more than one model was selected by a team (see NCTR/FDA). 

*2A model was selected only after access to the Ames test results. 
*3in vitro Mutagenicity (Ames test) by ISS- modified2020 is not publicly available.
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Among the 21 models selected before access to the Ames test results, Model no. 3, 4, 8, 
and 12–1 demonstrated > 70% A-sensitivity (89.3, 88.5, 74.3, and 72.7%, respectively) and  
> 60% sensitivity (76.9, 62.7, 62.0, and 62.8%, respectively). Model no. 3 and 4 used release 
model + all NIHS data for training, while Model no. 8 and 12–1 used release model +  
selected NIHS data for training. Model no. 3 was categorized as a rule-based + deep- 
learning model, Model no. 4 and 8 as statistical models and Model no. 12–1 as a deep- 
learning model. It should be noted that the four teams (Team no. 3, 4, 8, 12) as well as 
Team no. 7 and 14 also participated in the First Project, suggesting that participation in 
the both projects facilitated the development of models with improved sensitivity.

Examination of the sensitivity of the 22 models selected after access to the results of the 
Ames test results (Table 10) is an evaluation positioned somewhere between an internal and 
an external validation because the model is assigned after access to the Ames test results but 
developed before access to the Ames test results. Models no. 3, 4, 5–2, 8, 12–2, 15–2, 16–2 and 
17–2 yielded > 70% A-sensitivity (89.3, 88.5, 75.0, 74.3, 77.3, 75.0, 82.5, and 75.9%, respectively) 
and > 60% sensitivity (76.9, 62.7, 61.4, 62.0, 69.3, 64.4, 72.0, and 64.7%, respectively). Three of 
the eight teams (Team no. 15, 16 and 17) that developed these models did not participate in 

Table 9. Performance metrics for the models selected BEFORE access to the Ames test results*1.

Model no.
A-Sens. 

(%)
Sens. 
(%)

Spec. 
(%)

Acc. 
(%)

BA 
(%) MCC

Cov. 
(%)

F1- 
score 
(%)

Training 
data*2 Model category*3

1 68.8 54.0 78.8 75.1 66.4 0.27 99.3 39.3 (1) Rule-based + Statistical
3 89.3 76.9 80.0 79.5 78.5 0.45 80.9 53.8 (2) Rule-based + Deep-learning 

(statistical)
4 88.5 62.7 84.6 81.4 73.7 0.40 97.9 49.7 (2) Statistical
5–1 58.2 44.7 89.6 82.9 67.1 0.34 99.9 43.7 (2) Rule-based + Statistical
6 60.0 40.7 90.5 83.5 65.6 0.31 82.2 40.8 (2) Deep-learning (statistical)
7 71.4 50.8 91.5 85.9 71.2 0.42 86.8 49.7 (3) Statistical
8 74.3 62.0 75.9 73.9 69.0 0.29 80.4 41.0 (3) Statistical
9 60.0 47.5 78.1 73.6 62.8 0.21 100 34.8 (2)*4 Rule-based
10 33.3 23.7 96.9 86.0 60.3 0.30 98.7 33.4 (3) Statistical
11 48.8 32.2 96.3 86.8 64.3 0.38 100 42.0 (2) Statistical
12–1 72.7 62.8 76.1 74.2 69.5 0.30 94.1 41.2 (3)*5 Deep-learning (statistical)
13 50.0 33.5 95.0 85.9 64.3 0.35 100 41.4 (2) Statistical
14 95.7 58.0 88.6 84.2 73.3 0.42 35.9 51.1 (1)*6 Rule-based
15–1 52.5 35.6 91.7 83.4 63.7 0.30 100 38.9 (1)*7 Statistical
16–1 71.3 53.4 90.7 85.1 72.0 0.43 100 51.6 (2) Statistical
17–1 19.0 20.0 79.3 70.5 49.6 −0.01 99.5 16.8 (2) Deep-learning (statistical)
18 76.3 58.1 85.8 81.7 71.9 0.38 100 48.5 (2) No information
19 58.8 36.4 95.2 86.5 65.8 0.38 100 44.4 (2) Deep-learning (statistical)
20-a 58.4 47.4 90.8 84.3 69.1 0.38 97.1 47.6 (3) Statistical
20-b 45.0 31.8 86.5 78.4 59.2 0.18 100 30.4 (2) Statistical
21 55.0 39.4 95.0 86.8 67.2 0.41 100 47.0 (3) Deep-learning (statistical)

*1Model no. is shown in Table 7. Abbreviations as in Table 4. All metrics range from 0% to 100% except MCC, which ranges 
from − 1 to 1. 

*2Training data category: (1) release model (excluding data provided by the Second Project), (2) release model + all NIHS 
data, (3) release model + selected NIHS data. 

*3Models were categorized as rule-based, statistical or deep-learning. 
*4In the case of (1), A-Sens. = 78.8%, Sens. = 58.5%, Spec. = 73.2%, Acc. = 71.1%, BA = 65.9%, MCC = 0.24, Cov. = 100.0%, 

F1-score = 37.5%. 
*5Values were the average of two models (S+MUT_NIHS_ABC and S+MUT_NIHS_AC) of the three models submitted (S 

+MUT_NIHS_ABC, S+MUT_NIHS_AC and S+MUT_NIHS). 
*6In the case of all chemicals, A-Sens. = 76.3%, Sens. = 52.1%, Spec. = 83.0%, Acc. = 78.4%, BA = 67.5%, MCC = 0.30, Cov.  

= 100.0%, F1-score = 41.8%. 
*7This team reported the training data as (1), but it appears to be (2) according to the additional comments entered into 

the model information sheet.
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the First Project. Nonetheless, the DGM/NIHS expects that the experience will help all teams 
improve model performance, particularly to reduce the FN rate.

From the complete set of models (Tables 7–10) selected before and after access to the 
results of the actual Ames test data, those with the highest MCC values and F1-scores were 
Model no. 2–2, 3, 14, 16–1, and 16–2. All five demonstrated MCC values ≥ 0.4 (0.40, 0.45, 
0.42, 0.43, and 0.44%), F1-scores ≥50.0% (50.0 53.8, 51.1, 51.6, and 52.4%) and A-sensitivity 
≥70% (ranging from 71.3% and 95.7%). These groups included both rule-based and 
statistical models, and all were developed using different training datasets. These model 
performances were unrelated to the rough categories of the training dataset or develop-
ment methodology. Thus, careful selection of training data and development methodology 
may partially help to provide improved Ames/QSAR models. In addition, given that the 
chemical space of the dataset used in the First Project was not the same as that used in the 
Second Project, expert knowledge of both mutagenicity and the chemical spaces of new 
chemicals may be necessary for developing improved models.

Range of performances

The ranges of performance metrics (minimum – maximum) and averages for the selected 
models tested in the Second Project are listed in Table 11 together with corresponding values 
from the First Project. The ranges and averages of performance metrics for models from the 
nine teams who also participated in the First Project are presented separately to assess the 
potential cumulative benefits of participation. Indeed, average A-sensitivity, sensitivity, 

Table 10. Performance metrics for the models selected AFTER access to the Ames test results*1.

Model no.
A-Sens. 

(%)
Sens. 
(%)

Spec. 
(%)

Acc. 
(%)

BA 
(%) MCC

Cov. 
(%)

F1- 
score 
(%)

Training 
data*2 Model category*3

1 68.8 54 78.8 75.1 66.4 0.27 99.3 39.3 (1) Rule-based + Statistical
2–2 83.1 57.9 87.2 82.9 72.6 0.40 77.8 50.0 (1) Statistical
3 89.3 76.9 80.0 79.5 78.5 0.45 80.9 53.8 (2) Rule-based + Deep-learning 

(statistical)
4 88.5 62.7 84.6 81.4 73.7 0.40 97.9 49.7 (2) Statistical
5–2 75.0 61.4 74.9 72.9 68.1 0.28 99.9 40.2 (3) Rule-based + Statistical
6 60.0 40.7 90.5 83.5 65.6 0.31 82.2 40.8 (2) Deep-learning (statistical)
7 71.4 50.8 91.5 85.9 71.2 0.42 86.8 49.7 (3) Statistical
8 74.3 62.0 75.9 73.9 69.0 0.29 80.4 41.0 (3) Statistical
9 60.0 47.5 78.1 73.6 62.8 0.21 100 34.8 (2) Rule-based
10 33.3 23.7 96.9 86.0 60.3 0.30 98.7 33.4 (3) Statistical
11 48.8 32.2 96.3 86.8 64.3 0.38 100 42.0 (2) Statistical
12–2 77.3 69.3 73.1 72.6 71.2 0.32 94.1 42.1 (1) Deep-learning (statistical)
13 50.0 33.5 95.0 85.9 64.3 0.35 100 41.4 (2) Statistical
14 95.7 58.0 88.6 84.2 73.3 0.42 35.9 51.1 (1) Rule-based
15–2 75.0 64.4 75.8 74.1 70.1 0.31 100 42.5 (1) Deep-learning (statistical)
16–2 82.5 72.0 82.0 80.6 77.0 0.44 100 52.4 (2) Statistical
17–2 75.9 64.7 72.7 71.5 68.7 0.28 99.5 40.3 (3) Statistical
18 76.3 58.1 85.8 81.7 71.9 0.38 100 48.5 (2) No information
19 58.8 36.4 95.2 86.5 65.8 0.38 100 44.4 (2) Deep-learning (statistical)
20a 58.4 47.4 90.8 84.3 69.1 0.38 97.1 47.6 (3) Statistical
20b 45.0 31.8 86.5 78.4 59.2 0.18 100 30.4 (2) Statistical
21 55.0 39.4 95.0 86.8 67.2 0.41 100 47.0 (3) Deep-learning (statistical)

*1Model no. is shown in Table 8. Abbreviations as in Table 4. 
*2Training data category: (1) release model (excluding data provided by the Second Project) (2) release model + all NIHS 

data (3) release model + selected NIHS data. 
*3Models were categorized as rule-based, statistical or deep-learning.
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balanced accuracy, negative prediction value, MCC and F1-score for the models developed 
by these nine teams (selected before access to the Ames test results) were higher than the 
averages of all 21 models before access to the Ames test results. These findings indicate that 
model performance for predicting positives was enhanced by participating in both the First 
and Second Projects. Similarly, average specificity, accuracy, positive prediction value and 
coverage for the 21 models before access to the Ames test results were higher than for the 22 
models selected after access to the Ames test results, while average A-sensitivity, sensitivity, 
balanced accuracy, negative prediction value, MCC and F1-score were higher for the 22 
models selected after access to the Ames test results. The ROC graphs (Figure 1) revealed that 
some low sensitivity models were replaced by models with higher sensitivity after the Ames 

Table 11. Averages (and ranges) of performance metrics for all models in the Second Project versus 
the First Project*1.

　 Second Project First Project*2

　

Selected models BEFORE 
access to Ames test 

results

Selected models BEFORE 
access to Ames test 

results 
(First Project 

participates only)*3

Selected models AFTER 
access to Ames test 

results Phase I Phase II
Phase 

III

A-Sens. (%) 62.2 (19.0–95.7) 74.5 (58.2–95.7) 68.3 (33.3–95.7) 68.9 
(51.4– 
82.8)

72.4 
(55.3– 
89.5)

71.1 
(42.7– 
85.7)

Sens. (%) 46.3 (20.0–76.9) 56.2 (40.7–76.9) 52.0 (23.7–76.9) 55.8 
(38.6– 
70.0)

56.6 
(41.6– 
72.1)

56.6 
(31.7– 
70.4)

Spec. (%) 87.5 (75.9–96.9) 83.9 (75.9–91.5) 85.2 (72.7–96.9) 78.7 
(62.5– 
91.5)

85.4 
(64.9– 
93.5)

80.1 
(60.7– 
93.0)

Acc. (%) 81.4 (70.5–86.8) 79.9 (73.6–85.9) 80.4 (71.5–86.8) 75.3 
(63.6– 
83.9)

81.2 
(65.8– 
87.7)

76.8 
(61.1– 
87.3)

BA (%) 66.9 (49.6–78.5) 70.1 (62.8–78.5) 68.6 (59.2–78.5) 67.2 
(62.1– 
72.5)

71.0 
(64.0– 
78.9)

68.4 
(62.0– 
74.4)

PPV (%) 42.5 (14.4–60.3) 38.8 (27.5–48.7) 41.7 (27.5–60.3) 32.3 
(23.8– 
46.1)

42.6 
(27.4– 
58.2)

34.1 
(21.1– 
51.0)

NPV (%) 90.5 (85.0–95.0) 92.0 (89.5–95.0) 91.3 (87.9–95.0) 91.4 
(89.4– 
93.4)

91.9 
(88.1– 
94.2)

91.9 
(89.1– 
93.6)

MCC 0.33 (−0.01–0.45) 0.35 (0.21–0.45) 0.34 (0.18–0.45) 0.28 
(0.20– 
0.39)

0.38 
(0.24– 
0.50)

0.31 
(0.17– 
0.44)

Cover. (%) 93.0 (35.9–100) 84.2 (35.9–100) 92.3 (35.9–100) 86.7 
(14.5– 
100)

85.5 
(18.0– 
100)

86.0 
(9.7– 
100)

F1-score (%) 42.2 (16.8–53.8) 45.1 (34.8–53.8) 43.7 (30.4–53.8) 40.0 
(31.8– 
48.9)

47.8 
(36.9– 
57.9)

41.5 
(31.7– 
51.5)

Number of 
models

21 9 22 18 21 19

No.  
of 
chemicals

1,589 1,589 1,589 3,902 3,829 4,409

*1Abbreviations as in Table 4. Selected model information (names and training data) before and after access to Ames test 
results are shown in Tables 7–10. 

*2All models from Tables 5–7 of Honma et al. [14]. 
*3Nine teams that participated in both the First Project and the Second Projects are indicated in Table 2.
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test results were available. Thus, participating teams tended to select models with superior 
performance for predicting positives (class A or B versus C) during the Second Project.

The 51 models examined in the Second Project demonstrated relatively high 
specificity but low sensitivity (see Appendices I and II) compared to the First Project. 
The average sensitivity values in all three phases of the First Project exceeded 55% 
(Table 11), whereas that for the 21 models selected before accessing the Ames test 
results in the Second Project was only 46.3% and the average for the 22 models 
selected after accessing the Ames test results was 52.0%. For these 21 and 22 models, 
respectively, selected before and after access to the Ames test results in the Second 
Project, average A-sensitivity was lower than in the First Project. In addition, the 
ranges (minimum – maximum) of A-sensitivity, sensitivity, and specificity for the 51 
Ames/QSAR models in the Second Project were much wider than in the First Project 
(see Appendix II), which likely reflected the greater diversity of model types and 
training datasets (Figure 1).

Figure 1. Receiver operating characteristic graphs of Ames mutagenicity prediction for the QSAR 
models. (a, b) Sensitivity to class A chemicals (A-sensitivity) versus specificity to class C chemicals. (c, d) 
Sensitivity to class A + B chemicals versus specificity to class C chemicals. Each black dot represents a 
single QSAR model from one of the participating teams. Red and yellow circles indicate the models 
selected before and after access to the Ames test data, respectively.
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Nonetheless, the ability to detect positives was higher for the models from teams partici-
pating in both First and Second Projects. Also, the average sensitivity (56.2%), MCC (0.35) and 
F1-score (45.1%) of all models were higher compared to Phases I and III of the First Project, 
while the average A-sensitivity (74.5%) of the models from teams participating in both was 
higher than the overall average in the First Project. These comparisons further suggest that 
participation in both projects improved model performance for predicting positives.

Conclusion

To improve QSAR models for predicting Ames mutagenicity, the Second Ames/QSAR 
International Challenge Project was conducted from 2020 to 2022. Overall, 21 teams 
from 11 countries participated in the project, with the DGM/NIHS providing the teams 
with curated training and trial datasets comprising data on 12,134 and 1,589 chemicals, 
respectively. After training, the teams were asked to use their models to predict the Ames 
mutagenicity of the trial chemicals and to report their predicted results to the DGM/NIHS. 
The DGM/NIHS then provided the teams with the results of the actual Ames test data for 
the trial chemicals to help the teams improve their models. To analyse the performance 
metrics of the models, each team was asked to select their best model before and after 
access to the results of the Ames test data. This aspect is only related to the spontaneous 
selection of models by the teams after the challenge results, however, all models cited at 
this work were developed, validated and challenged without previous access to the Ames 
data. Generally, the models included in the Second Project demonstrated high specificity 
but low sensitivity. Although the model performances were not as high as those reported 
from the First Project in this series, we expect that the experience of participating in the 
study will help the teams in their future model building. Actually, the nine teams who 
attended both the First and Second Projects showed improved sensitivity. We would like to 
emphasize again that the purpose of these projects is not to promote competition but to 
improve the model development skills of the participating teams.
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