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A B S T R A C T 

Cataclysmic variables (CV) encompass a diverse array of accreting white dwarf binary systems. Each class of CV represents 
a snapshot along an evolutionary journey, one with the potential to trigger a type Ia supernova event. The study of CVs offers 
valuable insights into binary evolution and accretion physics, with the rarest examples potentially providing the deepest insights. 
Ho we ver, the escalating number of detected transients, coupled with our limited capacity to investigate them all, poses challenges 
in identifying such rarities. Machine learning (ML) plays a pivotal role in addressing this issue by facilitating the categorization 

of each detected transient into its respective transient class. Leveraging these techniques, we have developed a two-stage pipeline 
tailored to the Zwicky Transient Facility transient alert stream. The first stage is alerts filter aimed at removing non-CVs, while 
the latter is an ML classifier produced using Extreme Gradient Boosting, achieving a macro average area under the curve score of 
0.92 for distinguishing between CV classes. By utilizing the generative topographic mapping algorithm with classifier posterior 
probabilities as input, we obtain representations indicating that CV evolutionary factors play a role in classifier performance, 
while the associated feature maps present a potent tool for identifying the features deemed most rele v ant for distinguishing 

between classes. Implementation of the pipeline in 2023 June yielded 51 intriguing candidates that are yet to be reported as CVs 
or classified with further granularity. Our classifier represents a significant step in the disco v ery and classification of different 
CV classes, a domain of research still in its infancy. 

Key words: methods: data analysis – surv e ys – stars: dwarf novae. 
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 I N T RO D U C T I O N  

ataclysmic variables are a class of compact binary star system in 
hich a donor star, usually a low-mass main-sequence star, transfers 
ass via an accretion disc to a CO white dwarf (WD) via the
echanism of Roche lobe o v erflow (Warner 1995 ; Hellier 2001 ).
he particulars of mass transfer rate, accretion rate, donor and WD 

ass, orbital separation, and magnetic field strength contribute to 
he variety of observable phenomena that these systems display. 
he classification structure of CVs is based on a combination 
f photometric variability, X-ray characteristics, spectroscopy, and 
olarimetry measurements. 
Thermal and viscous instabilities in the accretion disc, described 

y various incarnations of the disc instability model (Mineshige & 

saki 1985 ; Lubow 1991 ; Osaki 1996 ), cause semiregular bright-
ning events each referred to as a dwarf nova outburst. Systems
hat undergo dwarf nova outbursts are named dwarf novae. Outburst 
mplitudes typically lie in the 2–5 mag range usually lasting between 
 few days to a fortnight, recurring on time-scales of days to
onths; these attributes are specific to a given system. The dwarf 

ova class can be further subdivided into the U Geminorum (U 

em), Z Camelopardalis (Z Cam), and SU Ursae Majoris (SU 
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Ma) subclasses. Standstills (periods of constant brightness) and 
uperoutbursts (dwarf novae outbursts of greater amplitude and du- 
ation), respectively, distinguish the Z Cam and SU UMa subclasses 
rom one another and U Gem, which display only’normal’ outbursts 
e.g. Simonsen et al. 2014 ; Szegedi et al. 2022 . Extremes in the
ecurrence times of superoutbursts (supercycles) f acilitate tw o major 
U UMa subclasses, the ER Ursae Majoris type (Kato et al. 2013 ),
istinguished by extremely short supercycles with rapid-fire normal 
utbursts in between, and WZ Sagittae systems that appear to display
o normal outbursts, only superoutbursts, with supercycle lengths of 
rder years (e.g. Shugarov, Afonina & Zharova 2021 ). 
Stable (hot and viscous) accretion discs give rise to systems with

lmost constant brightness, referred to as nova-likes. Some nova- 
ike stars undergo periods where mass transferred from the donor is
ither diminished or even completely suppressed. Consequently, a 
rop in brightness of 3–6 mag in the optical occurs. These systems
re referred to as VY Sculptoris stars (Honeycutt & Kafka 2004 ;
chmidtobreick et al. 2018 ) – a no va-like subtype. Whilst, there e xist
our nova-like subtypes, three distinguishable spectroscopically, VY 

cl is the only one that can be identified photometrically. 
Novae are modelled as thermonuclear runaway events within the 

ccreted layer of hydrogen on the WD surface (e.g. Bode & Evans
008 ; Munari 2012 ; Chomiuk, Metzger & Shen 2020 ; Darnley &
enze 2020 , they produce a sudden high amplitude (8–15 mag

ypically) increase in optical brightness with a long-duration decline 
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weeks to years). Recurrence times are largely dependent on the WD
ass and donor mass transfer rate. Recurrent novae (RNe) have been

bserved to undergo more than one nova eruption, with recurrence
imes below 100 yr, while for classical novae (only one eruption
bserved) this is likely to extend up to 100 000 yr. 
Where the WD is strongly magnetic, with magnetic fields of B
 10 MG , the formation of an accretion disc is inhibited, instead the
ass transfer stream from the donor is directed out of the orbital plane

nd funneled by the magnetic field lines directly onto one or both of
he WD’s magnetic poles. Referred to as polars, or AM Herculis
tars (Cropper 1990 ; Thorstensen et al. 2020 ), the WD rotates
ynchronously with the orbital period causing the accretion flow to
l w ays interact with same field lines. Their photometric variability
s a consequence of the complex interplay between intrinsic and
xtrinsic sources of variability; high and low states of brightness (as
 consequence of fluctuations in the rate of mass transferred by the
onor) and orbital period modulations of few tenths of a magnitude,
ue to obscuration of the accretion flow or spot behind the limb of
he WD, contribute to the superposition of both short (hours) and
ong (weeks to months) time-scale photometric variability. 

Intermediate polars (or DQ Herculis stars) represent the interme-
iary between polars and non-magnetic CVs with magnetic field
trengths of between 1 and 10 MG (Patterson 1994 ; Ramsay et al.
008 ). A partial accretion disc may form, though disruption occurs
loser to the WD causing magnetically controlled accretion at smaller
adii. Photometrically, they can display modulations due to the WD
pin period (non-synchronous rotation) and the sideband period
etween the spin and orbital periods. Possibly also present are low
mplitude dwarf nova outbursts due to the truncated nature of the
ccretion disc, and high and low states in brightness (e.g. Šimon
021 ). 
The AM Canum Venaticorum stars (Solheim 2010 ; Levitan et al.

015 ) are rare and ultrashort period (5–65 min) binaries where the
onor is believed to be either another degenerate or a semidegenerate
tar composed mostly of helium. They are characterized by their
lue colour, due to the WD dominating the flux contribution o v er
n extremely low-mass donor (within Gaia DR3 Gaia Collaboration
t al. 2022 the blue photometer–red photometer (BP–RP) colour
s typically less than 0.6); strong helium emission and absence
f hydrogen within their spectra. Photometrically, their variability
s dependent on their orbital period, those with period between
2 and 51 min tend to display the outbursting characteristics of
heir hydrogen-rich counterparts though with lower duration and
mplitude (Ramsay et al. 2018 ). The diversity of Zwicky Transient
acility (ZTF) light curves for each class of CV is shown in Fig. 1 . 
Wide field, high cadence, and panchromatic surv e ys such as the

loan Digital Sky Survey (York et al. 2000 ), the (intermediate)
 alomar Transient F actory (Cao, Nugent & Kasliwal 2016 ), the Dark
nergy Surv e y (S ́anchez 2010 ), and new ongoing surv e ys such as the
TF (Bellm et al. 2019 ), the Asteroid Terrestrial-impact Last Alert
ystem’ (Tonry et al. 2018 ), and the Gra vitational-wa ve Optical
ransient Observer (Dyer et al. 2022 ) have dramatically improved
ur ability to disco v er these objects. These disco v eries hav e helped
ll gaps in our current knowledge, for example, constantly evolving
odels are being developed attempting to explain the diversity of

warf nova outbursts based on the disc instability model (Kotko et al.
012 ; Hameury 2020 ); Knigge, Baraffe & Patterson ( 2011 ) was able
o construct semi-empirical models for the evolution of CVs based
n donor star masses and radii; the disco v ery of a genuine standstill
n the AM CVn CR Boo helps to support the viewpoint of AM
Vns being the helium-rich analogue of hydrogen-rich CVs (Kato,
aeda & Moriyama 2023 ); and the larger sample size of all CVs
NRAS 527, 8633–8658 (2024) 
acilitates a disentanglement of CV subtypes within a Hertzsprung–
ussell diagram (Abrahams et al. 2022 ). Ho we v er, disco v eries also
nco v er new gaps too, such as the detection of pulsed X-rays in
wo AM CVns that not only raises the question of magnetically
ontrolled accretion in AM CVns but leads to implications for their
volutionary time-scales (Maccarone et al. 2023 ). To accelerate our
urrent understanding of CVs and, in turn, accretion mechanisms in
ransients such as X-ray binaries and active galactic nuclei (AGNs),
e require a greater sample size of CV members, especially the more

lusive subclasses. 
The identification of new and rare/unique CV candidates from

urv e y data is becoming an ever more difficult task due to the
hallenge of efficiently finding them amongst the large numbers
f sources exhibiting significant variability that are detected every
ight. Sources responsible include, but are not limited to, supernovae
SNe), variables stars, AGNs, tidal disruption events, and Solar
ystem objects that include asteroids, as well as artifacts (bogus
lerts). In the case of ZTF, transient alert rates can exceed a million
er night (Patterson et al. 2019 ), and this rate is set to be dwarfed by
he Rubin Observatory (Ivezic et al. 2019 ). As a further side effect,
acilities devoted to the follow-up of transient events are not enough
n number to investigate them all, therefore time on such facilities is
n short supply. Since the majority of genuine astrophysical sources
ay serve only to reaffirm our current understanding of the transient

lasses to which they belong, follow-up time will be reserved for
he minority, those that present a challenge to or help further our
nderstanding. 
Machine learning (ML) is widely acknowledged as a powerful

et of techniques ideally suited to address these challenges, with
pplications to source classification. For example, the classification
f ZTF alerts by F ̈orster et al. ( 2021 ), CRTS light curves by Neira
t al. ( 2020 ) and the recent utilization of ML in the separation of
aia transients into o v er 25 different classes (Rimoldini et al. 2022 ).
pecific focus on automated identification of CVs and their subtypes

s an active, though underdeveloped, field of research. Examples so
ar include the 497 CVs unco v ered from ZTF alerts by applying
imple colour, amplitude, and variability time-scale filters (Szkody
t al. 2020 , 2021 ); an extension of this filter approach by van Roestel
t al. ( 2021 ), employing Gaia and PanSTARRS colours to identify
ine outbursting AM CVns within ZTF alerts; and application
f ML to identify CVs within Gaia science alerts (Mistry et al.
022 ). 
Here are presented details of our development and application

f an automated ML pipeline aimed at identifying the various
lasses of CVs from the ZTF alert stream via the Lasair alerts
roker (Smith et al. 2019 ). We start by explaining the initial alerts
ltering using Lasair (Section 2.1 ) before moving on to describing

he construction of our data set upon which an ML classifier is
enerated (Sections 2.2 –2.5 ). Sections 2.6 –2.11 describe the ML
echniques adopted and algorithms tested. The results of our efforts
o generate a suitable ML CV classifier for our pipeline are presented
n Section 3 along with its initial outcomes based on implementation.
he discussion of our results (Section 4 ) will be given in the context
f light-curve profiles and the underlying physical properties of the
V subtypes. 

 M E T H O D  

.1 Alerts filter 

lert streams from ZTF are ingested by alerts brokers such as
asair (Smith et al. 2019 ) and Alerce (F ̈orster et al. 2021 ). They
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Figure 1. Example light curves of each CV class. Green and red points indicate g - and r- band observations, respectively. 
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rovide real-time alerts access, as well as science, difference and
eference image cutouts, light curves of the associated ZTF object,
ontextual information, statistics derived from source photometry,
nd the ability to cross-match events with catalogued sources.
rokers provide the ability to filter alerts based on the above in
rder to focus on those that are most rele v ant to their science goals.
ur pipeline experiments with Lasair’s cross-matching and filtering

ervices to focus on objects that lie within the typical parameter
pace of CVs as a first stage before implementation of our ML
lassifier. 

To remo v e non-CV catalogued sources, the Sherlock classification
oftware (Smith et al. 2020 ), implemented by Lasair for cross-
atching, is examined. Sherlock uses a model, generated by a

oosted decision tree (DT) algorithm, that mines a database of
istorical and on-going astronomical surv e y data to predict the nature
f the object based on the resulting cross-matches. The database
nclude data sets from all-sky surveys as well as more source
pecific catalogues such as the Million Quasars Catalogue (Flesch
019 ), Downes Catalogue of CVs (Downes et al. 2001 ), and the
itter Cataclysmic Binaries Catalogue v7.24 (Ritter & Kolb 2003 ).
herlock assigns the label variable star (VS), cataclysmic variable
CV), AGN, or nuclear transient (NT) should the transient be located
ithin the synonym radius (1.5 arcsec) of a catalogued point source
r, in the case of an NT, the core of a resolved galaxy; an SN if not
lassified as an NT but is found close enough to a resolved galaxy to
e deemed physically associated; a bright star if the transient is not
atched against the synonym radius of a star but is associated within

he magnitude-dependent association radius; Orphan if the transient
ails to be matched with a catalogue source; or unclear otherwise.
n an effort to limit alerts of non-CVs we experimented with the use
f Sherlock, and catalogue cross-matching. The remaining sources
re then subject to colour and magnitude change cuts akin to those
escribed in Szkody et al. ( 2020 , 2021 ). In those works, the ZTF
lert stream filtering involved looking for point sources with g –
 colour < 0.6 and a magnitude change � m ≥ 2 within a time-
cale of 2 d in the g band. This resulted in a total of 701 known or
andidate CVs o v er two years of its implementation that typically
isplayed dwarf nova outbursts and changes in accretion state. We
elaxed these constraints with respect to Szkody et al. ( 2020 , 2021 )
o maximize the number of targets for classification. In performing
 cut based on colour, attempts were made to account for several
actors: differences in the sampling between the g and r bands;
ampling differences between outburst activity and quiescence; and
he tendency of CVs to have bluer colours during outbursting phases
han during quiescence (a consequence of the enhanced accretion
nd increased temperature of the disc during outburst). Therefore,
or each source, the colour for each night of observation was
xtracted (where calculable); the mean and median averages of these
ere recorded along with the colour at maximum and minimum
rightness. The constraint of ≤0.7 for each of these quantities, as
ell as for the o v erall mean colour (calculated without the epochal

equirement) was utilized. Fig. 2 shows that a significant fraction
f CVs will be reco v ered at or below the epochal mean g – r of
.7. This constraint is flexible, based on the type of CV we may
ish to focus our attention on. Constraints placed on magnitude

hange, � m , involv ed e xperimenting with various thresholds. A
igher � m yielded sources with more rapid variability, for example,
 Cam systems, while lo wer v alues increased the contribution of
ources akin to nov a-likes. Gi ven that alerting sources that the
lter outputs are entered into an ML classifier to distinguish these
 ariability dif ferences, foregoing a � m constraint is the approach
dopted. 
NRAS 527, 8633–8658 (2024) 
.2 Source list 

he light curves and associated metadata (see the following subsec-
ion) of the sources remaining after the Lasair filter are used as input
or an ML-based CV subclass classifier. The classifier is trained
n the ZTF g - and r- band light curves of catalogued CVs whose
ubtypes have been ascertained along with associated Gaia Data
elease 3 data (Gaia Collaboration et al. 2022 ) where available. This

ection describes the nature of the data set for training and testing of
andidate classifiers. 

To construct a data set, we consulted the American Association
f Variable Star Observers Variable Star Index (VSX) 1 which is
 continuously updated repository of transient sources. Confirmed
Vs from archi v al resources such as The Catalogue and Atlas of
ataclysmic Variables 2 (Downes et al. 2001 ), and the catalogue of
ataclysmic binaries, low-mass X-ray binaries, and related objects 3 

Ritter & Kolb 2003 ) are contained within the repository, as are
ore recent disco v eries detailed in literature (e.g. Wenger et al.

000 ; Szkody et al. 2020 ; van Roestel et al. 2022 ). Each repository
ource has a dedicated page where further information can be
ound such as their designated names in other surv e ys, references
o literature for that source, orbital periods, and more. The labelling
rocedure conducted by VSX involves constant re vie w and revision
f metadata, with citations for any new details and rationales behind
hanges fully documented. VSX contained a list of o v er 15 300
argets classified as CV, of which 5683 were successfully cross-

atched with ZTF alerts objects. We supplemented this list with
ovae catalogued in the Bright Transient Survey 4 (BTS) and not in
he AAVSO list. This constituted an extra 28 sources making a total of
708 CVs. The vast majority (4822) were of the dwarf nova subclass.
ince we aim for a more granular classification than that, we refined
ur sample further to only include dwarf no va e xamples with further
ubdivision into the U Gem, Z Cam, and SU UMa subtypes. This left
s with a data set of 1568 samples. 

.3 Light cur v es 

he light curves themselves are generated from observations with the
7 deg 2 camera mounted on the Samuel Oschin Telescope at Palomar
bservatory in California (Harrington 1952 ). For a 30-s exposure the
edian 5 σ limiting magnitude is 20.8 in the g band and 20.6 in the

 band. The observing strategy involves three surveys, the g - and r-
and data for two of which are available publicly. The Northern sky
urv e y is a three-day cadence surv e y of all fields north of –31 ◦, while
he Galactic plane surv e y observ es daily within 7 ◦ of the Galactic
lane. For both surveys, each night a field is observed, it is observed
wice, once for each of the g and r bands, and at least 30 min between
isits. With these cadences, superoutbursts, whose durations range
rom a few days to several weeks, are well sampled, as are nova
ruptions, high and low states of brightness, and standstills. The g
nd r bands also provide colour information, a further tool for class
eparation. 

Light curves of cross-matched sources were downloaded from
asair. Brightness values are given in difference magnitudes, this

s the magnitude derived from the positive difference between the
ux in the reference image and that in the science image. Where a
ource contains data points below the reference flux, the difference

https://www.aavso.org/vsx/index.php
https://heasarc.gsfc.nasa.gov/W3Browse/all/cvcat.html
https://heasarc.gsfc.nasa.gov/W3Browse/all/rittercv.html
https://sites.astro.caltech.edu/ztf/bts/bts.php
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Figure 2. Colour–magnitude diagrams using Gaia G- band absolute magnitude and the colour derived from the ZTF g and r bands. The dashed red line in each 
plot denotes the ZTF g – r colour threshold of 0.7. Orange points in each subplot denote examples of a particular CV class, while the blue points represent 
examples belonging to the remaining classes (labelled ’other’). 
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agnitude light-curve profile may deviate from that one would 
xpect for its transient class. Subsequently, these difference fluxes 
ere converted to apparent magnitudes where possible. The formulae 
sed to convert from difference magnitudes to apparent magnitudes 
nd associated errors are given by 

 corr = −2 . 5 log 10 (10 −0 . 4 m ref + sgn 10 −0 . 4 m diff ) , (1) 

m corr = 

(
10 −0 . 8 m diff δm 

2 
diff 

)0 . 5 

10 −0 . 4 m ref + sg n 10 −0 . 4 m diff 
, (2) 
here we simply convert the difference m diff and reference m ref 

agnitudes to fluxes, sum them considering the sign of the alert
 sgn ) and convert the results back to magnitude m corr . Simple error
ropagation gives the error δ m corr . 
To be included into our data set, two main vetting procedures

ere followed. The first was to verify the label by checking the
eferences associated with the source. This was easier for the less
re v alent classes such as the magnetic systems and AM CVns, where
embership can only be verified by means beyond photometry (e.g. 

pectroscopy and pulsed X-ray detection), and for dwarf novae 
urther subdivided into the SU UMa and Z Cam classes. For U
MNRAS 527, 8633–8658 (2024) 
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M

Table 1. Number of targets per CV class within the data set. 

Class/subclass Number of targets 

SU Ursae Majoris 630 
Z Camelopardalis 174 
U Geminorum 116 
Nova-like VY Sculptoris 120 
Nova-like non VY Sculptoris 123 
Nova 46 
Polar 114 
Intermediate polar 49 
AM Canum Venaticorum 46 
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em dwarf novae and those dwarf novae not divided into subclasses,
eferences to literature were less readily available. A second vetting
rocedure involved inspection of the light curves themselves, where
issclassifications were identified and their appropriateness for data

et inclusion could be assessed. In assessing their suitability for
nclusion we considered whether phenomena characteristic to a given
ransient type (e.g. standstills or nova eruption) were present, the
umber of data points, and whether colour information may be
erived. One must be careful to omit examples based on the number
f data points, as a limited number may be representative of sources
nly visible during brightening events. With this consideration in
ind, a minimum threshold of at least four points in at least one
lter was set. 
Example ZTF light curves for each of the classes defined in the

ollowing section are given in Fig. 1 . Aside from the usual observing
aps due to the time of year, the limiting magnitude of the telescope
n combination with the brightness of the source results in a variety of
bservational time-spans – objects below the limiting magnitude in
uiescence may briefly rise into view during episodes of activity, for
xample, ZTF22abgglcz and ZTF19aa vkbfk. Outb ursts of different
ycle lengths (time between successive outbursts) are clearly evident
or dwarf novae, as are superoutbursts (e.g. ZTF18abosmfh). Evident
lso are standstills (e.g. ZTF17aaaeepz), long-term changes (high
nd low brightness states) due to changes in mass transfer rate (e.g.
TF18aasncio, ZTF18abcjzao, and ZTF18abryuah), and the various
utburst profiles of nova eruptions. 

.4 Classification structure 

ith our task firmly routed in distinguishing between the different
ypes of CV, we settled on a nine-class classification structure that
eparated the dwarf nova class into their three main subtypes: SU
Ma, Z Cam, and U Gem; distinguished between nova-likes and
ova-likes containing the VY Scl characteristic (see Introduction);
eparated the magnetic CVs into their polar and intermediate polar
ubclasses; with novae and AM CVns making up the remainder. The
tructure is moti v ated by the desire for a model that classifies to
he highest level of class granularity (to group examples by their

ost unique traits) while at the same time balancing this desire with
he requirement of enough examples to represent the class. This
nfortunately inhibits our ability to separate the WZ Sge and ER
Ma systems from their parent class (SU UMa), and separate novae
y their various light-curve profiles. 
Table 1 shows the number of examples per CV class following our

etting procedures. The list is understandably heavily biased towards
warf novae due to their ubiquity within the CV population. 
NRAS 527, 8633–8658 (2024) 
.5 Features 

.5.1 ZTF light-curve derived features 

o distinguish between the classes of CV, statistical, percentile,
nd periodicity-based features were extracted from the g and r
and source light curves. The suite of features provided by the
EATURE EXTRACTOR FOR TIME SERIES ( FEETS ) PYTHON

ackage (Cabral et al. 2018 ) is comprehensive enough to describe
he vast majority of variability characteristics present within our light
urves. We therefore make use of them with the addition of several
eatures of our own that are more specifically geared towards CV
ariability. Non-outbursting systems such as nova-likes and polars
re generally well characterized by the feets feature set. The diversity
f outbursting systems, ho we ver, are less well characterized after
aseline models revealed the confusion between classes exhibiting
uch behaviour. 

As described in Otulakowska-Hypka, Olech & Patterson ( 2016 ),
he typical observing cadence, sampling consistency (affected by
eather), limiting magnitude, and the number of filters that a

urv e y operates under go v erns our ability to visually recognize
nd extract features that accurately describe the different types of
ariability displayed by dwarf nova exhibiting systems. Sub-optimal
onditions related to the abo v e inhibit the usefulness of the features
 xtracted. Giv en the lev el of classification granularity desired in this
ork, we de veloped se veral simple features that may recognize the
resence of phenomena such as superoutbursts, standstills, and their
roperties. 
The find peaks function from the SCIPY PYTHON package locates

ignal peaks (outbursts peaks in our case) by simply comparing
eighbouring brightness values. Not all peaks are identifiable due
o undersampled outburst and quiescent phases, and intricacies of
he function, though enough useful information is present to obtain
he following: an outburst amplitude based on the peak with the
argest such value; and rise and decline rates based on the minimum
ime between outburst peaks and their bases. These features were
 v aluated for specific outburst amplitude ranges. Recurrence rates
re best described by the frequency at which the maximum power
f the Lomb–Scargle periodogram of the light curve occurs. The
omb–Scargle method will output a value even if outbursts or
trong periodic signals are not observed. The ratio of the maximum
ower to the mean power is therefore used to distinguish strong
rom weak periodic signals. With respect to standstills, obvious
nstances can be CHARACTERIZED by utilizing a rolling standard
e viation windo w. Sources with standstills will have windo ws with
igh standard deviation values during outbursting periods and low
alues during standstills. A high ratio of the maximum of the
ormer to the minimum of the latter can detect this dichotomy.
his dichotomy, ho we ver, is also present in outbursting systems
ith well defined quiescent phases (without standstills). One is

eparated from the other by including the mean brightness level of
he window with the minimum standard deviation. A brightness level
ppreciably higher than the minimum brightness aims to provide the
istinction. 
Colour is a useful separator of different CV subtypes. In addition

o the g – r colour calculated from the average brightness in each
lter, we derive the colour for each night where both a g - and r -
and observation was recorded. We include the mean and median
f these as features to mitigate the skewing of colour values due
o sampling differences between the bands during outburst and
uiescence phases. Furthermore, we include the colour at maximum
nd minimum brightness to account for bluer colours during out-
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Table 2. Features extracted from each of the g- and r- band light curves. 

Feature Description 

Amplitude Half of the difference between the median of the maximum 5 per cent and the median of the minimum 5 per cent 
magnitudes 

AndersonDarling The Anderson–Darling test is a statistical test of whether a given sample of data is drawn from a given probability 
distribution (normal distribution) 

Autocor length Cross-correlation of a signal with itself. Informally, described as the similarity between observations as a function of the 
time lag between them, useful for finding repeating patterns. Autocorrelation returns a vector, the feature returns the 
vector length for values less than e −1 

Beyond1Std Percentage of points beyond one standard deviation from the weighted mean (weighted by the square of the inverse error) 
CAR mean The mean parameter used to model irregularly sampled time-series with the continuous time autoregressive model 

(Brockwell & Davis 2002 ) 
CAR sigma The variability parameter used to model irregularly sampled time-series with the continuous time autoregressive model 
CAR tau The tau parameter used to model irregularly sampled time series with the continuous time autoregressive model. 

Interpreted as the variability amplitude of the light curve 
Con The number of three consecutive data points that are brighter or fainter than 2 σ and normalized the number by N – 2 
Eta e ( ηe ) Variability index η is the ratio of the mean of the square of successive differences to the variance of data points. 
FluxPercentileRatioMid X Ratio of centred flux percentile ranges. If F 5, 95 is the difference between the 95th and 5th percentile of ordered 

magnitudes, then FluxPercentileRatioMid X = F 40, 60 / F 5, 95 , F 32.5, 67.5 / F 5, 95 , F 25, 75 / F 5, 95 , F 17.5, 82.5 / F 5, 95 , and 
F 10, 90 / F 5, 95 , for X = 20, 35, 50, 65, and 80, respectively. 

Freq i harmonics amplitude j Amplitude of the jth harmonic of the i th frequency component of the Lomb–Scargle periodogram 

Freq i harmonics rel phase i The phase corresponding to Freq i harmonics amplitude j relative to the phase of the first frequency component. 
Gskew Median-of-magnitudes based measure of the skew 

LinearTrend Slope of a linear fit to the light curve 
MaxSlope Maximum absolute magnitude slope between two consecutive observations 
Mean Mean magnitude 
Meanvariance Ratio of the standard deviation to the mean magnitude 
MedianAbsDev Median absolute deviation of magnitude 
MedianBRP Median buffer range percentage; fraction ( ≤1) of photometric points within amplitude/10 of the median magnitude. 
PairSlopeTrend Considering the last 30 (time-sorted) measurements of source magnitude, the fraction of increasing first differences minus 

the fraction of decreasing first differences 
PercentAmplitude Largest percentage difference between either the max or min magnitude and the median 
Per centDiffer enceFluxPer centile Ratio of the difference between the 95th and 5th percentile of ordered magnitudes, F 5, 95 , o v er the median magnitude. 
PeriodLS Period corresponding to frequency of maximum power in the Lomb–Scargle periodogram 

Period fit The false alarm probability of the largest Lomb–Scargle periodogram value. 
Psi CS RCS applied to the phase-folded light curve (generated using the period estimated from the Lomb–Scargle method) 
Psi eta ηe index calculated from the phase-folded light curve 
Q31 Difference between the third and first quartile of the light-curve magnitudes 
Rcs Range of a cumulative sum ( R CS ) of the light curve. Defined as R CS = max(S) – min(S), where S = 

1 
Nσ

∑ l 
i= 1 ( m i − m̄ ). 

N represents the number of points, with i = 1, 2,..., N 

Skew Skewness of the magnitudes 
SlottedA length Slotted autocorrelation length – same as Autocor length except that time lags are defined as intervals or slots instead of 

single values 
SmallKurtosis Small sample kurtosis of the magnitudes 
Std g Standard deviation of magnitudes 
StetsonK Robust measure of the kurtosis (Stetson 1996 ) 
StetsonK AC Variability index derived based on the autocorrelation function of each light curve (Stetson 1996 ) 
StructureFunction index 21 
Q31 colour Q31 applied to the difference in the g - and r- band magnitudes 
StetsonJ A robust version of the Welch/Stetson variability index I (Stetson 1996 ) describing the synchronous variability of different 

bands 
StetsonL Variability index describing the synchronous variability of different bands that utilizes both StetsonJ and StetsonK 

Notes. Listed are those available from the feets package, where for each a more detailed explanation is provided at https:// feets.readthedocs.io/ en/ latest/ 
tutorial.html . 
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ursting phases. All light-curve derived features are given in Tables 2 
nd 3 . 

.5.2 Features derived from Gaia 

n addition to the light-curve-based features, we also included data 
rom Gaia DR3 (Gaia Collaboration et al. 2022 ). From Gaia , we
ade use of G band, RP , and BP filter photometry, including colours
nd astrometric data (such as parallax and proper motion). Distances 
nd absolute magnitudes are also derived. These supplementary data 
re included as features that are described in Table 4 . Such metadata
re not available for every source, and we would not expect this
nformation to be available for new sources of unknown class that
e wish to classify. We discuss this issue in Section 2.9 . 
MNRAS 527, 8633–8658 (2024) 
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Table 3. Additional light-curv e-deriv ed features are implemented in this work. 

Feature Description 

median Median of magnitudes 
min mag Minimum magnitude (maximum brightness) 
max mag Maximum magnitude (minimum brightness) 
n obs Number of light-curve data points 
dif min mean Difference between minimum and mean magnitude 
dif min median Difference between minimum and medium magnitude 
dif max mean Difference between maximum and mean magnitude 
dif max median Difference between maximum and median magnitude 
dif max min Absolute difference between maximum and minimum magnitude 
temporal baseline Duration of the light curve 
pwr max Maximum power of Lomb–Scargle periodogram 

pwr maxovermean Maximum o v er the mean power of the Lomb–Scargle periodogram of the light curv e. 
npeaks X to Y Number of peaks with amplitude between X and Y . X ∈ (0.5, 1, 2) and Y ∈ (1, 2, 5). npeaks above5 for peaks abo v e 5 

magnitudes 
rrate X to Y Maximum rise rate of peaks with amplitude between X and Y 

drate X to Y Maximum decline rate of peaks with amplitude between X and Y 

amp X to Y Maximum amplitude of peaks with amplitude between X and Y 

rollstd ratio t A s B Calculate the rolling standard deviation of the light curve with a window size B ∈ (5, 10), where the threshold for the 
minimum light-curve data points, A ∈ (10, 20), is met. The ratio of the highest to lowest standard deviation of these 
windows is the output 

stdstilllev t A s B Ratio of the mean magnitude of the window with the lowest standard deviation to the magnitude range of the light curve –
i.e. standstill location relative to the maximum brightness 

pnts leq rollMedWin20 −C mag Number of data points within a rolling window of 20 observations that are brighter than C magnitudes of the median 
magnitude of that window, where C ∈ (1, 2, 5) 

pnts geq rollMedWin20 −D mag Number of data points within a rolling window of 20 observations that are fainter than C magnitudes of the median 
magnitude of that window, where D ∈ (1, 2, 3) 

pnts leq median −E mag Number of data points brighter than E magnitudes of the median magnitude of the light curve, where E ∈ (1, 2, 5) 
pnts geq median −F mag Number of data points fainter than F magnitudes of the median magnitude of the light curve, where F ∈ (1, 2, 3) 
clr mean Mean of the colours derived at each epoch (night) where an observation in both the g and r band was obtained. Where no 

epochal colour information is available for a source, the difference between the mean g magnitude and mean r magnitude 
is used. 

clr median Same process as used to calculate clr mean , this time with the median instead of mean magnitude 
clr std Standard deviation of the epochal colour 
clr bright Colour obtained from epoch where the system is at its brightest. Where epochal colour is unavailable, this is the difference 

between the minimum g- and r- band magnitudes 
clr faint Colour obtained from epoch where the system is at its faintest. Where epochal colour is unavailable, this is the difference 

between the maximum g - and r- band maximum 

Table 4. Supplementary data from Gaia EDR3 incorporated as data set features. 

Feature Description 

ra, dec, ra error, dec error Right ascension, declination, and associated standard errors 
l, b Galactic longitude and Galactic latitiude 
ecl lon,’ecl lat Ecliptic longitude and Ecliptic latitude 
bp rp, bp g, g rp BP–RP, BP–G, and G–RP colours 
phot X mean flux Mean flux in the G, integrated BP, or integrated RP bands – corresponding to X = g, bp, or rp 

respectively 
phot X mean flux error Error on the mean flux in the X band 
phot X mean mag Mean magnitude in the G , integrated BP, or integrated RP bands – corresponding to X = g, 

bp, or rp respectively 
par allax, par allax error Gaia parallax in milliarcseconds (mas) and standard error 
pm Proper motion (mas/yr) 
pmra error, pmdec error Standard error of the proper motion in right ascension and declination directions (mas/year) 
phot g n obs, phot bp n obs, phot rp n obs Number of observations in the Gaia G , BP , and RP bands 
phot g mean ma g , phot bp mean ma g , phot rp mean mag Mean magnitude in the Gaia G , integrated BP and RP bands 
distance Distance to the source derived from the inverse parallax (parsecs) 
absma g g , absma g BP, absma g RP Absolute Gaia G , integrated BP and RP magnitudes derived from parallax 
nu eff used in astrometry Ef fecti v e wav enumber of the source. Calculated as the photon-weighted inv erse wav elength, 

calculated from the BP and RP spectra ( λ−1 ) 
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.6 Training, validation, and test sets 

upervised classification algorithms require a training data set for 
earning patterns and relationships present within the data to generate 
 model capable of inference. Training set examples are selected 
rom the original data set, the remainder of which is used for testing
f the resultant model. Should the data set be sufficiently large, 
 validation set, usually the same size as the test set, will also
e obtained. The validation set is used to tune algorithm-specific 
arameters (or hyperparameters) that control how a model is trained, 
hile the test set is held back, taking no part in the training and
odel tuning process. The size of our data set is insufficient for
 separate validation set, with minority class examples numbering 
nly a few dozen. We therefore opt for a technique designed for such
ases, stratified k -fold cross-validation. This involves splitting the 
raining set into k separate subsets (or folds) in a stratified manner –
ach fold contains the same class proportions as the o v erall training
et. A model is trained on k – 1 folds and e v aluated, based on a
iven metric, on the remaining fold (validation fold); this step is
epeated until each fold has partaken in the validation process. The 
etric scores for each of the k models are mean averaged to produce
 cross-validation score. This technique allows us to maintain an 
dequately sized training set and serves to assess the consistency 
f our model (and data). We use a stratified train-test set split ratio
f 70:30 and use a 10-fold stratified cross-validation procedure for 
yperparameter tuning and model e v aluation. The 70:30 split holds
ack for testing at least a dozen examples for minority classes whilst
roviding a high proportion of examples for the algorithm to learn 
atterns during training and for validation. 

.7 Feature selection 

ur data set consists of o v er 250 features, and with only 1439 ex-
mples, we introduce the ‘curse of dimensionality’ (Bellman 1957 ), 
hich refers to a set of problems arising from high dimensionality 
ata sets. As you add dimensions (features) you rapidly increase 
he minimum amount of samples required to adequately represent 
ll combinations of feature values in your data set. Increasing 
he dimensionality increases the complexity of the model whilst 
lso causing the model to become increasingly dependent on the 
raining set, thus leading to o v erfitting. Selecting the features most
nformative for our task enables ML algorithms to train faster, reduces
omplexity allowing for easier interpretation, reduces overfitting, 
nd can impro v e model accurac y for the right subset of features.
o identify the optimal feature subset, the variance inflation factor 
VIF; Vu, Muttaqi & Ag alg aonkar 2015 ), the one-way Analysis Of
ariance (ANOVA; Quirk 2012 ), and the mutual information (MI) 
core (Quirk 2012 ) methods were examined from the filter feature 
election family that measures the rele v ance of features by their
orrelation with the dependent variable. From the wrapper method 
amily, that examines the usefulness of a subset of features by training
 given model on them, the forward feature selection (FFS) method 
as chosen. These methods were applied to the training set only to
 v oid data leakage – information about the target being present in
he training set that would not be available when the model is used
or prediction (Singhi & Liu 2006 ; Demircio ̆glu 2021 ). 

.7.1 Forwar d featur e selection 

FS is an iterative method starting with a model with no features.
ith each iteration we add a feature, the one that produced the

reatest increase in a performance metric as measured on a validation 
et. The process continues until no further performance increase is 
easured. The set of selected features may differ based upon the

hoice of ML algorithm (Section 2.10 ). Different algorithms often 
ork best with distinct subsets of features, and the method can adapt

o these individual requirements. 
FFS is utilized for all but the DT-based algorithms (Section 2.10.1 )

s they naturally determine the most important features during the 
ree-building process. 

.7.2 Variance inflation factor 

IF is a method used to detect multicollinearity – the existence of a
inear relationship between two or more explanatory (independent) 
 ariables. It measures ho w much the v ariance of the estimated
egression coefficients are inflated as compared to when the predictor 
ariables are uncorrelated. It is found by regressing each independent 
ariable on the remaining independent variables to assess the degree 
o which it is explained by the remaining variables. VIF is given by 

IF = 

1 

1 − R 

2 
, (3) 

here 

 

2 = 1 − SS res 

SS tot 
, (4) 

here SS res is the sum of squared residuals to the line of best fit in a
inear regression model, while SS tot is the sum of squared residuals
o the average value. One uses this selection method by iteratively
emoving features with the highest VIF and recalculating the metric. 
 VIF equal to 1 represents the absence of multicollinearity, while

he effects of multicollinearity increases with increasing VIF. While 
t is desirable to have VIF as close to 1 as possible, this generally
eads to the removal of variables that have a high positive impact on

odel performance if we are not careful with our implementation of
he technique. One must be careful to assure the feature calculation
s present in some form within remaining features to maintain the
ssociated information. VIF is particularly beneficial when dealing 
ith feature redundancy that may arise when a feature is derived

rom both the g and r bands. We experimented with VIF values of
0, 5, 2.5, and 1.5 for all but the DT-based algorithms since DTs
elect features in a greedy fashion and make no assumptions on
elationships between features. 

.7.3 One-way ANOVA 

ne-way ANOVA compares the mean value of a variable for each
f three or more groups. It determines if any of those means
re statistically significantly different from each other. The null 
ypothesis states that there is no statistically significant difference 
etween any two group means: 

 0 = μ1 = μ2 = μ3 = μ4 = ... = μk , (5) 

here μ is a group mean and k is the number of groups. The alter-
ative hypothesis states that at least one of the groups is statistically
ignificantly different from another at a significance threshold of 
 per cent. This statistic was used to identify the significance of each
eature ordered by p -v alue. A gi ven algorithm was then trained using
he top x per cent of the most significant features and the model cross-
alidation performance recorded. This step was repeated, increasing 
he values of x in 5 per cent increments from 5 to 95 per cent, to
rrive at a subset of features where model performance was strongest.
his method is akin to FFS, though with features added based on a
MNRAS 527, 8633–8658 (2024) 
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tatistical test rather than o v erall model performance. The moti v ation
or the usage of one-way ANOVA lies in its goal to select a set of
eatures that hold significant importance in differentiating between
lasses. As with FFS and VIF, this approach was only performed
ith non-DT-based algorithms. 

.7.4 Mutual information 

I is the application of information gain (typically used in the
onstruction of DTs) to feature selection. The MI score measures
he degree to which two variables are related. A score of zero is
roduced if the two variables are independent, and higher values for
igher dependencies. For two jointly discrete random variables x and
 , MI takes the form: 

utual Information = 

∑ 

x∈ X 

∑ 

y∈ Y 
p( x , y ) ln 

[
p( x , y ) 

p( x ) p( y ) 

]
. (6) 

We make use of the scikit-learn implementation, which uses a
earest neighbour method instead of binning to handle cases where
he independent variable (feature), x , is continuous, assuming a
iscrete target, y , (see Ross 2014 ). Under the MI feature selection
rotocol, the most performant features were identified in the same
ay as for one-way ANOVA, resulting in slight variations in the
ptimal subset of features for each algorithm. In a similar fashion to
ne-way ANOVA, MI aims to select features most crucial for class
istinction. Ho we ver, MI quantifies the information shared between
eatures and the outcome, thereby un veiling non-linear , intricate
elationships. This feature reduction method was not employed
or the DT-based algorithms for the same reasons as abo v e, and
urthermore, MI is at the heart of the operation of these algorithms. 

.8 Class balancing 

 difference in class frequencies affects the predictability of a model.
ifferences in class prevalence cause algorithms to be biased towards

earning patterns more specific to the majority class, and produce
odels that perform poorly in minority class predictions. To handle

he class imbalance present within the data set (see Table 1 ), we tested
oth a non-sampling method, class weighting (should the algorithm
ermit such a strategy), and undersampling of the majority class
ombined with the minority class o v ersampling technique Adaptive
ynthetic (ADASYN; Haibo et al. 2008 ), a variation of Synthetic
inority Oversampling Technique (SMOTE; Chawla et al. 2002 ). 

.8.1 Class weighting 

ather than augmenting the data set, one may modify the algorithm
o account for skewed class distributions by giving different weights
o each class depending on their data set pre v alence. The dif ference
n weights influences the classification during the training phase.
he goal is to penalize the miss-classification of the minority class
y setting a higher class weight, while at the same time reducing
he majority class weight. Weightings are applied within the cost
unction for each algorithm such that the miss-classification of a
inority class example (e.g. an AM CVn) leads to a greater cost

enalty than for a majority class example (e.g. an SU UMa). 

.8.2 ADASYN 

MOTE works by selecting a random example from the k nearest
eighbours (KNNs) in feature space of a randomly chosen example
NRAS 527, 8633–8658 (2024) 
rom the minority class (or class of choice); draws a line in this
eature space between the examples and generates a new sample at
 random point along that line. The ADASYN adaptation generates
ore synthetic examples in regions of feature space where the density

f minority examples is low, and fewer or none where the density is
igh. Subsequently, more synthetic data are generated for minority
lass samples that are harder to learn compared to those where many
xamples are available, making it easier to learn. 

.9 Missing data 

issing data due to insufficient data points during the light-curve
eature extraction process accounts for as much as 20 per cent for a
iven feature. Whilst that due to unavailability of metadata accounts
or up to 33 per cent. Many ML algorithms do not support missing
alues, therefore strategies must be implemented to address this
bsence of data. The most common and simplest strategy is to replace
or impute) missing values with the mean or median of the feature,
o we ver, this method ignores relationships between features and
educes the variance of the variable, thereby introducing bias to the
odel. The following aims to mitigate such bias. 
Adopted here is a two-step approach, first the reasons for miss-

ngness is assessed, and we assign either an appropriate value, such
s that for the other filter, a value based on an immediately relevant
eature, or the value for that feature is left as missing. The final step
s to utilize the scikit-learn implementation of the KNN imputation
ethod (Troyanskaya et al. 2001 ). For each sample, each missing

eature is imputed using the values from the KNNs (based upon
ome distance metric, typically euclidean) in feature space where that
eature value is present. The imputed value will be either the uniform
r weighted-by-distance average feature value for those neighbours.
e implement this method using the weighted-by-euclidean distance

verage for imputation with the default five nearest neighbours. 

.10 ML algorithms 

he algorithms whose performance we e v aluate are scikit-learn’s
Pedregosa et al. 2011 ) Python implementations of random forest
RF) (Breiman 2001 ), KNN (Zhang 2016 ), Gaussian Naive Bayes
GNB; Zhang 2004 ), and linear discriminant analysis (LDA; Hastie,
ibshirani & Friedman 2001 ). Also used are the Extreme Gradi-
nt Boosting (XGBoost) algorithm (Chen & Guestrin 2016 ) and
eras (Chollet et al. 2015 ) implementation of an artificial neural
etwork (ANN) in the form of a multilayer perceptron – a fully
onnected multilayer ANN (Kruse et al. 2022 ). Furthermore, for
odel e v aluation and interpretability purposes, we used Gaspar

 2018 ) PYTHON implementation of generative topographic mapping
Bishop, Svens ́en & Williams 1998 ). 

The array of algorithms embody a diverse spectrum of classifi-
ation strategies chosen to extract optimal insights from the data
et. RF is adept at navigating intricate patterns in data through its
bility to handle non-linear relationships, high-dimensional data, and
oisy features. XGBoost is known for delivering high-performance
calability, often surpassing other algorithms and underscoring the
otential of ensemble methods. KNN adds instance-based learning
o the mix, Naive Bayes adds probabilistic modeling, and LDA is
dept at discerning linear separability. Meanwhile, the multilayer
erceptron, is a fundamental deep learning architecture, these are
apable of capturing intricate patterns in data. 



ML for ZTF CV discovery 8643 

2

R  

M
r  

b  

T  

m
w
s

g  

h
U
o
r  

t
i
a
a
d  

t
c

f
p
r  

l
n
t
r
m  

r  

r

2

K
t
e
f  

n
o
d
i
u  

d

2

A
l
c  

r
a
s
a
i
t
a
t
f

e
w

2

L
c
t
d  

t  

o  

f
f
e  

d

2

A  

t  

i  

o
i  

p
s
f
t

2

G
i  

(  

S  

o  

t  

P  

G
i  

w
c
m
a
o
b  

m  

I  

m  

b
 

d
f  

i
o  

p  

f
o  

p  

c
s
p

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/8633/7459939 by Liverpool John M
oores U

niversity user on 11 January 2024
.10.1 DT-based ensemble methods 

F and XGBoost are built with an ensemble of DTs (Rokach &
aimon 2008 ) combined either non-sequentially or sequentially, 

espectiv ely. With the pro vided features, DTs employ a series of
inary splits on the training data set, starting from the root node.
hese splits aim to create groups (referred to as leaf nodes) that
aximize dissimilarity while moving closer to a uniformity of class 
ithin each group. The resulting model utilizes this hierarchical tree 

tructure to make predictions on unseen instances. 
RF operates by employing a voting mechanism, using predictions 

enerated by a randomly selected set of DTs. The class with the
ighest number of votes becomes the prediction of our model. 
sing the bootstrap aggregation technique, each tree is trained 
n a modified variant of the original training set. Additionally, a 
andom subset of features is used during this process to ensure the
rees remain uncorrelated. Several crucial hyperparameters come 
nto play. Increasing the number of trees enhances the model’s 
bility to generalize, albeit at the expense of added complexity 
nd computational time. Adjusting the maximum tree depth, which 
ictates the furthest distance from the root to a leaf node, and altering
he maximum number of features available to each tree serve to 
ontrol against o v erfitting. 

XGBoost employs a boosting approach that makes predictions 
or n rounds on the training sample, iteratively improving its 
erformance with each round by utilizing information from the prior 
ound’s prediction accuracy . Specifically , its goal is to minimize a
oss function by iteratively selecting a tree that points towards the 
e gativ e gradient of the said function. XGBoost utilizes parallelized 
ree building and hardware optimization to impro v e runtime, and 
egularization to reduce overfitting. Hyperparameters include those 
entioned for RF with the addition of parameters such as the learning

ate that controls the loss function step size at each iteration, and the
egularization rate to adjust model generalization. 

.10.2 K nearest neighbours 

NN (Zhang 2016 ) stores the feature-space position vectors of 
raining set examples. When making class predictions for new 

xamples, it identifies the mode of the classes among the KNNs 
rom the training set, assigning that mode as the prediction for the
ew example. The hyperparameters that impart the greatest influence 
n model performance are the number of nearest neighbours, the 
istance metric for similarity computation, and the weighting of 
ndividual examples. The algorithm was implemented and e v aluated 
sing the complete set of features, as well as with subsets of features
etermined by the feature selection methods detailed in Section 2.7 . 

.10.3 Artificial neural networks 

NN (LeCun, Bengio & Hinton 2015 ), comprise interconnected 
ayers of nodes, commonly referred to as neurons. This architecture 
onsists of an input layer that receives feature values, an output layer
esponsible for generating predictions, such as class probabilities, 
nd one or more hidden layers in between. The hidden layers 
equentially transform the initial feature values into predictions by 
pplying non-linear functions to linear combinations of previous 
nputs. The learning process revolves around minimizing a loss func- 
ion, where adjustments to the model parameters are made through 
n iterative process known as backpropagation until convergence 
o loss minimum is achieved. ANN implementation and evaluation 
ollows the same feature selection methodology as for KNN, albeit 
xcluding FFS due to its impracticality and computational expense 
hen applied to ANN. 

.10.4 Linear discriminant analysis 

DA is a dimensionality reduction technique also used for classifi- 
ation purposes. Class predictions are obtained by finding the class 
hat maximizes the posterior probability from Bayes’ rule. Class 
istributions are modelled as multi v ariate Gaussians assumed to have
he same covariance for each class. This assumption reduces the log
f the posterior probabilities to linear functions, which leads to a
urther assumption, linear separability, since locations where the 
unctions are equal define linear class decision boundaries. LDA is 
 v aluated with both the full feature set and the subsets of features
etermined by the methods of Section 2.7 . 

.10.5 Gaussian Naive Bayes 

s with LDA, the GNB classifier is based on Bayes’ theorem,
hough unlike LDA, a naive assumption is made; the features are
ndependent, that is the presence of one feature has no effect on
thers. The class y that gives the maximum posterior probability 
s assigned to a given example. The Gaussian arises because the
redictors take on continuous values, and are considered to be 
ampled from a Gaussian distribution. The features utilized in GNB 

ollow the same methodology used for feature selection as applied 
o KNN and LDA. 

.10.6 Gener ative topogr aphic mapping 

TM is a neural network-based manifold learning algorithm that 
s able to compute a mapping between points in low dimensional
often 2D) latent space into a higher dimensional data space (Bishop,
vens ́en & Williams 1998 ). This is performed such that the structure
f the latter is represented in the former, in other words, points close
ogether in latent space will map to points close together in data space.
oints in latent space are arranged in an equally spaced grid of nodes.
TM performs a non-linear mapping between those points and points 

n data space using a linear combination of radial basis functions
ith weighting coefficients. These points in data space represent the 

entres of Gaussian probability density functions that make up a 
ixture of Gaussians. During training, the weights and variances are 

djusted using the Expectation Maximization algorithm such that the 
 v erall probability distribution of data space is accurately represented 
y the Gaussian mixture. The Gaussian centres will converge to the
ean or median locations of local structures (clusters) in data space.

t is with this o v erall probability density function defined by the
ixture that examples can be mapped to locations in latent space

ased on the responsibilities of Gaussians in the mixture. 
One may utilize GTM to e v aluate the ability of a classifier to

istinguish between classes, and to identify the features responsible 
or the assignment of a given class rather than an o v erall feature
mportance list that only provides the features responsible for 
 v erall model performance. To do this, we input the posterior class
robabilities for the training set output by our classifier into the GTM
ramework. Therefore, the data space is a class probability space 
f nine dimensions. Each example from the training set will have
osterior probabilities of belonging to each class e v aluated by the
lassifier, these probabilities define their location in class probability 
pace. Distinct clusters of these examples located in regions with high 
robability along a particular probability space dimension would 
MNRAS 527, 8633–8658 (2024) 
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epresent a classifier that can accurately distinguish between classes.
ince these clusters define the Gaussian centres, they are mapped

o the corresponding nodes in latent space. We can then e v aluate
his class separability within the latent space representation. This
epresentation forms a grid of squares, each defining a node, colour-
oded based on the location of the associated probability space
aussian centre along a given probability space axis (or particular

lass probability). 
For feature responsibilities, we simply average a particular feature

alue for all examples assigned to a given node, assigned meaning
he node with the highest likelihood of being responsible for a given
 xample. The av erage for each node can then be used to produce a 2D
istogram consisting of the same abo v e latent space grid with squares
olour coded by these averages, one for each feature. The distribution
f mean feature values can be analysed against the distribution of
lasses in the class maps to identify class-specific features. 

.11 Performance metrics 

erformance metrics rely on the counts of true positives (TP),
rue ne gativ es (TN), false positiv es (FP), and false ne gativ es (FN).
o compute these counts, one must establish the positive class,
epresenting the class of interest (e.g. one of the CV classes), and
he ne gativ e class, encompassing all other classes in this multiclass
cenario. 

Frequently, the counts of TP, TN, FP, and FN are organized in
n N × N table referred to as a confusion matrix , with N signifying
he number of classes. This matrix provides a straightforward means
o view the quantities of TPs, TNs, FPs, and FNs. These values are
sed to calculate the class-specific precision, recall, and F1-score, as
ell as the balanced accuracy and area under the curve (AUC) of the
eceiver Operating Characteristic. 
The precision defines the proportion of instances our model

redicts as belonging to the positive class, and actually, do belong
o this class: TP /( TP + FP ). It offers insights into the reliability
f our model’s predictions. Recall, on the other hand, measures
he fraction of positive class instances correctly predicted by our

odel: TP /( TP + FN ). This metric assesses the model’s capacity to
dentify all members of the positive class. The F1-score represents
he harmonic mean of precision and recall for the class of interest.
t is useful in finding the best trade-off between these quantities. A
erfect F1-score is 1 (100 per cent), indicating both perfect precision
nd recall, while the lowest possible value is 0, suggesting a score of
 for either precision or recall. Balanced accuracy, unlike the basic
ccuracy metric (which is the ratio of the sum of TPs for each class
o the total number of examples), calculates the arithmetic mean of
ecalls for each class. This is particularly useful when dealing with
lass imbalances, where the basic accuracy metric may not accurately
eflect model performance. 

The ROC curve offers a visual representation of the trade-off
etween sample purity and completeness. It plots the True Positive
ate (TPR), also known as recall, against the False Positive Rate

FPR). The FPR represents the fraction of examples incorrectly
lassified as belonging to the positive class, calculated as FP /( TN
 FP ). This curve is generated by varying the threshold probability

sed to determine positive classifications for each example. In
etail, ML algorithms provide a class probability score for each
xample, and a threshold is applied to classify examples as positive
r ne gativ e. The ROC curv e showcases the performance of the
PR and FPR as this probability threshold is continuously adjusted.
his tool is valuable for selecting an appropriate threshold that
ligns with the desired balance between purity and completeness,
NRAS 527, 8633–8658 (2024) 
epending on the specific research objectives. In classification tasks,
he goal is to maximize TPR while minimizing FPR. An AUC
alue of 1 indicates a perfect model that correctly assigns class
redictions for all examples. An AUC of 0.5 signifies a model no
etter than random guessing, while an AUC of 0 implies incorrect
redictions for all e xamples. Although ROC curv es are typically
ssociated with binary classification, in this case of multiclass
odels, they are generated using a one-versus-rest approach. This

ntails designating one class as the positive class and the remaining
lasses as the ne gativ e class to produce separate curves for each
lass. 

While such performance metrics can be used to assess test set
erformance differences between classifiers, the McNemar’s test can
e utilized to judge statistically significant differences between the
est set predictions of any two classifiers. The null hypothesis states
hat the classifiers disagree in their class predictions to the same
mount. Should this be rejected, the alternative hypothesis implies
here is evidence they disagree in different ways. The test statistic is
alculated in the following way: 

tatistic = 

(Yes / No − No / Yes) 2 

Yes / No + No / Yes 
, (7) 

here Yes/No is the number of test instances that classifier 1 got
orrect and classifier 2 got incorrect, while No/Yes describes the
pposite of this. The test statistic follows a χ2 distribution with
ne degree of freedom. The test is usually administered in a binary
lassification setting, ho we ver, under the multiclass case, the correct
nd incorrect classifications are performed for each class. 

 RESULTS  

.1 Classifiers 

n our study, to distinguish between the nine CV classes, we
 v aluated se veral algorithms: GNB, LDA, KNN, RF, XGBoost, and
 multilayer perceptron neural network. To address class imbalance,
e used either the class weighting method (where possible) or

he ADASYN o v ersampling technique in combination with random
ndersampling to balance the training set. Training was conducted
n subsets of features determined through the MI score, VIF, the one-
ay ANOVA method, or FFS. We assessed the resultant models based
n o v erall accurac y, macro av erages of precision, recall (equi v alent
o balanced accuracy for the macro average), and F1-score. These are
rovided in the heatmap shown in Fig. 3 within the first four columns.
he corresponding precision, recall, and F1-scores for each class are
rovided in the remaining columns. 
To compare the test set performance metric means of different

lassifier groups, we conducted T-tests. The results indicate that
NB- and KNN-based classifiers performed poorly on the test set

ompared to the other algorithms (F1-score of 0.44 ± 0.04 and
.54 ± 0.04, respectively, with a p -value of p = 8.6 × 10 −11 at
= 0.05). Ho we ver, there was no significant performance difference
hen using o v ersampling/undersampling compared to class weight-

ng (or no such method) ( p = 0.07 −0.86 for all metrics). Regarding
eature reduction methods, we observed small but not significant
erformance impro v ements when using the one-way ANOVA and
I, while the use of VIF led to a performance drop. 
The class-specific performance associated with each model re-

ealed difficulties in correctly classifying the AM CVn and interme-
iate polar classes, irrespective of the algorithm used or any effort
o address class imbalance. These two classes, along with the nova
lass, have the lowest sample size. Despite the small sample size, the
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Figure 3. Presented as a heatmap are, the accuracy, and the macro average quantities of precision, recall, and F1-score for each classifier variant. Alongside 
these are the precision, recall, and F1-score for each class. Classifiers are labelled as follows: classifier + class balancing method + feature selection method. 
Classifier abbreviations are as described in the text, the class balancing methods are abbreviated as SMPL, WTD, or –, depending on whether o v er/under 
sampling methods, class weighting, or no class balancing method was implemented, respectively. Feature selection methods are abbreviated as ANO, FFS, MUI, 
VIF, or –, for one-way ANOVA, FFS, MI, VIF, or no such implementation (full set of features used), respectively. 
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ight curves (and metadata) of the novae are sufficiently distinct for
he algorithms (especially NN, RF, and XGBoost) to distinguish them 

rom the remaining classes. All models, except for GNB, performed 
ell in classifying the SU UMa class. 
To select the model for the pipeline, we based our decision on
he macro F1-score with some consideration for the performance 
n the lowest sample size classes. Table 5 presents the top five
odels based on the macro F1-score, while Fig. 4 shows the class-
MNRAS 527, 8633–8658 (2024) 
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M

Table 5. Top five ranked classifiers based on the macro-averaged F1-score. 

Rank Algorithm Imbalance Feature selection F1 score 

1 XGB – – 0.62 
2 RF SMPL – 0.58 
3 XGB SMPL – 0.57 
4 NN WTD MUI 0.57 
5 LDA – – 0.57 

Notes. Listed are the algorithm, the method used to handle class imbalance 
and the method used to reduce the number of features. The class balancing 
methods are abbreviated as SMPL, WTD, or –, depending on whether 
o v er/under sampling methods, class weighting, or no class balancing method 
was implemented, respectively. The only feature selection methods in this 
list are those abbreviated as MUI or –, for MI or no feature selection method 
(full list of features used), respectively. 
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pecific ’p-value table’ resulting from a McNemar’s test for each
air of these models. The figure indicates no significant prediction
isagreements between these algorithms for the SU UMa, nova,
nd intermediate polar classes. Ho we ver, models ranked in the top
hree show significant prediction disagreements compared to models
anked 4 and 5 with regards to Z Cam. For the AM CVn class, the
GBoost classifier, implemented without explicit class balancing or

eature reduction, significantly outperformed the other models. As a
esult, we selected this XGBoost model trained with 500 DTs at a
aximum tree depth of 14, as the classifier for the second stage of

ur pipeline. 
We should note that certain aspects of the model selection, such as

he variation of examples apportioned to the training, validation, and
est sets, the NN weights initialization, and the feature selection for
ach tree of the RF and XGB models, were randomly selected. Thus,
ifferent random initializations could have led to the selection of any
f the models generated from the NN, RF, and XGB algorithms. 

.2 Performance 

he per class performance of the model as implemented on the
est set is described in Table 6 , while the corresponding confusion
atrix is shown in Fig. 5 . Evident are the following. SU UMa is

esponsible for the highest precision and recall scores, contributing
reatly towards an increase in the o v erall classification performance,
 Cam and VY Scl are also well picked out by our classifier. The
 v erall performance suffers noticeably due to the performance of the
ntermediate polar class. Intermediate polars represent a class subject
o one of the largest amount of training set o v ersampling, due to a
ow number of examples. 

Also falling within this high o v ersampling bracket are the AM
Vns and novae. Despite this, they are responsible for strong
recision scores such that 100 per cent of examples predicted as
M CVn and 64 per cent of examples predicted as nova are true
embers of the class. Ho we ver, this does come at the expense of

ower recall scores, 0.36 for AM CVns and 0.50 for novae. Those
rue AM CVn members that are missclassified are mostly assigned
he SU UMa class, as are true members of the nova class. 

The classifier performs well in distinguishing between systems
hat regularly display dwarf nova outbursts (where we exclude
ntermediate polars) from those that do not. Should we group those
lasses into those that exhibit these outbursts and those that do
ot, the precision and recall scores for the dwarf nova exhibiting
lass would be 0.92 and 0.94, respectively, while for non-dwarf
o va e xhibiting systems, 0.88 and 0.83. Confusion between dwarf
o va e xhibiting systems is an area where the model performance
NRAS 527, 8633–8658 (2024) 
uffers. Notable is the mislabelling of AM CVn members as SU
Ma; and the contamination of predictions of the U Gem class by
U UMa and Z Cam members. Similarly, confusion between non-
warf nova exhibiting system also plays a factor: true intermediate
olar members are confused for nova-likes, VY Scl and polars; and
onfusion between the nova-like, VY Scl and polar classes is present.
everting our description of performance back to our 9 class problem,
otable is the significant missclassification of true Z Cam members
ith the nova-like class and the significant contribution of FP by the
U UMa class towards the predictions of the nova class. 
With respect to the ROC Curves Fig. 6 , in all cases, the classifier

erformed much better than a random guess, depicted by the’chance
evel’ line. An AUC score above 0.93 for all but the intermediate polar
nd AM CVn classes represents a strongly performing classifier,
here the resultant micro and macro averages are 0.96 and 0.92.
his is a further illustration of the findings within the confusion
atrix and classification report. 
The importance of each feature for DT-based models can be given

y the feature importance scores. The 20 features with the largest
ffect on the model’s predictive accuracy are plotted in Fig. 7 . Ranked
ighest is the Gaia RP- band absolute magnitude (abs mag rp); Gaia
P and G absolute magnitudes also feature within the list. ZTF
nd Gaia colours feature strongly, with the brightest epochal colour
clr bright), Gaia G – RP, and Gaia BP – RP colours within the top
0. The slope of a linear fit to the ZTF r- band light curve is deemed
ighly rele v ant for classifier performance, as is the autocorrelation
ength in the ZTF g band. Periodicity-based features within the
ist come in the form of the frequency of maximum power in the
omb–Scargle periodogram of the r- band light curve. Features for

dentifying outbursts are represented by the number of points brighter
han the rolling median. Features that test for the synchronous light
urve variability across both bands come in the form of StetsonJ
nd StetsonL (see Table 2 ). The list therefore contains a mixture of
eatures that co v er periodicity , photometry , and statistical descriptors.

.3 GTM latent space r epr esentations 

lass maps generated using GTM, as described in Section 2.10.6 ,
re presented in Fig. 8 . These latent space representations of class
robability space structures assess the class separability of our ML
odel. The class maps clearly show the existence of structures that

re located in fairly distinct regions, each associated with a particular
lass. This is representative of a classifier that has ef fecti vely
earnt patterns within the data necessary for class distinction. These
tructures are extended, with their cores represented by the highest
robability of belonging to the associated class, whilst as we mo v e
way from the cores, the probabilities diminish (represented by the
olour scale). Structures extend into regions associated with that
f other classes, indicating some class confusion, thus reflecting
bservations within the confusion matrix. The highest class prob-
bilities are associated with the SU UMa, U Gem, Z Cam, nova-
ike, and VY Scl classes – their structure cores exceed 0.80 in class
rediction probability. Structures for the AM CVn, nova and polar
lasses are also present, though with class probabilities no higher
han 0.7 and 0.8, respectively. As mirrored in the confusion matrix,
he intermediate polar structure, though located in a relatively distinct
egion, is only responsible for a core class probability of 0.62. 

Another interesting feature of the maps is that outbursting systems
end to reside along the top edge and down the left edge, while
ystems that are not expected to display dwarf nova outbursts
re located along the right and bottom edges of the maps. This
oncurs with our the observation of the ef fecti veness of our model
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Figure 4. The per-class p -values from McNemar’s tests conducted between each pair of the top five-ranked classifiers from Table 5 . For ease of reference these 
are from rank 1 to 5, XGB + – + –, RF + SMPL + –, XGB + SMPL + –, NN + WTD + MUI, AND LDA + – + –. The significance threshold is set to 
p = 0.05, the classifier descriptions and abbreviations are as described in the caption of Fig. 3 . 

Table 6. Classification report for the XGBoost model. 

Class Precision Recall F1 score Test set amount 

AM CVn 1.00 0.36 0.53 14 
SU UMa 0.81 0.90 0.85 189 
U Gem 0.66 0.60 0.63 35 
Z Cam 0.73 0.69 0.71 52 
Intermediate polar 0.50 0.07 0.12 15 
Nova 0.64 0.50 0.56 14 
Nova like 0.67 0.77 0.72 43 
Nova-like VY Scl 0.76 0.78 0.77 36 
Polar 0.71 0.74 0.72 34 

Macro average 0.72 0.60 0.62 432 
Accuracy 0.76 432 
Balanced accuracy 0.60 432 

Notes. For each class of CV the precision, recall, F1 score, and the number of 
test set examples are given. The macro average (or arithmetic mean) of each 
metric, accuracy, and balanced accuracy are also provided 

t
c

c  

m  

A  

a  

t  

(  

w
l
r
a  

c
a

 

f  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/8633/7459939 by Liverpool John M
oores U

niversity user on 11 January 2024
o distinguish outbursting from non-outbursting systems. The nova 
lass is the only one located away from any edge. 

The most obvious blending between structures (or equi v alently, 
onfusion between classes) is evident for the SU UMa class – the
ost pre v alent class in the data set. Its structure extends well into the
M CVn and U Gem regions, also coming into contact with Z Cam

nd nova. Z Cam is responsible for a well-defined structure (top right)
hat extends into nova-like class probability space, and a tenuous one
 ∼0.2 in Z Cam class probability) that is more strongly associated
ith the nova-like, VY Scl, and intermediate polar classes. Nova- 

ikes are also responsible for a tenuous, secondary structure (bottom 

ight) more strongly associated with intermediate polars. There is 
lso clear o v erlap between no va-like, VY Scl and intermediate polar
lasses, and structure blending in evident between AM CVn, nova, 
nd polar classes. 

In Figs 9 and 10 are a selection of feature maps for features derived
rom the g- and r -band light curv es. Sev eral further feature maps are
MNRAS 527, 8633–8658 (2024) 
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Figure 5. Confusion matrix for the XGBoost model. 
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hown in Fig. 11 representing features derived from a combination
f the g- and r -band light curves and from Gaia DR3. They represent
he average feature values of examples assigned to each of the latent
pace nodes. The feature maps can be used as tools to identify the
eatures most responsible for the assignment of a given class. This is
one by comparing class-map structures with those within the feature
aps. While examination of the feature maps is reserved for the

iscussion section, it is clear that structures and patterns exists within
hem that coincide with class-map structures. For example, high
alues for amplitude- and variability-based features (e.g. Amplitude ,
td , MedianAbsDev , and npeaks ) correspond to outbursting systems;
he fewest number of data points, n obs , are associated with AM CVn,
U UMa and nova classes; and the bluest colours are associated with

he AM CVn class. 

.4 Alert stream pipeline 

ith the aim of the alerts filter to minimize the number of possible
on-CVs and maximize potential CVs, this was best achieved with
he following procedure. The Sherlock contextual classifier was
tilized to remo v e sources within the synonym radius (1.5 arcsec) of a
NRAS 527, 8633–8658 (2024) 
atalogued AGN or NT. Inspection of light curves of alerting sources
within a 30-d period) remo v ed under these conditions revealed no
limination of known or candidate CVs. To filter out SN candidates,
hose sources classified as SN by Sherlock are remo v ed should the y
eet the following criteria: the closest matching source from the
anSTARRS catalogue (used as the reference source) should have
 Star/Galaxy score of less than 0.4 (values range from 0 to 1,
here closer to 1 implies a higher likelihood of being a star); and

n angular separation from the associated galaxy centre less than
he galaxy’s semimajor axis size (in arcseconds). Furthermore, any
ource with a Transient Name Server name prefix with ’SN’ was also
emo v ed. Of the sources remaining with a contextual classification
f ’SN’, ∼ 60 per cent displayed outbursting characteristics where
uiescent stages were below the detection limit (likely dwarf novae).
he remaining percentage was a mixture of faint sources with no
tar/galaxy score, several Mira variables, and a classified nova.
 or remo val of VSs, a simple cross-match with the AAVSO VSX

ist of Mira variables, Cepheids, RR Lyrae stars (amongst other
lasses under the VS umbrella) was performed. Few, if any, of those
emo v ed with this VS-filtering method belonged to a member of the
onfirmed or suspected CV family. With respect to the δm criteria,
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Figure 6. ROC for the XGBoost classifier. 
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o such filtering is performed in an effort to maximize the number of
Vs. It was found that sources with the least amount of variability
re assigned the nova-like class, thus a moti v ating factor in this
hoice. 

Constraining the number of alerts based on several g – r colour 
etrics, and not just the o v erall mean, had the desired effect of

etaining dwarf no va e xhibiting sources. These are outside the 
pochal or o v erall mean colour threshold of ≤0.7 during quiescence,
ut within the threshold during outburst by virtue of the colour 
easured at their brightest epoch ( clr bright ). An approximate 

uantitative estimate of the effectiveness of this strategy can be given 
or a month’s worth of alerts. For 2023 June, 12 confirmed or strong
andidate dwarf novae were outside of this threshold based on the 
ean epochal or o v erall colour, whereas with the inclusion of the
lr bright quantity only one fell outside the threshold. 

An additional criteria requiring at least four data points on either
he g - or r- band light curve was also imposed, allowing the majority
f features to be derived. Combining all the above criteria, the
umber of sources returned per night for input into the ML classifier
an be as few as 50, while on other nights o v er 200 may be
vailable. During 2023 June, the filtering output 1283 sources, of 
hich ∼ 8 per cent are contained within the Downes Catalogue of 
Vs (Downes et al. 2001 ) and/or the Ritter Cataclysmic Binaries
atalog v7.24 (Ritter & Kolb 2003 ). Approximately, 45 per cent are
ontained within the AAVSO VSX CV compilation of confirmed or 
andidate CVs (this includes the Ritter and Downes catalogues). The 
MNRAS 527, 8633–8658 (2024) 
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Figure 7. Feature importance scores for the 20 most influential features within the chosen classifier model. Feature importance refers to a class of techniques 
for assigning scores to input features to a predictive model, indicating the relative importance of each feature when making a prediction. 
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emainder, those not contained within AAVSO, comprise of: low
mplitude slowly varying (month to year-long time-scales) sources
 ∼ 30 per cent of the total), a small fraction of which are eclipsing
inaries; sources with similar variability to VY Scl and magnetic CVs
 ∼3 and 4 per cent of the total, respectively); outbursting candidates
 ∼ 8 per cent of the total); and a combination of sources that have
nce briefly risen abo v e the limiting magnitude (possible SNe), and
hose with too few data points for inference. Further inspection
eveals that young stellar objects, candidate AGN, and VSs provide
he majority of contamination. A rough estimated of between 5 and
0 per cent contamination from these sources is found. 
The output of the filter applied to the alerts for 2023 June were

ed into the XGBoost classifier with the following findings. The
o w v ariability sources are o v erwhelmingly assigned the no va-like
lass, while outbursting sources are assigned one of the dwarf
ova classes or the AM CVn label. Superoutbursting or candidate
uperoutbursting systems are largely assigned the SU UMa label with
 small amount of mislabelling into the U Gem class. Signatures of
 Cam variability are present within the list of sources assigned

his class, while faint blue sources are generally assigned the AM
Vn class. As one enters the low sampling regime (fewer than 20
ata points) class confusion is evident, though not where outbursting
ctivity is clearly present. 

From the 2023 June alerts filter output, we have compiled Table 7 .
his is a list of candidate CVs we identified that, at the time of writing,
re not present in either the Ritter or Downes catalogues, the list of
Vs within AAVSO VSX, or within literature as far as we are aware.
he prediction of class output by our classifier (along with the class
robability) for these candidates is provided. Furthermore, we assign
NRAS 527, 8633–8658 (2024) 
 score based on the strength of their candidacy as members of the
V class. A score of 1 represents a light curve sufficiently sampled

or the identification of distinguishing characteristics. Should less
ell-sampled signatures of defining characteristics be present, for

xample, outbursts not sampled during quiescence, a score of 2
s given. A score of 3 is given to the examples where only faint
ignatures are present, possibly due to poor sampling. 

 DI SCUSSI ON  

.1 Classifier performance 

he characteristics of the confusion matrix and the blending of class
pecific structures into one another can be explained in the context
f the physical properties of CVs, their evolution, and the properties
f their light curves. 

.1.1 Class proportions 

 list of thousands of CVs accurately labelled into their subtypes
ased on multiwavelength photometry with sufficient sampling and
pectroscopy for each source is not currently available. While o v er
5 300 sources have been assigned the CV class according to the
AVSO and BTS, those with ZTF counterparts represented just o v er
700 (as of 2023 March when the data set was constructed). A
ignificant proportion of these belong to the dwarf nova class ( ∼
9 per cent ) of which only 19 per cent possess labels with the dwarf
ova subclass information we required. We were therefore limited to
 list of 1439 sources with highly imbalanced class proportions. 
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Figure 8. GTM latent space visualization of the class posterior probability space from the XGBoost classifier chosen for the pipeline. 
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Whilst efforts are made to account for this imbalance, the classes
owest in sample size (AM CVn, intermediate polar, and nova) are 
he weakest performers. Comparisons of light curves associated with 
ach of these classes with remaining classes provide a possible reason
or their missclassifications. The intermediate polar ZTF17aabhicw 

see Fig. 1 ) displays long-term variability (weeks to months) as
een in polars, nova-likes and VY Scl (e.g. ZTF18abryuah and 
TF18abmrryp), while ZTF17aabglmw displays occasional dwarf 
ova outbursts. AM CVns display regular and super outbursts 
e.g. ZTF18aaawjmk) and may be faint enough to only be visible 
uring outburst (e.g. ZTF18adkhuxp), o v erlapping with SU UMa 
haracteristics; longer term changes associated with changed in mass 
ransfer rate (e.g. ZTF18aaabbbv) may also be present. A nova 
ruption decline (e.g. ZTF19aabjxpe) could be confused with SU 

Ma systems with long supercycles. 
Despite these issues, the ROC curves and class maps represent 

 classifier with strong predictive capacity, even for the AM CVn
nd nova classes. This may be a consequence of features rele v ant
o colour, parallax and proper motion. Nova systems in our sample
ossess redder colours, while AM CVns typically lie at the blue
nd of the colour scale. AM CVns are intrinsically faint, thereby
re required to be closer than most other CVs to be detectable and
nduce high values of parallax and, where tangential motion occurs, 
bservable proper motion. 
MNRAS 527, 8633–8658 (2024) 
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Figure 9. GTM-generated feature maps for the XGBoost model. Compare 
high- and lo w-v alue regions to class maps to pinpoint key features for class 
assignment. White squares indicate empty nodes, to which no examples are 
assigned, determined by node responsibility (see Section 2.10.6 ). 
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Figure 10. Feature maps for the XGBoost model produced using GTM. 
Same as for Fig. 9 though for r band. 
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.1.2 Dwarf nova classes 

istinguishing between different classes of dwarf novae primarily
inges on our features’ ability to detect the presence of superoutbursts
n SU UMa and standstills in Z Cam systems. In a study conducted by
tulakowska-Hypka, Olech & Patterson ( 2016 ), an in-depth analysis
 as undertak en to examine the characteristics of superoutbursts and
ormal outbursts in dwarf nova systems. The research revealed that Z
am outbursts typically exhibit a noticeably lower amplitude range,
NRAS 527, 8633–8658 (2024) 
panning approximately 1–4 mag, compared to the superoutbursts
nd normal outbursts observed in SU UMa systems, which range
rom 1–9 and 1–8 mag, respectively. The upper limit for U Gem
utbursts falls between these two extremes, with a range of 1–6 mag.
onsequently, one would anticipate significantly higher values for
mplitude related features for SU UMa compared to the Z Cam
ystems. Indeed, when examining the g- and r- band feature maps in
igs 9 and 10 for amplitude, the difference between the minimum
brightest) and mean or median magnitudes ( dif min mean and
if min median ), and the number of peaks with amplitudes exceeding
 mag ( npeaks above5 ), the highest values are consistently found
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Figure 11. Feature maps for the XGBoost model produced using GTM. 
Same as for Figs 9 and 10 though for Gaia- and colour-related features. 
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ithin the region of GTM latent space occupied by SU UMa systems
see Fig. 8 class maps). As we shift our focus from the SU UMa
egion in these class maps to U Gem and then to the Z Cam region,
he feature values for the corresponding locations in the feature 
aps progressively diminish. Our confusion matrix (Fig. 5 ), along 
ith those class maps, corroborate with the notion that the most
ronounced distinction among dwarf nova subtypes lies between SU 

Ma and Z Cam. 
The semiregular outbursts in dwarf nova systems exhibit a 

uasi-periodic pattern when adequately sampled. In ZTF light 
urves, it is notable that superoutbursts, especially long-lasting 
nes, tend to receive more comprehensive sampling compared to 
ormal outbursts (refer to Fig. 1 ). Consequently, the strength or
mplitude of signals detected in the Lomb–Scargle periodogram 

an serve as an ef fecti ve discriminator for distinguishing SU UMa
ystems from U Gem and Z Cam. Notably, the feature maps 
ithin Figs 9 and 10 illustrate that the amplitude values corre- 

ponding to detected frequencies and their harmonics (referred 
o as Freq i harmonics amplitude j ; see Table 2 ) are consistently
igher in regions associated with SU UMa systems than in U 

em and Z Cam associated regions (refer to Fig. 8 class maps).
he peak values of these features are most prominent in regions 
djacent to those associated with the AM CVn and nova classes,
ossibly due to instances where the observational timeline exclu- 
ively captures a brightening event, such as a nova eruption or
uperoutburst. 

Figs 9 and 10 reveal that skewness ( Skew ), standard deviation
Std), and the standstill level ( stdstilllev t20s10 ), may be used
o distinguish Z Cams from other dwarf novae. Our analysis 
uggests that standstills can significantly influence the magnitude 
istribution, pushing it towards brighter values. Furthermore, if 
hese standstills persist for an extended period, ranging from 

eeks to months, they can also reduce the standard deviation, 
ligning it more closely with that observed in nova-like systems. 
hile regions exhibiting low standard deviation are not e xclusiv e
o Z Cam systems, as other dwarf novae with extended periods
f quiescence also display this characteristic, what sets Z Cams 
part is the normalized brightness within these low standard de- 
iation regions. The standstill level feature aims to pinpoint these 
istinctiv e re gions within the light curve, ef fecti vely distinguish-
ng Z Cam systems from their SU UMa and U Gem counter-
arts. 
When it comes to defining characteristics of U Gem systems, 

ith orbital periods greater than 3 h, their more massive donor
tars and greater mass transfer rates result in accretion discs 
ypically larger than those of SU UMa systems, whose orbital 
eriods mostly lie below 2 h. Consequently, for the equivalent 
rbital inclinations U Gem systems have a higher optical qui- 
scent brightness. The combination of ZTF’s limiting magnitude 
nd this brightness disparity results in many SU UMa systems 
nly being detected during their outburst phases as opposed to 
he U Gem class in which quiescence sampling is more likely.
his is evident when examining the number of observations 

n obs) feature maps in Figs 9 and 10 , where higher values are
resent in the U Gem associated region compared to that for SU
Ma . 
Expanding upon the topic of intrinsic brightness, sources with 

ower intrinsic brightness would need to be closer for ef fecti ve
bservation, leading to a higher parallax measurement (and possibly 
roper motion depending on motion in the tangential plane). With 
he shortest orbital periods of the dwarf nova classes, SU UMa
ystems are expected to be less luminous, (gi ven equi v alent orbital
nclinations) for the reasons set out in the previous paragraph, and
osses higher parallax values (and proper motion) when compared to 
heir dwarf nova counterparts. These distinctions are indeed evident 
n the Fig. 11 feature maps for parallax and pm , respectively.

oreo v er, these arguments align with the observation of fainter
bsolute magnitudes as well. 

The high mass transfer rates characteristic of Z Cam systems drive
hem to meet the disc instability threshold shortly after a previous
utb urst. Consequently, during their outb urst phases, they tend to
pend considerably less time at the minimum brightness level in 
omparison to other dwarf nova types, as documented by Simonsen 
t al. ( 2014 ). This leads to recurrence periods typically falling within
he range of 10 to 30 d, e x emplified by systems like ZTF17aaaeepz.
t is reasonable to anticipate that the outburst recurrence period, a
arameter that the Lomb–Scargle periodogram’s maximum power 
requency ( freq pwr max ) aims to characterize, could offer some
evel of discrimination between Z Cam systems and their dwarf nova
ounterparts. 

Ho we ver, upon scrutinizing the corresponding feature maps for 
req pwr max (within Figs 9 and 10 ), it becomes evident that
istinguishing between these types is challenging. For potential 
nsights into this challenge, one may refer to the findings of
tulakowska-Hypka, Olech & Patterson ( 2016 ). Notably, while 

he average recurrence periods for the U Gem class tend to be
onger than those of Z Cam systems, in excess of 50 d, there
s an o v erlapping range with Z Cam recurrence periods. This
 v erlap is also observed in the case of the SU UMa class, where
ecurrence periods span from 3 to 300 d. Additionally, factors 
uch as the presence of extended standstills in Z Cam systems
e.g. ZTF17aabunpt; Fig. 1 ) and the limited sampling of normal
utb ursts contrib ute to the complexity of estimating this type of
eriodicity. 
An examination of light curves for systems that fall between 

he latent space nodes associated with U Gem and Z Cam classes
MNRAS 527, 8633–8658 (2024) 
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Table 7. New CV candidates identified by our pipeline. 

ZTF ID RA Dec. Outburst � m Duration BP–RP g – r Clf pred Probability CV rating 

ZTF19aauxfaw 15:27:39.96 −19:48:46.17 4 > 17.9–19.1 1475 – −0.34 ( −0.17) AM CVn 0.70 3 
ZTF21aawqeix 18:49:31.03 −17:43:54.13 4 > 18.2–19.0 810 – −0.02 ( −0.08) AM CVn 0.38 2 
ZTF18ablpcfv 19:09:21.11 −20:01:03.13 6–8 > 17.5–18.7 1521 −0.60 0.03 ( −0.08) AM CVn 0.37 3 
ZTF23aamdode 17:08:45.64 + 08:54:51.69 1 > 17.4–20.5 44 – −0.24 ( −0.62) AM CVn 0.35 3 
ZTF19abdmfpn 17:58:04.69 + 05:28:15.54 2 > 18.9–19.4 700 – −0.44 ( −0.27) AM CVn 0.33 3 
ZTF19aalcaij 18:01:43.65 + 23:21:11.17 4–6 > 18.9–20.6 1409 – −0.10 ( −0.08) AM CVn 0.31 2 
ZTF19acbwtgi 22:25:56.91 + 39:26:48.97 3 > 19.3–19.7 1375 – −0.24 ( −0.11) AM CVn 0.30 3 
ZTF18abcysck 19:03:59.30 + 32:32:37.40 12 (SO) > 18.5–19.7 1822 – −0.33 ( −0.31) AM CVn 0.28 2 
ZTF19aadovsk 17:44:08.17 −03:50:46.88 5–7 (SO) > 18.5–19.3 1479 – −0.16 ( −0.04) AM CVn 0.26 2 
ZTF21acbqaqa 14:50:11.12 + 65:59:42.19 – 18.9–20.7 654 – 0.30 (0.83) Polar 1.00 2 
ZTF20abpwtmi 15:38:20.42 + 79:32:26.05 – 18.5–20.6 1071 – 0.38 (0.67) Polar 0.96 2 
ZTF18abcwxnq 18:43:26.49 + 06:08:00.90 – 17.9–21.7 1153 1.86 0.27 (0.12) Polar 0.94 2 
ZTF18abmrmlu 23:01:52.75 + 39:50:13.96 – 18.7–22.2 1791 0.91 0.41 ( −0.12) Polar 0.80 2 
ZTF18abiklxf 20:46:40.96 + 22:50:36.20 – 17.4–20.3 1816 1.46 0.22 (0.62) Polar 0.77 2 
ZTF18abnjsqz 17:40:39.30 −00:51:46.68 2 > 17.5–19.1 547 – −0.04 ( −0.01) SU UMa 0.98 2 
ZTF18abqbbpq 17:55:15.36 + 06:57:44.41 4 > 18.6–19.9 1501 – 0.22 ( −0.05) SU UMa 0.98 3 
ZTF19abtnbck 19:02:38.61 + 26:52:44.76 3 > 18.8–19.7 1404 – 0.00 (0.00) SU UMa 0.98 2 
ZTF19abdolkk 19:21:46.43 −27:54:53.91 2 > 17.8–19.0 1454 – −0.24 ( −0.23) SU UMa 0.98 2 
ZTF19aaprbry 19:41:32.53 −07:37:54.12 4 > 18.6–20.0 1350 – −0.05 (0.06) SU UMa 0.98 3 
ZTF20acufmrl 02:51:10.20 + 48:39:28.83 3 18.5–19.9 263 – −0.07 ( −0.06) SU UMa 0.97 2 
ZTF19abjbhmd 16:55:20.72 −18:21:58.77 5 > 18.7–19.1 1442 – −0.35 ( −0.29) SU UMa 0.97 3 
ZTF19aalcaij 18:01:43.65 + 23:21:11.17 1 > 18.9–20.6 1409 – −0.10 ( −0.08) SU UMa 0.97 3 
ZTF19aaxcajp 21:44:37.10 + 29:30:10.74 5 > 18.3–19.7 1499 – −0.11 ( −0.02) SU UMa 0.97 2 
ZTF19aailtzw 17:07:44.19 + 02:56:53.04 3 > 18.2–19.6 802 0.10 −0.09 (0.02) SU UMa 0.94 2 
ZTF18abcysck 19:03:59.30 + 32:32:37.40 6 > 18.5–19.7 1822 – −0.33 ( −0.31) SU UMa 0.93 2 
ZTF21aaqwlgv 18:16:02.45 + 03:07:11.79 3 > 18.3–19.5 819 – 0.05 (0.11) SU UMa 0.92 2 
ZTF18abklywy 18:01:53.06 + 04:07:22.51 6 > 18.6–19.9 1526 – 0.23 (0.08) SU UMa 0.91 2 
ZTF19aadovsk 17:44:08.17 −03:50:46.88 3 > 18.5–19.3 1479 – −0.16 ( −0.04) SU UMa 0.92 2 
ZTF18aavtqlz 17:49:11.47 + 23:58:27.57 5 > 19.2–20.3 1265 – −0.24 (0.07) SU UMa 0.85 3 
ZTF18abthqde 19:39:04.33 + 41:53:10.10 4 > 17.4–18.9 1760 – −0.21 ( −0.23) SU UMa 0.83 2 
ZTF20abylzfr 20:11:08.11 + 84:05:19.21 2 > 17.1–19.7 1037 – −0.08 ( −0.16) SU UMa 0.74 2 
ZTF18absoqce 23:18:05.90 + 55:58:51.90 6 > 17.9–19.4 1773 – 0.80 (0.39) SU UMa 0.69 2 
ZTF18ablpcfv 19:09:21.11 −20:01:03.13 5 > 17.5–18.7 1521 −0.60 0.03 ( −0.08) SU UMa 0.65 3 
ZTF19ablvwcu 20:09:20.00 + 00:22:28.56 5 > 17.7–18.5 1331 – 0.27 (0.19) SU UMa 0.63 2 
ZTF18abjrekr 22:00:29.91 + 50:08:47.44 5 > 18.1–19.7 1808 – 0.20 (0.09) SU UMa 0.62 2 
ZTF18accpsgk 21:19:34.61 + 38:00:12.90 10 > 17.2–18.0 1699 – −1.30 ( −0.85) SU UMa 0.59 2 
ZTF19ablujxj 20:36:53.40 + 21:11:06.05 7 > 18.6–20.0 1438 – −0.03 (0.00) SU UMa 0.57 2 
ZTF18abndsft 17:25:12.81 −20:40:48.85 4 17.7–21.2 1474 1.69 0.74 (0.53) SU UMa 0.45 2 
ZTF18abzmujj 19:11:51.25 −05:49:30.43 6 > 18.7–19.6 1730 – 0.62 (0.41) U Gem 0.85 1 
ZTF18abeajjd 17:03:58.75 + 15:27:31.78 8 > 18.5–20.7 1823 – 0.13 (0.18) U Gem 0.78 1 
ZTF19aawxrtk 18:08:13.30 + 22:51:09.39 2 16.9–17.2 1323 – −1.73 ( −1.42) U Gem 0.68 2 
ZTF18abloyve 19:10:41.97 −26:46:57.55 4 > 16.9–17.9 1490 – 0.44 (0.20) U Gem 0.53 2 
ZTF18aazeong 22:24:05.48 + 51:11:42.41 10 17.3–19.3 1847 1.15 0.20 (0.11) U Gem 0.47 1 
ZTF18abnwfvw 18:53:33.53 + 22:35:59.41 3 > 16.5–19.9 1422 1.64 0.54 (0.39) Z Cam 0.45 2 
ZTF18abuytrt 18:13:14.20 + 01:49:02.04 > 9 18.2–20.8 1552 0.93 0.33 (0.40) Z Cam 0.35 2 
ZTF19aarpwtt 19:54:34.93 + 46:11:08.59 10–14 > 18.8–19.8 1485 – 0.20 (0.08) Z Cam 0.31 2 
ZTF19ablujxj 20:36:53.40 + 21:11:06.05 12 (SO) 18.6–20.0 1438 – −0.03 (0.00) Z Cam 0.31 2 
ZTF18abthqde 19:39:04.33 + 41:53:10.10 5 > 17.4–18.9 1760 – −0.21 ( −0.23) Z Cam 0.30 1 
ZTF21aaqwlgv 18:16:02.45 + 03:07:11.79 3 > 18.3–19.5 819 – 0.05 (0.11) Z Cam 0.25 2 
ZTF18abnjsqz 17:40:39.30 −00:51:46.68 3 > 17.5–19.1 547 – −0.04 ( −0.01) Z Cam 0.22 2 
ZTF19aadospr 16:53:37.97 + 00:49:11.93 4 > 18.4–19.7 805 0.36 −0.04 ( −0.07) Z Cam 0.21 3 

Notes. Given are the ZTF object ID; equatorial coordinates at the J2000 epoch; number of suspected dwarf nova outbursts, where (SO) is appended for possible 
superoutbursts amongst them; g- band magnitude range, or r band (appended with r ) should insufficient g -band data exist ( > is prepended should no quiescence 
brightness be present); light-curve duration in days; Gaia BP–RP colour; mean ZTF g – r colour and in brackets the colour at peak brightness, calculated in 
the manner of the clr mean and clr bright features explained in Table 3 ; prediction of our classifier; posterior class probability output by our classifier; and the 
strength of CV candidacy, rated as 1 for the strongest, 3 for the weakest candidates. The table is ordered by class prediction then probability 

(  

t  

c  

U  

a  

4

F  

a  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/8633/7459939 by Liverpool John M
oores U

niversity user on 11 January 2024
see Fig. 8 ) further confirms this recurrence period o v erlap, as does
he o v erlap between the SU UMa and U Gem classes. Within this
ontinuum also lie the rapidly outbursting SU UMa subtypes, ER
Ma, underscoring the significance of recurrence period o v erlap as
 primary contributor to the confusion among dwarf nova subclasses.
NRAS 527, 8633–8658 (2024) 
.1.3 AM CVn 

or the remainder of Section 4.1 , in order to facilitate our discussion
nd interpretation of the class and feature maps, we may refer to
pecific nodes (squares) by a simple coordinate system ( x , y ). The
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alue of x denotes the square number (1–10) from left to right, while
he value of y signifies the square number (1–10) from bottom to top.

As previously discussed in the introduction, AM CVn systems 
end to be bluer than their hydrogen-rich CV counterparts and are 
enerally of lower luminosity. While superoutbursts are observed 
n AM CVn systems (Kato & Kojiguchi 2021 ), they tend to be of
horter duration, typically lasting 5–6 d, and display lower amplitude 
4–6 mag) in contrast to superoutbursts in SU UMa systems, which 
ften e xtend be yond 10 d and can, in the case of the WZ Sge subclass
f SU UMa, reach amplitudes exceeding 6 mag. Additionally, normal 
utb ursts ha v e also been observ ed in AM CVn systems, occurring
n the fading tail of superoutbursts (Duffy et al. 2021 ). 
Upon scrutiny of feature maps, it becomes apparent that features 

uch as the mean, median, minimum, and maximum magnitude 
erived from g -band light curves (Fig. 9 feature maps) do not strongly
ifferentiate AM CVn systems from other classes, contrary to the 
xpectation of higher (and consequently fainter) values. Similar 
bservations hold true for the r-band (Fig. 10 ), with the exception of
he minimum magnitude in the r band ( min mag r ), where notably
le v ated (i.e. fainter) values cluster around node (1, 4), associated
ith the highest AM CVn probability (see Fig. 8 class maps). One
ossible explanation for these findings is that accretion discs in AM 

Vns are smaller than those in hydrogen CVs, truncated by the 
maller Roche lobe geometry. As emissions in the r -band primarily 
riginate from the cooler outer regions of the accretion disc, the 
f fecti ve surface area of these regions is considerably smaller for the
ompact AM CVn discs. 

To become detectable, AM CVn systems would be required to be 
ituated at closer distances, thereby inducing higher parallax mea- 
urements and, in cases where tangential motion occurs, observable 
roper motion ( pm ). While node (1, 4) within the corresponding
eature maps in Fig. 11 may not contain the highest values [which
re located at node (3, 7) and associated with the SU UMa region],
hey still exhibit values sufficiently high enough to align with our 
xpectations when compared to regions associated with other classes. 

The average ZTF g – r colours, along with Gaia colours (involving 
P data), are strong discriminators ef fecti vely separating AM CVn

ystems from other classes, as evident in Fig. 11 . However, when it
omes to outburst-specific features (e.g. npeaks 2to5 ; Figs 9 and 10 ),
heir ef fecti veness diminishes. Contributing factors to this reduced 
erformance may be due to the scarcity of AM CVn examples within
he data set, coupled with variations in observational time spans and 
he sampling of their light curv es. Consequently, this div ersity results
n a variety of light-curve profiles, as depicted in Fig. 1 , where the
umber of sampled outbursts range from several to none at all. An
xamination of sources projected onto latent space regions where 
he boundaries between AM CVn and SU UMa classes, as well as
etween AM CVn and nova classes, blend together (see Fig. 8 ),
uggests that these factors contribute significantly to the observed 
lassification ambiguity. 

.1.4 Novae 

espite a low sample size, the nova class achieves a recall score of
.50 and a precision of 0.64. A significant source of false-positive 
redictions in the nova class can be attributed to the SU UMa class. A
ossible explanation could simply be due to nova data set examples 
onsisting largely of extragalactic sources, visible during the time of 
eak eruption brightness. These light curves bear a resemblance 
o those of SU UMa systems where only one outburst (often a
uperoutburst) has been sampled. Consequently, a low number of 
bservations is associated with the class, as is the case for SU UMa
ystems. 

Two members of the nova class within the test set have miss-
lassifications as VY Scl. A possible explanation could be provided 
y ZTF21abmbzax (example light curve in Fig. 1 ), which displays
 ’dust dip’ explained as being generated by dust in the eruption
jecta absorbing photons and re-emitting in the infra-red (Strope, 
chaefer & Henden 2010 ). This characteristic resembles a VY Scl

ow-state excursion. Another eruption light-curve profile mentioned 
n Strope, Schaefer & Henden ( 2010 ) is that which exhibits a’flat top
nd jitters’ – cuspy profiles at eruption maximum. This is seen in
TF19abirmkt, and could be responsible for missclassifications of 
ovae as magnetic CV members. Projections of these sources onto 
he GTM latent space of Fig. 8 align with these interpretations, with
TF21abmbzax projected onto node (6, 3), located in between the 
ova and VY Scl structure cores, and ZTF19abirmkt projected onto 
ode (3, 3) located between the nova and polar structure cores. 

.1.5 Remaining classes 

he separation between the intermediate polars, polars, nova-likes, 
nd the VY Scl nova-like subtype arises from several physical proper-
ies manifested in their light curves, as discussed in the introduction.
s just demonstrated in previous subsections, comparison of the 
 - and r- band feature maps within Figs 9 and 10 with the class
robabilities depicted in the Fig. 8 class maps, help highlight the
ight-curve attributes most rele v ant for class separation. 

The VY Scl class stands out with its deep low brightness state
xcursions such that low values of eta e appear in the rele v ant g- and
 -band feature maps near node (7, 1), associated with the highest VY
cl class probability (see class maps). This feature reflects the degree
f independence between successive data points, where magnetic 
ystems exhibit higher values due to hourly time-scale variations, 
hile VY Scl systems sho w lo wer v alues due to longer time-scale
 ariations. Furthermore, VY Scl lo w-state excursions can induce a
igh skewness in magnitudes ( Skew ), and due stable and prolonged
igh-brightness states, give rise to the highest standstill level values 
 stdstilllev t20s10 ), as feature and class maps demonstrate. 

Eclipses within the nova-like class, as e x emplified by 
TF18abajshu in Fig. 1 , push the standstill level into a range occupied
y Z Cams, potentially causing confusion between these two classes. 
onfusion also arises between nova-likes and the SU UMa class. The

ight curves of sources where such confusion occurs are marked by
 limited number of data points, this is seen in the n obs feature
aps for nodes (6, 6) and (6, 7), situated where the associated class

tructures are closest together. Based on the current feature set, our
odel finds difficulty in distinguishing systems visible only during 

utbursts from nova-likes with limited observational epochs, though 
 v erall, no va-likes remain distinguishable from the other classes. 
The lowest standard deviation ( Std ) and absolute median deviation

 MedianAbsDev ) values are associated with the intermediate polar 
nd nova-like classes, as seen in the feature maps. This aligns with
he less frequent low-state e xcursions observ ed in intermediate polars
nd nova-likes compared to polars and VY Scl systems in the ZTF
ight curves. 

As explained by Hameury & Lasota ( 2017 ), most intermediate
olars possess accretion discs truncated at inner radii due to the
hite dwarf’s magnetism. This may lead to dwarf nova outbursts 

haracterized by lower amplitudes and shorter durations. The mixture 
f outbursting and non-outbursting intermediate polars, coupled with 
ess distinct outburst profiles, contributes to feature maps displaying 
MNRAS 527, 8633–8658 (2024) 



8656 D. Mistry et al. 

M

l  

c  

p  

s  

(  

s

4

S  

e  

s  

o  

b  

2  

f  

g  

d  

l  

w  

2
 

s  

t  

t  

v  

s  

a  

i  

1  

p  

t  

d  

a  

2  

f  

a  

p  

w  

U  

p
 

t  

t  

d  

s  

n
 

f  

W  

t  

2  

H
 

p  

p  

o  

e  

m
 

C  

t  

r  

n  

C  

s  

m  

p  

2  

a  

c  

i  

w  

r  

t  

m  

d  

C

4

A  

k  

i  

t  

p  

t  

c  

2  

4  

f  

(  

r  

s  

b  

s  

m  

d  

i  

d  

a  

p  

a  

fi  

e
 

r  

c  

s  

o  

N  

t  

t  

c  

c  

t
 

w  

v  

C  

c  

i  

M  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/8633/7459939 by Liverpool John M
oores U

niversity user on 11 January 2024
ower amplitude and variability-related values for intermediate polars
ompared to dwarf novae. Non-outbursting intermediate polars may
ro vide an e xplanation for confusion with polars, indeed, this is
upported by the projection of intermediate polar ZTF18abaiuvj
Fig. 1 ) onto a region associated with polars within the GTM latent
pace (Fig. 8 ). 

.1.6 Evolutionary factors 

eparating CVs into distinct classes is one that is a challenge for
xperts on the subject who must wrestle with the fact that as these
ystems evolv e, the y transition from displaying traits characteristic
f one class to another such that boundaries between classes are
lurred (e.g. Paczy ́nski 1971 ; Shafter 1992 ; Warner 1995 ; Hellier
001 ; F ̈orster et al. 2021 ). This is a consequence of the requirement
or stable mass transfer that depends upon the magnetic braking and
ra vitational wa ve radiation angular momentum loss mechanisms to
rive systems to shorter periods. In so doing this allows the mass
osing donor to continue transferring mass by maintaining contact
ith its Roche lobe (e.g. Paczy ́nski & Sienkiewicz 1983 ; Hellier
001 ). 
The shortening of orbital periods, donor composition changes, and

hrinkage of the accretion disc amongst several other factors drive
he class transitions. At long periods (typically 3–6 h) the high mass
ransfer rates allow the accretion disc to be maintained in a stable hot
iscous state, such that no dwarf nova outbursts are observed, these
ystems form the nova-likes. As the mass transfer rates drop, the
ccretion disc straddles the stability threshold, below which the disc
s cool, non-viscous, and unstable to dwarf nova outbursts (Shafter
992 ). Systems lying close to this threshold form the Z Cams, with
eriods of standstill, akin to nova-likes, and outbursting episodes
ypical of dwarf novae. The continuing evolution induces an unstable
isc, where we see a transition to the semiregular outbursts of U Gems
nd then the SU UMa systems where the much shorter periods ( <
 h) introduce tidal effects driving the superoutbursts they are known
or. SU UMa systems comprise ER UMa subtypes, where abo v e
verage mass transfer rates lead to short superoutburst recurrence
eriods and rapid-fire normal outbursts that may cause confusion
ith the Z Cam class; and the WZ Sge subtypes (shortest period SU
Ma) whose donor composition no w dri ves an increase in orbital
eriod. 
As with hydrogen CVs, helium CVs (AM CVns) undergo evolu-

ion. Due to a de generate/semide generate donor, evolution once mass
ransfer starts (at periods of 5–10 min) is towards longer periods,
uring which accretion may transition from direct (no disc), to hot
table, then unstable discs subject to the He CV equi v alent of dwarf
ova outbursts (Nelemans 2005 ; Solheim 2010 ). 
Nova eruptions are a possibility for all systems should conditions

or hydrogen fusion be present under degenerate conditions on the
D surface; this is far more likely to occur for the highest mass

ransfer rate systems with high mass WD accretors (e.g. Darnley et al.
006 ; Munari 2012 ; Chomiuk, Metzger & Shen 2020 ; Darnley &
enze 2020 . 
The presence of strong magnetic fields for the intermediate

olar or polar label requires observations of pulsed X-rays and/or
olarimetry to complicate matters further. In addition to the abo v e,
ne must factor in the orbital inclination that determines the o v erall
mission contribution from the accretion disc and thereby impacts
easurements such as colour and brightness. 
The evolutionary changes are evident in many of our light curves.

R Boo (ZTF18adkhuxp; Fig. 1 ), is an AM CVn with a standstill
NRAS 527, 8633–8658 (2024) 
o its name (Kato, Maeda & Moriyama 2023 ); high mass transfer
ate systems residing amongst the U Gem class manifest as dwarf
ova outbursts with very short recurrence times indicative of a Z
am class; the ER UMa subclass (Kato et al. 2013 ) of SU UMa

ystems may also be confused with the Z Cam class due to their high
ass transfer rates and rapid outbursts. With respect to intermediate

olars a range of light-curve morphologies are possible (e.g. Šimon
021 ). Short duration low-state transitions, dwarf nova outbursts
nd more stable long-term light curves are present within our light-
urve sample, consequently, a confusion with any of the other classes
s possible. Constructing a classifier in light of these intricacies
ill naturally produce class confusion despite incorporating a wide

anging feature set inclusive of astrometric data and an attempt
o produce a data set with accurate class labels. The confusion
atrix and class maps in combination with the example light curves

isplayed in Fig. 1 are a visual representation of this very aspect of
V classification. 

.2 Pipeline implementation 

 substantial portion of the alert stream filter consists of either
nown or candidate CVs (according to the AAVSO VSX list). This
s positive news, indicating that the filter effectively retains them in
he stream. Consequently, the undisco v ered CV candidates hav e a
romising likelihood of being contained within the remaining alerts
hat have successfully passed through the filter. The approximate
lass proportions of the confirmed or candidate objects are as follows:
0 per cent SU UMa (including the WZ Sge and ER UMa subtypes),
 per cent Z Cam, 3 per cent U Gem, 59 per cent dwarf novae without
urther subdivision, 3 per cent magnetic CVs, 6 per cent nova-likes
including subclasses), and less than 1 per cent AM CVn. The
emaining confirmed or candidate CVs form a mixture of several
ources labelled as novae due to an eruption that may have occurred
efore ZTF observations, a recurrent nova, and CVs without further
ubdivision. These proportions stem from a variety of factors that
ay include: the frequent occurrence of alert-triggering events in

warf novae leading to their relatively higher representation; the
nherent faintness of short (or ultrashort) period CVs, making their
etection less probable; the need for supporting evidence, such
s periodic variability on short time-scales (minutes to hours),
olarimetry, and/or X-ray emission, to confidently confirm a CV
s magnetic; and the establishment of specific thresholds in our alert
ltering, for example, excluding CVs with a g – r colour index
xceeding 0.7. 

The substantial contribution of lo w-v ariability sources among the
emaining filter targets results from the omission of a magnitude
hange condition. Nevertheless, it was observed that incorporating
uch a condition restricted the detection of confirmed/candidate
utbursting CVs, unless a considerably low threshold was applied.
otably, our classifier o v erwhelmingly assigns the nova-like label

o low (or slowly varying) sources, thereby enabling the classifier
o allocate the remaining higher variability sources into distinct
lasses. None the less, we retain the option to implement a magnitude
hange criteria should we choose to focus on specific variability
ypes. 

Referring to Fig. 2 , configuring the filter to retain alerting sources
ith a ZTF g – r colour of ≤0.7 is expected to encompass the
ast majority of the shortest period systems, SU UMa, and AM
Vn candidates, along with a significant portion of the remaining
lasses. Ho we v er, e xpanding the filter to include all examples would
nevitably lead to a rise in contamination from non-CVs, such as

ira variables and AGN candidates (as observed in the 2023 June
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ample). Similar to the magnitude change filtering, we are actively 
xploring the option to adjust the colour constraint, aiming to focus
n specific CV subclasses. 
The ML classifier demonstrates its greatest strength when applied 

o the filter output by ef fecti vely distinguishing between outbursting 
nd non-outbursting sources, a characteristic mirrored in the test set 
redictions. Also mirroring the test set results is the further separation
f confirmed, candidate, or likely (from our inspection) SU UMa 
rom Z Cam sources; and the separation of light curves with polar and
Y Scl like variability assigned to those respectiv e classes. Howev er,
hen we enter the low sampling regime, the classifier struggles to 

ssign alerting sources into what we would consider the appropriate 
lass. F or e xample, sev eral poorly sampled though likely outbursting
ystems (where quiescent magnitudes are not sampled) are assigned 
he nova-like or polar classes. However, on the whole, these sources
end to be assigned one the dwarf nova classes or the AM CVn class
should an especially blue colour be calculated). 

 C O N C L U S I O N S  

n this paper, we developed and applied an ML pipeline to detect
nd categorize CVs and their subtypes from the ZTF alerts stream. 
ur pipeline’s alert filtering stage ef fecti vely retains both known and
otential CVs across various subclasses, thanks to a multiparameter 
 – r colour threshold and the omission of a magnitude change 
ondition. This approach accommodates colour changes during 
warf nova outbursts. 
The performance of our ML classifier is largely dependent on 

he ability of our data set to provide an accurate representation 
f the diversity within the CV population. This diversity is clearly 
resent in the example light curves (see Fig. 1 ), ho we ver, imbalance
n this diversity (class imbalance) and commonalities in the types 
f photometric variability between classes renders CV subtype 
lassification a particularly challenging task. Evolutionary factors 
ri ve the dif ficulty in arri ving at concrete class labels both for experts
n the subject and our ML classifier. The challenge is compounded 
y inadequate sampling of light curves. Despite these difficulties, 
n e xhaustiv e e xamination of sev eral ML algorithms, trained with a
omprehensive feature set, and operating under a selection of class 
alancing and feature selection techniques, yielded a classifier with 
 prediction pattern that can be understood in the context of CV
volution. 

Latent space representations of this prediction pattern using GTM 

class maps) provide an easily interpretable avenue for visualizing 
his evolution. The accompanying feature maps provide a convenient 
ethod of finding those features most rele v ant for a model’s assign-
ent of a given class. They also provide us with the properties that

ontribute to classification error, where in many cases the answers 
re linked to evolutionary factors. Though not explored in this work, 
hese feature maps provide a method to pare down the feature set
y eliminating features that provide little benefit for discrimination 
etween classes. 

Implementation of the pipeline on the ZTF stream has, o v er the
eriod of 2023 June alone, yielded a sample of new CV candidates,
hese are largely of an outbursting nature, with several magnetic CV
andidates. With further impro v ements to the pipeline underway, 
uch as filter threshold adjustments and inclusion of computer vision 
echniques to provide an automated interpretation of salient light- 
urve characteristics, we aim to reduce contamination of non-CVs 
e.g. Mira variables and AGNs) and produce an ML classifier with 
reater class distinction powers. 
Given the fuzzy boundary between CV subclasses for the reasons 
entioned, it may be prudent to apply stricter criteria for data set

nclusion, focusing only on clear examples of a given class. With this
pproach, one relies less on definitive class labels, but more on the
robability of class belonging. Alternative approaches may include 
dopting a multilabel approach that takes into consideration class 
oundary crossing variability, or an unsupervised learning strategy 
hat does away with existing class labels, tasking algorithms with 
nding similarities, differences and structure in the data itself. 
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