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Preface

Imagine facing a complex problem, such as choosing a future career, buying
your first house, or investing your money. You may find it very difficult to
think clearly about the decision; there are so many different things that you
need to consider. You are tempted to go with your “gut” feelings and make
your choice entirely based on emotional grounds. Just as you are about to do
this, you consider how unfair this may be for your family, friends, or colleagues.
What you desperately need at a time like this is a framework and a set of tools
which will help you to address the complexities of the problem so that you
can consider it dispassionately. You can do a risk analysis. In risk analysis,
you think about your objectives, e.g., maximising a salary and being able to
travel, and you think about how likely you are to get your dream job or not
to get the job; you also think how likely your dream job will enable you to
pay a mortgage, and you consider your attitude toward this risk, e.g., are you
adventurous and risk loving?

Another example of a risk situation is the Covid-19 pandemic. Our prime
minister is deciding whether to impose a lockdown, and he knows there is a
risk if he does not impose a lockdown (e.g., virus spread, loss of lives) and
there is a risk if he does impose a lockdown (e.g., loss of jobs, the economic
instability of country and people). Another example is from medicine, where a
medical doctor is deciding whether a patient is in remission, or in engineering,
where an engineer is deciding whether an atomic power station is safe.

Hence we study risk because it is an important subject. Risk is omnipresent
in every aspect of life. There are many types of risk, depending on the area of
life or business: environmental risk; financial risk; health risk; health, safety,
and environmental risks; information technology risk; insurance risk; occupa-
tional risk; safety risk; and security risk. In engineering, often risk analyses are
used to show that an installation conforms to the requirements of a regulator.

Using the theory of probability, we can calculate probabilities of events.
Using statistics, we model the data so we get probability estimates in more
complex scenarios and so we can study risk factors. Hence, we understand
what may affect the risks, and we can build on the communication tools of
statistics to communicate the risk to stakeholders.

However, making an optimal decision under risk, or advising someone,
involves knowing how to present risk information and communicate risk. It is
crucial to know that there are various types of unknowns in our natural and
human-built environments (including AI). This makes the risk subject matter
complex and exciting to study, practice and teach.

vii



viii Preface

Why teach risk analysis to students of applied informatics,
engineering, mathematics, or computer science?

The idea for this book began with a special course at Liverpool John Moores
University called ”Probability and Risk” for 2nd year of undergraduate stu-
dents of Applied Mathematics. Risk is a topic that is becoming so important
that it needs to be part of the mainstream of applied mathematics and possi-
bly other programs. Students of quantitative disciplines, such as mathematics,
will likely have data science posts where they have to do two challenging tasks.
Firstly they must quantify risks and decide what information they will use.
Secondly, they will need to communicate the risk to the stakeholders so they
can make the best decision that suits them. For example, they will communi-
cate to a health official the health risks of a new virus so they can decide on
lockdown, or to a clinician so that the clinician can advise a patient about the
risks of surgery, or to an investor so she/he can decide about future investment.

However, we realised that no book is suitable to support the mathematics
course. There are three types of available risk books. There are risk books
that present the material in the context of a particular discipline, such as
built environment engineering or cyber security, or epidemiology. Or there are
risk books that focus on the communication of risk explaining the human per-
ception of risk while explaining simple mathematical and statistical tools. Or
there are risk books that focus on quantifying risk but are highly mathemat-
ically advanced and focused on graduate students. They typically provide a
small space for the explanation of the risk communication. The tendency is
that they explain a small number of advanced risk tools, thus not providing a
comprehensive view of the risk discipline. Often, they do not give a sufficient
explanation of how risk quantification relates to the newest developments in
artificial intelligence.

This book reflects the current need for experts in risk quantification. There
are two main needs. Firstly, the field of risk is rapidly evolving, thus requiring
risk analysts who are flexible to adapt to new problems arising from grow-
ing data complexity and the growing number of new machine learning and
artificial intelligence algorithms. This means that they need to have a solid
understanding of mathematics, probability, and statistics to know the inner
workings of the methods, why they work, and when they fail. So when a
new statistical method arrives, they can learn it and judge if it suits the risk
problem. Second, risk analysts need to be able to communicate with domain
experts from various fields (such as economics, medicine, and cyber security).
Communication means: understanding the risk problem in the domain con-
text, understanding the quality of the information, and then communicating
back the estimated risk. If the risk is estimated correctly but communicated
badly, it can lead to disastrous consequences for the stakeholders. A challenge
of risk communication is in human perceptions of the estimated probability



Preface ix

of something good or bad happening and in the fact that we humans have
different perceptions of risk - some of us are OK to risk more, others want to
stay on the safe side.

This book aims to provide an overall view and understanding of the key
concepts of risk quantification and communication. To achieve this, the book
starts with a necessary background in mathematics, probability, and statistics.
Then the book follows with classical and modern concepts of quantitative risk
analysis and making decisions under risk: from the frequentist and Bayesian
statistics while providing connections to the recent developments in artificial
intelligence. It shows examples and exercises from many life areas, including
health, medicine, finance, investment, engineering, cyber security, and con-
sumer behaviour. It provides examples in software R.

The targeted audience are students of undergraduate studies of mathemat-
ics and other quantitative discipline such as applied informatics, computer sci-
ence, engineering, data science, or econometrics. This book is useful for those
looking to find jobs as statisticians, data scientists, and risk consultants hence
anyone interested in estimating and advising on risks.

Software used in this book

Modern risk analysis requires the use of a calculator or software. Software is
needed for two reasons: computation (data exploration, inferential statistics,
prediction) and simulation. We will focus on software R. R is a freeware sta-
tistical software package maintained by a core user group. The R base package
and numerous add-ons are available at http://cran.r-project.org/.

Throughout this book, we will provide R code for both computations and
simulation. It is not the goal, however, to serve as a primer in R language,
so some prior knowledge of elementary R programming is required. The R has
extensive help menus and active online user support groups. Readers interested
in a more thorough treatment of the R software packages should consult The
R Book by Michael J. Crawley [16]; alternatively, extra references are provided
in relevant chapters.

Structure of the book

This book is aimed at the second year of an undergraduate degree in quantita-
tive disciplines such as applied mathematics, applied informatics, engineering,
or computer science. Part I is crucial to learn as it lays the basics of risk assess-
ment. Part II brings the relevant topics from probability that are important
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to know; however, they can be skipped if the reader has previous knowledge.
Part III is important as it dives deep into specific areas of model-driven risk
analysis: times series and Markov chains. We chose these two model-driven
approaches as they are highly used in real life while they are the basis for
more complex approaches implemented in Artificial Intelligence. Part IV dis-
cusses making decisions under precise risk, which is important to learn. Then
it provides alternative decision criteria for making decisions under imprecise
risk, which may not be relevant to some application domains. Part IV also
introduces decision trees, an important topic, especially when making several
decisions sequentially. Finally, Part V on risk communication is crucial for any
risk analyst, and thus we dare the readers not to skip it.

What makes this book unique

This book has been crafted with many distinctive features. They are:
Inside-chapter feature Examples show how the concepts explained within

the chapters are used and applied in real life. The examples describe the
technical details of topics that are otherwise difficult to comprehend. The
examples explain the technical, mathematical, and risk concepts. Using the
examples, the reader will be able to develop the skills required to do risk
analysis and to communicate with the whole risk assessment team and with
stakeholders.

Inside-chapter feature Caution! is used to draw attention to important
aspects of explained topics of risk analysis, to areas where we witnessed mis-
takes being made by risk analysts, by risk researchers, and by those who need
to make decisions.

End-of-chapter feature Tips to think and act like a risk expert brings
further tips for risk analysts. We chose them carefully based on our experience
from doing research, reading research papers, talking to risk stakeholders such
as clinicians, patients, and caregivers, and teaching this subject to undergrad-
uate students of applied mathematics. Often these tips start with stories to
introduce a problem, and then there is a discussion about solutions. These
tips are here to nudge the reader to see risk analysis from a bird’s view: (1)
to see how the taught topics connect to other areas of technologies such as
AI, (2) to see the advantages and disadvantages of taught approaches, and (3)
to see how the taught topics interact with a human mind. Some of the tips
are simple and lead to a straight correct answer. Some tips are touching more
complex real-life situations where the correct answer depends on the interac-
tion with and between stakeholders. Thus we crafted these tips to bring the
risk analyst to the next level: to have holistic thinking about risk.

End-of-chapter feature Further reading is used to give the reader further
books and papers to read on the topics from the chapter. It is also used to



Preface xi

discuss relevant extensions and more advanced topics - related to data science
and artificial intelligence - and to recommend books and papers for the eager
reader.

End-of-chapter feature R lab is used to give the reader the R code for
all solved examples from the chapter, as well as the full output from R. We
do not give any R code inside the chapters so that the reader can read the
chapter undisturbed by R code explanations. The R lab section also contains
further exercises to be solved using R. Their solutions are not provided in the
book but can be provided upon request to instructors.

End-of-chapter feature Exercises gives the reader an opportunity to prac-
tice the topics. The use of a calculator is often needed, but R is not needed.
Their solutions are not provided in the book but can be provided upon request
to instructors.
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4 Elements of Risk Analysis with Applications in R

1.1 Motivating examples

Here we discuss two examples and illustrate what can go wrong.

Example. Kidney stone treatment. This comes from a real-life medical
study comparing the success rates of two treatments for kidney stones. The
table below shows the success rates and numbers of treatments for small and
large kidney stones. The term success rate here actually means the success
proportion. Treatment A includes open surgical procedures, and Treatment B
includes closed surgical procedures. The numbers in parentheses indicate the
number of success cases over the total size of the group. Which treatment is
more effective?

Treatment
Treatment A Treatment B

Stone size
Small Group 1, 93% (81/87) Group 1, 87% (234/270)
Large Group 3, 73% (192/263) Group 4, 69% (55/80)

Both 78% (273/350) 83% (289/350)

TABLE 1.1: Kidney stone treatment example data.

The paradoxical conclusion is that treatment A is more effective when used
on small stones, and also when used on large stones, yet treatment B appears
to be more effective when considering both sizes at the same time. In this
example, the ”lurking” variable (or confounding variable) causing the paradox
is the size of the stones, which was not previously known to researchers to be
important until its effects were included.

Based on these effects, the paradoxical result is seen to arise because the
effect of the size of the stones overwhelms the benefits of better treatment (A).
In short, the less effective treatment B appeared to be more effective because
it was applied more frequently to the small stones cases, which were easier to
treat. Which treatment is better, A or B?

Note that this is an example of so-called Simpson’s paradox , which also
goes by several other names, is a phenomenon in probability and statistics in
which a trend appears in several groups of data but disappears or reverses
when the groups are combined. It is also referred to as Simpson’s reversal ,
Yule–Simpson effect , amalgamation paradox , or reversal paradox also called
Ecological fallacy. Simpson’s paradox happens when groups of data show one
particular trend; however, this trend is reversed when the groups are com-
bined together. Understanding and identifying this paradox is important for
correctly interpreting data.

Example: You and your friend. You and your friend each do problems
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on Brilliant, and your friend answers a higher proportion correctly than you
on each of the two days. See the Table 1.2. Who is better, you or your friend?

Person
You Your friend

Day
Saturday 87.5% (7/8) 100% (2/2)
Sunday 50% (1/2) 62.5% (5/8)

Total 80% (8/10) 70% (7/10)

TABLE 1.2: Your and your friend example.

On Saturday, you solved 7 out of 8 attempted problems, but your friend
solved 2 out of 2. You had solved more problems, but your friend pointed out
that he was more successful, since 7/8 < 2/2. This seems a fair evaluation for
Saturday. On Sunday, you only attempted 2 problems and got 1 correct. Your
friend got 5 out of 8 problems correct. Your friend says he/she was better
on Sunday, since 1/2 < 5/8. However, the competition is about the one who
solved more accurately over the weekend, not on individual days. Overall,
you have solved 8 out of 10 problems whereas your friend has solved 7 out
of 10 problems. Hence, even though your friend solved a higher proportion
of problems each day, you actually won the challenge by solving the higher
proportion for the entire weekend. This seemingly unintuitive possibility is
again an instance of Simpson’s paradox.

1.2 What is in the names?

There is a basic terminology that is used when talking about risk. Some ter-
minology is specific to some fields; some are general. We will start by defining
the main terms and provide examples, to illustrate what they mean.

1.2.1 Risk

The term risk does not have a unique worldwide accepted definition. The
literature on the subject of risk has grown rapidly in the last 20 years, and
the word “risk” is used in many different ways. The purpose of this section
is to discuss briefly what we mean by risk and in what way the concept has
been established in a mathematical setting. The following are the four typical
definitions of risk:

1. Risk is a situation involving exposure to danger [3]. Risk is the possibility
of something bad happening. When the risk is present, we know all the
outcomes (effects, implications) of an activity (or inactivity) with respect to
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something that humans value (such as health, well-being, wealth, property,
or the environment), and we know the probabilities of such outcomes. In
other words, Risk is the situation under which the decision outcomes and
their probabilities of occurrences are known to the decision-maker.

2. An old definition of risk is source of harm or hazard. This definition comes
from Blount’s “Glossographia” [11]. Modern equivalents refer to “unwanted
events” [4] or “something bad that might happen” [1].

3. Another definition of risk is chance of harm. This definition comes from
Johnson’s “Dictionary of the English Language” [2]. It has also been para-
phrased as “possibility of loss” [3] or “probability of unwanted events”.
Here, the risk is defined as the probability of harm occurring.

4. Another definition of risk is any uncertain event or set of circumstances
that, should it occur, would affect the ability to meet objectives”. Note
that here the risk is defined as an event.

Examples of risk:

1. Medical risk: A patient (or his carer) wants to know if he has glaucoma
disease in one of his eyes. He/she may ask: Do I have glaucoma? If I have
it, then if I do not get treated, when will I lose sight? If I get treated, are
there chances of side effects?

2. Natural hazard-triggered technological accidents (known as Natechs) are
a subject of increasing concern. They are the industrial accidents resulting
from natural hazard events. The growing concern is due to the growing ex-
posure of highly industrialised and urbanised areas to natural hazards [57].

3. Financial risk: A financial institution may like to know about the possibil-
ity of the growth of the Gross Domestic Product index going up or down.
They may ask: What are the chances that the next year’s growth rate
will be between 1.5% and 3.5% (stable economy)? What are the chances
that the growth will be less than 1.5% in each of the next three quarters?
What are the chances that within a year, there will be negative growth
(recession)?

4. Spacecraft flight risk: Problem of assessing the risk for a spacecraft with
a specific mission. For example, the Apollo and Shuttle projects plan to
send astronauts to Mars. When preparing for such flights, risk considera-
tion is crucial. However, the problem is much different from smoking risk
or risk of common cancers because there are no relevant available data.
Here statistical and mathematical models are used (called model-based risk
assessment) as experience in the form of observations of the performance
of the whole spacecraft is not available in the planning stage [9].

5. Legal: What is the chance that the suspect committed the crime?
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6. Safety: What are the chances that the bridge will collapse? What are the
chances that a clutch will break in the car?

7. Epidemiology: What are the chances of hospitals being overfilled if we do
not roll out a national lockdown for Covid-19?

8. Cyber security: What are the chances of a cyber attack in the next hour?

9. Credit risk: What are the chances that a person will not repay the loan?

10. Artificial Intelligence (AI)-related risk: What are the chances that AI in-
correctly identifies an ill person as healthy?

1.2.2 Uncertainty

The Oxford English Dictionary states that ”uncertainty is the state or char-
acter of being uncertain in mind, a state of doubt, want of assurance or con-
fidence, hesitation, irresolution” [3]. The Cambridge Dictionary states that
”uncertainty is a situation in which something is unknown or certain” [1].
These two definitions are similar in the sense that they say something is not
known. Note that the Oxford dictionary explicitly says that uncertainty is the
state of mind, while Cambridge conveys the same message albeit implicitly.

Two main types of uncertainty are aleatoric and epistemic uncertainty [23]
(see Figure 1.1). Next, we look at each type and discuss some examples.

Aleatoric uncertainty occurs when the probabilities are quantifiable to a
high degree of certainty, but we do not know the outcomes. In other words,
we know the probabilities precisely. However, there is uncertainty about the
outcome due to randomness (random chance). Such aleatoric uncertainty is
an irreducible uncertainty. Examples are:

1. We flip a coin. We know it is a regular coin, so the probability of a head
is 50% and a tail is 50%. The aleatoric uncertainty is not knowing the
outcome of the flip (or of the next five flips).

2. The manufacturing line is producing gloves and has a probability of 1 in
200 producing a faulty product. The aleatoric uncertainty is not knowing
the quality of the next produced product or a randomly chosen product.

3. We flip a different coin. We know it is an irregular coin, and a trusted
source told us that the probability of a head is 72% and a tail is 28%. The
trusted source is a keen statistician who previously flipped the coin 300
times and got the probabilities for us, which are quite precise since 300 is
a large number. The aleatoric uncertainty is not knowing the outcome of
the flip (or of the next five flips).

Epistemic uncertainty occurs when there is a lack of knowledge. The word
”epistemic” means relating to knowledge or to the degree of its validation.
This uncertainty is reducible. Examples are:
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FIGURE 1.1: Aleatoric and epistemic uncertainty. In the left scenario, there
is a risk that the medicine does not work for some patients. We (the risk

analyst) are certain that the medicine does work for 74% of patients because
we had a very large sample and we are confident that the data are of good
quality. So there we have an aleatoric uncertainty about for whom the

medicine will work, but there is no uncertainty about the proportion 74%.
On the right, there is a different scenario. There is still the risk that the

medicine does not work for some patients. However, we have an additional
uncertainty as we are not certain about the probability of 74% anymore,
thus we question our knowledge of the probability. Where there is an

epistemic uncertainty too, in our view of this situation.

1. When President Obama’s team was deciding whether to raid the hideout
of bin Laden, they had information from their intelligence team that the
probability of him being in the compound is 51%. Obama’s team was facing
an epistemic uncertainty on whether bin Laden is in the compound [23].
They had some estimate of how likely he is there, but it was just an
estimate so the quality of the estimate was questionable, and the number
was not 100% certainty, but rather a smaller number, that is 51%.

2. It is August 2020 and the Bank of England wants to predict future infla-
tion. Past data are considered to be used but there is uncertainty about
the suitability of the data to predict the future, as now the country (and
the whole wide world) is in the middle of an unprecedented fight with
the Covid-19 pandemic which makes product and labour markets unpre-
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dictable as well as the government’s policies. There is epistemic uncertainty
on how to do the prediction.

3. A medical team has data on patients who developed gastric cancer as well
as those who did not develop the cancer. The data science team uses the
data and develops a risk prediction model. For each patient, the model
estimates the risk of developing gastric cancer a year from now. But then
the data science team finds out that data have many missing values! For
example, men were more likely to not report their smoking and drinking
status (important risk factors for this cancer), and those who feel well were
more likely to decide not to participate in the study. This may have brought
biases into the risk prediction model! There is now epistemic uncertainty
about the risk model.

4. Two months ago, company PlanetProtect bought and installed a new AI
software to detect early digital attacks on their IT system. They want to
know how accurate it is. The seller claims an accuracy of 90%, but the
seller says that they did not test it on companies like PlanetProtect and
thus the accuracy may change ”a bit” (though we may be sceptical about
the ”a bit” part). There is now epistemic uncertainty about the accuracy
of the AI system for PlanetProtect. So PlanetProtect decides to reduce
this uncertainty. They collect data from two months. The data are used
to estimate the probability of detecting the attack being 76% with a 95%
confidence interval (56% and 96%). They believe no one tampered with
the data. But the data are too short to have a precise estimate of the
probability. The current estimate of the probability is therefore imprecise
with the width of the confidence interval of 40%. This is again an epistemic
uncertainty about the accuracy of the new AI software to detect attacks
early. More data will help to reduce this epistemic uncertainty.

Epistemic uncertainty is personal and temporal [19]. For example, the un-
certainty on how accurate the AI software that PlanetProtect bought to detect
digital attacks on their AI system. Epistemic uncertainty is personal because
it relates to each person’s state of mind whether it is based on a cognitive
process of an expert assessor, a hunch feeling of a non-expert individual, or
based on some statistical calculation (from t-test all the way to a complex AI
algorithm), or combination of all. It is temporal because it can and should be
updated as a piece of new information becomes available. The task of a risk
expert is to express such uncertainty at the time the uncertainty was obtained.
Therefore there is no single ”true” uncertainty.

Aleatoric uncertainty is a property of the real world, referring to real dif-
ferences between the members of a population of real-world entities. The
term population refers either to biological organisms such as people or to
non-biological items such as the activity of the IT system during specific 10
minutes, in the company PlanetProtect. If we chop the time into 10 minutes
intervals, then each interval is an entity of the real world and each either was
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under digital attack (value 1 or Yes) or not under attack (value 0 or Not).
Such differences in values across the time intervals represent the aleatoric un-
certainty (also called variability of the real world, or uncertainty caused by
variability).

In our research practice we witnessed that dialogue with non-risk experts
improved once we agreed at the start ”the uncertainty of what we are dis-
cussing?”. The communication also improved once we started using the terms
epistemic and aleatoric uncertainty. Thus in our book, we will use the terms
epistemic uncertainty and aleatoric uncertainty. When we say uncertainty, we
will mean any of the two types: epistemic or aleatoric.

Caution! When reading reports, books, or papers on uncertainty, it is
important to judge if they speak about aleatoric or epistemic uncertainty.
Sometimes they say it at the beginning of their report, sometimes they do not
say so the reader needs to deduct it from the context. For example, in [19] the
authors use the term uncertainty when they talk about its specific type the
epistemic uncertainty and they do acknowledge it.

1.2.3 Risk management

Risk management refers to a systematic approach to managing risks, and
sometimes to the profession that does this. A general definition is that risk
management consists of “coordinated activities to direct and control an orga-
nization with regard to risk” [55].

1. Planning, establishing the scope, context, and criteria. Problem issue defini-
tion. Clarify who the stakeholders are (patient, public, caregivers, business
owner, government, neighbouring countries...). Set study objectives. Estab-
lish relevant principles and approaches.

2. Risk assessment: Risk analysis and Risk evaluation. Risk analysis is recog-
nising and characterising risks, cause analysis, consequence analysis, risk
characterisation, deciding on measures of risk, studying and comparing al-
ternative decisions with respect to risk, communicating and consulting the
risks. Risk evaluation is judging the significance of the risks to support
decision-making, ranking alternative actions to support decision-making,
communicating and consulting the alternative actions.

3. Use of risk assessment for decision making This includes selecting and im-
plementing options for addressing risk, monitoring and reviewing, record-
ing, and reporting.

In general, the aim of risk management is to assist organisations in setting
strategies, achieving objectives, and making informed decisions. The outcomes
should be scientifically sound, cost-effective, integrated actions that treat risks
while taking into account social, cultural, ethical, political, and legal consid-
erations.
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FIGURE 1.2: Risk management.

In contexts where risks are always harmful, risk management aims to re-
duce or prevent risks. In the safety field, it aims to protect employees, the
general public, the environment, and company assets, while avoiding business
interruptions (e.g. nuclear power stations can only have harmful risks, also
the sight of a person can only get worse).

For organizations whose definition of risk includes upside (some positive
outcome) as well as downside (negative outcome) risks, risk management is as
much about identifying opportunities as avoiding or mitigating losses. It then
involves getting the right balance between innovation and change on the one
hand, and avoidance of shocks and crises on the other (e.g. value of a house
can quite randomly go up or down).

Risk assessment is a systematic approach consisting of two components:
(1) risk analysis i.e. recognising, characterising, and recording risks, this can
include identifying the causes and their potential consequences, (2) risk eval-
uation i.e. evaluating the risk significance, in order to support decisions about
how to manage them. In safety contexts, where risk sources are known as
hazards, this step is known as hazard identification.
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1.3 To think and act like a risk analyst

Next, we discuss three key domains of a risk analyst: (1) Knowing how to
describe and measure risk, (2) knowing how to find the optimal decision,
and (3) knowing how to communicate the risk and recommend the optimal
decision.

1.3.1 Know how to describe and measure the risk

The description and measurement of risk is about developing an understanding
of the risk. It can be done qualitatively or quantitatively. The quantitative risk
analysis (QRA) is also called probabilistic risk analysis (PRA). Formally, in
a risk analysis, we are attempting to envision how the future will turn out if
the decision maker undertakes a certain course of action (or inaction). The
risk analysis answers the following four questions:

• What can happen? What can go wrong? What can go well? Can we cre-
ate a list of all outcomes that can happen? What are the positive outcomes
and negative outcomes?

• For each outcome, if it does happen, what are the consequences?
What are the benefits or losses for each stakeholder? Some consequences
can be small, some large. For example, an earthquake can have catas-
trophic consequences albeit with a small probability. Some consequences
can be positive, some negative. How outcomes link to consequences? This
may not be known fully, so a statistical analysis of causes may be done,
or experts can be called for their opinion. Who are the stakeholders, i.e.
people affected by outcomes? In the example of Janette getting a job, she
is a stakeholder, additionally, her parents are stakeholders because if she
gets a well-paid job, her parents do not need to support her as much or
at all. Each stakeholder has some attitude toward each consequence; in
future, we will call such attitudes the utilities.

• How likely is each outcome to happen? What is the likelihood or
probability of the wrong outcome happening? What is the probability of
a positive outcome? Some probabilities can be large, some very little. Is
probability a useful way to measure uncertainty? There are other measures
that we will learn later.

• What is the strength of knowledge that we have? What do we use
to calculate the probabilities of events? Do we use past data or expert
knowledge? Do we trust the expert(s)? Are data relevant? Do we have
enough data? Are data noisy?

The four answers to the questions above constitute four elements of risk,
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called risk descriptors (see Figure 1.3). The first three questions are the triplet
of Kaplan and Garrick [37]). The fourth question was added later [9].

From the practical point of view, to describe the risk, it is highly rec-
ommended to construct a table that describes all four risk components (see
Table 1.3). The i-th row of the table should contain the answers to the above
four questions.

(Ai, Ci, Qi,Ki) for i = 1, 2, ..., N, (1.1)

where

• Ai is a outcome where N is the number of all outcomes that can happen.
This is also termed event, hazard, threat, opportunity, or risk source. In
the example where Janette is looking for a job, one outcome is her getting
the new job of her dreams with a high salary.

• Ci is the consequence or the evaluation measure of that outcome. In gen-
eral, the consequences can be positive or negative. In Janette’s looking for
a job example, if she gets her dream job with a high salary, she will be
happy and will buy the house of her dreams; if she gets a job that pays less,
she will not be so happy, and if she ends up jobless then as a consequence
she will need to live with her parents.

• Qi is the quantification (measurement or description) of uncertainty of the
outcome. For example, it can be the probability of getting my dream job,
the probability of getting another than a dream job, and the probability
of being jobless. There are other ways to measure or describe uncertainty,
which we will discuss in later chapters.

• Ki is the knowledge that we used to list all outcomes and consequences and
used for measurement of uncertainty - as well as the strength of knowledge
(SoK). For example, in order to estimate the probability we use historical
data or data obtained via the experiment (e.g. Latin squares design ex-
periment, or completely randomised design study). Such data help us to
estimate the probabilities above (e.g. the probability of Janette landing a
dream job with a high salary). Sometimes, we cannot do the experiments
(for ethical or practical reasons), and hence we cannot collect data. So we
seek expert opinion. For example, it is hard to think of an experiment that
will give us data to estimate the probability of Janette landing a dream
job, as she only lives once, and like every person, she is unique with unique
sets of talents and unique way of performing at a job interview. So, in this
situation, we (or Janette) may ask for an expert opinion or even ask several
experts, like trusted friends and mentors. In both situations, whether we
collect data or ask experts in order to estimate the probabilities, we need
to make a note of how we made all the estimates of probability and think
if we trust the data source and if we trust the expert. Any uncertainty in
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FIGURE 1.3: The big picture for risk description. It addresses four risk
questions: A, C, Q, and K. It lists all sources of uncertainty: aleatoric

uncertainty due to randomness as well as epistemic uncertainty due to weak
knowledge. The strength (or weakness) and source of knowledge must be

included in the description under section K.

the estimated scenario or in the estimated probability and consequences
needs to be recorded. For example, there may be sources of bias in the
data, thus yielding uncertainty in estimated probability.
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Outcome Consequence Uncertainty Knowledge

A1 C1 Q1 K1

A2 C2 Q1 K2

... ... ... ...
AN CN Q1 KN

TABLE 1.3: Risk description table. It helps to organise all descriptors of risk
into a table. Here the experiment or data are assumed to be available to

obtain the list of all potential outcomes, the probability estimates, and the
consequences estimates. The data may include knowledge elicited from a

relevant domain expert, e.g., a clinician.

1.3.2 Know how to find an optimal decision

Imagine that someone asks us to recommend a decision. A decision needs to
be made for a particular situation. A situation may involve risk. How shall we
proceed in advising? If there is a risk involved, it means we need to recommend
a decision under risk. Assume we already described the risk 1.3. Next, we need
to ask the following questions:

1. What are each stakeholder’s preferences about each of the consequences?
This is about utilities. E.g. how much Janette likes the idea of having
a dream job with a high salary? How much Janette is scared of being
unemployed? Is the weight of being unemployed far more heavy than the
joy of a dream job?

2. What decisions (actions) are available to take? E.g. is Janette able to find
resources to pay for the degree that is relevant for that dream job, buy
relevant clothes for the interview, or to get mentoring to get her prepared
for the interview?

A decision analysis under (precise) risk considers a set of decisions (actions)
in the face of risk while considering utilities of the consequences. This means
the risk analyst needs to add a fifth element to the risk description: the utilities
(see Eq. 1.2):

(Ai, Ci, Qi,Ki, Ui) for i = 1, 2, ..., N, (1.2)

where

• Ai is the outcome (see above in section Description of risk)

• Ci is the consequence (see above in section Description of risk)

• Qi is the uncertainty (see above in section Description of risk)

• Ki is the knowledge (see above in section Description of risk)
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• Ui is the utility, preferences or loss function of the consequence. For ex-
ample, Janette can be very unhappy if she does not get her dream job,
but she can be five times more unhappy if she ends up unemployed. Some-
times, the decision maker’s preferences are described formally by a utility
function. A decision maker can be risk appetite or averse. The appetite or
aversion to risk can be specified using a utility function or loss function.
The evaluation of the utility takes into account the costs of actions and
the costs/benefits of the consequences of the specific action, which may
be monetary or of other forms. We will explain them fully in Chapter5
Decisions under risk and uncertainty.

Now it is important to say more about the knowledge (Ki):

1. We need data so we can estimate uncertainty Qi (e.g. probability of a mi-
crowave exploding). Sometimes we cannot do experiments, and we cannot
collect data. So we seek expert opinion. In either case, we need to write
down how we made all the estimates of probability: Was it by using data?
Do we trust the data? Was it from an expert? Do we trust the expert?

2. Typically, experiments are done to obtain information about each Qi. Here
we need to consider experimental design, sample size.

3. Sometimes, we do not need to experiment because there is an existing
dataset that has been collected in the past. Sometimes the data have
been collected over time repeatedly – every second, day, month, or year.
Sometimes the data collection happened at a one-time point (e.g., Latin
square design collected data). If data are collected at a one-time point (i.e.,
so-called cross-sectional data), then we use relevant statistical methods to
estimate probabilities (e.g., General Linear Model and ANOVA analysis
in Latin Squares Design).

4. There can be values of a continuous variable collected repeatedly over time,
thus creating Time Series. For example daily new Covid-19 cases, hourly
price of shares. Many decision problems come from events over time. We
can use time series data to answer questions like: What is a stock price
going to be in five days? Having the protection of the stock price, should
I buy or sell the stock? What temperature will the nuclear reactor core
be in 10 seconds? Having the prediction of the temperature, should the
control rods be inserted now? We learn about time series in Chapter 3.

5. People collect timing of events datasets. E.g., the timing of hurricanes, the
timing of switching to a new cereal brand. Then we can use such past data
to ask the following questions: Is a hurricane likely to develop in the next
48 hours? Should an evacuation be ordered? This is tackled by methods
called Markov Chains (see Chapter 4).

6. Data can be collected in a clinical trial. E.g., a trial was conducted to
compare treatments A and B for high blood pressure, 100 patients took
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medicine A and another 100 patients B took medicine B. Adverse events
were collected as required by ethics. It was observed that 5 and 8 people
had been vomiting after taking the medicine A and B, respectively. How
would you use such data to estimate the probability of this adverse event?

7. The data may include knowledge elicited from a relevant domain expert,
e.g., a clinician. Such process of obtaining the knowledge is called the
expert knowledge elicitation.

There are two principled types of decisions theories:

1. Non-statistical decision theory. It does not use data, i.e. it does not run
experiments or collect data. It is purely based on probability theory and
utility theory.

2. Statistical decision theory utilises data. It is based on statistics, probability
theory, and utility theory. It is based on knowing the random variables
and their expectations. It is also based on statistical Inference (hypothesis
testing and confidence intervals), and it can also use Bayesian statistics.

When making a decision, we as the decision maker may face the following:

• One-stage decision problem. E.g., we decide if we buy a share, and then
we face the outcome, we decide to which school we put our child.

• Multi-stage decision problem. E.g. we decide if we pay for the advice of a
financial advisor, and then after his advice, we decide if we buy the share
or not, hence we are making our second decision. Here we can use Decision
Trees (see Chapter 6).

1.3.3 Know how to communicate the risks and decisions

This is a crucial quality of a risk analyst: to communicate the risks and optimal
decisions. Communication is not just a mere statement of risks and decisions, it
is a dialogue. We devote Chapter 7 to this topic, where we look into examples.

1.4 A look ahead

Through this book, you will learn how to bring your deciding under risk and
thinking to life. The structure of this exploration is outlined here. The chapters
are divided into three broader units, each having a unique theme. However,
there is a common thread throughout the book: building and analysing sta-
tistical models for the behaviour of some variable Y so that we can quantify
the risk, and we can recommend the best actions under risk.
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1.4.1 Unit I Risk foundations

Motivating question. Let us assume we have a stakeholder who is deciding
if and how to invest her money into a stock to maximise her profit, Y . We
know that risk and uncertainty are present. At our disposal, we have some
simple data that we can use. How can we incorporate our risk and uncertainty
thinking into a formal model of the variable Y ? In other words, how can we
estimate those probabilities pi in Equation 1.1?

Throughout the examples, we showed that a risk analyst needs the follow-
ing three kinds of skills: technical skills, skills in applying knowledge about
human cognition, and communication skills. In the next, we discuss technical
skills.

We need probability, which is a mathematical sub-discipline devoted to
understanding random phenomena. It is one of the pillars of statistical (clas-
sical or Bayesian statistics) and non-statistical decision-making tools. We use
probability throughout this book.

We need statistics, which is a discipline on extracting knowledge from data
and from the provided information. There are three pillars: study design, un-
derstanding the properties of statistical methods, and data analysis (inference
or prediction, i.e., classification, discrimination). There are two main streams
of statistics: frequentist statistics and Bayesian statistics. And there are fur-
ther related areas: data science Machine Learning, and artificial intelligence.
Often there may be two or more statistical methods appearing suitable for
the problem at hand; however, some will be useful and some incorrect to use.
Hence we need to develop a critical eye: we keep learning the new statistical
methods, keep up to date on what new methods are developed, what is the
current understanding of the limitations of the classical methods we always
check assumptions of the statistical method.

We need computing skills. We need computing skills for several reasons.
Firstly, we need to process the data, so we use statistical packages like R,
STATA, SPSS, Minitab, etc. Second, there is no statistical theory to help us
to do estimation, we need to resort to computer simulations. Third, follow-
ing a quantification of risk we would want to perform sensitivity analyses.
The risk quantification evaluates the degree of knowledge or confidence in the
calculated numerical risk results. The sensitivity analysis indicates what in-
put changes are the analysis results most sensitive to. Monte Carlo computer
simulation methods are generally used to perform sensitivity analysis.

1.4.2 Unit II Data driven risk analysis

Let us assume we have a stakeholder deciding if and how to invest her money
into a stock to maximise her profit, Y . There is a risk involved and the stock
market situation is simple. How to advise her?

If there are relevant data that we can use and if the scenario is simple, we
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may be able to use some simple model from probability theory. For example,
we may use a model where we assume independence of events and Normal
distribution of the outcomes. We can then estimate the needed probabilities
pi for the risk description (Equation 1.1). We discuss the key probability
concepts in Chapter 2.

1.4.3 Unit III Data and model driven risk analysis

Let us assume again that we have a stakeholder deciding if and how to invest
her money into a stock to maximise her profit, Y . There is a risk involved and
the stock market situation is complex with several factors to consider (such
as technological changes in the relevant industry). How to advise her?

If there are relevant data that we can use and if the scenario is complex,
we may be able to use some more complex model from statistical modelling.
For example, we may use a Time Series model or Markov Chain. After fit-
ting those models, we can then estimate the needed probabilities pi for the
risk description (Equation 1.1). We discuss the key probability concepts in
Chapter 3 and 4.

This book is only focusing on Time Series and Markov Chains for three
reasons. First, they are very commonly used methods for risk analysis. Sec-
ond, we intended this book to be an intermediate-level book and we consider
Time Series and Markov Chains suitable, while we assume no prior knowledge
of them and we only show the intermediate-level modelling details. Third,
it would not be possible to put all models in one book. So these two mod-
elling approaches serve as examples of how to use statistical models for risk
estimation, interpretation, and communication.

Machine learning and Artificial Intelligence methods can also be used to
estimate the risks. In fact, many researchers call the Time Series and Markov
Chains examples of machine learning methods. There is extensive research on
the development and application of statistical and machine learning methods
for risk estimation. In our chapters, we will point at several key examples.

1.4.4 Unit IV Decisions under risk

Let us assume again we have a stakeholder deciding if and how to invest
her money into a stock to maximise her profit, Y . We know that risk and
uncertainty are present. At our disposal, we have some data ei that we can
use. We know how to use the data to estimate the risk. We know how to
recognise sources of uncertainty. Next, how should we advise the stakeholder?
What action appears to be the best to take for the stakeholder? In other
words, how can we recommend the best action ai in Equation 1.2?

We first need to learn how much the stakeholders value certain outcomes,
i.e. their utilities and we also need to learn how to find the best action if there
is epistemic uncertainty (Chapter 5. We will also learn how to advise if the
decision maker needs to do two or more decisions in sequence, in Chapter 6.
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The skill of advising the best decision relates to fields of decision science,
human cognition, psychology, philosophy, and economics.

1.4.5 Unit V Communication of risk

We need to be able to communicate with stakeholders to find out what the
problem is and what they want. What properties a solution must satisfy? This
is also essential so we to ask for the right data, right information. We need to
be able to communicate with domain experts. This is again essential so we ask
for the right data, so we get a good understanding of the problem they want
to solve, and so we communicate our results usefully and correctly. We need
to be able to communicate with colleagues risk investigators: mathematicians
or data scientists, computer scientists. We need to be able to communicate
with stakeholders the results of risk analysis and to navigate them so they can
make a decision that aligns with their values and is the best informed too.

1.5 Summary

We learned in this chapter:

1. We learned that risk as a science discipline started evolving 40 years ago
and is still developing. There are various definitions of risk; however, some
became obsolete when new research evidence came to light. The risk re-
search is multidisciplinary, from psychology (cognition, perception), and
economics (consumer behaviour, utility, decision theory) to STEM disci-
plines (including the theory of probability and statistics). To stay up to
date, it is important to follow risk guidelines of scientific societies such as
Society for Risk Analysis (SRA), https://www.sra.org/.

2. We learned that risk and uncertainty are two different concepts. Risk is
a situation that can lead to several outcomes; some of the outcomes have
negative consequences. Uncertainty is a state of mind of the stakeholder (or
of the risk analyst) when something is not known or certain. Probabilities
can be unknown either totally, or they can be imprecisely quantified (such
as ”from 10 to 20%), or there can be uncertainty in the quality of the data
from which we quantified the probabilities. Or outcomes and consequences
may be unknown, either all of them or some of them (such as the Covid-19
consequences to the economy of countries were unknown in March 2020).

3. We learned the key components of risk description: outcome (A), conse-
quences (C), quantification of uncertainties (Q), and knowledge strength
(K).
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4. We learned the main principles of risk management and that risk analysis
is one of its components.

5. We learned that doing (or advising) on an optimal decision depends on
the situation. There are two situations. The first situation is when the
stakeholder is making a decision under precise risk which is also called
as decision under risk and aleatoric uncertainty or decision under risk.
The second situation is when the stakeholder is making a decision under
imprecise risk which is also called decision under risk and aleatoric as well
as epistemic uncertainty or decision under uncertainty. Later chapters of
this book will show some strategies on how to advise a stakeholder in each
of the two situations.

1.6 Further reading

The chapter was based on our research experience as well as the experience
of others and on several books, which we list here:

1. To understand more about the risk topics we highly recommend the book
Risk Science by Aven and Thekdi [9]. We used their notation and defini-
tions of risk and uncertainty. They give more examples and further details
on risk management and communication.

2. The book Chance Rules: An Informal Guide to Probability, Risk, and
Statistics, by Brian Everitt [20] is a good reading material on introduction
to risk.

3. The book Probabilistic Risk Analysis. Foundations and Methods by Tim
Bedford and Roger Cooke [10] is an excellent advanced-level mathematical
book. It was written from materials for a master-level module on math-
ematical foundations of risk. It has a good introduction to uncertainty,
with a concise summary of relevant probability and statistics; and with
chapters on system analysis, fault trees expert opinion, human reliability,
project risk management, and uncertainty analysis.

4. The book by Carlton and Devore Probability with Applications in Engi-
neering, Science, and Technology [13] is an intermediate-level textbook,
highly suitable for undergraduate studies of applied mathematics.

5. The book The Essentials of Risk Management by Michel Crouhy, Dan
Galai, and Robert Mark [17] is an intermediate-level book focused on risk
in business, banks, finance, interest rates, credit risk, equity price risk,
market risk, commodity price risk, foreign exchange risk, operational risk,
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liquidity risk, corporate risk. It explains how to effectively implement an
enterprise-wide risk management program, allocate capital.

6. The book Risk Assessment and Decision Analysis with Bayesian Networks
by Fenton and Neil [22], is an intermediate to advanced level book on risk.

7. The Book of Why by Judea Pearl & Dana MacKenzie [46] is written for a
general audience, and it is not on risk assessment and management, but it
is a book on causality. They describe the history of famous paradoxes: how
mathematicians and policymakers reacted. The given story of Simpson’s
paradox, among other paradoxes, and how this connects with artificial
intelligence.

8. For discussion on the role of artificial intelligence in risk we recommend
starting by reading the following research papers: Ale [8], Choi and Lam-
bert [14], Guikema [27], [28], Nateghi and Aven [41], and Thekdi, Tatar,
Santos and Chatterjee [58].

9. Uncertainty is an active area of research. More can be found in these
resources: [9], [30], [61], [59], [43].

Another relevant term is Risk Intelligence. It is defined as ”the organisa-
tional ability to think holistically about risk and uncertainty, speak a common
risk language, and effectively use forward-looking risk concepts and tools in
making better decisions, alleviating threats, capitalising on opportunities, and
creating lasting value” (Columbia University professor Leo Tilman).

Additionally, we recommend the following journals on risk:

1. The journal that best covers the engineering areas of risk as discussed in
this module is: Risk Engineering and System Safety.

2. Interdisciplinary journals covering methodology research in risk analysis
and interdisciplinary applications: Risk: Health, Safety, and Environment
Risk Analysis, Risk, Decision, and Policy and The Journal of Risk Re-
search, Journal of Approximate Reasoning.
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In this chapter, we introduce the basic principles of probability. We will use
probability to tell how likely individual outcomes or scenarios are. We will
discuss examples where probability quantifies the uncertainties Q in risk anal-
ysis, thus contributing to the big picture of risk description (Figure 1.3).

This chapter is the building block of data-driven risk analysis. By risk
analysis, we mean the quantification of the uncertainty (e.g. how likely there
will be a flood). By data-driven risk analysis we mean the analysis where we
use data, which can be from an experiment (e.g., rolling dice) or from an expert
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e.g., a broker revealing to us his belief on whether a particular investment will
be successful.

Learning objectives

1. Learn about three definitions of probability. Learn how this leads to three
ways we assign a probability to an event (outcome or scenario).

2. Learn about the fundamental rules of probability (including Bayes’s rule).

3. Simulate random events in R and calculate probabilities of events in R.

4. Learn the names of probabilities used in medical tests and, more broadly,
in Artificial Intelligence.

2.1 The axioms of probability

The set of all possible outcomes of an experiment is called the sample space.
We will denote the outcomes by O1, O2, . . ., and the sample space by S. Thus,
in set-theory notation,

S = {O1, O2, . . .}
All outcomes in S must be mutually exclusive and exhaustive. We are uncer-
tain about which outcome will occur, but we know that one of them will occur.
Sometimes we may be interested in the occurrence of a collection of outcomes,
e.g. if an even number will roll on a die. Such occurrence is called an event.

Example. Roll of a die. One example of a sample space is S =
{1, 2, 3, 4, 5, 6} for one roll of a die. Such sample has six outcomes O1 = 1,
O2 = 2, O3 = 3, O4 = 4, O5 = 5 and O6 = 6, and many events e.g. ”A =
an even number”, or ”B = a number less than 5”. The outcomes O1... Q6 are
also called simple events.

Next, we list the three axioms of probability. The axioms state that the
probabilities must satisfy the following properties:

a) The probability of any event must be nonnegative, e.g., P (Oi) ≥ 0 for each
i.

b) The probability of the entire sample space must be 1, i.e., P (S) = 1.

c) For two disjoint events A and B, the probability of the union of A and
B is equal to the sum of the probabilities of A and B, i.e., P (A ∪ B) =
P (A) + P (B).

These axioms are important to ensure that mathematics is consistent with
our everyday notions of probability (likelihood, chance).
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2.2 Assigning probabilities to events: three approaches

We have a sample space S = {O1, O2, . . .} of all outcomes and we now want
to assign the probabilities to them. There are three approaches to assigning
probabilities to outcomes: the classical approach, the relative-frequency ap-
proach, and the subjective approach.

Classical approach. If an experiment has n simple outcomes, this method
would assign a probability of 1/n to each outcome. In other words, each out-
come is assumed to have an equal probability of occurrence. This method is
also called the axiomatic approach.

Example. Roll of a die. Assume a die is rolled once. So the simple events
are numbers from 1 to 6, and thus the sample space is S = {1, 2, . . . , 6}. We
can use the classical approach to assign probabilities to each possible out-
come. According to such an approach, each simple event has a 1/6 chance of
occurring. However, this is correct under the assumption that the die is perfect.

Example. Two rolls of a die. Next, we assume two rolls of a die. So
the sample space of all simple events is S = {(1, 1), (1, 2), . . . , (6, 6)}. Assume
that the die is perfect and assume that the two rolls are “independent.” We
can use the classical approach to assign the probabilities. Each simple event
has a 1/6× 1/6 = 1/36 chance of occurring.

Relative-frequency approach. In some situations, the probabilities are
assigned on the basis of experimentation or historical data. Formally, let A be
an event of interest, and assume that you have performed the same experiment
n times so that n is the number of times A could have occurred. Further, let nA

be the number of times that A did occur. Now, consider the relative frequency
nA/n. Then, in this method, we ”attempt” to define P (A) as:

P (A) = lim
n→∞

nA

n

The above can only be seen as an attempt because it is not physically feasible
to repeat an experiment an infinite number of times. Another issue with this
definition is that if we repeat it two times, i.e. we run n experiments two times,
we get two sets of n experiments which will typically result in two different
ratios. However, we expect the discrepancy to converge to 0 for large n. Hence,
for large n, the ratio nA

n may be taken as a reasonable approximation for the
probability P (A).

Example. Roll of a die. When we roll a die, the sample space is
S = {1, 2, . . . , 6}. We can use the relative frequency approach to assess the
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probabilities. We can roll the given die 100 times (say) and suppose the num-
ber of times the outcome one is observed is 17. Thus, A = 1, nA = 17, and
n = 100. Therefore, we say that P (A) is approximately equal to 17/100 = 0.17.

Example. Measles weekly new cases. Liverpool health authority
tracks the monthly new cases of Measles in the past 20 weeks. The result-
ing data is Table 2.1. We can use the relative-frequency approach to estimate

New cases Number of weeks

0-1000 2
101-200 10
201-300 8

TABLE 2.1: Measles new cases.

probabilities of the event ”a future week number of cases being 101-200”.
Since 10/20 = 0.5, we have that there is a 50% chance that Liverpool will
have 101-200 new cases of measles on any given future week.

Subjective approach. In the subjective approach, we define probability
as the degree of belief that we hold in the occurrence of an event. Therefore,
we use judgment as the basis for assigning probabilities.

Caution. Notice that the classical approach of assigning equal probabili-
ties to simple events is, in fact, based on data as well as on judgment. This is
because we may have to use our judgment to decide if the equal probabilities
assumption is valid. What is somewhat different here is that the use of the
subjective approach is usually used in experiments that cannot be repeated
(e.g., see the Horse race example below).

Example. Horse race. Consider a horse race with six horses running.
What is the probability for a particular horse to win? Is it reasonable to as-
sume that the probability is 1/6? To answer the question, we note that we can
not apply the relative-frequency approach. People regularly place bets on the
outcomes of such “one-time” experiments based on their judgment as to how
likely it is for a particular horse to win. Indeed, having different judgments is
what makes betting possible.

Example: Stock price. What is the probability for a particular stock to
go up tomorrow? Can we apply a relative-frequency approach to assess the
probability? To answer these questions, we note again this stock “experiment”
can not be repeated. We can not apply the relative-frequency approach. What
we need is a sophisticated data-driven model - while incorporating expert
judgment too. Sophisticated models, such as statistical or machine learning
models, rely on past data and do forecasts for the future. Expert judgments
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are needed too: we can ask for expert opinion about probability and compare
it against the data-driven approach probability, and we can ask for expert
opinion about the probability when we feel uncertainty, e.g. ask an expert if
the unmeasured factors that drove the data are going to change. Note that the
financial crisis in 2007 was not predicted by any sophisticated model. Hence,
the combination of the two approaches is needed, as blindly following data
only is dangerous, and blindly following ill-founded judgments is often also
dangerous.

When we present the assigned (estimated) probabilities to stakeholders,
we have a responsibility to interpret the probabilities in an understandable
way. This is a matter of clear communication of probabilities. The way we
interpret the probability depends on how we assign (estimate) its value. Here
are some interpretations:

1. In the Two rolls of a die example, the interpretation is: ”In many experi-
ments where we roll a die twice, we observe 1 and 1 1/36× 100% times”.

2. In the Measles example, we interpret the probability as: ”50% of future
weeks will have 101-200 new cases”.

3. In the Horse race example, we wanted the probability of the particular
horse winning. Let us assume we asked Anna to say what she believes the
probability is. Anna can be an expert, or non-expert or a half-expert. Let
us assume that Anna feels that there is a 90% chance of the particular
horse winning. Then such probability interpretation is: ”Anna believes
that there is a 90% chance that the horse wins, or that the odds are 9:1
of the horse winning”.

2.3 Basic rules of probability

In what follows we present the basic rules of probability.

2.3.1 Joint probability

So far, we have been dealing with the probability of single events (e.g. of get-
ting a number 1 in one roll of a die). What if we want the probability that
involves multiple events? In other words, what if we are interested to know the
probability of two events happening at the same time? For example, what if
we want to know the probability of Pedro going to the cinema and of raining
outside? Such probability is called a joint probability since it expresses the
likelihood of two events happening jointly. We will explain the joint probabil-
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ity via an example.

Example. Boxes and jewels. A girl in India called Swati is choosing
the next jewel for her choodamani. She has two boxes full of jewels: an oval
box and a square-shaped box. Each box contains some red rubies and some
white pearls - in Figure 2.1. We want to know the probability of Swati picking
a particular box and a particular jewel. Let us start with a notation:

• Let B be the event of picking a box. The values of B are o for oval and s
for square shape box.

• Let J be the event of picking a jewel. The values of J are r for red ruby
and w for white pearl.

We are told that Swati picks a box proportionally to the number of jewels
in the box. Then she picks a jewel from the chosen box. What is the probability
of choosing the oval box and choosing a red ruby? To answer the question, it
helps to organise all outcomes from Figure 2.1 above into a Table 2.2. In how
many ways can we get an oval box and a red ruby? The answer is 2.

FIGURE 2.1: Example Boxes and jewels. Oval and square boxes with white
pearls and red rubies.

Jewel
red ruby (r) white pearl (w) Total

Box
oval (o) 2 6 8
square (s) 9 3 12

Total 11 9 20

TABLE 2.2: Table of frequencies in Boxes and jewels example.

We can now answer questions about joint probabilities:

• P (B = o ∩ J = r) = 2
20 = 0.1 We use ∩ here to indicate joint appearance

of two events. In other places, also in books, we use ”,” or “AND”, thus
P (B = o, J = r) = 0.1, or P (B = oANDJ = r) = 0.1
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• P (B = o ∩ J = w) = 6
20 = 0.3

• P (B = s ∩ J = r) = 9
20 = 0.45

• P (B = s ∩ J = w) = 3
20 = 0.15

So, for example, the probability of choosing the oval box and ruby is 0.1.
This is a joint probability, as it says how likely the two events will happen
jointly, even though Swati picks the box first and then she picks the jewel,
hence sequentially.

2.3.2 Marginal probability

In the Example of Boxes and Jewels, we can ask about the probability of
choosing a particular box. Or we can ask about the probability of choosing a
particular jewel. All probabilities are:

• P (B = o) = 8/20 = 0.4 = P (B = o ∩ J = r) + P (B = o ∩ J = w)

• P (B = s) = 12/20 = 0.6 = P (B = s ∩ J = r) + P (B = s ∩ J = w)

• P (J = r) = 11/20 = 0.55 = P (B = o ∩ J = r) + P (B = s ∩ J = w)

• P (J = w) = 9/20 = 0.45 = P (B = o ∩ J = w) + P (B = s ∩ J = w)

So, e.g. the probability of choosing the oval box is 0.4. This is called the
marginal probability because it concerns just one event, the box, i.e. it con-
cerns the oval box “margin” of the Table 2.2.

2.3.3 Conditional probability

We are going to expand our probability notation a bit more. We want to
be able to specify the probability of an event, given that another event has
occurred. In other words, we want to be able to specify the probability of an
event, under the condition that another event has occurred. For this, we use
conditional probability.

Definition of the conditional probability. The probability of event A
given that B has occurred will be denoted as P (A | B) and defined as

P (A | B) =
P (A ∩B)

P (B)
(2.1)

The conditional probability is answering the following question: under the
condition that event B occurs (did occur, or will occur), what is the probability
that event also A occurs (occurred, or will occur)? If I reveal to you that event
B occurred, what do you think is the probability of event A occurring too?
The answer is P (A | B). If I do not reveal to you if event B occurred, you
can still think in hypothetical terms: if hypothetically B occurred, then what
is the probability of event A occurring too? The answer is P (A | B).
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Example. Boxes and jewels. (continues). Consider the following sce-
nario: Swati randomly chooses a box and a jewel. We are curious. We ask
Swati what she chose. Let us assume two situations:

1) Firstly, Swati does not want to reveal to us what she chose. She does not
want to reveal the box shape. She does not want to reveal the jewel type,
either. What is the probability that she chose red ruby? In other words,
what is our belief about choosing a red ruby by Swati?

2) Then after some persuasion, Swati tells us that she chose the oval box, but
she still does not want to reveal what jewel she chose. Now we have some
information: we know she chose the oval box. What is the probability of
choosing a red ruby if we know she chose the oval box? In other words,
what is the probability of choosing a red ruby, among all jewels that that
come from the oval box?

Solution. First situation is concerting the probability of choosing a red
ruby and it is not concerning the shape of the box. So we need to find the
marginal probability P (J = r). We know P (J = r) = 11

20 = 0.55 (as we
calculated before).

The second situation is different. We are told that the oval box was chosen
i.e. we are provided with a new piece of information that ”Swati chose the oval
box”. Knowing that the oval box was open, what is our belief that the chosen
jewel is a red ruby? So we now realise that what we are asked to calculate is
the conditional probability: P (J = r | B = o). Using the Table 2.2 we get the
probability is

P (J = r | B = o) =
2

8
= 0.25

Alternatively, we can use the definition of the conditional probability

P (J = r | B = o) =
P (J = r ∩B = o)

P (B = o)
=

0.1
8
20

=
2

8
= 0.25

Note that the 0.55 probability is often interpreted as a prior probability. It is
our initial belief of choosing a red ruby before we knew what box was chosen.
Then the 0.25 probability is our posterior probability. It is our updated belief
of a red ruby is being chosen. Notice that once we learned that the chosen box
is oval the probability decreased to 0.25, in this example.

Example. Boxes and jewels. (continues). What is the probability of
choosing the oval box given that we know that a red ruby was chosen?

Solution: We realise that what we are asked is to calculate another con-
ditional probability:

P (B = o | J = r)

Using Table 2.2 we see that the probability is

P (B = o | J = r) =
2

11
= 0.1818
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An alternative calculation is to via using the definition of the conditional
probability

P (B = o | J = r) =
P (B = o ∩ J = r)

P (J = r)
=

0.1
11
20

=
2

11
= 0.1818

2.3.4 The product rule for joint probabilities

We already saw how to calculate the joint probabilities from a table (e.g.
Table 2.2 ). If we are not provided such a table, we can use the product rule
(or multiplication rule) for probabilities. The following is always true for any
events A and B:

P (A ∩B) = P (A | B)P (B) = P (B | A)P (A) (2.2)

Example. Boxes and jewels. (continues) What is the probability that
Swati randomly selects a red ruby and the oval box?

Solution. We are told that the probability of choosing the oval box is 8
20 ,

and we are told that the probability of choosing a red ruby from the oval box
is 2

8 .
We realise we are asked to find the joint probability of two events occurring

P (J = r,B = o)

which can also be written as

P (J = r ∩B = o)

We can use the product rule for the joint probabilities:

P (J = r ∩B = o) = P (J = r | B = o)P (B = o) =
8

20

2

8
= 0.1

2.3.5 Independence of events

Intuitively, when two events are independent of each other, they do not affect
each other. Formally, two events A and B are independent if and only if they
satisfy the condition

P (A | B) = P (A), (2.3)

which is equivalent to satisfying the condition

P (B | A) = P (B), (2.4)

and that is equivalent to satisfying the condition

P (A ∩B) = P (B)P (A). (2.5)
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So to check the independence, we need to check if one of the above conditions
is true. The equivalence of the three conditions can be proved by using the
product rule of probabilities.

Example. Boxes and jewels. (continues) Are choosing a red ruby and
the oval box independent events, in our example?

Solution. There are three ways to solve this.

Solution 1. What is the probability of choosing a red ruby if we know that
the oval box was chosen? It is the conditional probability P (J = r | B =
o) = 0.25. What is the probability of choosing a red ruby? It is the marginal
probability, P (J = r) = 0.55. So we get

0.25 = P (J = r | B = o) ̸= P (J = r) = 0.55

These two probabilities are not the same, hence events ”choosing a red ruby”
and ”choosing the oval box” are not independent.

Solution 2. What is the probability of choosing the oval box if we know that
a red ruby was chosen? It is the conditional probability P (B = o | J = r) =
0.1818. What is the probability of choosing an oval box? It is the marginal
probability, P (B = o) = 0.4. So we get

P (B = o | J = r) = 0.1818 ̸= 0.4 = P (B = o)

These two probabilities are not the same, hence events are not independent.

Solution 3: The probability of choosing a red ruby is the marginal probabil-
ity P (J = r) = 0.55. The probability of choosing the oval box is the marginal
probability P (B = o) = 0.4. The probability of choosing them both is the
joint probability P (B = o, J = r) = 0.1. Hence we get

0.1 = P (B = s ∩ J = r) ̸= P (J = r)P (B = o) = 0.55× 0.4

so the two events ”choosing a ruby” and ”choosing the oval box” are not
independent.

2.3.6 The law of total probability

We start with a definition of events, mutually exclusive and events, exhaus-
tive. Events A1, . . . , Ak are mutually exclusive if no two have any common
outcomes. Hence, no two events can occur together. The events A1, . . . , Ak

are exhaustive if A1 ∪A2 ∪ . . . ∪Ak = S. Hence, all events exhaust the whole
space S, and this means that at least one of events Ai occurs. We are interested
in events A1, . . . , Ak that have both properties: they are mutually exclusive
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and exhaustive events, as illustrated in Figure 2.2. Hence, exactly one of the
events A1, . . . , Ak occurs. We will need probabilities of such events in later
sections when we will be calculating conditional probabilities.

FIGURE 2.2: Partition of space S into mutually exclusive and exhaustive
events A1,...,A5.

The law of total probability. Let A1, . . . , Ak be mutually exclusive and
exhaustive events. Then for any other event B, the following holds

P (B) = P (B | A1)P (A1) + . . .+ P (B | Ak)P (Ak) =

k∑
i=1

P (B | Ai)P (Ai)

This can be illustrated in the following Figure 2.3, where the events
B,A1, . . . , Ak are represented via sets B.

FIGURE 2.3: Partition of set B by mutually exclusive and exhaustive events
A1, ..., A5

Example. University students. At a certain university, 4% of men
are over 6 feet tall and 1% of women are over 6 feet tall. The total student
population is divided in the ratio of 3:2 in favour of women. If a student is
selected at random from all students, what is the probability that the student
is over 6 feet?
Solution. We start by setting a notation:

• M = ”Student is Male”
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• F = ”Student is Female”

• T = ”Student is over 6 feet tall”

We recognise that M and F partition the space of students. This is important
for the total law of probability. We need to calculate P (T ).

We know the following probabilities

• P (F ) = 3/5 = 0.6

• P (M) = 1− 0.6 = 0.4

• P (T | M) = 0.04

• P (T | F ) = 0.01

Finally, we use the law of total probability

P (T ) = P (T | F )P (F ) + P (T | M)P (M) = 0.01× 0.6 + 0.04× 0.4 = 0.022

Answer: The probability that a randomly selected person is over 6 feet tall is
0.022.

2.3.7 Bayes’ theorem

In probability theory and statistics, (alternatively or ) describes the probabil-
ity of an event, based on prior knowledge of conditions that might be related
to the event. For example, if the probability that someone has cancer is related
to their age, using Bayes’ theorem the age can be used to more accurately as-
sess the probability of cancer than can be done without knowledge of the age.
Using Bayes theorem we find P (Aj |B) if we know P (B|Aj).

The central idea of Bayes’ theorem—that we start with a prior belief about
the probability of an unknown hypothesis and revise our belief about it once
we see evidence—is also a central concept of the law.

One of the many applications of Bayes’ theorem is Bayesian inference,
a particular approach to statistical inference. With Bayesian probability in-
terpretation, the theorem expresses how a degree of belief, expressed as a
probability, should rationally change to account for the availability of related
evidence. Bayesian inference is fundamental to Bayesian statistics.

The Bayes’ rule is defined and interpreted as an update rule that changes
a prior probability into a posterior probability by incorporating a data-based
likelihood. It is calculated as follows:

P (A | B) =
P (B | A)P (A)

P (B)
(2.6)

where

• P (A | B) is the posterior probability. This is the updated probability that
we aim to calculate.
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FIGURE 2.4: Bayes’ theorem. This is also known as Bayes’s rule or Bayes’s
law.

• P (A) is the prior probability. This is the prior belief we have about the
event A before we know if B occurred or not.

• P (B) is a marginal probability of event B occurring. Sometimes, this can
be tedious to calculate. We calculate it as

P (B) =
∑

all values of a

P (B | A = a)P (A = a)

by the law of total probability, where a are all possible outcomes of A e.g.
all types of jewels.

• P (B | A) is called the likelihood, also called data-based likelihood.

Bayes’ theorem is named after Reverend Thomas Bayes (read as /beiz/;
lived in 1701?–1761). In short, the theorem is visualised in Figure 2.4.

Proof of Bayes’s rule. By definition, we have

P (A | B) =
P (B ∩A)

P (B)

hence
P (A | B)P (B) = P (B ∩A)

By the same argument, due to symmetry, we have

P (B | A)P (A) = P (A ∩B)

So, we have

P (A | B)P (B) = P (B ∩A) = P (B | A)P (A)
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hence

P (A | B) =
P (B | A)P (A)

P (B)
.

Example. University students. (continues.) If a student is selected at
random from among all those over six feet tall, what is the probability that
the student is a woman?

Solution. We start by setting a notation:

• M = ”Student is Male”,

• F = ”Student is Female”. (Note that M and F partition the space of
students.)

• T = ”Student is over 6 feet tall”

We recognise that what we need to calculate is a conditional probability:

P (F | T )

We know this:

• P (F ) = 3
5 = 0.6

• P (M) = 1− 0.4 = 0.6

• P (T | M) = 0.04

• P (T | F ) = 0.01

• P (T ) = 0.022 This last probability is what we calculated earlier using the
law of total probability.

The fact that we need to calculate the quantity P (F | T ) while we know
P (T | F ) should ring a bell: “The Bayes theorem may work here!” By using
Bayes’s theorem we get

P (F | T ) = P (T | F )P (F )

P (T )
=

0.01× 0.6

0.022
= 0.272727

Answer: If a student is selected at random among all those over six feet
tall, the probability that the student is a woman is 27.27%. In other words:
among the students that are over 6 feet tall, there are 27.27% of women.

2.4 Tips to think and act like a risk expert

Next, we look again into the problem of calculating probabilities. We will
illustrate the ideas in other real world examples (i.e. use cases).
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2.4.1 Consider using natural frequencies in communication

Here we will calculate again the conditional probabilities in one real-world
example. However, we will consider two situations: first, we will be presented
with all data via probabilities (as we did in the previous section), and then
we will be presented with all information via natural frequencies. In both sit-
uations, we will use Bayes’s rule to find the required conditional probability.

Example. Colorectal cancer. First, we introduce a problem assigned
via probabilities. To diagnose colorectal cancer, the hemoccult test – among
others – is conducted to detect occult blood in the stool. This test is used
from a particular age on, but also in routine screening for early detection of
colorectal cancer. Imagine you conduct a screening using the hemoccult test
in Pennsylvania. For symptom-free people over 50 years old who participate
in screening using the hemoccult test, the following information is available
for this region:

• The probability that a person has colorectal cancer is 0.3%.

• If a person has colorectal cancer, the probability is 50% that he will have
a positive hemoccult test.

• If a person does not have colorectal cancer, the probability is 3% that he
will still have a positive hemoccult test.

Imagine a (randomly chosen) person with age over 50, no symptoms from
Pennsylvania who has a positive hemoccult test. What is the probability that
this person actually has colorectal cancer? Can you answer this without using
a pen and paper, just by doing the calculations in your head? What is your
best guess? It turns out that the majority of people (almost everyone) cannot
do this mentally.

Solution. Next, we use pen and paper to do the calculations. We start
with notation and with what we know:

• Let A = Person has cancer (where by a person we mean a human being
who is symptom-free, over 50 years old and resides in Pennsylvania)

• Let B = Person has positive test

Then we list the provided information

• P(A)=0.3% = 0.003

• P (B | A) = 50% = 0.5

• P (B | notA) = 3% = 0.03
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What we are asked to calculate is P (A | B) while we are provided with
P (B | A), so we recognise we have to use Bayes’s rule:

P (A | B) =
P (B | A)P (A)

P (B)

We get

P (A | B) =
0.5× 0.003

0.5× 0.003 + 0.03× (1− 0.003)
=

0.0015

0.03141
= 0.048

where in the denominator we used the Rule of total probability.

Answer: So, among all people who are symptom-free, over 50 years old,
residing in Pennsylvania, and with a positive test, only 4.8% actually have
cancer.

Next, we discuss the same problem, but now assigned via natural fre-
quencies.

Example. Colorectal cancer. (continues) To diagnose colorectal can-
cer, the hemoccult test – among others – is conducted to detect occult blood in
the stool. This test is used from a particular age on, but also in routine screen-
ing for early detection of colorectal cancer. Imagine you conduct a screening
using the hemoccult test in Pennsylvania. For symptom-free people over 50
years old who participate in screening using the hemoccult test, the following
information is available for this region:

• Thirty out of every 10,000 people have colorectal cancer.

• Of these 30 people with colorectal cancer, 15 will have a positive hemoccult
test.

• Of the remaining 9,970 people without colorectal cancer, 300 will still have
a positive hemoccult test.

Imagine a (randomly chosen) person with age over 50, with no symptoms,
from Pennsylvania who has a positive hemoccult test. What is the probability
that this person actually has colorectal cancer?

Can you answer this without using a pen, i.e. mentally? It turns out that
much more people are able to correctly calculate this mentally. Next, we use
pen and paper and do the calculations.

Solution. Among the 10,000 people there are 15 and 300 who have positive
tests, where those 15 do have cancer. So the probability of having cancer, if
the test is positive, is, thanks to Bayes’s rule:

15/(15 + 300) = 0.048
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Answer: So, among all people who are symptom-free, over 50 years old, resid-
ing in Pennsylvania, and with a positive test, only 4.8% actually have cancer.
This answer is identical to the one we got when using the conditional proba-
bilities.

Caution! In the next, we reflect on the calculations above. What did just
happen? We tried to solve the same problem, but each time the information
was provided in different ways: first time via conditional probabilities and
then via natural frequencies.

a) Which information did you find easier to use to find the answers?

b) Which information would you find easier when explaining to a non-
mathematician?

c) How is typically information provided in newspapers? Conditional proba-
bilities or natural frequencies?

2.4.2 Risks assessed via medical tests or medical AI

The probabilities in Section 2.4.1 are important for daily life. We hear them
when we are in a doctor’s office when the doctor tells us how accurate a blood
test is to detect a vitamin C deficiency, we hear them in the news when a
public health professional tells us how accurate the home test kit for Covid-
19, or we hear them in the news when a journalist tells us the accuracy of a
newly developed AI algorithm to detect glaucoma.

Such probabilities are key to understanding the risks and making informed
decisions. The risks estimated via medical tests or from medical AI are ex-
pressed via probabilities. Such probabilities have special names. In the Col-
orectal cancer example, the risk expert should communicate the following way:

1. ”The probability that one of the people (asymptomatic, over 50, from
Pennsylvania) has colorectal cancer is 0.3%.” This is the so-called preva-
lence of disease.

2. ”Among those with colorectal cancer, the chance that the test is positive
is 50%.” This is called the sensitivity of the test.

3. ”Among those without colorectal cancer, the chance that the test is neg-
ative is 100-3=97%”. This is called the specificity of the test.

4. ”Among those whose test is positive, the chance that the person has cancer
is 4.8%”. This is called positive predictive value of the test. This is the value
that a patient wants to know.

5. ”Among those whose test is negative, the chance that the person does not
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have cancer is 9670
15+9670 = 0.998 = 99.8%”. This is called negative predictive

value of the test. This is the value that a patient wants to know.

Caution! A good risk expert (and journalist or health professional, too!)
never communicates sensitivity and positive predictive values only. All four
numbers must be communicated. Why? Because most tests are based on using
a threshold (such as a threshold on the probability of glaucoma using an AI
algorithm); where by decreasing the threshold, we improve sensitivity while
decreasing the specificity. In other words, a given test’s sensitivity and speci-
ficity are negatively associated. Then the selection of a positive test threshold
involves an inherent balancing act (see, e.g., [51]). Additionally, we list further
important elements of risk communication in our later Chapter 7.

2.5 Summary

We have learned in this chapter:

1. We discussed some simple examples of quantifying uncertainty using prob-
ability. We learned Bayes’ theorem, how to recognise when to use it, and
how to use it.

2. We learned how to simulate random events from a prescribed distribution
and find required probabilities using R.

3. We learned that using data in natural frequencies provides the easiest way
to calculate and communicate risks.

4. We learned terminology used in medical tests: sensitivity, specificity, neg-
ative predictive value, and positive predictive value. Such terminology,
however, goes beyond medical tests, and it is more and more used in Ar-
tificial Intelligence, where the goal is to automatically detect or predict
a presence or absence of an event (such as a threat to the digital system
or fraud at band account, or disease of a plant, presence of a default of a
construction etc).

2.6 Further reading

Our chapter was based on our research and the research of others, as well as on
our comprehension of several monographs. The main sources of our inspiration
were:
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1. For an intermediate-level reading on probability, we recommend the book
Probability and its applications by Carlton and Devore [13].

2. For those starting with R or who like to refresh their practice, we recom-
mend the online book by Avril Coghlan [15]. Alternatively, for a gentle
introduction to R, we recommend the online book Introduction to Econo-
metrics with R by Christoph Hanck, Martin Arnold, Alexander Gerber
and Martin Schmelzer M. [29]. For a comprehensive reference on R, we
recommend The R Book by Michael J. Crowley [16].

3. For an in-depth understanding of the communication of risks, we recom-
mend the work of psychologist Gerd Gigerenzer, especially his 2002 book
named Reckoning with risk. Learning to live with uncertainty [25] and his
2014 book named Risk savvy. How to make good decisions [26]. Several
sections and examples in our book were inspired by his book.

4. For a further understanding of Bayesian statistics, we recommend the book
Causal Inference: What If by Miguel Hernán and James Robins [31].

5. Regarding conditional probabilities, one of the most famous examples
Monty Hall Problem. As it turned this problem is quite intriguing, and
it confused several famous statisticians and journalists. A fascinating dis-
cussion about this problem and its history is in The Book of Why. The
new science of cause and effect by Judea Pearl and Dana Mackenzie [46].

2.7 R lab

Here, we give several questions to solve in R, and we provide solutions with
detailed explanations. Then we give further questions without solutions.

1. [Purpose: to practice the simulation of random events and find-
ing the probabilities, in R]. Here we will use computer simulations to
find the probability of an event. We will use software R (and we will use
RStudio interface). As probability models in engineering and science have
grown in complexity, many problems have arisen that are too difficult to
solve analytically, i.e., using mathematical tools like Bayes’ theorem. In-
stead, computer simulations provide us with an effective way to estimate
probabilities of very complicated events and of random phenomena. Here,
in this tutorial, you will be introduced to the principles of probability sim-
ulation, and demonstrate a few examples in R.

We begin with an example in which we know the exact probability solution
analytically so that we will be able to compare it with the solution from
the simulation. Suppose we have two independent devices, which function
with probabilities 0.6 and 0.7, respectively.



44 Elements of Risk Analysis with Applications in R

a) What is the probability that both devices function? Do simulations in
R to find this probability.

b) What is the probability that at least one device functions? Do simula-
tions in R to find this probability.

Solution. Let D1 and D2 denote the events that the first and second device
functions, respectively. We know

P (D1) = 0.6, P (D2) = 0.7

We recognise that in (a) we are asked to find the joint probability
P (D1 ∩ D2) and we are asked to do this in R via computer simulation.
If we were not asked to do simulations, we would simply use the knowledge
of independence of D1 and D2, and this would lead us to

P (D1 ∩D2) = P (D1)P (D2) = 0.42.

We also recognise that in (b) we are asked to find P (D1 ∪ D2) = 1 −
P (notD1 ∪D2) where we use independence again, so this is equal to

1− P (notD1)P (notD2) = 1− 0.4× 0.3 = 1− 0.12 = 0.88

Before we write an R code to solve (a) and (b), it helps to first write a
pseudo-code where we sketch the basic ideas and flows in the R code. Here
is a pseudo-code for our example in several steps:

1) We define a counter A. We set it to 0. Counter A will store number of
times (out of 10000) where D1=1 and D2=1, i.e. the number of times
when both devices worked.

2) We decide that D1 is a variable that has a value of 1 if the first device
works, and zero otherwise. We need to decide how we do such a simula-
tion. We can check if R is having a function to simulate a dichotomous
or binary variable (both D1 and D2 are dichotomous or binary discrete
variables). If R does not have a simulation of dichotomous or binary
variables then we use this trick: to simulate a binary variable u1 with
P(D1=1)=0.6 we simulate a random number from a uniform distribu-
tion on [0,1] interval, let call this simulated number c. Then if c¡=0.6,
we set D1=1 (i.e. we say the first device functions), and if c¿0.6 then
we set u1=0 (i.e. we say that the first device does not work). Can you
see why this trick work?

3) We decide that D2 is a variable that has a value of 1 if the second
device works, and zero otherwise. To simulate values of D2 we do the
same trick as above, but with 0.7 (instead of 0.6). Can you see that this
simulates D1 and D2 independently?

4) We decide to simulate D1 and D2 10,000 times. Obviously, the more
simulations the higher precision of our estimate will be, and the longer
we need to wait for the computer to do all the simulations.
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5) In a loop, we simulate the two events D1 and D2 independently 10000
times (conveniently, we will use a built-in function R to do the loop in
R).

6) For each of 10,000 simulations calculate this: if D1=1 and D2=1, then
update the counter i.e. increase the value of A by 1; otherwise do not
update the counter A.

7) Finally, after all, 10,000 simulations, calculate the estimated probability
as A/10,000.

8) Since we use computer simulations, our answer in the previous bullet
point may not be exactly equal to 0.42, but we should be reasonably
close if we do enough simulations. How do we know that we have enough
simulations i.e. that 10,000 is enough here?

From the pseudo code above we can write the following R-code:

1 # ----------------------------------------------------------

2 # a) What is the probability that both devices function?

3 # Do simulations in R to find this probability.

4 # ---------------------------------------------------------

5 # We will simulate two devices D1 and D2.

6 # We will count how many times they both work.

7 # Then we will store the count in a structure called A.

8 A<-0 #Initialisee the counter at number zero (i.e. zero

events so far)

9 # Next , do 10 ,000 simulations of an event

10 for (i in 1:10000){

11 # Next , generate 1 random number from uniform distri -

12 # bution on intervals 0 and 1.

13 D1=runif (1)

14 # Next , generate another random number from unif

distribution on (0,1)

15 # This way D1 and D2 are simulated independently of each

other

16 D2<-runif (1)

17 # Next , simulates the joint event when both devices work.

This is

18 # accomplished by the following if condition.

19 if(D1 <0.6 && D2 <0.7) {

20 # If this condition above is true , then we increase the

counter

21 # i.e. this increases the count if both devices work

jointly.

22 A<-A+1

23 }

24 }

25 #Nextt , give the estimated probability , for (A)

26 [1] 0.425

27 # -------------------------------------------------------

28 # b) Simulation to find the probability of at least one device

functioning.

29 # ------------------------------------------------------

30 B<-0

31 for (i in 1:10000){
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32 D1=runif (1) # generate a random number from the uniform

distribution

33 D2<-runif (1)

34 if(D1 <0.6 || D2 <0.7) {

35 B<-B+1

36 }

37 }

38 B/10000 #This gives an estimate for theh probability that at

least onedevice functions.

39 [1] 0.8835

40 # NEXT - Do try to change the seed into a different number and

see how the estimates change!

Answer: Our estimate of the probability of both devices to function is 0.425.
Our estimate of the probability of at least one device functioning is 0.8835.

2. [Purpose: to practice finding the probabilities using computer
simulations, in R.] Consider the following game. You will flip a coin 25
times, winning £1 each time it lands heads (H) and losing £1 each time it
lands tails (T). Unfortunately for you, the coin is biased in such a way that
P(H)=0.4 and P(T)=0.6. What is the probability you come out ahead,
i.e., you have more money at the end of the game than you had at the
beginning? You will use simulation to find out this probability.

Here is a hint that should give you a start: Since winning by flipping a coin
25 times is a random event, you need to simulate it in many runs. Hence
your simulation will consist of many runs. In each run, you will simulate the
25 flips of the coin. In each run, you will need to keep track of much money
you have won or lost at the end of the 25 tosses. Define an R structure A
as the following: A = “We come out ahead”.

a) First, write your pseudo code.

b) Using your pseudo code, write the R code that will estimate the proba-
bility.

2.8 Exercises

Solve the following exercises by using a pen, paper, and calculator.

1. [Purpose: to practice marginal, conditional and joint probabil-
ities.] The population of a particular country consists of three ethnic
groups. Each individual belongs to one of the four major blood groups.
The accompanying joint probability table gives the proportions of indi-
viduals in the various ethnic group-blood combinations. Suppose that an
individual is randomly selected from the population.
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Blood type

Ethnic group O A B AB

1 0.082 0.106 0.008 0.004
2 0.135 0.141 0.018 0.006
3 0.215 0.200 0.065 0.020

a) Calculate P (Blood = A), P (Ethnic = 3) and P (Blood = A∩Ethnic =
3).

b) Calculate both P (Blood = A | Ethnic = 3) and P (Ethnic = 3 |
Blood = A) and explain in context what each of these probabilities
represents.

c) If the selected individual does not have type B blood, what is the prob-
ability that he or she is from ethnic group 1?

2. [Purpose: to discuss conditional probabilities.] Suppose an individ-
ual is randomly selected from the population of all adult males living in
the USA. Let A be the event that the selected individual is over 6ft in
height, and let B be the event that the selected individual is a professional
basketball player. Which do you think is larger P (A | B) or P (B | A)?
Why?

3. [Purpose: to practice marginal, conditional and joint probabili-
ties, and independence of events.] The accompanying table gives in-
formation on the type of coffee selected by someone purchasing a single cup
at a particular airport kiosk. Consider purchasers arriving at the kiosk ran-
domly i.e. independently of each other. Consider the next customer (hence,
we are considering a randomly selected customer).

Cup size purchased

Coffee type Small Medium Large

Regular 14% 20% 26%
Decaf 20% 10% 10%

a) What is the probability that the individual purchased a small cup? A
cup of decaf coffee?

b) If we learn that the next customer purchased a small cup, what is now
the probability that he/she chose decaf coffee? And how do you interpret
this probability?

c) If we learn that the next customer purchased decaf, what is now the
probability that a small cup was selected, and how does it compare to
the corresponding unconditional probability from a)?
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d) If we learn that the next customer purchased decaf, what is now the
probability that a small cup was selected, and how does it compare to
the corresponding unconditional probability from a)?

e) Is choosing cup size and coffee type independent? Explain.

4. [Purpose: to practice the law of total probability and Bayes’s
theorem.] Suppose that we have three coloured boxes (red), (blue), and
(green). Box r contains 3 apples, 4 oranges, and 3 limes, box b contains 1
apple, 1 orange, and 0 limes, and box g contains 3 apples, 3 oranges, and
4 limes. A box is chosen at random with probabilities P(r)=0.2, P(b)=0.2,
P(g)=0.6, and then a piece of fruit is selected from the box (with equal
probability of selecting any of the items in the box).

a) What is the probability of selecting an apple?

b) If we observe that the selected fruit is in fact an orange, what is the
probability that it came from the green box?

5. [Purpose: to practice the law of total probability and Bayes’s
theorem.] A factory production line is manufacturing bolts using three
machines, A, B, and C. Of the total output, machine A is responsible
for 25%, machine B for 35%, and machine C for the rest. It is known from
previous experience with the machines that 5% of the output from machine
A is defective, 4% from machine B, and 2% from machine C. A bolt is
chosen at random from the production line and found to be defective.

a) What is the probability that it came from machine A?

b) What is the probability that it came from machine B?

c) What is the probability that it came from machine C?

6. [Purpose: to practice the law of total probability and Bayes’s the-
orem.] An engineering company advertises a job in three newspapers, A,
B and C. It is known that these papers attract undergraduate engineering
readerships in the proportions 2:3:1. The probabilities that an engineering
undergraduate sees and replies to the job advertisement in these papers are
0.002, 0.001, and 0.005 respectively. Assume that the undergraduate reads
only one newspaper and then either decides whether to apply for the job,
hence there is either zero or one job application from each undergraduate.

a) If the engineering company receives only one reply to its advertisements,
calculate the probability that the applicant has seen the job advertised
in place A.

b) If the company receives two replies, what is the probability that both
applicants saw the job advertised in paper A? Assume that the two
readers are independent (e.g. do not live in the same household).
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7. [Purpose: to practice the probabilities, law of total probabilities
and Bayes’s theorem.] 1% of people have a certain genetic defect. 90%
of the tests for the gene detects the defect (true positives). 9.6% of the tests
are false positives. If a person gets a positive test result, what are the odds
they actually have the genetic defect?

8. [Purpose: to practice Bayes’s rule, as well as the communication
of the results.] This example was created about Lateral flow (LDF) test
for Covid-19. In 2021, Dylan Mistry and his collaborators compared sev-
eral LFDs (published in BMC Infectious Diseases, 2021, 21:828). One of the
manufacturers of LFD is Bioeasy. Mistry investigated how accurate is the
LDF Bioeasy test. For that purpose, they randomly selected n=856 people
from London, with no or mild symptoms. For these people who participate
in the study, the following information was available: The probability that
a (randomly chosen) person has Covid-19 is 5.22% (i.e., 5.22% is the esti-
mated prevalence for London at that time). If a person has Covid-19, the
probability is 82.05% that he/she will have a positive LDF Bioeasy test. If
a person does not have Covid-19, the probability is 8.73% that he will still
have a positive LDF Bioeasy test. Answer the following questions:

a) What was the prevalence of Covid-19 in 2021, among Londoners with
no or mild symptoms?

b) Imagine a randomly chosen person (from London, with no or mild
Covid-19 symptoms) from London who has a positive LFD Bioeasy
test. What is the probability that this person actually has Covid-19?
Answer this question by using probabilities.

c) Next answer the question b) by using natural frequencies. Hint: you do
not need to use n=856, you can use any n you wish, just do not use
small values.

d) Imagine a random sample of 500 people from London with no or mild
Covid-19 symptoms who have positive LDF Bioeasy. How many of these
people actually have Covid-19?
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Time series is a set of data points collected over time, typically at regular
intervals. In a time series, the order of the data points is important, as they
represent a sequence of observations recorded over time. The time series data
are typically measured on a continuous scale (such as the weight of a person)
or as counts (such as the number of visitors to a museum). Time series data
is often used in various fields, including finance, economics, engineering, and
natural sciences, to analyse and forecast trends and patterns. Examples of time
series data include stock prices, temperature measurements, and monthly sales
figures. In financial risk analysis, time series models can be used to analyse
historical data on stock prices, interest rates, or other financial indicators to
predict future market trends and fluctuations.

Time series data can be analysed using various statistical techniques, in-
cluding trend analysis, seasonal analysis, and forecasting. The goal of time
series analysis is to identify patterns, trends, and other relationships in the
data that can be used to make predictions about future values.

Time series data values are almost always correlated with each other, e.g.
if my weight is above average today, it was likely above the average two days
ago. Such correlation is the main reason why time series data need their own
types of data analytic methods, so the correlation is suitably accounted for.
This gave rise to the development of a field called Time Series Analysis.

Learning objectives

• Learn what time series data are, learn several time series modelling meth-
ods, learn how to find a suitable model for forecasting, learn how to fit the
models and use the models to forecast the future. Learn how we express
the uncertainty of such a forecast.

• Practice modelling and forecasting in R.

• Discuss how to communicate the calculated uncertainties to stakeholders.

3.1 Motivation

First, we look at the motivation of how time series help to quantify risk. Time
series can be used for three types of goals:

• Forecasting. We can estimate what may happen in the future.

• Control. We can estimate if anything is going wrong. For example, if
someones eye is unhealthy (now, not in the future), if a production process
is out of control (such as producing defects).
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• Understanding the features of the data. This includes seasonality,
cycle, trend, and any change points. The degree of seasonality in agricul-
tural prices may indicate the degree of development. This also includes
understanding what causes our time series data (such as the effect of gov-
ernment policy on the number of visitors to the UK).

3.1.1 Time series can be used for forecasting of the future

Here we illustrate what we mean by forecasting. We start by giving several
examples, we define terminology, and we show what types of forecasts we want
to accomplish. Then we discuss the process of building such forecasts in later
Sections.

Example. Overseas visits. We are going to use data on the number of
overseas visitors to the UK from December 1981 till December 1981 (Table 3.1)
obtained from Office of National Statistics [42]. The data are visualised on a
time series plot, Figure 3.1. What patterns can be seen in the figure?

FIGURE 3.1: Overseas monthly visits to the UK January 1980 to December
1981. The visits are measured in thousands of visitors. The values are in

Table 3.1.

Solution. The time series plot (Figure 3.1) immediately reveals some in-
teresting features: During December and January months, the visits are the
lowest; during the summer months, the visits are the highest; and the year
1980 seemed to have slightly higher visits than the year 1981.
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t Month Year Visits

1 JAN 1980 739
2 FEB 1980 602
3 MAR 1980 740
4 APR 1980 1028
5 MAY 1980 1088
6 JUN 1980 1124
7 JUL 1980 1699
8 AUG 1980 1839
9 SEP 1980 1200
10 OCT 1980 963
11 NOV 1980 755
12 DEC 1980 642
13 JAN 1981 695
14 FEB 1981 540
15 MAR 1981 685
16 APR 1981 962
17 MAY 1981 1007
18 JUN 1981 1039
19 JUL 1981 1430
20 AUG 1981 1650
21 SEP 1981 1181
22 OCT 1981 954
23 NOV 1981 689
24 DEC 1981 619

TABLE 3.1: Monthly visitors time series for January 1980 - December 1981.

Example. Overseas visits. (continues) In the next, we will consider
the same monthly time series, but now from January 1980 till December 2020,
hence 41 years. The Figure 3.2 reveals some interesting features:

• During December and January months, the visits are the lowest; during
August, the visits are the highest; this is called a seasonal pattern.

• The extent of these seasonal differences (August visits minus January vis-
its) is roughly the same, except it seems that these differences are some-
what larger in the last three years.

• There is a general increasing trend except for the decreasing trend from
January 2000 to December 2001. Why could this be?

• There is a drop in visits from January 2008 to January 2009; this coincides
with the financial worldwide crisis. There is a constant trend from January
2009 to December 2012, possibly still due financial crisis. Then there is a
constant trend from January 2016 to December 2019. This is then followed
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FIGURE 3.2: Overseas monthly visits to UK Jan 1980 to Dec 2020. The
visits are in the thousands.

by a drop from December 2019 to March 2020, which coincides with the
Covid-19 pandemic and the closing of flights.

• We also see some random fluctuations.

• Hence, when preparing the forecasts from this series, we would need to
take into account the seasonal pattern, the trend, as well as the random
fluctuations.

What would the tourism institutions like to know from these visits’ time
series? They may be interested in having answers to the following questions:

1. What is the expected number of visits each month from April-December
2020?

2. What are the chances that from April to December 2020, the total number
of visits will be between 2500 and 3500 thousand?

3. What are the chances that in the next three months, there will be at least
3000 visits per month?

Next, assume it is December 1981, and we have the visit data from January
1980 - December 1981. In which of the two following scenarios should we feel
more confident to do a forecast?

• Scenario 1: We are asked to use the data to predict the number of visits
for January 1982.
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• Scenario 2: We are asked to use the data to predict the number of visits
for April 1982.

Answer: We should feel more confident to predict January 1982 because
this is one month ahead prediction. We are less confident to predict April 1982
as it is four months ahead of the prediction. This means that we will need to
have a way to quantify such confidence numerically. We will do it in future
sections.

Next, we need to introduce several definitions. Smoothing time series is a
technique where we are trying to remove ‘noise’ from data. We can do this by
building a statistical model of the data, such as a linear model with additive
noise. The smoothed data would then be on the line, and we will also call
them the fitted or predicted values. For smoothing, we don’t need an explicit
model. One example of that will be a so-called moving average operation,
which also smooths data and does not assume an explicit model. Other exam-
ples of smoothing operations are Kernel smoothing, smoothing splines, linear
regression, loess regression, and exponential smoothing (see Sections 3.4.2).
Forecasting is a process of making predictions into the future beyond the time
scale of available data. We want to be able to predict something that has not
happened yet. In essence, we want to see into the future. Forecasting is part
of a bigger scheme of statistical inference. The idea is to use available data to
infer about the future. We can do this by first estimating the mean or trend of
the data, then we see what properties such estimates have, and we use them
to predict the future.

3.1.2 The forecasting steps

When someone gives us time series dataset, how do we start creating the
forecast? We start by clarifying what the ultimate goal of the stakeholder or
decision-maker is. This is the most challenging and the most important part.
If we do not understand the goal, we create a useless forecast. Our role as a
mathematician / statistician / data analyst is not just to listen to the decision-
maker and make notes. Our role should not be passive. It should be active.
We should ask clarifying questions about the goal. Then we should make
suggestions: what is possible or impossible to do with data and forecasting.
E.g. ”It is now the year 2023, and I will help you to make predictions for the
year 2030, but be aware that those predictions may not be trusted as they are
too far from the data we have now. I will help you to make predictions for
the whole year of 2024, but if you are planning to roll out a new immigration
policy in January 2024, my predictions will not be valid anymore. So if you
want me to predict what happens after the rollout of the immigration plan,
you need to give me past time series data of Monthly Visits that covers a
period when a similar rollout happened.”

What is a time series dataset? It is a set of data obtained on the same
variable repeatedly over time, while the time intervals are equidistant. In time
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series, the unit of analysis is a day (or a month, in Figure 3.1), depending on
how regularly you collect the data). A time series dataset is always organised
into a table; usually, the variables are in columns (in Table 3.1, the columns
are Time and Visits), and the units are in rows.

What makes the time series data special? Time series data is different from
data collected at one-time point. Data collected at one-time point are called
cross-sectional studies, such as randomised block design, Latin squares design
or cohort studies or surveys. The time series data are collected over time and
hence are usually correlated; hence they are not independent. So, we see that
the most basic assumption of the classical regression model is violated in time
series data: in regression models, we assume that data are uncorrelated. This
calls for more flexible statistical methods.

What does it mean that the data in the time series are usually correlated?
It means that e.g. if on January 2021, the number of new COVID-19 active
cases is higher than the overall trend, then in February 2021, the number of
new cases will more likely be also above the overall trend. That is an example
of a positive correlation.

In what follows is a set of five steps that we should follow when forecasting
from time series data:

• Step 1. Figuring out what the problem is. Finding out what the
goal of the decision maker is and reframing it in statistical language. As
Hyndman and Athanasopoulos [34] point out, this is the most difficult part
of forecasting. Defining the problem carefully requires an understanding of
the way the forecasts will be used, who requires the forecasts, and how the
forecasting function fits within the organisation requiring the forecasts. A
forecaster needs to spend time talking to everyone who will be involved in
collecting data, maintaining databases, and using the forecasts for future
planning. To be successful in this first step, it helps to ask the following
questions to those who will use this forecast: ”What is your goal? What do
you want to achieve? E.g. do you want to know how much ice cream will be
sold by each vendor? Or do you want to know how much ice cream all your
vendors will sell on average? Do you want to forecast if the patient will be
in remission a year from now? Or do you want to know the proportion of
patients a year from now?”

• Step 2. Gathering information. There are always at least two kinds of
information required: (a) statistical data and (b) the accumulated exper-
tise of the people who collect the data and use the forecasts. Often, it won’t
be easy to obtain enough historical data to be able to fit a good statisti-
cal model. In that case, the judgmental forecasting methods can be used
(see Chapter 4 of Hyndman and Athanasopoulos book [34]). Occasionally,
old data will be less useful due to structural changes in the system being
forecast; then, we may choose to use only the most recent data. However,
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remember that good statistical models will handle evolutionary changes
in the system; don’t throw away good data unnecessarily.

• Step 3. Exploratory time series analysis (EDA). This is a prelim-
inary stage of analysis of data. We start by graphing the data. Then we
look at the data, and we ask ourselves the following questions: ”Are there
consistent patterns? Is there a significant trend? Is seasonality important?
Is there evidence of the presence of business cycles? Are there any outliers
in the data that need to be explained by those with expert knowledge?
How strong are the relationships among the variables available for analy-
sis?” Various tools have been developed to help with this analysis. These
are Graphical Tools for Time Series and a method called Time Series De-
composition. During EDA analysis, we graph the time series and we speak
to the application domain experts (e.g. experts on the stock exchange if
we want to forecast prices of shares, and pandemic experts if we want to
predict Covid-19 new cases). The result of such a discussion is a list of
potential candidate models. We learn the basics of EDA in Section 3.3
after we first introduce notation and basic definitions in Section 3.2.

• Step 4. Fitting several candidate models and choosing the best-
fitting and well-fitting model.We fit all candidate models and compare
them. We aim to choose the best-fitting models (one or more equally good
models). The choice of the best-fitting model depends on the availability of
historical data, the strength of relationships between the forecast variable
and any explanatory variables, and how the forecasts are to be used. Each
model is itself an artificial construct that is based on a set of assumptions
(explicit and implicit) and usually involves one or more parameters which
must be estimated using the known historical data. Some of the commonly
used model types are Time Series Regression models (see Section 3.4.1),
exponential smoothing models (see Section 3.4.2), Box-Jenkins ARIMA
models, dynamic regression models, hierarchical forecasting, neural net-
works and vector autoregression. To choose the best fitting model, we will
use several suitable criteria in Section 3.4.3. Once we find the best fitting
model, we will do goodness-of-fit checks of such a model to see if it is also
a well-fitting model(Section 3.4.3).

• Step 5. Evaluating the forecasting model and making recommen-
dations to a decision maker. Once a model has been selected as appro-
priate for forecasting, next its parameters are estimated, and the model
is used to make forecasts. The model’s performance can only be properly
evaluated after the data for the forecast period have become available.
Several methods have been developed to help in assessing the accuracy of
forecasts. When using a forecasting model in practice, numerous practical
issues arise, such as how to handle missing values and outliers or how to
deal with short time series. When communicating the forecast to a decision
maker, there are several points we will discuss in Section 3.5.
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3.1.3 What do stakeholders want?

The reason why we study time series data is that they help us to forecast
the future world, i.e. the future outcomes and their probabilities. Knowing
future outcomes (scenarios) and quantifying uncertainties (via, e.g. probabil-
ities) is the key to assessing the risks and making decisions as we discussed
in Section 1.3.1: see A for outcomes and Q for quantified uncertainties, in
Figure 1.3.

From the view of statistics, the number we are trying to forecast is un-
known. What we are trying to do is to estimate the unknown quantity as best
as we can. For example, the total visits for next month could take a range of
possible values, and until we add up the actual visits at the end of the month,
we don’t know what the value will be. So until we know the visits for next
month, it is an unknown quantity.

We should be more certain in our forecast of the time series value for the
next month than for 13 months ahead. As one month it is relatively close, we
usually have a good idea of what the likely visit values could be. On the other
hand, if we are forecasting the visits for the same month next year, the range
of possible values can be much wider. In most forecasting situations, the range
of possible forecasted values will be wider as we forecast into a more distant
future. In other words, the further ahead we forecast, the more uncertain we
are, and hence we will need a method to quantify such uncertainty too.

How do time series help to estimate future scenarios? We will learn one
typical pipeline: we fit a suitable time series model, and then we do extrapo-
lation into the future (see section 3.1.2).

Example: Overseas visits. (continues) Imagine it is December 1981,
and we have the overseas visits data for January 1980 - December 1981. We
want to forecast the overseas visits for the next 10 years. How do we present
such forecasts to the stakeholders so that it is simple to communicate?

Solution. Here, we discuss the way to present a forecast to stakeholders.
The mechanics of calculating the forecast are explained in future sections.

The first possibility to present a forecast to stakeholders is by showing
several possible future scenarios that are likely to happen. Plotted in black in
Figure 3.3 is the total overseas visitors to the UK from Jan 1980 to Dec 1981.
Also shown are four individual possible futures into January 1982 – December
1991.

In Figure 3.3, as we try to predict a more distant future (e.g. January
1990), the variability of the four individual futures for January 1990 is about
three times larger than the variability of the four individual futures for January
1983, i.e. we are less certain in simulating possibly futures for January 1983
then for January 1990.

The second possibility to present a forecast to stakeholders is by showing
the centre of the range of possible values the future can take as well as by
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FIGURE 3.3: Total monthly overseas visitors to the UK (January 1980 -
December 1981, see the black curve) along four individual possible futures

for January 1982 – December 1991.

showing the prediction intervals as in Figure 3.4. The Figure shows 80% and
95% prediction intervals for future UK overseas visitors.

When we are creating a forecast (Section 3.4), we usually start by calcu-
lating the centre of the range of possible values the future can take. Since, for
each time, the middle is just one number (i.e. one point on the plot), we call
it a point forecast. When we connect all point forecasts, we get the whole path
which is also called the central path of projection [47]. Then we make sure
that our point forecast (central path) is accompanied by a prediction interval
giving a range of values the random variable could take with relatively high
probability. For example, a 95% prediction interval contains a range of values
which should include the actual future value with probability 95%. The choice
of the percentage depends on stakeholder needs. For example, in high-stake
situations such as predicting the number of new Covid-19 cases, very high
coverage of prediction intervals is needed, such as 99%.

The width of the prediction intervals (Figure 3.4) indicate the amount of
our uncertainty : the wider the prediction intervals are the more uncertain we
are. As we forecast a more distant future (e.g. January 1990) the variability
of the forecast for January 1990 (as expressed by the width of the prediction
intervals) is about three times larger than the variability of January 1982;
i.e. there is more uncertainty in predicting the visits for January 1990 than
for January 1982. We will learn how to calculate such intervals in Section 3.4.5.

Two goals of the stakeholders when they want to predict the fu-
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FIGURE 3.4: Total overseas visits to the UK (January 1980 - December
1981, see the black curve) along four individual possible futures for January
1982 – December 1991. The blue line is the average of the possible future
values, which we call the point forecasts. The dark grey region is the 80%
prediction interval, the light grey region is the 95% prediction interval.

ture. When we use time series to forecast the future and communicate the
risks to a stakeholder, we need to understand the stakeholder’s goals. There
are two types of goals (see also Step 1 in Section 3.1.2). As data analysts, we
should be able to figure out which of the two goals we are facing (or both). In
the next, we discuss each of the two goals via illustrative examples:

When the goal is to forecast the expected (i.e. mean) outcome.
We discuss this via two examples:

1. You are a data analyst and are approached by an ice cream maker. She
produces ice cream and sells it via 30 vendors, and she wants to know what
sale she can expect on 30 July from her 30 vendors. She has data from 2
vendors, the other 18 vendors are new. We can use the data to forecast
the expected sales: i.e. of the mean sale. Then we just multiply by 30 to
get the sales estimate for 30 vendors.

2. You are a data analyst and approached by an investor. She wants to invest
now in a set (i.e. portfolio) of 100 shares, and she wants to see what her
profit (or loss) will be in a month from now. She has time series data on
one of these shares. You recognise that here it is useful to try to estimate
the expected (hence mean, average) profit a month from now.
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The two examples above have one thing in common: they require estimat-
ing the expected value of mean future sales/profits. We can use time series
data to estimate the expected future scenario (i.e. the mean future scenario).
Note, that in statistics, the term the expected value is the same as the term
the mean value. So, for example, we can use data from January 1980 - De-
cember 1992 to estimate the mean number of visits in January 2006. In other
words, we can estimate the expected number of visits in the month of January
2006. This forecasted mean number of visits (i.e. forecasted expected number
of visits) for the month of January 2006 is just a single number, representing
one point on the line of real numbers, and hence it is called the point estimate
of the mean (see the blue line in Figure 3.4). For each month, we can also
calculate the confidence interval for the mean, which we can also call the in-
terval estimate of the mean. Note that the intervals in Figure 3.4 are NOT the
confidence intervals for the mean; they are prediction intervals for individual
outcomes - which we discuss in the next.

When the goal is to forecast the individual outcome/future.
Again, we discuss two examples:

1. What if we only have one ice cream vendor that sells our ice cream and we
want to know how many ingredients to put into the truck in 7 days from
now on 30th July? What if we have 30 vendors that sell our ice cream,
and we want to predict how much each individual vendor needs to stock
up on the ice cream in 7 days from now on 30th July? This means we need
to forecast the ice cream demand of individual vendors on 30th July.

2. What if we want to invest and we only have money to buy one asset? Then
there is not useful to only predict the average return. It is more useful to
forecast the return by calculating the future average return as well as the
prediction interval. This will give us an idea of what all possible returns
are and their probabilities, this will help us in deciding about one single
asset investment. We recognise we are in a riskier situation here as we
cannot diversify the risks by buying several assets. We put all our money
into one asset.

In the two examples above, we recognise that it is needed to estimate all
the future scenarios (outcomes, sales, profits and losses) and their likelihoods.
(Note, once we know all future scenarios, we can use them to estimate the
mean.) What we do in these situations is that we use time series to estimate
all future scenarios that are likely to happen i.e. that are supported by the
past time series data. We then estimate the probability (i.e. likelihood) for
each of these scenarios. Some scenarios will be more likely to happen, some
less. For example, we will forecast all future numbers of visits that can possi-
bly occur, as well as their probabilities. Some forecasted numbers will be more
supported by the data, and this will be expressed by having high probabil-
ities. Some forecasted numbers will be less supported by the data, and this
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will be expressed by having low probabilities. We will express these ranges by
constructing a prediction interval. Such intervals were showed in as grey inter-
vals in Figure 3.5. A further motivating example follows in the next paragraph.

FIGURE 3.5: Inflation forecast visualised via a fan chart thus showing the
uncertainty of the future outcomes. This forecast is based on market interest
rate expectations and based on the collective judgement of the monetary
policy committee. From Bank of England Inflation Report, May 2007.

Example. Inflation. A so-called fan chart can be used to convey uncer-
tainty about future outcomes. Below is the fan chart depicting the forecast
of inflation. It shows the probability of various outcomes for inflation in the
future. The interpretation is as follows: If economic circumstances identical
to today’s were to prevail on 100 occasions, the monetary policy committee’s
best collective judgement is that inflation over the subsequent three years
would lie within the darkest central band on only 10 of those occasions. The
fan chart is constructed so that outturns of inflation are also expected to lie
within each pair of the lighter red areas on 10 occasions. Consequently, in-
flation is expected to lie somewhere within the entire fan chart on 90 out of
100 occasions. The bands widen as the time horizon is extended, indicating
the increasing uncertainty about outcomes. The dashed line is drawn at the
two-year point. In Section 3.4.5 we will learn how to create such fan plots.
Here, we discussed why they are needed.
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3.2 Introduction to statistical theory of time series

Next, we give theoretical background for time series. This will be then used
in later sections when we bring forecasting models and tools.

3.2.1 Notation

Next, we introduce the notation for time series. We will use the capital letter
Y to denote the variable measured repeatedly over time (e.g., the monthly
number of visitors) and use the small letter y to denote the actual value (i.e.,
the value that was observed and recorded). We use subscript t for time, so yt
denotes the observation at time t. We use the capital letter T to denote the
number of time points for which we have data; hence it is the last time point.
Hence, we denote all our observed time series data as

y1, . . . , yT

We want to predict the future, i.e. the values of time series beyond the time
T . We will call such predictions the forecasts. Each forecast will be based on
some information. A useful information is the actual collected data: y1, . . . , yT .
Then we can calculate the forecast at time T+h given the data y1, . . . , yT . Such
forecast will be called a h-step forecast taking into account all observations
up to time T , and we denote it as

ŷT+h|T

where h ≥ 1 is the ”horizon” in the future which we like to forecast. The ”hat”
indicates that the quantity is an estimate. The subscript T + h|T indicates
that we are estimating the time series value at time T + h while conditioning
our forecast on the data y1, ..., yT .

In principle, when we do forecasting, we can use any relevant information
available to us. For example, if we want to predict the number of visitors to the
UK in the year 2024, we can use the past number of visitors time series until
and including 2023, but we can also use other information such as changes
in travel policies, prices of hotels in the UK until and including 2023. In this
chapter, we only show how to use the past time series of the number of visitors
to do the forecast.

In principle, we can also think about predicting values yt+1|t, where t < T ,
which is predicting the value yt+1 where we take into account all previous
observations y1, y2, . . . , yt. We call such predicted values as fitted values

ŷt+1|t

And we reserve the word forecast for a scenario where we predict into the
future, i.e. beyond time T .



Time series for risk quantification 67

It is important to note that the value ŷT+h|T is random. In other words,
there is a random chance involved in it due to random variations in y1, ..., yT ,
hence ŷT+h|T is a realisation of the random variable ŶT+h|T . The set of values
that this random variable could take, along with their relative probabilities,
is known as the probability distribution of ŶT+h|T . In forecasting, we call this
the forecast distribution, and we use it to construct the interval forecast. We
use ŷT+h|T as the point forecast. If the forecast distribution is symmetric, then
the forecast is the mean of the forecast distribution.

3.2.2 Time series as a realisation of random process

Time series is a time-ordered collection of observations. From a probability
point of view, time series is a realisation of a collection of T random variables,
{Y1, Y2, . . . , YT .} Time series may be needed to answer questions such as:

• What is the predicted number of visits in January 2004?

• What is the expected number of visits in February 2004 given that in
January 2004 it was 4,100?

• Are the values of past time series independent of each other? Do the ob-
servations carry information about the next observations?

The first two questions are about the moment (i.e. the expected value) of the
time series at some time point, and the last question is about the correlation
of the individual components of the time series at various time points.

We use small letters to denote the realisations of Y1, Y2, . . . , YT , i.e. we
write y1, y2, . . . , yT . They are also called observations, measured values or
recorded values.

3.2.3 Mean, variance, autocovariance and autocorrelation

For time series {Y1, Y2, ...} the mean function is defined by

µt = E(Yt) for t = 1, 2, ...

That is, µt is just the expected value of the process at time t. In general, µt

can be different at each time t.

The autocovariance function, γt,s, is defined as

γt,s = Cov(Yt, Ys) for t, s = 1, 2, ...

where Cov(Yt, Ys) = E[(Yt − µt)(Ys − µs)] = E(YtYs)− µtµs

Since the time series {Y1, Y2, . . . , YT } has T components, we can have T
variances (i.e. variance of each Yt), and we can have T (T − 1)/2 covariances
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(i.e. covariance of each component with each other component).

The autocorrelation function, ρt,s, is given by

ρt,s = Corr(Yt, Ys) =
γt,s√
γt,tγs,s

=
Cov(Yt, Ys)√

V ar(Yt)V ar(Ys)
(3.1)

which is the correlation between the t-th and s-th time of Y . In the mumerator,
we can normalise so that the autocorrelation is in the range [0, 1]. Recall
that both covariance and correlation are measures of the linear dependence
between random variables. The following important properties follow from our
definitions:

γt,t = V ar(Yt)

γs,t = γt,s

| γt,s |≤
√
γt,tγs,s

ρt,t = 1

ρt,s = ρs,t

| ρt,s |≤ 1

The correlation ρt,s is unitless and somewhat easier to interpret: it gives
the strength of the dependence between Yt and Ys. Values of ρt,s close to
±1 indicate strong linear dependence, whereas values near zero indicate weak
linear dependence. If ρt,s = 0, we say that Yt and Ys are uncorrelated.

3.2.4 Stationarity

To make statistical inferences about the time series on the basis of observed
data, we must usually make some simplifying while reasonable assumptions
about the data-generating mechanism. The most important such assumption
is that of stationarity. The basic idea of stationarity is that the probability
laws that govern the behaviour of the time series do not change over time.

A time series {Y1, Y2, ...} is said to be strictly stationary if the joint distri-
bution of {Yt1 , ..., Ytn} is the same as the joint distribution of {Yt1−k, ..., Ytn−k}
for all choices of time points t1, t2, . . . tn and all choices of time lag k.

So, for n = 1, this means that Yt1 and Yt1−k have the same statistical
distribution, i.e. same means, same variances:

E(Yt1) = E(Yt1−k) = µ, V ar(Yt1) = V ar(Yt1−k) (3.2)

And, for n = 2, this means that {Yt, Ys} has same distribution as
{Yt−k, Ys−k}, so for example the covariances must be the same:

Cov(Yt, Ys) = Cov(Yt−k, Ys−k) (3.3)



Time series for risk quantification 69

for all t, s and k. Putting k = s and then k = s, we get

γt,s = Cov(Yt−s, Y0) = Cov(Y0, Yt−s) = Cov(Y0, Y|t−s|) = γ0,|t−s| (3.4)

This means that the covariance between Yt and Ys depends on time only
through the time difference | t − s | and not otherwise on the actual time
points t and s. Thus a strictly stationary time series have mean, variance and
covariance functions of simple forms:

µ = E(Yt), γk = Cov(Yt, Yt−k), ρk = Corr(Yt, Yt−k) (3.5)

Simply said, if a time series is strictly stationary with finite variance, then the
covariance and correlation depend on lag k only.

A time series {Y1, Y2, ...} is said to be weakly stationary if

1. The mean function is constant over time, i.e. E(Yt) = µ, for all t = 1, 2, ...,
and

2. the covariance function depends on time via the time lag (γt,t−k = γ0,t−k,
for all t and any lag k).

Strict stationarity of time series means that the data-generating mecha-
nism is not changing over time. In other words, the joint distributions for the
time series are the same. If the joint distributions for the process are all mul-
tivariate normal distributions, then the two definitions (weakly and strongly
stationary) coincide.

In future sections, we will assume that the time series data are a sum of
trend, seasonal and cyclic components, as well as a random component. Thus
the mean will not be stationary, and we will need a more complex model than
E(Yt) = µ. We will discuss some statistical models that have a mean that
is not a constant. We will assume that the mean can be characterised by a
model with a finite number of parameters (remember simple linear regression
has two parameters: intercept and slope). We will also assume that the error
term component is weak and stationary with zero mean, constant variance
and Normal distribution.

3.3 Exploratory data analysis for time series

As we mentioned in Section 3.1.2, an exploratory data analysis (EDA) is what
we need to do before we do any modelling or forecast.
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3.3.1 Goal of exploratory data analysis

Exploratory data analysis for time series is a preliminary stage of analysis of
time data where the goals are

• to visually check for any outliers,

• to visually inspect any expected or unexpected patterns (trends, seasonal
changes, cyclic changes),

• to visually inspect for the time of any sudden change in the patterns (such
a point in time is called a ”change point”),

• to check for any data quality problems (such as missing data, outliers),

• to check for patterns in the variance of data (is it constant or increasing
or decreasing with changes in overall trend),

• to get some initial statistical properties of the time series data, such as
an estimate of the autocorrelation and any relevant statistical significance
tests.

Various tools have been developed for EDA of time series. One family of
tools are called Graphical Tools for Time Series with the main visualisation
tool being the time series plot, i.e. the plot of the data series versus time,
such as in Figure 3.6. EDA also uses a method called Time Series Decomposi-
tion which decomposes the time series data into the three components: trend,
seasonal and random (see Section 3.3.2).

After we do the EDA analysis, we show its results to the experts in the field.
For example, we show our EDA results to the experts on the stock exchange
if we want to forecast the prices of shares. Such discussion then leads to a list
of potential models. Such models are then fitted and evaluated numerically to
see which can be used for further analysis and for forecasting.

3.3.2 Trend, seasonal and cyclic components of time series

Trend component. A trend exists when there are long-term changes in the
data. The trend does not have to be linear. It can be quadratic, polynomial, or
any curve, really. Sometimes e.g. government may introduce a travel ban for
six months, and that causes a change in the trend of the number of overseas
visitors time series. A change in trend can be temporary, for six months, or a
long term change.

Seasonal component. A seasonal pattern occurs when a time series is
affected by seasonal factors such as the time of the year or the day of the week.
Seasonality is always of a fixed and known frequency. In Figure 3.6 we give four
examples of time series. The monthly sales of new one-family houses in the
USA show seasonality with the smallest sales at Christmas time. The duration
of these seasonal fluctuations is therefore 1 year. Another example of seasonal
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FIGURE 3.6: Time series examples. Top left: Monthly housing sales in the
USA. Top right: Hourly US treasury bill contracts. Bottom left: Australian
quarterly electricity production. Bottom right: Google daily changes in

closing stock price. Source: [34].

changes is the Australian quarterly electricity production. The Google daily
changes in closing stock price do not seem to show any fluctuations that would
be 1 year long, at least it is not obvious to our eyes.

Naturally, not all time series are suitable to study seasonality such as The
Hourly US treasury bill contracts in Figure 3.6. We need time series to be
measured frequently enough (at least 4 times a year) and to be measured for
a long enough time (for at least one year), to be able to judge if there is an
effect of a season.

Cyclic component. A cycle occurs when the data exhibit rises and falls
that are not of a fixed frequency. These fluctuations are usually due to eco-
nomic conditions, and are often related to the “business cycle”. The duration
of these cyclic fluctuations is usually at least 2 years.

Noise component. When we see a variation in the time series that can-
not be explained by overall trend, seasonality, by cycle then such variation
is due to noise, also called random or residual variation. All previous com-
ponents (trend, seasonal and cyclic) are non-random components (also called
deterministic components). Noise is a random component of the time series.
Random variation cannot be predicted but must be acknowledged and incor-
porated in the time series analysis, as more noise increases our uncertainty
about the deterministic components.

What about a situation when the government issues a travel restriction?
Such as in early 2020 due to Covid-19. Such travel restrictions caused a large
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long-term change in the trend of time series (see Figure 3.2). Such change is
not a random error, rather it is a change in trend caused by an external force,
in this case, the government intervention. Such a change can be modelled by
adding suitable covariates into the time series model.

Example. Four examples of time series. Using the time series in Fig-
ure 3.6 describe the trend, seasonality and cyclic components.

Solution. Possible answers:

• The monthly housing sales (top left) show strong seasonality within each
year. There is no apparent overall increase or decrease in the data. There is
some strong cyclic behaviour: the first full cycle lasts 7 years (1975-1962),
and another full cycle is seen to last 9 years (1962-1991).

• The US treasury bill contracts (top right) show results from the Chicago
market for 100 consecutive trading days in 1981. Here there is no season-
ality, but an obvious downward trend. Possibly, if we had a much longer
series, we would see that this downward trend is actually part of a long
cycle, but when viewed over only 100 days it appears to be a trend.

• The Australian quarterly electricity production (bottom left) shows a
strong increasing trend, with strong seasonality. There is no evidence of
any cyclic behaviour here. Also, we see that the size of the seasonal fluc-
tuations increases with the increasing trend.

• The daily change in the Google closing stock price (bottom right) has
no trend, seasonality or cyclic behaviour. There are random fluctuations
which do not appear to be very predictable and no strong patterns that
would help with developing a forecasting model.

How do we estimate the components of the time series? There are
various tools to quantitatively estimate and evaluate the components of time
series, commonly called: Time Series Decomposition tools. The general idea is
this: first, we will estimate the trend, mt, then we will estimate the seasonal
component, st, and then the remainder (i.e. the errors, or residuals). Note
here, that the cyclic and trend component are estimated as one component.

Estimating the trend component. A simple method to estimate the
trend mt at time t is to take the average of Yt and of its neighbouring values, a
so-called moving average. This then poses a question of how many neighbours
do we use, and if we use a simple average or a weighted average. Another way
to estimate a trend is by using a linear or nonlinear regression model.

Example. Overseas visits. (continues)We will be estimating the trend
via the moving average in the Overseas visits data.
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Solution. For each Yt (number of visits) we may try to calculate the
following average:

Zt =
Yt−1 + Yt + Yt+1

3
(3.6)

which is called a moving average of order 3. In general, for an odd number m
the moving average of order m is

Zt =
Yt−k + Yt−k+1 + . . . Yt + . . . Yt+k−1 + Yt+k

m
, (3.7)

where k = m−1
2 . If m is even, then the value from two moving averages (where

k is rounded up and down respectively) are averaged, centring the moving
average. It can be shown, that this is then:

Zt =
Yt−k + Yt−k+1 + . . . Yt + . . . Yt+k−1 + Yt+k

m
, (3.8)

where k = m
2 .

What order, m, should we choose for the moving averages? In
Figure 3.7 we show several moving averages for the Overseas visits data. We
should choose the moving average of order 12 as the best estimate of the trend
in the overseas data. The reason for such a decision is that the seasonality
pattern repeats every 12 observations i.e. we have monthly data. The R code
to produce these plots is in Section R Lab, Question (1).

Estimating the seasonal component of time series. Now that we
have the trend estimated, we can try and estimate the seasonal component.
We will proceed in steps:

1. We start by removing the trend from the time series. This will give just
the data that contain seasonal component and the noise, hence we will call
it detrended series and we will use the notation Dt hence we have:

Dt = Yt − Zt (3.9)

2. Then from this detrended series, we estimate the raw seasonal factors.
Each seasonal factor is the mean over all seasonal factors for that season.
In our example, we have 12 seasonal factors, as the season repeats every
12 observations (Why? Because we observe 12 values in each year). So in
our example for January, we have the following estimated raw seasonal
factor value:

Fj =

∑
all t belonging tomonth j Dt

nyears
(3.10)

where for January we have j = 1,... December has j = 12, nyears is the
number of years for which we have data.
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FIGURE 3.7: Overseas monthly visits to UK January 1980 to December
2019 together with estimated trend via moving averages technique.

3. Then we use the raw seasonal factors to get the values of the corrected
seasonal factors:

sj = Fj − F̄ (3.11)

where F̄ is the mean over all Fj , j = 1, . . . , J . Note that J = 4 for quarterly
data, and J=12 for monthly data.

Estimating the noise (the remainder) component. Once we have
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the estimate of trend and seasonality we are able to estimate the noise. We
do it simply by taking this difference:

wt = Dt − st (3.12)

Next, we can create a seasonally adjusted time series. Seasonally
adjusted time series are defined as series that contain a trend and noise only.
We obtain it by taking the difference:

Ut = Yt − st (3.13)

Note that sometimes when people (organisations) post time series data on
the internet, they often post seasonally adjusted time series.

Decomposition of time series, in a nutshell. When we are asked to
do time series decomposition, we need to provide four plots: original observed
series, estimated trend, estimated seasonal component, and estimated noise.
This can be conveniently done in R using function decompose, which is part of
library forecast and which gives the decomposition of Overseas visits as one
Figure as we see in Figure 3.8. For R details, see the Question 1, in Section R
Lab.

In the Overseas visits example, the decomposition (Figure 3.8) showed
that the trend is roughly linear with potentially some cyclic fluctuations, and
there is a strong seasonal component. The seasonal component does not appear
to increase or decrease with trend. All this should help us to choose model
candidates in the next Section 3.4.

3.3.3 Estimating the autocorrelation

We defined the autocorrelation function for time series data in Equation 3.1
of Section 3.2.3. Here we show how to estimate it, interpret it, and how to
decide if the time series are autocorrelated.

The autocorrelation (Eq. 3.1) can be estimated from a sample of time
series data y1, . . . , yT via the following formulae

ρ̂k =

∑T
t=k+1 (yt − ȳ)(yt−k − ȳ)∑T

t=1 (yt − ȳ)2
(3.14)

where T is the length of the time series. Some books denote it as rk. The
parameter k is called a lag. The term ”auto” in autocorrelation comes from
the fact that it is a correlation of time series with itself.

In R there is a function Acf (also acf) that automatically calculates the
autocorrelation for all the lags that the user specified. Then the values of
autocorrelation for several lags is called the autocorrelation function or auto-
correlogram.
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FIGURE 3.8: Time series decomposition of overseas monthly visits to the
UK. The data are used for January 1980 to December 2019). This
decomposition was done by using built-in function decompose.

Interpretation of autocorrelation of a time series data is similar to
Pearson correlation of data on two variables. In the Overseas visits example,
a positive autocorrelation between Yt and Yt−1 means the following: if the
number of visits at time t is large (above the overall trend) then the number
of visits at time t− 1 is also large (above the overall trend), roughly speaking
(most of the time). We call this a positive autocorrelation at lag 1. It is called
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lag 1, because the difference between the times t and t − 1 is equal to 1. We
will be looking at any lag e.g. k = 1, 2 or more. We explain the autocorrelation
further on time series data in the next examples.

Example: Overseas visits. (continues) Here, we use data from Jan
1980-July 1980 only i.e. the first seven time points. We calculate autocorre-
lation manually at lag 2 (so k = 2), using the formulae (3.14). To avoid too
long calculations, for the educational purpose, we will now pretend that we
only have seven values of Overseas visits monthly time series data:

y = (739, 602, 740, 1028, 1088, 1124, 1699)

Solution. We know that autocorrelation is the correlation of the time
series with its lagged values. So for our calculations, we could easily create a
table with the original and lagged series in separate columns and then use the
formulae 3.14. We start with generating the Table 3.2 of the lagged series.

Time yt yt−1 yt−2 yt−3 yt−4 yt−5 yt−6

1 739 NA NA NA NA NA NA
2 302 739 NA NA NA NA NA
3 740 302 739 NA NA NA NA
4 1,028 740 302 739 NA NA NA
5 1,088 1,028 740 302 739 NA NA
6 1,124 1,088 1,028 740 302 739 NA
7 1,699 1,124 1,088 1,028 740 302 739

TABLE 3.2: Lagged time series.

Next, we use the Table 3.2 to create another Table 3.4, which contains the
necessary calculations for the autocorrelation at lag k = 2. One of the first
calculations we need to do is the sample mean

y = 7020/7 = 1002.8571

then for k = 2 we have the covariance estimate∑
(yt − ȳ)(yt−2 − ȳ) = 91, 672.24

and variance estimate

T∑
t=1

(yt − ȳ)2 = 806, 572.86

so the autocorrelation estimate at lag k = 2 is

ρ̂2 =
91, 672.24

806, 572.86
= 0.1230
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Time yt yt−2 yt − y yt−2 − ȳ (yt − ȳ)(yt−2 − ȳ) (yt − ȳ)2

1 739 NA -263.86 NA NA 69,620.59
2 602 NA -400.86 NA NA 160,686.45
3 740 739 -262.86 -263.86 69,356.73 69,093.88
4 1,028 602 25.14 -700.86 -17,621.55 632.16
5 1,088 740 85.14 -262.86 -22,380.41 7,249.31
6 1,124 1,028 121.14 25.14 3,045.88 14,675.59
7 1,699 1,088 696.14 85.14 59,271.59 484,614.88

Sum 7,020 3,897 0.00 -117.29 91,672.24 806,572.86

TABLE 3.4: Calculations for autocorrelation at lag 2.

So the autocorrelation at lag 2 was estimated to be 0.1230. This estimate is
calculated from the first seven values of the Overseas visits data, it is different
from zero and positive, suggesting a positive correlation in this set of seven
time series values. Due to random variation in time series, there is a possibility
that the value 0.123 could have happened by chance, so at the moment we
cannot generalise to time series beyond our seven data values, and thus we
cannot conclude that there is a correlation at lag 2. In order to see if we can
generalise our finding of 0.123, we need to do a statistical significance test
which will establish if the size 0.123 could have happened by chance or not -
which we do next.

Test of significance of the autocorrelation values. Is the autocorre-
lation present or not in Overseas visits data? In other words, is the estimated
value of autocorrelation large enough to be not caused by random chance, but
to be likely caused by the actual correlation? This is impossible to judge from
the estimated values alone (see the value 0.123 above). Why? Owing to ran-
dom fluctuations and finite T time series, the autocorrelations are never going
to be exactly zero. But we still want to say if an autocorrelation is present or
not (i.e. the autocorrelation when T is infinite or very large). What we need
to do is to test if autocorrelation is far enough away from zero to say that it
is present. This means we need a test of significance. A test of significance for
autocorrelation can be done in steps as follows:

1. Let the autocorrelation estimate be denoted as ρ̂k. Then ρ̂k ≈ N(0, 1/T )
under the null hypothesis H0 : ρ = 0. In other words, if truly there is
no correlation (i.e., ρk = 0), the estimate ρ̂k has an approximately normal
distribution, with mean zero and variance equal to 1/T . So if the k -lagged
population correlation ρk is zero, then the correlation estimate should be
small, and its variance is equal to 1/T .

2. Since we know the ρ̂k distribution under H0 we can calculate p-values, but
this is not normally done for autocorrelation. Instead, what tends to be
done is to show confidence intervals. So for example, the 95% confidence
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bands for autocorrelation are calculated as 0±1.96× standard error of the

estimate ρ̂k is equal to 0± 1.96
√

1
T . Hence the 95% confidence bands for

autocorrelation are (
−1.96√

T
,
1.96√
T

)
(3.15)

Then such confidence bands are plotted together with the estimated au-
tocorrelation values ρ̂k. Note, that the 95% confidence band does not de-
pend on the lag k so it is the same for all lags (the same can be said for
e.g. 99% confidence etc.). The 95% confidence band was calculated under
the assumption of zero autocorrelation. So if there is no autocorrelation,
then 95% of estimated autocorrelations must lie within the 95% confidence
bands (see the blue vertical dashed lines in the next examples (Figures 3.9,
3.10).

3. The last step is to interpret the confidence band from equation 3.15, i.e. to
make a conclusion of the test of significance of the autocorrelation values.
Assume we calculated autocorrelation for lags 1, . . . , k. The interpretation
of the test of significance of autocorrelation is as follows: If at least 95%
of the estimated autocorrelations lie inside of these 95% confidence bands,
then we conclude no significant autocorrelation in the time series for lags 1
to k, i.e. we conclude that the values are not autocorrelated. If more then
5% of the estimated autocorrelations lie outside of these bands, then we
conclude significant autocorrelation, i.e. we conclude that the time series
are autocorrelated. These vertical lines are also called confidence bands
for autocorrelation function, as they illustrate how much the estimated
autocorrelation can vary due to random chance: more specifically the 95%
bands show where at least 95% of all estimated autocorrelation values
should be if there is no autocorrelation.

Example: Overseas visits. (continues) Again, for illustration purpose,
we consider only the first seven time points from January 1980 to July 1981.
Are the overseas visits time series autocorrelated?

Solution. We calculate the 95% confidence bands for the autocorrelations:(
−1.96√

T
,
1.96√
T

)
=

(
−1.96√

7
,
1.96√

7

)
= (−0.74, 0.74)

All six estimated autocorrelations are (not done here, but you should try to
calculate them all by hand) are

(ρ̂1, ..., ρ̂6) = (0.374, 0.123,−0.068,−0.315,−0.386,−0.228)

As we see, all estimated autocorrelations are less than 0.74, in absolute value,
so none of them is considered significantly different from zero. In other words,
we do not have enough evidence to say that the observed values suggest the
presence of autocorrelation in the time series. Consequently, this means that
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the values 0.374, 0.123,−0.068,−0.315,−0.386,−0.228 should not be inter-
preted i.e. we cannot proceed to say that 0.374 is a positive and weak corre-
lation, because we just found that this could have been caused by a random
chance!

FIGURE 3.9: ACF function for monthly overseas visits data for January
1980- July 1980, hence 7 months only. The 95% confidence bands for

autocorrelation are also showed (see the two blue dashed vertical lines). This
plot is also called autocorrelogram.

In R the above calculations can be done via a built-in function called acf

(see the Section R Lab, at the end of this chapter, for more details). This
creates the following Figure 3.9. Note that the plot also shows the autocorre-
lation for time t = 0, and this must be equal to 1, which will always be out
of the confidence band, but this will be ignored in our interpretation, as such
autocorrelation is not being tested. Note that all other 6 values of autocorre-
lation are within the 95% confidence band. Thus we conclude that there is no
evidence of autocorrelation in the first 7 values of overseas visits data.

Example. Overseas visits. (continues) Next, we consider data from
January 1980 to December 1981, and also data from January 1980 till March
2020. We now have more data and we are asked the same question: are data
autocorrelated?

Solution. Now, we will use all the data to plot the autocorrelation func-
tion. The following Figure 3.10 was done in R, of which details are in Sec-
tion 1. Are there any significant correlations? Are there any patterns in the
auto-correlation function?

If we use all 40 years of Overseas visits data (Figure 3.10, the plot on the
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FIGURE 3.10: ACF function for overseas monthly visits to UK data. In the
plot on the left, we only used the first two years of data to calculate ACF.

On the right, we used all 40 years of data.

right), then all autocorrelations are above the 95% confidence band, hence
more than 95% of the autocorrelations are above the 95% confidence band.
This means that the autocorrelation is present in the time series and it is
positive. We also see a pattern in the autocorrelations: they are the highest
at lags k =12 and 24, this means that if we look at all Januaries, they have
the strongest correlation, also all Februaries have the strongest correlation
etc. The autocorrelation is the smallest for time lags 6 and 18. This means
that January and July have the smallest correlation, as well as February and
August etc.

If we use only the first two years of Overseas visits data (Figure 3.10, the
plot on the right), then not all autocorrelations are above the 95% confidence
band. In fact, 4 autocorrelations of 19 are outside of the 95% band, which
is more than 5%. Hence there is evidence of autocorrelation in the first two
years of overseas data.

We also note that the confidence band is smaller as we use more data i.e.
as T is larger. This is consistent with the fact that the confidence bands do
have T in the denominator (see Equation 3.15). This means that, if data are
really correlated, then with more data we have stronger evidence. When we
used only 7 data points, we had no evidence of correlation.

Why do we need the autocorrelation plots and the test of the
autocorrelation? We have seen that the autocorrelation plots are used for
checking the correlation of values time series dataset. It is not surprising if
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we find significant autocorrelations in our time series because we measure the
same thing (e.g. monthly number of visitors) repeatedly over time.

If we however do not find the time series data to be autocorrelated, then
we may try to describe the time series data with linear regression models
(e.g., linear or quadratic or polynomial in Section 3.4.1). This is because one
of the assumptions of the linear regression models was that the data are not
correlated (in the case of normality: uncorrelated means independent). More
often than not the time series data will be autocorrelated and thus not in-
dependent. The time series discipline was developed to deal with correlated
data (e.g., exponential smoothing models in Section 3.4.2). If we however find
time series data uncorrelated, then we have another battery of tools at our
disposal: time series regression models, in addition to time series tools.

In future sections, we will see that autocorrelation plots are crucial for the
model’s goodness-of-fit checking where we will construct an autocorrelation
plot for the residuals of the model. As always, a residual is defined as the
difference between the actual value minus the fitted value of the time series.
This will be shown in later sections of this chapter.

3.4 Time series modelling and forecasting

In this section we introduce two tools for time series modelling: time series
regression models and time series exponential smoothing models. In each, we
show how the model is specified, how it is fitted to the data, how we choose
the best fitting model, how we do a goodness-of-fit analysis of the best fitting
model, how the forecasting is done and how we present and communicate the
forecast to the stakeholders.

3.4.1 Time series regression models

When time series data are not autocorrelated we can use regression models to
explain the patterns in the data. Then we can use the framework of regression
models to construct prediction intervals which will serve as a forecast.

The basic concept is that we forecast the output or dependent time series
of interest Yt (t = 1, 2, ...) assuming that it has a linear relationship with a col-
lection of other independent data series (also called inputs) Xt1, Xt2, ..., Xtq.
For example, we might wish to forecast monthly sales Y using total advertis-
ing spend X as a predictor. Or we might forecast daily electricity demand Y
using temperature Xt1 and the days Xt2 as predictors. We can explain the
relationship via a multiple linear regression model

Yt = β0 + β1Xt1 + β2Xt2 + ...+ βqXtq +Wt (3.16)

where β0, β1, ..., βq are unknown fixed regression coefficients. The component
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Wt is a random error or noise process. We assume that all values wt are inde-
pendent, identically distributed from a Normal distribution with zero mean,
and variance σ2

w. Such noise is called the white noise. For time series regression,
it is rarely the case that the noise is white, although it does happen sometimes.

Example. Kings’ life span. We have data on how long each of the 42
kings lived, in England. The ages values are written in the order in which the
kings sat on the throne:
60, 43, 67, 50, 56, 42, 50, 65, 68, 43,
65, 34, 47, 34, 49, 41, 13, 35, 53, 56,
16, 43, 69, 59, 48, 59, 86, 55, 68, 51,
33, 49, 67, 77, 81, 67, 71, 81, 68, 70,
77, 56.

The time series plot is in Figure 3.11. Next we will fit linear and quadratic
regression models of the Kings’ life span data.

FIGURE 3.11: Kings’ life span data.

Solution. The best-fitting linear model is estimated by using times of
death as the dependent variable. We use the order in which the king is on the
throne as an explanatory variable (values 1, . . . , 42 ), and we will call it Time.

The R code and output are provided at the end of this chapter, in R Lab
Question 2 (in Section 3.8). The best-fitting linear regression model is:

yt = 43.5679 + 0.5450× Time+ wt (3.17)

The model has highly significant coefficients for the intercept and the in-
dependent predictor variable Time (both p−values < 0.01). Hence the whole
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model has a significant p-value (0.00805 < 0.01), which means that Time ex-
plains a significant amount of variability in Y. However it is only 14% of the
variance of Y that is explained by a linear relationship with Time.

Next, we plot the time series again, but now we overlay the plot with the
fitted values in Figure 3.12. We see the linear model is not fitting the data
well. The fitted line (the blue solid line in the figure) is underestimating the
ages for the first 9 kings (except for 2) then is overestimating for the kings 10
to 25, and then again is underestimating for the kings 35 to 42. We see this
also on the plot of residuals vs time where we define the residuals as:

wt = yt − ŷt (3.18)

For the first 9 kings, the residuals are mostly positive (values 1 to 9) thus
yielding a positive non-zero mean, then for the kings 10 to 25 the residuals
are mostly negative thus yielding a negative non-zero mean, and for kings 26
to 42 the residuals are again mostly positive. Hence, this suggests a quadratic
pattern in residuals i.e. there is a pattern in the Kings data that we did not
describe. So next we add a quadratic term into a statistical model for Kings’
life span data. In other words, we will fit a quadratic model to the King’s life
span data.

FIGURE 3.12: Kings life span data together with a linear model (left) and
residuals vs time plot (right).

Example. King’s life span. (continues) In next, we fit a quadratic
model to the Kings’ life span time series data.

Solution. A quadratic model is a special case of the general linear model.
This is because a quadratic model is linear in all beta parameters. The esti-
mation was done in R of which details are in R Lab Question 2 in Section 3.8.
The estimated quadratic model for Kings’ lifespan data is

Yt = 57.61934− 1.37109× Time+ 0.04456× Time2 +Wt (3.19)
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By visual inspection of Figure 3.13 we conclude that however good the
linear model was, a quadratic model performs even better, as it appears to
explain the additional pattern. It is not enough to do a visual inspection as
it can be subjective. So later we will do a quantitative comparison of the two
models (Section 3.4.3).

FIGURE 3.13: Kings life span data together with linear (blue line) and
quadratic model (green) are shown on the left. Residuals from the quadratic

model are shown on the right.

3.4.2 Exponential smoothing models of time series

Exponential smoothing was developed in the late 1950s (see [12], [32], [63]).
It has been a motivation for some of the most successful forecasting methods.
The main principle is that the exponential smoothing forecasts are weighted
averages of past observations. The recent observations get the higher weights,
and the older observations get the lower weights. The weights decrease expo-
nentially as the observations get older. This framework is known to generate
reliable forecasts quickly, however, the reliability is established after we find
all assumptions to be satisfied. The exponential smoothing modelling frame-
work is suitable for a wide range of time series, which is a great advantage
and of major importance to applications in economics, industry, society and
health.

In this section, we present the mechanics of the most important exponen-
tial smoothing models: simple exponential smoothing, Holts’ smoothing and
Winter Holts’ smoothing model.

The goal of prediction (i.e. forecast) is trying to see what the value of a
series will be in the future. Each of the exponential smoothing models in this
section can generate point predictions (forecasts) as well as prediction inter-
vals. This does rely on assumptions as to how the data were generated.
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Simple exponential smoothing (SES). Simple exponential smoothing
(sometimes called single exponential smoothing) is a very simple time series
method that can be useful for prediction. It is used when time series data do
not appear to have a trend or cyclic or seasonal component. For example, the
data in Figure 3.4 do not show any clear trending behaviour or any seasonal-
ity. They do suggest some increase and decrease in the second half of the data,
which might suggest a quadratic trend. We will consider whether a trended
method would be better for this series later in this section.

Example: Daily temperatures. We will introduce a simple exponential
model on real data. We have data on 31 consecutive days, in central England,
in 2004:

(y1, . . . , yT ) =(17.3, 17.9, 17.3, 15.4, 15.0, 17.6, 18.2, 17.2, 16.6, 15.7,

15.1, 16.8, 17.2, 18.7, 19.4, 18.3, 17.9, 18.5, 20.3, 19.5, 19.2,

20.2, 19.8, 20.2, 21.7, 19.8, 19.7, 18.3, 19.3, 17.3, 18.5)

FIGURE 3.14: Central England daily temperatures time series data.

Solution. In the next, we, therefore, assume the Daily Temperature time
series data follow no trend (i.e. we assume a constant trend), no season-
ality and no cyclic pattern. Our goal is to estimate the values at times
T +1, ..., T +h, i.e. the values yt+1, ..., yt+h. We will denote such estimates as
ŷt+1|T , ..., ŷT+h|T , and we call them the forecasts.

Note, that the absolute simplest method for the forecast (at h = 1, 2, . . .)
is

ŷT+h|T = yT (3.20)
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i.e. to naively assume that the most recent observation is the only important
one for the forecast and that all previous observations have no importance.
Such a forecast can be seen as a weighted average where all weight is put
on the most recent observation. But what if the most recent value is a freak
value and just due to a large amount of noise? Then such a simple model is
not useful. We should try and look at past values y1, ...,yt−1 as well, not just
at the current value, yt. The past values should have some information about
the future of the time series as well.

Another simple method for the forecast (at h = 1, 2, . . .) is

ŷT+h|T =
1

T

T∑
t=1

yt (3.21)

This forecast put equal weight on all previous observations. However, this may
not be a good idea as the most recent observations intuitively should be more
relevant for the forecast than the old ones.

We really want something between these two extremes. We want to put
larger weights on more recent observations than on observations from the
distant past. This is the idea behind simple exponential smoothing. Forecasts
are again calculated using weighted averages, however, the weights decrease
exponentially as observations come from further in the past.

In the simple exponential smoothing method, we will assume that the
overall trend is constant and that that there is no seasonality and no cyclic
component in the time series y1, ...,yT . Our aim is to estimate the future
values at times T + 1, ..., T + h. We will estimate the constant trend, and in
doing so we will use all observations y1,... ,yT but we will give them various
weights. For example, we predict yT+1 as a weighted sum:

ŷT+1|T = c0yT + c1yY−1 + c2yT−2 + · · · (3.22)

where c0, c1, c2, · · · are the weights. We want to put higher weights on the
more recent values and low weights on older values. In simple exponential
smoothing, we use the following values, known as exponential weights

ci = α(1− α)i (3.23)

which gives

ŷT+1|T = αYT + α(1− α)yT + α(1− α)2yT−2 + · · · (3.24)

Table 3.5 shows the weights attached to observations for four different
values of α when forecasting using simple exponential smoothing.

The exponential behaviour of the weights. The weights α(1 − α)i

(in Equation 3.24) decrease geometrically, exponentially. For any α between 0
and 1, the weights attached to the observations decrease exponentially as we
go back in time, hence the name “exponential smoothing”.
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i Y α = 0.1 α = 0.2 α = 0.5 α = 0.8 α = 0.9

0 Yt 0.1 0.2 0.5 0.8 0.9
1 Yt−1 0.09 0.16 0.25 0.16 0.09
2 Yt−2 0.081 0.128 0.125 0.032 0.009
3 Yt−3 0.0729 0.0729 0.0625 0.0064 0.0009
4 Yt−4 0.06561 0.06561 0.03125 0.00128 0.00009
5 Yt−5 0.059049 0.065536 0.015625 0.000256 0.000009

TABLE 3.5: Weights for four values of α in simple exponential smoothing.

The sum of the weights is 1 for large t. Why? Using the property of geo-
metric series we have:

α

t−1∑
i=0

(1− α)i = α
1− (1− α)t

(1− α)
= 1− (1− α)t (3.25)

In other words, the sum of the weights even for a small value of α will be
roughly equal to 1 for any reasonably large sample size (i.e. reasonably high
value of t). Small α (i.e. close to 0) means we put a small weight on the cur-
rent value of y (i.e. yt), and a lot of weight on past values (y1, . . . , yt−1) when
predicting yt+1.

Alternative form for simple exponential smoothing: Weighted
average form. It can be shown easily that the forecast at time T + 1 is
equal to a weighted average of the most recent observation and the previous
prediction ŷT |T−1

ŷt|t−1 = αyt−1 + α(1− α)yt−2 + α(1− α)2yt−3 + . . . (3.26)

ŷt+1|t = αyt + (1− α)[yt−1 + α(1− α)yt−2 + . . . ] (3.27)

= αyt + (1− α)ŷt|t−1 (3.28)

hence we can calculate ŷt+1 iteratively, as

ŷt+1|t = αyt + (1− α)ŷt|t−1 (3.29)

and we can do forecasts iteratively too, as

ŷT+1|T = αyT + (1− α)ŷT−1|T (3.30)

Hence we showed that the forecast at time T + 1 is equal to the weighted
average of the most recent observation yT and the previous prediction ŷT |T−1.

Another alternative form for simple exponential smoothing:
Component form. An alternative representation of time series is to write
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them in a component form. For simple exponential smoothing, the only com-
ponent included is the level, ℓt. The component form of simple exponential
smoothing is given by forecast equation

ŷt+h|t = ℓ (3.31)

and the smoothing equation

ℓt = αyt + (1− α)ℓt−1 (3.32)

where ℓt is the level of the series at time t. We can also interpret it as the
smoothed value of the time series at time t. When we set t = T then we get
forecasts beyond the training data.

The forecast equation shows that the predicted value at time t + 1 is the
estimated level at time t. The smoothing equation for the level (also referred
to as the level equation) gives the estimated level of the series at time t. If we
replace ℓt with ŷt+1|t and ℓt−1 with ŷt|t−1 in the smoothing equation, we will
get the weighted average form of simple exponential smoothing. The compo-
nent form shown here is not helpful now, but will be helpful in the next two
sections, as we add further components.

Forecasting from Simple Exponential Smoothing model. We want
to predict the future, e.g. beyond the current data. A simple exponential
smoothing model has a ”flat” forecast function:

ŷT+h|T = ŷT+1|T , h = 2, 3, . . . (3.33)

This function gives so a called point forecast , i.e. just one value (point) for each
time in the future. This function is flat, which means that all forecasts have
the same value, equal to the last level component from time T . Importantly,
these point forecasts will only be suitable if the time series has no trend and
no seasonal component.

Example: Daily temperature data. (continues) We want to fit a
simple exponential smoothing model to the daily temperature data, and to
find the best smoothing parameter α = 0.6. We can use an initial value y0=y1.

Solution. We need to calculate ŷ1, ŷ2, ŷ3, ..., ŷ31.Then we calculate the
predictions by iterating equations (Equation 3.30) for t = 1, ..., 32:

ŷ1 = αy1 + (1− α)y0 = 0.6× 17.3 + 0.4× 17.3 = 17.3

ŷ2|1 = αy1 + (1− α)ŷ1 = 0.6× 17.3 + 0.4× 17.3 = 17.3

ŷ3|2 = αy2 + (1− α)ŷ2|1 = 0.6× 17.9 + 0.4× 17.3 = 17.66

ŷ4|3 = αy3 + (1− α)ŷ3|2 = 0.6× 17.3 + 0.4× 17.66 = 17.44

ŷ5|4 = αy4 + (1− α)ŷ4|3 = 0.6× 15.4 + 0.4× 17.44 = 16.22

...
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FIGURE 3.15: Daily temperatures time series (solid line) with simple
exponential smoothing (dashed line), using parameter α = 0.6.

Finding the optimal α, i.e. the optimisation. We have not discussed
the choice of α yet. Obviously, 0 ≤ α ≤ 1. Large α means we put a lot of
weight on the current observation, and small weight on the past. In other
words, the speed at which the older observations are dampened (smoothed)
is a function of the value of α. When α is close to 1, dampening is quick and
when α is close to 0, dampening is slow.

We can compare the prediction estimate ŷt|t−1 against the actual data
value yt. In other words, we find the errors (residuals)

wt = yt − ŷt|t−1 (3.34)

The errors can be positive or negative, so it is better to work with squared
forecast error values

w2
t = (yt − ŷt|t−1)

2 (3.35)

Finally, we sum them all up, for all values of t, to get the sum of squared
forecast errors

SSE =

T∑
t=1

w2
t =

T∑
t=1

(yt − ŷt|t−1)
2 (3.36)

The sum SSE depends on α as well as y0. We want to find such α and y0 that
minimise the sum of squared errors. Although, if time series are long enough
the effect of y0 gets small for large T .

Unlike the regression model where there are formulas (the closed-form so-
lution of so-called normal equations) which return the values of the regression
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coefficients that minimise the SSE (Equation 3.36), finding the optimal α for
the simple exponential smoothing model is a non-linear minimisation problem,
and we need to use an optimisation tool to solve it. One simple way (though
may not be accurate) is to do a grid search i.e. to calculate SSE at prespecified
values of α such as 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. Another
way to do the optimisation is to use a more sophisticated algorithm (such as
Newton Raphson algorithm) which is implemented in function ses in R (the
name ses stands for simple exponential smoothing) which not only finds the
optimal α but also the optimal initial value y0.

In the next example, we will have a look and see what happens at various
values of α. We will judge which α seems the most optimal: via a subjective
visual inspection and then via maximising SSE (i.e. grid search).

FIGURE 3.16: Daily temperatures time series and simple exponential
smoothing at various α values.

Example. Daily temperatures. (continues) To get a visual insight
into how simple exponential smoothing looks at various values of α we can
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construct multiple plots in Figure 3.16. We note that α = 0.01 is very small, so
the predicted values are almost an average of past data. We see that α controls
how much we use the current value, or average value for our next prediction.
Checking the plots (such as Figure 3.16) should not be used to choose the α
value. This is because choosing it by eye is not the best way of seeing the best
α value: we get tired as we would have to construct many plots, and such an
approach is subjective. We need a better system of finding the best α value.
An objective way of finding the α value is to quantify numerically the errors
and choose the α value that gives the smallest sum of squared errors.

α SSE

0.01 99.50
0.05 79.69
0.1 65.14
0.2 51.88
0.3 46.10
0.4 43.16
0.5 41.59
0.6 40.74
0.7 40.31
0.8 40.22
0.9 40.50
1.0 41.22

TABLE 3.6: Central England daily temperatures data and SSE for several
values of α in simple exponential smoothing.

FIGURE 3.17: Daily temperatures time series and simple exponential
smoothing SSE at various α values.

Hence, via doing our grid search, we found that the best choice of α is 0.8,
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because SSE is the smallest (see Table 3.6 and Figure 3.17).

Caution! The optimal SES model is not the one that copies the data!
In other words, the optimal model is not the one that is the closest to the
data points. As we saw in Figure 3.17, the model closest to the data points is
the model with α = 1, i.e. the model that puts all weight on the most recent
observation. However, that is not the optimal model. The optimal model is
the one whose α minimises SSE, so it is α = 0.8 in the Kings life span data
example.

Holt’s exponential smoothing model. Holt extended simple exponen-
tial smoothing into a model that is suitable for time series with a trend compo-
nent (see [32]). Holt’s method contains a forecast equation, and two smoothing
equations (one for the level and one for the trend). For Holt’s model, the fore-
cast equation is

ŷt+h|t = ℓ+ hbt (3.37)

level equation
ℓt = αyt + (1− α)(ℓt−1 + bt−1) (3.38)

and trend equation

bt = β(ℓt − ℓt−1) + (1− β)bt−1 (3.39)

where ℓt is an estimate of the level of the series at time t, bt is an estimate of
the trend (slope) of the series at time t, α is the smoothing parameter for the
level (0 ≤ α ≤ 1), and β is the smoothing parameter for the trend (0 ≤ β ≤ 1).

Holt’s smoothing is similar to simple exponential smoothing, but more
complex and hence more flexible. It is more complex because it has an extra
parameter β in addition to the parameters α and y0. As we see from the level
equation, α still controls how much we use the current value to estimate the
level and how much we use the older values. The extra parameter β controls
how much weight we put on the change in the last two levels (hence the slope)
for our next prediction. The trend equation shows that bt is a weighted aver-
age of the estimated trend at time t based on ℓt − ℓt−1 and bt−1, the previous
estimate of the trend. We use Holt’s method when there is a trend in the data.

Finding the optimal values of parameters for Holts’ exponential
smoothing model. To find the optimal values of the parameters, we need to
search over combinations of α, β and y0 to see which gives the smallest SSE
value. In other words, to find the optimal parameters we use the criterion of
minimal SSE.

Forecasting from the Holts’ exponential smoothing model. The
forecast function (Equation 3.37) is no longer flat but it has a trend. The
h-step-ahead forecast is equal to the last estimated level plus h times the last
estimated trend value (see Equation 3.37). Hence, at each future time T + h,
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the forecasts is a linear function of h.

Example. Daily temperatures. (continues) The data and the SES
and Holt models’ predicted values are plotted in Figure 3.18. Visually, it seems
that both models appear to have very similar predicted values. So visually, it
appears that there is not much difference in the way they fit the Daily tem-
peratures time series data. We will use quantitative criteria to compare these
two models, in Section 3.4.3.

FIGURE 3.18: Daily temperatures time series with Simple Exponential and
Holt smoothing.

Holt-Winter’s seasonal exponential smoothing model. If in addi-
tion to the trend we also have seasonality in our time series data, then we
should not use simple exponential smoothing or Holt’s smoothing. We should
use a so-called Holt-Winter’s model. It is a model that was extended by Holt
and Winters (see [63]). The component form representation of Holt-Winter’s
model contains a forecast equation and three smoothing equations (one for the
level, one for the trend, and one for the seasonality). The forecast equation is

ŷt+h|t = ℓt + hbt + st+h−m(k+1) (3.40)

the level equation is

ℓt = α(yt − st−m) + (1− α)(ℓt−1 + bt−1) (3.41)

the trend equation is

bt = β(ℓt − ℓt−1) + (1− β)bt−1 (3.42)
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and the seasonal equation is

st = γ(yt − ℓt−1 − bt−1) + (1− γ)st−m (3.43)

where are now four parameters to optimise: α, β, γ and y0. The parameters α
and β play the same role as in Holt’s exponential smoothing. The parameter
γ controls how much we use the seasonal component in our next prediction
(0 ≤ γ ≤ 1−α). The seasonal equation shows a weighted average between the
current seasonal index, (yt − ℓt−1 − bt−1) and the seasonal index of the same
season last year (hence m time periods ago).

Finding the optimal values of parameters for Holt-Winter’s sea-
sonal exponential smoothing model. To find the optimal values of the
parameters, we need to search over combinations of α, β, γ and y0 to see which
gives the smallest SSE value. This optimisation is already implemented in
function ses R (see in Section R Lab).

Forecasting using Holt-Winter’s model. The forecast function is not
flat, it has a trend and seasonality. The h−step ahead forecast is calculated
via the forecast Equation 3.40 and is equal to the last estimated level plus h
times the last estimated trend value, plus the estimated seasonality.

Example. Overseas visits. (continues) We next fit two HW models to
Overseas data: one where the seasonality is additive (i.e. added to the trend
and noise), and one where the seasonality is multiplicative (i.e. multiplied with
the trend and noise), see Figure 3.19. Visually both models appear to do well,
although the additive model seems to not be able to fit well the peak and
valley in the second year.

All the model estimates are: α = 10−4, β = 10−4, γ = 10−4 (see the R
Output at the end of this chapter, in the Section R Lab 1).

3.4.3 Choosing the best-fitting model

We learned how to fit models to time series data: time series regression mod-
els and three types of exponential smoothing models. Next, we need to know
how to select the best-fitting model among a set of candidate models (as we
discussed in Section 3.1.2).

Criteria to find the best fitting model. To find the best-fitting model
from a set of candidate models we need a model selection criterion. Actually,
there are several model selection criteria and each criterion may recommend
a different model. We now discuss such criteria.

SSE criterion. This criterion utilises the sum of squared residuals (SSE)
statistic from Equation 3.36. From the model candidates, can we choose the
model with the smallest SSE? We can use it to compare models with same
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FIGURE 3.19: Overseas visits and two fitted HW smoothing models:
additive and multiplicative models.

number of parameters. However, if the models have varying numbers of pa-
rameters then we should not use SSE, because SSE will always drop with
the addition of another (even irrelevant) predictor. Note, that we already used
SSE to compare several SES models to find the optimal alpha (see e.g. Fig-
ure 3.17), which was OK to do as all the models were having the same number
of parameters (y0 and α) thus the same complexity.

Then the maximum likelihood estimator for the variance σ2
w of the noise

component of time series is

σ̂2
q =

SSE

T
(3.44)

where q is the number of parameters to be estimated (such as y0 and α for
the SES model, or β0 and β1 in regression coefficients). Such an estimator
is biased as it underestimates the variance σ2

w. From the model candidates,
can we choose the model with the smallest σ̂2

q? No, because as we said this
estimator is biased, so it is not used for a model selection.

RMSE criterion. An unbiased estimator for the standard deviation σw

of random errors is

sq = RMSE =

√
SSE

T − (q + 1)
(3.45)

where RMSE denotes the mean squared error (RMSE) statistic, where

• q = 1 for a linear regression model
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• q = 2 for a quadratic regression model

• q = 3 for a cubic regression model

• q = 2 for a simple exponential smoothing (SES) model (the two parameters
are α and y0)

• q = 3 for Holt’s model

• q = 4 + s for Holt-Winter’s (HW) model, where s = 12 for monthly data,
s = 4 for quarterly data

In RMSE we penalise for the complexity of the model. How? As q gets larger,
it makes RMSE larger. So if we add another parameter (thus increase q) which
does not decrease SSE much, such a small SSE decrease may be overturned by
the increase in q. Penalising for the complexity is desired, as it let us choose
the most parsimonious model as well as the model that generalises for future
data. When choosing the best-fitting model, we look for a model with the
smallest RMSE.

AIC criterion. Akaike (see [5], [6], [7]) suggested the following statistic:

AIC = log σ̂2
q +

T + 2q

T
(3.46)

where log σ̂2
q is given by Equation 3.44 and q is the number of parameters

in the model. The acronym AIC denotes the Akaike’s Information Criterion.
AIC is the amount of discrepancy between data and the data-generating mech-
anism. So we want AIC to the be smallest possible. The value of q yielding the
minimum AIC specifies the best model. The idea is roughly that minimizing
log σ̂2

q would be a reasonable objective, except that it decreases monotonically
as q increases. Therefore, we ought to penalize the error variance by a term
proportional to the number of parameters. So just like RMSE, AIC also helps
to find the most parsimonious model as well as the model that generalises well
for future data. The choice for the penalty term given by Eq 3.46 is not the
only one, and considerable literature is available advocating different penalty
terms. See e.g. [52], page 51 for more discussion.

Bayesian Information Criterion (BIC) Another option for a correc-
tion term is based on Bayesian arguments, as in Schwarz (1978), which leads
to the following statistic:

BIC = log σ̂2
q +

q log T

T
(3.47)

BIC is also called the Schwarz Information Criterion. The penalty term in BIC
is larger than in AIC, consequently, BIC tends to choose smaller (i.e., simpler)
models. Various simulation studies showed that BIC does well at getting the
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correct model in large samples, whereas AICc tends to be superior to BIC in
smaller samples where the relative number of parameters is large (see [40]) for
detailed comparisons.

R-squared and Adjusted R-squared statistic. When comparing sev-
eral candidates of regression models we can also use R-squared statistic

R2 = 1− SSE

SST
(3.48)

where SST =
∑

(yt − ȳ)2 is total sum of squares, and ȳ is the grand average.
When we compare models with the same number of parameters (hence same
q), then the one with the smallest R2 is the best fitting model. However, we
cannot use R2 to compare two models with different numbers of parameters.
This is because R2 always increases. If we add an irrelevant explanatory vari-
able into the model, thus increasing its complexity, the R2 will increase a little
bit, thus making R2 not a useful metric.

Instead of R2 statistic, it is better to use its generalisation adjusted R-
squared

R2
adj = R2 − (1−R2)

q

T − (1 + q)
(3.49)

which is essentially having the same penalisation for complexity as s2w
from 3.45.

Caution! When comparing a statistic across several model candidates, we
must make sure they are calculated from the same dataset. So, as a conse-
quence, they all have the same T.

Further model selection criteria are Mallows Cp (by Mallows [39]) and
bias-corrected AIC criteria (AICc), which we do not consider in this book.

Example. Kings life span data. (continues) How to select the best
model from the two models that we estimated earlier?

Solution. We can calculate several statistics and compare them: SSE,
RMSE, R2, R2

adj , AIC and BIC. The R code is in Question 2, Section R Lab 2.
All the statistics are summarised in Table 3.7. We note that the quadratic
model does better in terms of RMSE, R-squared adjusted, AIC and BIC. We
do not comment on the fact that the quadratic model has better SSE and
R-squared, as this is expected: a model with more predictors will always have
better SSE and R-squared. So if we have to choose between the two models, we
choose the quadratic model. Does this mean that the quadratic model should
be used for forecasting? We do not know the answer to that yet, as we need
to check if the assumptions of the model are satisfied (such as if the errors
are normal and identically distributed with zero mean and common variance)
which is what we will do next.
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Model q SSE RMSE R2 R2
adj AIC BIC

Linear 3.17 2 9423.694 15.34902 0.1628 0.1419 352.5500 357.7630
Quadratic 3.19 3 7986.085 14.30984 0.2905 0.2542 347.5979 354.5485

TABLE 3.7: Summary statistics for linear and quadratic models of Kings life
span data.

Example. Overseas visits. (continues) How to select the best model
from the two models that we estimated earlier for the Overseas data, using
the first two years?

Solution. We can calculate several statistics and compare them: RMSE,
AIC and BIC. The R code is in Question 1 Section 1. All the statistics are
summarised in Table 3.8. We note that the multiplicative model does better
in terms of RMSE, AIC and BIC. Does this mean that the multiplicative HW
model should be used for forecasting? We do not know the answer to that yet,
as we need to check if the assumptions of the model are satisfied (such as if
the errors are normal and identically distributed with zero mean and common
variance) which is what we will do next.

Model q RMSE AIC BIC

Additive 16 49.61922 297.6834 317.7104
Multiplicative 16 28.21509 264.1459 284.1728

TABLE 3.8: Summary statistics for additive and multiplicative HW model
of Overseas visits data (January 1980 - December 1981).

We now know how to find the best-fitting model or models. This is however
not enough. Next, such model(s) must be subjected to further checks, also
called goodness-of-fit checks of the model, which we do in the next section. If
the model fails the goodness-of-fit check we cannot trust the forecasts from
such a model.

3.4.4 Think ZINC!

ZINC assumptions. When using a model for forecasting we also need to
provide prediction intervals. If we construct a prediction interval using the
formulae (Equation 3.52), then we need to be aware of the fact that this for-
mula was built using four assumptions, which we will call ZINC assumptions:

(Z) zeromean of errors for each time point t

(I) independence of errors

(N)normal distribution of errors

(C) common variance of errors

(3.50)
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where by errors we mean the errors of the fitted model, also called residuals,
wt, defined in Eq. 3.18,3.34.

Hence, in order to use the formulae 3.52 we need to check all four assump-
tions. If at least one of the assumptions is not satisfied, then we cannot trust
the prediction intervals from that formula (Equation 3.52) and from that best-
fitting model. If all assumptions are satisfied, then we can trust the prediction
intervals.

How do you decide if the best-fitting model is also a well-fitting
model? We need to do a goodness-of-fit analysis which is we need to check if
ZINC assumptions (Eq. 3.50) are satisfied. This is a goodness-of-fit analysis
that we need to do in order to decide if a model is a well-fitting model:

• (Z) Zero mean of errors for each t. To check if residuals have zero
mean, it is important to make a plot of residuals vs. time. If such a plot
shows no patterns, then we say that we have no evidence against the
assumption of zero means of errors. A model with patterns in errors should
not be used for forecast and is hence inferior to a model with no pattern in
error plot. Zero means of errors for each t is representing a model whose
mean behaviour is correct, e.g. if data consists of a linear trend and a
noise, and if such data are modelled with a linear regression model, then
the mean of the residuals will be zero at each t.

• (I) Independence of errors. To check if residuals are not correlated,
we can use the autocorrelation function (from Section 3.3.3). If errors are
uncorrelated and normally distributed, then they are independent.

• (N)Normality of errors. To check the normality of errors (residuals), we
can use a normal-probability plot of the residuals (e.g. Kolmogoro-Smirnov
test or Shapiro-Wilk test and the p-value of the tests).

• (C) Common (or constant) variance of errors. To check if residuals
have a common variance, it is important to make a residuals vs. time plot.
If the plot shows constant variance for all times, then we say that we have
no evidence against the assumption of the common variance of residuals.

Caution! Remember, making a forecast is easy, but making a good fore-
cast can be difficult! The difficulty is in crafting a set of candidate models,
then choosing the model that is the best fitting model that later shows to be
a well-fitting model, too. This has also been discussed earlier in Section The
forecasting steps 3.1.2.

Example. Kings’ life span. (continues.)We found the quadratic model
to fit data better than the linear model, according to several model selection
criteria (Table 3.7). Next, we need to check if the quadratic model is a well-
fitting model for the Kings’ life span data, i.e. to do a goodness-of-fit analysis
of the quadratic model.
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Solution. We do the goodness-of-fit checks in R. The R code is in Section
R Lab (see Question 2).

First, we check if the residuals of the quadratic model have zero mean (As-
sumption Z). We use the plot on the left in Figure 3.20. By visual inspection,
we see no patterns in the residual plot, in other words, we see that for each
value of time, the mean of residuals is roughly zero.

FIGURE 3.20: Goodness of fit analysis of the quadratic model for Kings life
span data.

Next, we check if the residuals of the quadratic model are independent of
each other (Assumption I). We use the plot in the middle in Figure 3.20. We
see that all ACF values are within the 95% confidence bands. Since at least
95% of calculated ACF values are within the 95% confidence bands, we do
not have evidence against independence. So we conclude independence of the
residuals.

Next, we check visually if residuals of the quadratic model are normally
distributed (Assumption N). We use the plot on the right in Figure 3.20. By
visual inspection, we see some deviations from the 45-degree line, but it is
unclear if they are bigger beyond chance and hence significant. So we did the
Shapiro-Wilk normality test on residuals from the quadratic model and we
got a test statistic W = 0.97771 with a p-value = 0.5744. In this test, the
hypothesis H0 is that residuals do have a normal distribution. Since 0.5744
is bigger than 0.05, we conclude that we do not have evidence against H0,
at 0.05 level of significance. So we conclude that the residuals are normally
distributed.

So we conclude that all assumptions of residuals are satisfied.

Example. Overseas visit data. (continues.) Next, we will check the
goodness-of-fit of the multiplicative HW model fitted to the first 2 years of
Overseas visits data.

Solution. We do the goodness-of-fit checks in R. The R code is in Section
R Lab (see Question 1).
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First, we check if the residuals of the HW model have zero mean (Assump-
tion Z). We use the plot on the left in Figure 3.21. By visual inspection, we
see no pattern in the residual plot. In other words, we see that for each value
of time, the mean of residuals is zero. So assumption Z is violated.

FIGURE 3.21: Goodness of fit analysis of the multiplicative HW model of
Overseas monthly visits 2 years data January 1980 - December 1981.

Next, we check if the residuals of the multiplicative HW model are in-
dependent of each other (Assumption I). We use the plot in the middle in
Figure 3.21. We see that all ACF values except one are within the 95% con-
fidence bands. Since at least 95% of calculated ACF values are within the
95% confidence bands, we do not have evidence against independence. So we
conclude independence of the residuals.

Next, we check if residuals of the multiplicative HW model are normally
distributed (Assumption N). We use the plot on the right in Figure 3.21. By
visual inspection, we see some small deviations from the 45-degree line, but
it is unclear if they are too big and hence significant. So we did the Shapiro-
Wilk normality test of the residuals giving p-value = 0.3397. In this test, the
hypothesis H0 is that residuals do have a normal distribution. Since 0.3397
is more than 0.05, we conclude that there is not enough evidence against H0,
at a 0.05 level of significance. So we conclude that the residuals are normally
distributed.

Last we check if the residuals of the HW model have a common variance
(Assumption C). We use the plot on the left in Figure 3.21. By visual inspec-
tion, we that the spread of the residuals is constant, for all values of time the
variance is the same or similar.

In summary, the multiplicative HW model that we with to the first two
years of Overseas visits data satisfies all four ZINC assumptions.

Overseas visits. (continues.) Next, we will check the goodness-of-fit of
the additive HW model fitted to the first 2 years of Overseas visits data. The
information criteria found the additive HW model worse than the multiplica-



Time series for risk quantification 103

tive model. However, as an education exercise, we also do a goodness-of-fit
check of the additive HW model of Overseas visits data, of the first two years.

Solution. The graphs are in Figure 3.22.

FIGURE 3.22: Goodness of fit analysis of the additive HW model of
Overseas visits 2 years data.

Next, we check if the residuals of the HW model are independent of each
other (Assumption I). We use the plot in the middle in Figure 3.22. We see
that all ACF values are within the 95% confidence bands. Since at least 95%
of calculated ACF values are within the 95% confidence bands, we do not have
evidence against independence. So we conclude independence of the residuals.

Next, we check if residuals of the HW model are normally distributed (As-
sumption N). We use the plot on the right in Figure 3.22. By visual inspection,
we see some deviations from the 45-degree line, but it is unclear if they are
too big and hence significant. So we did the Shapiro-Wilk normality test of
the residuals gives a test statistic W = 0.85463 with a p-value = 0.002667. In
this test, the hypothesis H0 is that residuals do have a normal distribution.
Since 0.002667 is less than 0.01, we conclude that we do have strong evidence
against H0, at 0.01 level of significance. So we conclude that the residuals are
not normally distributed, i.e. the normality assumption is violated.

Last we check if the residuals of the HW model have a common variance
(Assumption C). We use the plot on the left in Figure 3.22. By visual inspec-
tion, we that the spread of the residuals is not constant, for low values of time
the variance is small, and then the variance increases.

In summary, three assumptions are not satisfied. We should not be using
the additive HW model for forecasting.

3.4.5 Prediction intervals

We had several candidate models that we fit to time series data Y1, · · · , YT ,
we discussed how to find out which model fits the data the best, and then
we discussed how to check if such a best-fitting model is also a well-fitting
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model. Next, we want to use the best-fitting and well-fitting model to make
the forecasts, i.e. to use the time series to estimate the value yT+h, where
h = 1, 2, . . . is the forecast horizon. There are several types of forecasts that are
useful for stakeholders: point forecasts, three-point forecasts, and prediction
interval forecasts (see also Section 3.1.3).

Point prediction (or point forecast) is a point in a graph, e.g. the number
of visitors to the UK in January 2023 being predicted as 1.5 million. Point fore-
casts can be obtained from the fitted model as we mentioned in Sections 3.4.2
and 3.4.1. We can calculate point forecasts for January till December 2023,
i.e. 12 forecasts, and we can join them on a plot. Such a plot is then called
forecasted central path.

Point forecast is not sufficient for decision making. If we go for
a holiday to Portugal, knowing that the most likely temperature during the
day is 25 degrees Celsius is not enough for us to make a decision about what
clothes to pack. Knowing that 80% likely the temperatures will be in the range
of 18 and 33 degrees Celsius is more helpful for us, we will know that we need
to pack some light and some warmer clothes too. Then we can comfortably
travel as long as we are ok to take the risk that there is a 10% chance that the
temperature will be lower than 18, and a 10% chance that the temperature
will be above 33 degrees Celsius.

In some application domains, the experts will insist that a three-point
estimate (forecast) is provided. So in the case of the temperatures, a three-
point estimate can be 18, 25, or 33 degrees of Celsia. Such estimates are
commonly used by decision-makers in critical application scenarios such as in
the military. A three-point estimate can be defined as the first point being a
10% percentile, the second point being the 50% percentile and the third point
being the 90% percentile - as we illustrated in the previous paragraph. A three-
point estimate is easy to communicate, it is better than a one-point estimate,
yet it is still limited in terms of provided information for decision-making (see
also [22]).

Sometimes truly rational decision-making requires knowing the full proba-
bility distribution of potential future values, i.e. providing all percentiles which
is called a probabilistic forecast. To communicate such a probabilistic forecast
requires some thought. One way to do it is to calculate and plot a set of rel-
evant prediction intervals. For example in Figure 3.24 we have 50 and 95%
prediction intervals, in Figure 3.4 we show 80 and 95% prediction intervals,
and in Figure 3.5 we show the full range of intervals: 10,20,...90% prediction
intervals.

Prediction interval what needs to be communicated to stakehold-
ers for requested forecast horizons, h. For each h, a prediction interval
is a set of two numbers: one lower bound and one upper bound. For example,
the number of visitors to the UK in March 2023 is predicted as 1.1 to 1.7
million. In other words, we want to add a bound on our point forecast, i.e. a
prediction interval. A wide interval will mean that we are not certain about
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the forecasted value, and a narrow interval will mean that we are more certain.
Intuitively we want:

• The width of the prediction interval to be larger with larger h as it will
reflect that predicting a more distant future is more uncertain than a less
distant future,

• The width of the prediction interval will be large if the past behaviour
of the time series had a large noise variance, so naturally we always look
into the errors (also called remainders or residuals) to see how to figure
out the width of the prediction interval. We do like it when the residuals
are independent and normally distributed with zero means, and common
constant variance because then the construction of the prediction interval
is easy to do (which we discuss in the next paragraphs).

What is a prediction interval (PI)? It is an interval that will contain
the true value of the future observation (at horizon h) with a pre-specified
required probability. Formally, a (1−α)×100% prediction interval, for a future
observation YT+h, is an interval PI= (Lower Bound, Upper Bound) such that

P (Lower Bound < YT+h < Upper Bound | y1, . . . , yT ) = 1− α (3.51)

i.e. with 95% probability the YT+h will be contained in this interval, where
α = 0.05.

The idea of prediction interval is similar to confidence interval (CI), but
its calculation and interpretation are different. The prediction interval tells us
where one future value can be at time point T + h. The confidence interval
tells us where the mean of future values can be at time point T + h. Intu-
itively, the PI is wider than CI, because predicting one realisation is harder
than predicting the mean of several realisations. In other words, we are less
sure where one observation will be than where the mean of several observa-
tions will be. Sometimes stakeholders need PI, sometimes CI, as we discussed
in Section 3.1.3. And as we will see in the R-Lab section at the end of this
chapter, the function predict provides both CI and PI.

How to construct a prediction interval? Assume we have time series
data and we found the best fitting model among a set of candidate models. If
such a model also passed the goodness-of-fit check criteria (see ZINC assump-
tions), then we can use a so-called parametric approach to PI construction:(

ŷT+h − z1−α/2 σ̂h, ŷT+h + z1−α/2 σ̂h

)
(3.52)

where σ̂h is an estimate of the standard deviation of the h-step forecast dis-
tribution, z1−α/2 is the 1 − α/2 quantile of normal distribution. So α = 0.05
gives z = 1.96 and hence a 95% prediction interval. This interval has several
properties:
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• PI gets wider with more noise in data, as seen by having σ̂h on both sides
of the PI.

• For each value h, PI is wider for larger 1− α/2. In other words, a 99% PI
will be wider than 95% PI, for each h.

• The more far away future we want to predict (i.e. h is large), the wider PI
will be. This is achieved viaσ̂h increasing with h.

• This interval is valid for prediction from time series regression models
as well as from exponential smoothing models, where there is just one
difference: how σ̂h is calculated. The calculation of σ̂h can be complex, it
depends on the model used. Generally, if we only do a 1-step ahead forecast
(i.e. h=1), then σ̂h is very close to our estimate of the standard deviation of
errors: σ̂q = RMSE. To see how σ̂h is calculated for exponential smoothing
models please read [34]).

• The PI is called a parametric interval because it uses the fact that the
residuals are having normal distribution, which can be described by two
parameters: the mean and variance. It assumes that the mean of residuals
is zero at any time point in data and that the variance is constant at any
time point in data. It also uses the fact that the residuals are independent
of each other.

• Most books use t-quantiles instead of z-quantiles, thus making it more
accurate.

For more discussion on PI, do read Section 3.5.

Example. Kings’ life span. (continues) We have found that the
quadratic model fits the data better. We are asked the following questions:

• Question 1. Construct a forecast for the next three kings, provide point
estimate as well as 80% and 95% prediction interval. Plot the data, the
quadratic model and the prediction intervals – all on the same plot. Inter-
pret the forecast intervals.

• Question 2. Is the next king likely to live at least 70 years? Or is there a
chance of the next king living less than 70 years?

• Question 3. Are all three next kings likely to live at least 70 years?

• Question 4. Are we satisfied with the model? Do we trust the forecast? Is
there another model we should try?

Solution. We can use R to do all the calculations, see Section R Lab 2.

The answer to Question 1: For kings 43, 44 and 45 the point estimate of
their longevity is: 81.1, 83.6 and 86.2 years, respectively.



Time series for risk quantification 107

FIGURE 3.23: Kings life span data and the forecasts for the next three
Kings.

We are 80% confident, that the kings 43, 44 and 45 will live till at ages:
(60.3, 101.8), (62.4, 104.7) and (64.6, 107.8) years, respectively.

We are 95% confident, that the kings 43, 44 and 45 will live till at ages:
(48.9, 113.2), (50.8, 116.4) and (52.6, 119.7) years, respectively.

We note that the 95% confidence gives a wider prediction interval, as ex-
pected. We also note that the prediction intervals are very wide, which means
that there is a lot of uncertainty about the longevity of the kings.

Regarding Question 2: Is the next king likely to live at least 70 years? The
next king is king number 43. We predict for him to most likely live till 81.1
years, and with 80% or 95% confidence we predict he will live (60.3, 101.8) or
(48.9, 113.2) years, respectively. The number 70 is in both prediction intervals,
so it is supported by the data.

Is there a chance that the next king will live less than 70 years? To put
this into mathematical language, we are asked to find P(43rd King lives ≥ 70
years). We do know that

P (43rdKing lives ≥ 81.1 years) = 0.5

i.e. the 43rd King has a 50% chance to live 81.1 or more years. So, since 70
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is less than 81.1, the 43rd King has more than 50% chance to live at least 70
years, according to the quadratic model.

Regarding Question 3: Are all three next kings likely to live at least 70
years? We are asked to find

P (43rdKing lives ≥ 70 years, and 44th ≥ 70 years, and 45th ≥ 70 years)

We know that the Kings are independent (since Acf was uncorrelated), so
since each has at least 50% chance to leave at least 70, then there is at least
0.53 = 0.125 = 12.5% chance that all three live at least 70 years, according to
the quadratic model.

Regarding Question 4: Are we satisfied with the model? Do we trust the
forecast? Are there other models we should try? A reasonable answer: In
overall, it seems that the quadratic model is a good choice, as all ZINC as-
sumptions are satisfied. Obviously, in checking the Z assumption we used a
visual judgement, so our conclusion was subjective. There is a potential to
try a 3rd-order polynomial for the predictions, as the quadratic model seems
to be increasing too fast for the last kings, and hence it may be too opti-
mistic for the future kings. A polynomial of higher order (e.g. third order) can
be more suitable to capture the fact that the longevity stabilized for the last
10 kings. This can be checked quantitatively using the model selection criteria.

Example. Overseas visits. (continues) We have fit a Holt-Winters
model to the Overseas Visits time series data from Jan 1980 – Dec 1981.
Next, we use the time series data to predict the overseas visits in Jan 1982.
All output is in Section R Lab 1.

Using the HW model, a point prediction for January 1982 is ŷT+1 =
693.0357 thousand visitors. The 95% prediction interval is (581.5528,
696.5187). The 80% prediction interval is (601.4497, 676.6218) thousands of
visitors. The interpretation is as follows: with 95% confidence, the number
of visitors in January 1982 is predicted to be between 581.5528 thousand
and 696.5187 thousand. For this we used data from January 1980 to De-
cember 1981, we assumed that the random errors are independent, normally
distributed with zero mean and constant variance and we used the past data
(i.e. we did not use any other information).

Figure 3.24 shows prediction intervals for the next three years (hence 36
prediction intervals). Again: for these forecasts, we used data from January
1980 to December 1981, we checked ZINC assumptions that they are all sat-
isfied, and we used data only to do these forecasts.
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FIGURE 3.24: Overseas visits to UK analysed via the multiplicative HW
model. LEFT: 50% and 95% prediction intervals (see the dark blue and light

grey shaded areas, respectively). RIGHT: Fan chart, from 51 to 99%
prediction intervals.

3.5 Tips to think and act like a risk expert

Here we will give tips and tricks on prediction intervals, on how to communi-
cate the risk when time series have been used to estimate the risks. In doing
so we will tie up what we said in Section 3.1.1 with the later sections.

3.5.1 Remember there is no such a thing as a free lunch!

The formula Eq. 3.52 for prediction interval looks rather notorious.
We have seen it so many times earlier. It is beautifully simple in that it is
symmetric around the point forecast ŷT+h and it uses the quantiles of nor-
mal distribution. But there is no such thing as a free lunch! The simplicity
of this PI comes with a catch. The catch is that the model must satisfy the
four ZINC assumptions as well as the fifth assumption that we can use past
data to forecast the future. The ZINC assumptions are: the residuals (Z) have
zero mean, (I) are independent of each other, (N) are normally distributed,
and (C) have constant variance, i.e. we assumed that the forecasting model
is a well-fitting model. What we do in forecasting is predict the time series
values beyond the range of time 1,... T (more discussion in Section 3.5.3). If
these five assumptions are true, then it is safe to use the formula 3.52. To see
the intuition behind ZINC, let us look at the assumption of normality of the
residuals. It means that in the past the random variation of data around the
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model was following a normal distribution. We assume in future the random
variation around ŷT+h will be the same, we assume it will again be normal,
thus it is OK to use the quantile of normal distribution in our formula 3.52.
In summary, this prediction interval 3.52 will only be valid if the residuals do
satisfy these five assumptions.

What if the best fitting model did not pass ZINC assumptions?
Assume we found a best-fitting model among the set of candidate models.
However such a model did not pass the goodness-of-fit check (i.e. the ZINC
assumptions are not satisfied), then there are some options. Usually, the fol-
lowing steps help:

1. It helps to start with Assumption Z, as it means that the fitted values
from the model are not really going through the data well. If assump-
tion Z is violated (irrespective of the other three assumptions), then we
should try to see if there is a better model that we may not think of ear-
lier. Violation of Z happens if the residuals (errors) vs time plot shows a
pattern. If residuals show a quadratic pattern, then a remedy would be
to add a quadratic predictor (time2) into the model thus having a new
model candidate. Violation of Z also happens if we have forgotten to add
an important predictor into our model. Adding such a predictor may do
the trick of making our model pass the Z Assumption. (Often this trick
may make other assumptions to be passed too.)

2. If Assumption Z is satisfied but Assumption C is violated (irrespective
of the other two assumptions), then the residuals have a variance that
increases (or decreases) with the overall trend. Then we should try to fit a
multiplicative model if using exponential smoothing, or we should try to
log transformation of Y if using time series regression models, and then see
if such a new model passes the C assumptions. (This remedy may make
other assumptions to be passed too.)

3. If Assumptions Z and C are satisfied, but Assumption N of normality
is not satisfied (irrespective of the assumption I) while the histogram of
residuals is unimodal but skewed, then we should try a model where Y is
in logarithmic scale. Sometimes this helps to get residuals that satisfy the
normality. But sometimes it does not help.

4. Lastly, if the Assumptions Z and C are satisfied, but normality cannot
be achieved or residuals are still correlated, then realise we did what we
could and we conclude we have the best possible model, even if it does
not satisfy all ZINC assumptions. We can use the model to get the point
forecasts, but for the construction of PI, we must not use the Eq. 3.52. For
the PI construction, we need to use a non-parametric approach, a kind of
computer simulation method (such as Bootstrap) where we simulate fu-
ture sample paths by using the past residuals, however, it is beyond the
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goal of this book. For bootstrap methods of obtaining the prediction inter-
vals, we recommend reading: [56] for forecasting from linear and nonlinear
regression models, [44] for auto-regression time series forecasting, and [64]
for Holt-Winters forecasting.

Why don’t we just go with a non-parametric approach always? Why do
we fuss in trying to find a model that satisfies all ZINC assumptions? Because
the non-parametric approach will not work well if Z or C are violated, and
because the non-parametric approach always gives wider PI, than the para-
metric approach. (Though there is no elegant theory suggesting how much
wider, the research suggests that the answer depends on the data at hand.)

3.5.2 Be a pro at visualising the risk and uncertainty

As we said earlier, the best way to visualise the risks is via plots that in-
clude both the central forecast path, as well as the prediction intervals. We
showed examples: in Figure 3.24 we have 50 and 95% prediction intervals,
in Figure 3.4 we show 80 and 95% prediction intervals, and Figure 3.24 we
show the full range of intervals: 51 to 99% prediction intervals. Note, that
the last figure is called a ”fan chart”, so it can be seen as a special case of
prediction interval plots. Note, that Hyndman and Athanasopoulos ([34]) call
the plots with prediction intervals as ”Visualization of probabilistic forecasts”.

Example. Overseas visits. We used Overseas visits data and generated
one-step-ahead prediction and prediction interval, as well as predictions with
horizon up to h = 36 months, in Figure 3.24. What risks, opportunities and
uncertainty we face after we did forecast from the time series? Several thoughts
follow:

• Main uncertainty is that we do know if the forces that drove the time
series in the past will remain the same in the future. What if government
issues a regulation that will restrict the travel to UK and hence affect the
number of overseas visits? We may not even know that such regulation
can happen. We may not be able to estimate the probability of such a
regulation. We may not be able to estimate the effect of such regulation on
the total number of overseas visits. This is a situation of uncertainty about
the model. There is always uncertainty about the model choice (e.g. linear
regression or Holt-Winters or other) and its parameters being estimated.
But if we have a sufficient number of data and if all the assumptions
are satisfied (normality of errors etc) then we can say we reduced the
uncertainty about the model.

• Let us assume that the future will be like the past (i.e. the forces that
drove the time series will remain unchanged) and let us assume we have a
good fitting model. Then we still face some degree of uncertainty, because
there are random fluctuations that we cannot forecast. We can however
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estimate the probability distribution of such random fluctuations, and then
we can use it to construct the prediction intervals. This is uncertainty about
outcome due random fluctuations.

• We found that for January 1982 the expected number of visitors is 693.0357
thousand, and the 95% prediction interval is (581.5528, 696.5187) thou-
sand. This is expressing all possible values of yield that can happen in
future.

• We are facing some risks. For example, there is a 50% chance that the
number of visitors will be lower than 693.0357 thousand, and a 50% chance
that it will be above 693.0357 thousand, in January 1982.

• We are facing a risk that in January 1982 the number of visitors will be
581.5528 thousand or lower, with a probability of 2.5%. We are facing a
risk (or opportunity, if we are a travel agency) that the number of visitors
can be 693.0357 thousand or higher (as suggested by the 95% prediction
interval).

3.5.3 When relying on a model alone is a wrong idea

In previous sections, we stressed that each statistical method (or model) comes
with assumptions. We listed several assumptions that we make when we do
forecasting from time series regression models or exponential smoothing mod-
els, and we discussed how to check those assumptions (see the ZINC assump-
tions in Section 3.4.5).

There is one additional assumption we make when forecasting from time
series: we assume that the ”future will be like the past”. And then, we use the
model to predict the values in the future, i.e. beyond the range of observed
time points 1, . . . , T . Is that reasonable to do? There are two scenarios when
this is not reasonable:

• What if the external forces that drove the values of our time
series will change in future? In the Example Daily temperatures, we
aimed to predict temperatures using the past temperatures. But what if
all governments will reinforce drastic measures to reduce the pollution on
Earth? This will affect the time series in future, e.g. it may cause the
temperatures to stop increasing, thus causing a so-called change point in
time series. If we only use the past temperature data, we have no way to
predict future temperatures. We need to be cautious. The “future will be
like the past” will not always be true. In such a situation, we need to find
ways to incorporate expert judgement into our forecasts.

• What if the external forces that drove the time series do not
change while there will be an internal cause for change in the
time series? What if we are predicting the number of visitors to the UK
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using past visitors’ data? What if the UK government is not planning any
change in travel policies? And what if the UK travel market is almost
saturated in the sense that it cannot handle any more visitors, i.e. is sat-
urated? And what if the past data do not show any sign of saturation?
Then surely, any forecast that is purely based on the past data will be an
overestimation of future visits. In such a situation, we need to find ways to
incorporate expert judgement into our forecasts. Bayesian time series fore-
casting has ways of incorporating expert judgment into the forecast but
is not in the scope of this book, though we showed one forecast example,
which was purely based on expert judgements in Figure 3.5.

Caution! When we communicate the data-based forecast to stakeholders,
it is our duty to remind them that our forecasts are only true when the ZINC
assumptions are satisfied as well as when the ”future will be like the past”
assumption is satisfied.

3.6 Summary

We learned in this chapter:

1. Time series analysis involves analysing data points that are collected at
regular intervals over time to identify patterns, trends, and other relation-
ships that can be used to forecast future values. Time series methods are
often used in quantitative risk analysis to evaluate the probability and size
of risks over time.

2. We learned the basic tools: moving averages (MA), auto-correlation
(ACF), simple exponential smoothing (SES), Holt’s exponential smooth-
ing (also called double exponential smoothing), Holt-Winters (HW) expo-
nential smoothing (also called triple exponential smoothing). We learned
how to decide which model is the most suited for the data at hand. We
learned how to use time series data to make predictions, how to quantify
and communicate the prediction uncertainty and plot it all into a plot
called a fan chart. We learned how one can make recommendations from
time series about potential future events.

3. Overall, time series methods are a powerful tool for quantitative risk anal-
ysis because they allow analysts to identify patterns and trends that may
not be immediately apparent in raw data, as well as they also allow fore-
casting - which can help organisations make better-informed decisions
about risk management.
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3.7 Further reading

In risk analysis, time series methods can be used to analyse historical data on
various risk factors, such as market trends, economic indicators, or weather
patterns. This information can be used to (A) develop predictive models that
estimate the likelihood of future events or (B) identify risk factors, which can
be used to inform risk management strategies. Time series have a vast number
of resources.

In our chapter, we used several resources, which we list here:

1. For further understanding of applied time series and R, we recom-
mend this online book on time series: Rob J Hyndman and George
Athanasopoulos’s book “Forecasting: Principles and Practice”, available
at https://otexts.com/fpp2/ The book presents the statistical theory on
basic to intermediate level.

2. For further understanding of applied time series and more examples in
R, we recommend the book ”Time Series Analysis and Its Applications.
With R Examples. Fourth Edition.” by Shumway and Stoffer [52]. The
book presents a statistical theory on an intermediate to advanced level. It
has Chapter 2 on Time Series Regression and Exploratory Data Analysis,
where they introduce multiple linear regression and then give attention to
more topics: exploratory data analysis for preprocessing of nonstationary
time series (for example, trend removal), the concept of differencing and
the backshift operator, variance stabilisation, as well as nonparametric
smoothing of time series.

3. For a quick way to start with R and then run time series analysis in R,
we recommend this online book by Avril Coghlan [15].

4. We focused on the frequentist approach of using time series analysis for
risk and uncertainty estimation. There are Bayesian extensions which are
also popular and more flexible than the frequentists’ methods. They are,
however, more advanced and outside the scope of this chapter. For an
interested reader, we recommend [52].

5. To learn about how to identify risk factors, we recommend the book
by Hanck, Arnold, Gerber and Schmelzer [29]. It is accessible at
https://www.econometrics-with-r.org/14-ittsraf.html, and it shows the R
code as well. It has Chapter 14 devoted to time series, as well as fur-
ther time series topics such as estimation of dynamic causal effects, vector
autoregression, and cointegration.

6. To get a wider knowledge of the visualisation of time series, we recom-
mend Shurkhovetskyy et al. (2017) ”Data Abstraction for Visualizing
Large Time Series” [53].
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3.8 R Lab

Here, we practice using R to analyse time series. The first three questions are
about the three datasets we discussed in the previous sections. Thus the first
three questions are provided with a solution R code. Here we explain the R
code and show the output from R. The interpretation of the R output was
explained in the previous sections.

Then after the first 3 questions, you are asked to solve more questions, for
which a solution is available upon request.

1. [Purpose: Analysis of Overseas visits data.] Here we analyse the
Overseas visits data. The whole analysis is split into several sections. Each
section is defined by its own goal.

First, we import the dataset Overseas visits to UK data, that we
used in this chapter. The data file is a CSV format: Risk-2021-
DataVisitsToUK.csv. We recreate Figure 3.1 via using the autoplot func-
tion.

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: To import Overseas visits data and plot its first 2

years ’ data

4 # ------------------------------------------------------------

5 #

6 # Import data into R and call it mydata

7 mydata <-read.csv("Risk -2021- DataVisitsToUK.csv")

8 # Check the structure of the imported object

9 str(mydata)

10 # Create a ts structure called mydata2

11 mydata2 <- ts(mydata$Visits ,start=c(1980 ,1),end=c(1981 ,12),
frequency =12)

12 # Check the structure of the new object mydata2. R should say

that it is

13 # a Time -Series structure.

14 str(mydata2)

15 # Next we attach the library for plotting (there are other

libraries)

16 library(ggfortify)

17 # Next we plot the data

18 autoplot(mydata2) +

19 ggtitle("Monthly Visits ") +

20 xlab("Month") +

21 ylab("Visits[Thousands]")

22

23 R Output

24 > str(mydata)

25 ’data.frame’: 483 obs. of 4 variables:

26 $ X : int 1 2 3 4 5 6 7 8 9 10 ...

27 $ Month : chr "JAN" "FEB" "MAR" "APR" ...

28 $ Year : int 1980 1980 1980 1980 1980 1980 1980 1980 1980

1980 ...
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29 $ Visits: int 739 602 740 1028 1088 1124 1699 1839 1200 963

...

30 > mydata [1:3,]

31 X Month Year Visits

32 1 1 JAN 1980 739

33 2 2 FEB 1980 602

34 3 3 MAR 1980 740

35

36 > str(mydata2)

37 Time -Series [1:24] from 1980 to 1982: 739 602 740 1028 1088

1124 1699 1839 1200 963 ...

38

Next, we plot all 40 years of monthly overseas visits to the UK data from
Jan 1980 till Mar 2020, i.e. we recreate the Figure 3.2.

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: To plot all 40 years of the Overseas visit time series

.

4 # ------------------------------------------------------------

5 #

6 mydata <-read.csv("Risk -2021- DataVisitsToUK.csv")

7 autoplot(mydataALL) +

8 ggtitle("Overseas Visits to UK") +

9 xlab("Month") +

10 ylab("Visits[Thousands]

Next, we practice moving averages to estimate the trend in Overseas visits
data, in R. We thus recreate the Figure 3.7 via using the ma function.

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: Detect the trend in Overseas visits data using the "ma

" function.

4 # ------------------------------------------------------------

5 #

6 # Need to attach the library forecast , as it contains the

function "ma"

7 library(forecast)

8 # Import the data

9 mydata <-read.csv("Risk -2021- DataVisitsToUK.csv")

10 # We try the moving average method of 12 and plotting the

estimated trend

11 Visits_trend = ma(Visits_Series , order = 12, centre = T)

12 plot(Time2 , Visits_Series ,ylab="Visits [thousands]",

13 xlab="Time [Year]",type="l",ylim=c(500 ,4500))

14 lines(Time2 , Visits_trend ,col="red",lwd =2)

15 title("Moving average of 12 observations")

16 legend(dt1 ,4500 , legend=c("Time series", "Estimated trend"),

17 col=c("black","red"), lty=1, lwd=c(1,2),cex =0.8)

Next, we are practising time series decomposition of Overseas visits in R.
We recreate the Figure 3.8 via using the decompose function.

1 # R Code
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2 # ------------------------------------------------------------

3 # Goal: Time series decomposition of Overseas visits data

4 # by using the function "decompose ".

5 # ------------------------------------------------------------

6 #

7 # Need to attach the library forecast

8 library(forecast)

9 # Import the data

10 mydata <-read.csv("Risk -2021- DataVisitsToUK.csv")

11 str(mydata) # shows the structure of the data , for a quick

check

12 head(mydata ,10) # shows first 10 rows of data , for a quick

check

13 # Next , we create Visits_Series_ts object that is in a "ts"

format ,

14 # because the decompose function only accepts data in a ts

format.

15 # Make sure this structure knows that data are collected 12

times

16 # per year , it starts in January 1980.

17 Visits_Series_ts = ts(Visits_Series , frequency = 12, start=c

(1980 ,1))

18

19 # Now the decomposition of the time series in one single line:

20 decompose_visits = decompose(Visits_Series_ts , "additive")

21

22 # The plots

23 plot(as.ts(decompose_visits$x))
24 plot(as.ts(decompose_visits$trend))
25 plot(as.ts(decompose_visits$seasonal))
26 plot(as.ts(decompose_visits$random))
27

28 # Or simply:

29 plot(decompose_visits)

Next, we are practising forecasting from Overseas visits in R, via a com-
puter simulation of potential future paths and by using the ETS model.
Thus, here, we will recreate Figure 3.3 that shows four possible future
paths for overseas visits to the UK. First, we fit an ETS model to the Jan
1980-Dec 1981 data (see row 3, below). Then we use the fitted ETS model
to forecast four possible future scenarios for Jan 1981-Dec 1992. We use
function simulate to simulate future scenarios. For each scenario, we set
the random seed generator to a fixed value (see set.seed in rows 6, 9,
12 and 15, below) so each time we run this code we always get the same
4 simulated futures scenarios. Then we can plot the computer-generated
potential future time series (see lines 4, 7, 10, 13, 16 and 17).

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: To obtain obtain 4 potential future scenarios , in

Overseas visits data.

4 # ------------------------------------------------------------

5 #

6 library(forecast)
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7 # We fit ETS model to the time series data.

8 fit <- ets(mydata2)

9 plot(mydata2 , xlim=c(1980 ,1992.1) ,ylim=c(400, 2400),ylab="

Visits[Thousands]",xlab="Year")

10 # simulation 1

11 set.seed (10)

12 lines(simulate(fit , 120), col="red",lwd=2)

13 # simulation 2

14 set.seed (555)

15 lines(simulate(fit , 120), col="yellow",lwd =2)

16 # simulation 3

17 set.seed (323)

18 lines(simulate(fit , 120), col="green",lwd =2)

19 # simulation 4

20 set.seed (44)

21 lines(simulate(fit , 120), col="blue",lwd=2)

22 legend (1980, 2400, legend=c("Simulation 1", "Simulation 2", "

Simulation 3", "Simulation 4"), col=c("red", "yellow", "

green", "blue"), lty=1, lwd=2,cex =0.8)

Above, you are encouraged to change the values of the seeds, which
will lead to different future potential time series paths. We used the
ETS model to simulate future paths, but we could have used any
other relevant model. We only used a simple functionality of the func-
tion simulate. To learn more about function simulate please visit:
https://rdrr.io/cran/forecast/man/simulate.ets.html

Next, we will use the same data, the same ETS model, but instead of
plotting several potential future time series paths, we will provide 80% and
95% prediction intervals for overseas visits to the UK. We accomplish this
by using the function forecast and by specifying how far the prediction
needs to go: 10 years, hence 120-time units (see h = 120 in row 2). The
time units are months because the time series were collected at each month.
Hence we will recreate Figure 3.4.

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: To forecast Overseas visits using ets function

4 # ------------------------------------------------------------

5 #

6 # Remember , the structure mydata2 contains 2 years of data

only.

7 fit <- ets(mydata2)

8 plot(forecast(fit ,h=120),ylim=c(400, 2400),ylab="Visits[

Thousands]", xlab="Year")

Next, we are practising creating an autocorrelation function for the
monthly Overseas visits time series in R. We use the R function Acf (row
4). We generate the ACF figure 3.9 using R function ggAcf.

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: To obtain ACF for 40 years of Overseas visits data.

4 # ------------------------------------------------------------
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5 #

6 mydata <-read.csv("Risk -2021- DataVisitsToUK.csv")

7 mydataALL <-ts(mydata$Visits ,start=c(1980 ,1),end=c(2020 ,3),
frequency =12)

8 ggAcf(mydataALL)

9 my.acf <-Acf(mydataALL)

10

11 R Output

12 > my.acf

13 Autocorrelations of series ’mydataALL ’, by lag

14 0 1 2 3 4 5 6 7 8 9 10

15 1.000 0.910 0.820 0.743 0.655 0.577 0.530 0.562 0.632 0.709

0.772

16 11 12 13 14 15 16 17 18 19 20

17 0.851 0.915 0.845 0.756 0.684 0.598 0.521 0.478 0.507 0.570

18 21 22 23 24 25 26

19 0.647 0.705 0.781 0.839 0.770 0.686

Next, we calculate the ACF of monthly visits data again. But this time
we do it step by step, without using the R built-in function Acf. We do it
for lags 1 (rows 3-6) and 6 (rows 8-11). Note that the values are close but
not the same as from the built-in function Acf, due to rounding.

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: To obtain ACF at lag 1 and 6, for Overseas visits data

.

4 # ------------------------------------------------------------

5 #

6 # First we obtain ACF for lag 1.

7 length(mydataALL) # T=483

8 Yt <-mydataALL [2:483]

9 Yt.lag1 <-mydataALL [1:482]# lagged series , lag=1

10 cor(Yt ,Yt.lag1) # correlation at lag 1.

11 length(mydataALL) # T=483

12 Yt <-mydataALL [7:483]

13 Yt.lag6 <-mydataALL [1:477]# lagged series , lag=6

14 cor(Yt ,Yt.lag6) # correlation at lag 6.

15

16 R Output

17 cor(Yt ,Yt.lag1) # correlation at lag 1.

18 [1] 0.9130594

19 cor(Yt ,Yt.lag6) # correlation at lag 6.

20 [1] 0.5426583

1 # ------------------------------------------------------------

2 # Goal: Fit an additive and a multiplicative HW model to

3 # 2 years of Overseas visits data.

4 # ------------------------------------------------------------

5 library(forecast)

6 # Data: Overseas Visits to UK data

7 mydata <-read.csv("Risk -2021- DataVisitsToUK.csv")

8 head(mydata ,10) # shows the first 10 rows of data , for a quick

check

9 # extract years 1980 and 1981 only , and put them into a ts

object.
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10 mydata.visits.ts<-ts(mydata$Visits ,start=c(1980 ,1),end=c
(1981 ,12),frequency =12)

11 # Create the Time for the first visit

12 dt1.visits <- as.Date("1980 -01 -01")

13 dt1.visits

14 # The length of our time series

15 T<-24 # 24 months only

16 # Then we create a whole column of n days:

17 Time.visits <-seq(dt1.visits , length = 24, by = "months")

18 str(Time.visits) # Checking that Time is indeed a date format.

19 # Fit the HW model with additive seasonality

20 hw.visits.additive <- hw(mydata.visits.ts ,seasonal="additive",

h=24)

21 summary(hw.visits.additive)

22 # Fit the HW model with multiplicative seasonality

23 hw.visits.multiplicative <- hw(mydata.visits.ts,seasonal="

multiplicative",h=24)

24 summary(hw.visits.multiplicative)

25 # Next , we plot the data and the fitted values from the two

models.

26 plot(Time.visits ,mydata.visits.ts, ylab="Visits [thousands]",

xlab="Year",

27 lwd=2,type="l")

28 lines(Time.visits , hw.visits.additive$fitted ,col="blue",lwd=2)
29 lines(Time.visits , hw.visits.multiplicative$fitted ,col="pink",

lwd =2)

30 # We redraw the original data , just to make the plot look

nicer.

31 lines(Time.visits ,mydata.visits.ts)

32 legend(Time.visits [1],1700, legend=c("Time Series", "HW

additive", "HW multiplicative"),

33 col=c("black","blue","pink"), lty=c(1,1,1),

34 lwd=c(2,2,2),cex =0.8)

35 title("Overseas data and fitted values")

36

37 R OUTPUT:

38 > summary(hw.visits.additive)

39

40 Forecast method: Holt -Winters ’ additive method

41

42 Model Information:

43 Holt -Winters ’ additive method

44

45 Call:

46 hw(y = mydata.visits.ts , h = 1, seasonal = "additive")

47

48 Smoothing parameters:

49 alpha = 1e-04

50 beta = 1e-04

51 gamma = 1e-04

52

53 Initial states:

54 l = 1109.4158

55 b = -8.7048

56 s = -334.2999 -253.2824 0.8936 201.4947 803.099 653.9046

57 69.9524 25.6193 -43.8918 -336.9516 -488.2117

-298.3261
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58

59 sigma: 85.943

60

61 AIC AICc BIC

62 297.6834 399.6834 317.7104

63

64 Error measures:

65 ME RMSE MAE MPE

66 Training set -5.874759 49.61922 33.54391 0.01322887

67

68 MAPE MASE ACF1

69 3.559648 0.4158336 0.3167459

70

71 > summary(hw.visits.multiplicative)

72

73 Forecast method: Holt -Winters ’ multiplicative method

74

75 Model Information:

76 Holt -Winters ’ multiplicative method

77

78 Call:

79 hw(y = mydata.visits.ts , h = 1, seasonal = "multiplicative")

80

81 Smoothing parameters:

82 alpha = 0.054

83 beta = 0.0477

84 gamma = 2e-04

85

86 Initial states:

87 l = 1108.865

88 b = -7.8516

89 s = 0.6556 0.7436 0.9872 1.2152 1.7783 1.5844

90 1.0807 1.0403 0.9809 0.6941 0.5493 0.6903

91

92 sigma: 0.0459

93

94 AIC AICc BIC

95 264.1459 366.1459 284.1728

96

97 Error measures:

98 ME RMSE MAE MPE

99 Training set 5.367679 28.21509 22.71365 0.6492115

100

101 MAPE MASE ACF1

102 2.24464 0.2815742 0.1951689

Next, we do a goodness-of-fit analysis of the additive HW model of the 2
years of Overseas visits data.

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: To do a goodness -of-fit analysis of the additive HW

model for first

4 # 2 years of Overseas visits data.

5 # Use the HW model with additive seasonality.

6 # ------------------------------------------------------------

7 # Plot of resid vs time
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8 plot(Time2 [1:24] , fit.hw.visits$residuals ,xlab="Year",ylab="
Residuals",

9 main="Residuals vs Time of HW model of 2 years of

Overseas Visits data")

10 abline (0,0)

11 # ACF for residuals HW model of Overseas data data

12 Acf(hw.visits.additive$residuals ,main="ACF of residuals of HW

model of Overseas visits 2y",lag =30)

13 # ACF for original data. We plot it just to see how much ACF

we removed with

14 # HW model.

15 Acf(mydata.visits.ts ,main="ACF of 2 years of Overseas visits

data",lag =30)

16 # Check assumption N: normality of residuals

17 # Create Q-Q plot

18 qqnorm(hw.visits.additive$residuals ,main="Q-Q plot for

residuals of HW model in Visits data")

19 # Add straight diagonal line to plot

20 qqline(hw.visits.additive$residuals)
21 # Get p-value

22 shapiro.test(hw.visits.additive$residuals)
23 # normality test for residuals

24 shapiro.test(hw.visits.additive$residuals)
25

26 R OUTPUT:

27 > # normality test for residuals

28 > shapiro.test(hw.visits.additive$residuals)
29

30 Shapiro -Wilk normality test

31

32 data: hw.visits.additive$residuals
33 W = 0.85463 , p-value = 0.002667

Next, we do a goodness-of-fit analysis of the multiplicative HW model of
the 2 years of Overseas visits data.

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: To do a goodness -of-fit analysis of the multiplicative

HW model for first

4 # 2 years of Overseas visits data.

5 # ------------------------------------------------------------

6 # Plot of resid vs time

7 plot(Time2 [1:24] , hw.visits.multiplicative$residuals ,xlab="
Year",ylab="Residuals",

8 main="Residuals vs Time of HW model with multiplicative

seasonality")

9 abline (0,0)

10 # ACF for residuals HW model of Overseas data data

11 Acf(hw.visits.multiplicative$residuals ,main="ACF of residuals

of HW model with multiplicative seasonality",lag =30)

12 # Check assumption N: normality of residuals

13 # Create Q-Q plot

14 qqnorm(hw.visits.multiplicative$residuals ,main="Q-Q plot for

residuals of HW model with multiplicative seasonality")

15 # Add straight diagonal line to plot

16 qqline(hw.visits.multiplicative$residuals)
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17 # normality test for residuals , to get pvalue

18 shapiro.test(hw.visits.multiplicative$residuals)
19

20 R OUTPUT

21 > shapiro.test(hw.visits.multiplicative$residuals)
22

23 Shapiro -Wilk normality test

24

25 data: hw.visits.multiplicative$residuals
26 W = 0.9546 , p-value = 0.3397

Next, we use the multiplicative Holt-Winters smoothing model that we fit
into the first two years of data, and we will do the forecasts for the next
three years, in R. We find the best parameter values, using R. And we
create the Figure 3.24.

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: Do use multiplicative HW model of first two years of

Overseas visits data ,

4 # and then construct the prediction intervals.

5 # ------------------------------------------------------------

6 #

7 # Fit HW multiplicative model again , let R choose the best

parameters.

8 # calculate the forecast for the next 36 months.

9 # Ask for prediction intervals: 50% and 95%.

10 library(forecast)

11 fit.hw.visits <- hw(mydata.visits.ts ,seasonal="multiplicative"

,h=36,level=c(50 ,95))

12 # Print the forecasts on the computer screen in Console

13 summary(fit.hw.visits.multiplicative)

14 # plot the model and forecasts.

15 plot(fit.hw.visits ,xlab="Year",ylab="Overseas visitors to UK [

thousands]",ylim=c(0 ,2500))

16 # Next , finally (!), we create a fan plot

17 fit.hw.visits <- hw(mydata.visits.ts ,seasonal="multiplicative"

,h=36,fan=TRUE)

18 plot(fit.hw.visits ,xlab="Year",ylab="Overseas visitors to UK [

thousands]",

19 ylim=c(0 ,2500))

20

21 R OUTPUT:

22 > # Print the forecasts on the computer screen in Console

23 > summary(fit.hw.visits.multiplicative)

24

25 Forecast method: Holt -Winters ’ multiplicative method

26

27 Model Information:

28 Holt -Winters ’ multiplicative method

29

30 Call:

31 hw(y = mydata.visits.ts , h = 24, seasonal = "multiplicative")

32

33 Smoothing parameters:

34 alpha = 0.054
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35 beta = 0.0477

36 gamma = 2e-04

37

38 Initial states:

39 l = 1108.865

40 b = -7.8516

41 s = 0.6556 0.7436 0.9872 1.2152 1.7783 1.5844

42 1.0807 1.0403 0.9809 0.6941 0.5493 0.6903

43

44 sigma: 0.0459

45

46 AIC AICc BIC

47 264.1459 366.1459 284.1728

48

49 Error measures:

50 ME RMSE MAE MPE

51 Training set 5.367679 28.21509 22.71365 0.6492115

52

53 MAPE MASE ACF1

54 2.24464 0.2815742 0.1951689

55

56 Forecasts:

57 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

58 Jan 1982 639.0357 601.4497 676.6218 581.5528 696.5187

59 Feb 1982 508.1726 478.1289 538.2162 462.2247 554.1204

60 Mar 1982 641.8192 603.4559 680.1825 583.1476 700.4908

61 Apr 1982 906.4547 851.2590 961.6503 822.0402 990.8691

62 May 1982 960.8800 900.7475 1021.0125 868.9153 1052.8447

63 Jun 1982 997.6307 932.8662 1062.3952 898.5819 1096.6794

64 Jul 1982 1461.7490 1362.4141 1561.0839 1309.8293 1613.6686

65 Aug 1982 1639.6424 1522.0507 1757.2340 1459.8015 1819.4833

66 Sep 1982 1119.8271 1034.4936 1205.1606 989.3207 1250.3335

67 Oct 1982 909.2438 835.2401 983.2474 796.0650 1022.4225

68 Nov 1982 684.4661 624.7467 744.1855 593.1332 775.7991

69 Dec 1982 603.1469 546.6067 659.6870 516.6762 689.6175

70 January 1983 634.7129 570.7146 698.7113 536.8359

732.5900

71 Feb 1983 504.7331 449.9860 559.4801 421.0047 588.4614

72 Mar 1983 637.4727 563.1310 711.8144 523.7769 751.1685

73 Apr 1983 900.3125 787.5460 1013.0790 727.8510 1072.7740

74 May 1983 954.3653 826.1590 1082.5717 758.2907 1150.4400

75 Jun 1983 990.8630 848.3326 1133.3935 772.8815 1208.8446

76 Jul 1983 1451.8273 1228.6043 1675.0502 1110.4372 1793.2174

77 Aug 1983 1628.5069 1361.3648 1895.6491 1219.9483 2037.0656

78 Sep 1983 1112.2176 917.9235 1306.5117 815.0704 1409.3648

79 Oct 1983 903.0617 735.3758 1070.7476 646.6083 1159.5152

80 Nov 1983 679.8098 545.8784 813.7411 474.9795 884.6400

81 Dec 1983 599.0414 474.0458 724.0369 407.8772 790.2056

2. [Purpose: Analysis of Kings life span data in R.] Here, we will
practice fitting linear regression and quadratic regression models to Kings
life span data. Below the analysis is done in several sections, each having
its own goal.

First input data into R, then we create the Figure 3.11 of the Kings time
series data, using the following R code:
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1 # R Code

2 # ------------------------------------------------------------

3 # Goal: To input the Kings ’ life span data into R and plot it.

4 # ------------------------------------------------------------

5 # We will type data directly into R, by creating a vector y:

6 y<-c(60,43,67,50,56,42,50,65,68,43,

7 65,34,47,34,49,41,13,35,53,56,

8 16,43,69,59,48,59,86,55,68,51,

9 33,49,67,77,81,67,71,81,68,70,

10 77,56)

11 # Next , we create the time variable

12 Time <-c(1: length(y))

13 # Let us plot the response variable with respect to time

14 plot(Time , y, ylab="Age of death [years]",

15 xlab="Order of being on the throne",type="l")

16 # Next , we generate a data frame with these variables

17 dataset.kings <-data.frame(Time , y)

Note that we did not put data into ts format, as this was not needed.
Next, we estimate the linear regression model:

1 # Rcode

2 # ------------------------------------------------------------

3 # Goal: Fit linear model to Kings ’ life span data.

4 # ------------------------------------------------------------

5 #

6 # We will fit a simple linear regression to this time series ,

7 # where there is only one predictor: the time

8 kings.lin <-lm(formula= y~Time , data=dataset.kings)

9 # Next , we obtain detailed information on our regression using

10 # the summary () command. Note that kings.lin is now an object

11 # created by R, it contains the data and the estimated

parameters.

12 # So we need to extract those parameters and summaries:

13 summary(kings.lin)

14

15 R Output:

16 > summary(kings.lin)

17

18 Call:

19 lm(formula = y ~ Time , data = dataset.kings)

20

21 Residuals:

22 Min 1Q Median 3Q Max

23 -39.833 -9.125 1.942 10.742 27.717

24

25 Coefficients:

26 Estimate Std. Error t value Pr(>|t|)

27 (Intercept) 43.5679 4.8227 9.034 3.32e-11 ***

28 Time 0.5450 0.1954 2.789 0.00805 **

29 ---

30 #Signif. codes: 0 *** 0.001 ** 0.01 * 0.05

. 0.1 1

31

32 Residual standard error: 15.35 on 40 degrees of freedom

33 Multiple R-squared: 0.1628 , Adjusted R-squared: 0.1419

34 F-statistic: 7.78 on 1 and 40 DF , p-value: 0.008051
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Next, we plot the fitted values from the linear regression on the same plot
as the actual data:

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: To plot the fitted linear model together with Kings

time series data.

4 # ------------------------------------------------------------

5 #

6 plot(Time , y, ylab="Age when King died [years]",xlab="Order of

being

7 on the throne",type="l")

8 y.predict.lin <-

9 kings.lin$coefficients [[1]]+ kings.lin$coefficients [[2]]*
Time

10 # Since Time is already ordered , we can superimpose the fitted

(predicted) values:

11 lines(Time , y.predict.lin , col="blue",lwd =2)

12 # We calculate the residuals

13 resid.lin <-y-y.predict.lin

14 # Next , we plot the residuals vs time

15 plot(Time , resid.lin , type="l",ylim=c(-40,40),

16 ylab="Residuals in model with linear term")

Next, we are practising estimation of a model with quadratic trend, to
Kings time series data. We estimate the quadratic trend using the following
R code:

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: To fit quadratic regression to the Kings ’ life span

data.

4 # ------------------------------------------------------------

5 #

6 # Data is already entered in R (see the previous question).

7 # Next we fit the quadratic model with two covariates: Time

and Time^2

8 # We store the results into a structure called kings.quad

9 kings.quad <-lm(y~Time+I(Time ^2),data=dataset.kings)

10 # Or alternatively

11 # dataset.kings$Time2 <-dataset.kings$Time^2
12 # kings.quad <-lm(y~Time+Time2 ,data=dataset.kings)

13 #

14 summary(kings.quad)

15

16 Output:

17 > summary(kings.quad)

18

19 Call:

20 lm(formula = y ~ Time + I(Time ^2), data = dataset.kings)

21

22 Residuals:

23 Min 1Q Median 3Q Max

24 -34.189 -6.073 0.762 8.459 32.915

25

26 Coefficients:

27 Estimate Std. Error t value Pr(>|t|)
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28 (Intercept) 57.61934 6.95262 8.287 3.93e-10 ***

29 Time -1.37109 0.74575 -1.839 0.0736 .

30 I(Time ^2) 0.04456 0.01682 2.650 0.0116 *

31 ---

32

33 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05

. 0.1 1

34

35 Residual standard error: 14.31 on 39 degrees of freedom

36 Multiple R-squared: 0.2905 , Adjusted R-squared: 0.2542

37 F-statistic: 7.986 on 2 and 39 DF , p-value: 0.001239

The above output from R was discussed earlier in this Section 3.4.1.

Next, we show the R code to produce the Figure 3.13:

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: to plot the King ’s life span data with the estimated

linear and quadratic models.

4 # And to create the residual plot for the quadratic model.

5 # ------------------------------------------------------------

6 #

7 plot(Time , y, ylab="Age when King died [years]",xlab="Order of

being

8 on the throne",type="l")

9 y.predict.quad <-

10 kings.quad$coefficients [[1]]+
11 kings.quad$coefficients [[2]]*Time+
12 kings.quad$coefficients [[3]]*Time^2
13 # alternatively: y.predict.quad <-predict(kings.quad)

14 # Since Time is already ordered , we can plot it:

15 lines(Time , y.predict.lin , col="blue",lwd =2)

16 lines(Time , y.predict.quad , col="green",lwd=2)

17 # We see the quadratic model has better residuals

18 resid.quad <- y - y.predict.quad

19 plot(Time , resid.quad , type="l",ylim=c(-40,40),

20 ylab="Residuals in model with quad term")

Next, we are practising obtaining the values of the information criteria for
the linear and quadratic models of Kings’ life span data. This is so we can
then compare the two models and tell which model is better. Below we
show the R code only. The interpretation and discussion was Section 3.4.3.
We use the following criteria: SSE, RMSE, R-squared, R-squared adjusted,
AIC and BIC.

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: Get the values of the information criteria for the

linear model of Kings ’ life span data.

4 # ------------------------------------------------------------

5 #

6 # First we calculate the SSE , and RMSE by using their

definitions:

7 # We assume we already fitted the linear model and we stored

the fitted model
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8 # in a structure called y.predict.lin

9 # Next , we get fitted values

10 y.predict.lin <-

11 kings.lin$coefficients [[1]]+ kings.lin$coefficients [[2]]*Time
12 # Alternatively we could do: y.predict.lin <-predict(kings.lin)

13 # We get the residuals

14 resid.lin <-y-y.predict.lin

15 # Get length of the data

16 n= dim(dataset.kings)[1]

17 n

18 # We get SSE

19 SSE.lin = sum(resid.lin ^2)

20 SSE.lin

21 # We get degrees of freedom

22 kings.lin$df.residual
23 # We get RMSE

24 RMSE.lin = sqrt(SSE.lin / kings.lin$df.residual)
25 RMSE.lin

26 # Here we use summary function to get RMSE , R-squared and R-

squared adjusted

27 summary(kings.lin)

28 # Next we get AIC and BIC

29 AIC(kings.lin)

30 BIC(kings.lin)

31

32 R output:

33 > n

34 [1] 42

35 > SSE.lin

36 [1] 9423.694

37 > kings.lin$df.residual
38 [1] 40

39 > RMSE.lin

40 [1] 15.34902

41 > summary(kings.lin)

42

43 Call:

44 lm(formula = y ~ Time , data = dataset.kings)

45

46 Residuals:

47 Min 1Q Median 3Q Max

48 -39.833 -9.125 1.942 10.742 27.717

49

50 Coefficients:

51 Estimate Std. Error t value Pr(>|t|)

52 (Intercept) 43.5679 4.8227 9.034 3.32e-11 ***

53 Time 0.5450 0.1954 2.789 0.00805 **

54 ---

55 % Signif. codes: 0 *** 0.001 ** 0.01 * 0.05

. 0.1 1

56

57 Residual standard error: 15.35 on 40 degrees of freedom

58 Multiple R-squared: 0.1628 , Adjusted R-squared: 0.1419

59 F-statistic: 7.78 on 1 and 40 DF , p-value: 0.008051

60

61 > # Next we get AIC and BIC

62 > AIC(kings.lin)
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63 [1] 352.55

64 > BIC(kings.lin)

65 [1] 357.763

The output above shows that for the linear model, we have: SSE=9423.694,
RMSE=15.34902 (the same as the Residual standard error 15.35 in the
output of the function summary), R-squared=0.1628, R-squared adjusted
= 0.1419, AIC=352.55, BIC=357.763.

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: Get the summary statistics for the quadratic model of

Kings life span data.

4 # ------------------------------------------------------------

5 #

6 # First we calculate the SSE , and RMSE by using their

definitions:

7 # We assume we already fitted the quadratic model and we

stored the fitted model

8 # in a structure called y.predict.quad

9 # Next , we get fitted values

10 y.predict.quad <-

11 kings.quad$coefficients [[1]]+
12 kings.quad$coefficients [[2]]*Time+
13 kings.quad$coefficients [[3]]*Time^2
14 # Or alternatively we could do: y.predict.quad <-predict(kings.

quad)

15 # We get the residuals

16 resid.quad <-y-y.predict.quad

17 # Get length of the data

18 n= dim(dataset.kings)[1]

19 n

20 # We get SSE

21 SSE.quad = sum(resid.quad ^2)

22 SSE.quad

23 # We get degrees of freedom

24 kings.quad$df.residual
25 # We get RMSE

26 RMSE.quad = sqrt(SSE.quad / kings.quad$df.residual)
27 RMSE.quad

28 # Here we use summary function to get RMSE , R-squared and R-

squared adjusted

29 summary(kings.quad)

30 # Next we get AIC and BIC

31 AIC(kings.quad)

32 BIC(kings.quad)

33

34 R Output:

35 > n

36 [1] 42

37 > SSE.quad

38 [1] 7986.085

39 > kings.quad$df.residual
40 [1] 39

41 > RMSE.quad

42 [1] 14.30984
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43 > summary(kings.quad)

44

45 Call:

46 lm(formula = y ~ Time + I(Time ^2), data = dataset.kings)

47

48 Residuals:

49 Min 1Q Median 3Q Max

50 -34.189 -6.073 0.762 8.459 32.915

51

52 Coefficients:

53 Estimate Std. Error t value Pr(>|t|)

54 (Intercept) 57.61934 6.95262 8.287 3.93e-10 ***

55 Time -1.37109 0.74575 -1.839 0.0736 .

56 I(Time ^2) 0.04456 0.01682 2.650 0.0116 *

57 ---

58 % Signif. codes: 0 *** 0.001 ** 0.01 * 0.05

. 0.1 1

59

60 Residual standard error: 14.31 on 39 degrees of freedom

61 Multiple R-squared: 0.2905 , Adjusted R-squared: 0.2542

62 F-statistic: 7.986 on 2 and 39 DF , p-value: 0.001239

63

64 > # Next we get AIC and BIC

65 > AIC(kings.quad)

66 [1] 347.5979

67 > BIC(kings.quad)

68 [1] 354.5485

69 >

The output above shows that for the quadratic model, we have:
SSE=7986.085, RMSE=14.30984 (the same as the Residual standard er-
ror 14.31 in the output of the function summary), R-squared=0.2905, R-
squared adjusted = 0.2542, AIC=347.5979, BIC=354.5485.

We found that the quadratic model is a better fit than the linear model.
Hence in the next, we are going to check if the quadratic model is also a
good enough fit. Next, we practice how to do a goodness-of-fit test of the
quadratic model of Kings’ life span data, in R.

1 # ------------------------------------------------------------

2 # Goal: Check if the quadratic model is a well -fitting model

of the Kings lifespan data

3 # ------------------------------------------------------------

4 # R code

5 #

6 # Get errors from the quadratic model.

7 resid.quad <-y-y.predict.quad

8 # Add a zero line

9 abline (0,0)

10 # Check assumption Z: zero means of residuals

11 plot(Time , resid.quad ,main="Residuals vs time of quadratic

model in Kings life span data")

12 # Check assumption I: independence of residuals

13 library(forecast)

14 Acf(resid.quad ,20,main="ACF plot for residuals of quadratic

model in Kings life span data")
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15 # Check assumption N: normality of residuals

16 # Create Q-Q plot

17 qqnorm(resid.quad ,main="Q-Q plot for residuals of quadratic

model in Kings life span data")

18 # Add straight diagonal line to the plot

19 qqline(resid.quad)

20 # Get p-value of normality of residuals test

21 shapiro.test(resid.quad)

22 # Check assumption C: constant variance of residuals

23 # We check it by visual inspection of the plot we did for

assumption Z.

24

25 R OUTPUT

26

27 > # Get p-value of a normality test

28 > shapiro.test(resid.quad)

29

30 Shapiro -Wilk normality test

31

32 data: resid.quad

33 W = 0.97771 , p-value = 0.5744

1 # R Code

2 #

----------------------------------------------------------------

3 # Goal: We are going to predict the Age at death for Time

values 43, 44 and 45,

4 # i.e. the next three kings. So first we create a data frame

containing

5 # the values of Time for the next three kings.

6 #

----------------------------------------------------------------

7 #

8 # New time points for which we want the forecast

9 mydatanew <-data.frame(Time=c(43 ,44 ,45))

10 # Next we can use the function predict for the prediction.

Luckily , R is an

11 # object -oriented software. This means that R will first look

into what structure

12 # the object kings.quad is , it will recognise that it is an

object created by

13 # lm() function , so R will figure out how to do the prediction

using its

14 # function called predict (). We just need to provide the new

values of Time

15 # (i.e. the new values of the predictor variable) for which we

want the predictions.

16 # Hence getting the point predictions for the three times is

as simple as:

17 predict(kings.quad ,newdata=mydatanew)

18 # Or getting the 95% prediction intervals is also simple:

19 predict(kings.quad ,newdata=mydatanew ,interval="prediction",

level =0.95)

20 # Or 80% prediciton intervals
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21 predict(kings.quad ,newdata=mydatanew ,interval="prediction",

level =0.80)

22 #

23 # NOTE 1:

24 # In quadratic regression , we have two predictors: Time and

Time ^2.

25 #

26 # Note 2:

27 # Further detail of the predict function for the linear

regression model can be

28 # found in the R documentation.

29 # > help(predict.lm)

30 #

31 # Finally , using the quadratic model we will plot the data

with the prediction:

32 # Plot the y_hat for the quadratic model , with curve width lwd

=2

33 mydatanew <-data.frame(Time=c(43 ,44 ,45))

34 plot(Time , y, ylab="Age when passed away [years]",

35 xlab="Order of being on the throne",type="l",ylim=c

(10 ,120),xlim=c(0,46),

36 lwd =2)

37 lines(Time , y.predict.quad ,col="green",lwd=2)

38 kings.pred.int80 <-predict(kings.quad ,newdata=mydatanew ,

interval="prediction",level =0.80)

39 kings.pred.int95 <-predict(kings.quad ,newdata=mydatanew ,

interval="prediction",level =0.95)

40 lines(mydatanew$Time , kings.pred.int80[,1],col="cyan",lwd=2) #

plotting 1st column

41 lines(mydatanew$Time , kings.pred.int80[,3],col="red",lwd =3) #

plotting 3rd column

42 lines(mydatanew$Time , kings.pred.int80[,2],col="red",lwd =3) #

plotting 2nd column

43 lines(mydatanew$Time , kings.pred.int95[,3],col="pink",lwd=5) #

plotting 3rd column

44 lines(mydatanew$Time , kings.pred.int95[,2],col="pink",lwd=5) #

plotting 2nd column

45 lines(c(0 ,140),c(70 ,70),col="purple", lty=2)

46 legend (0,120, legend=c("Time Series", "Quadratic Model", "

Point Forecast",

47 "80% Prediction Interval", "95% Prediction Interval", "

70 years line"),

48 col=c("black","green","cyan","red","pink","purple"),

lty=c(1,1,1,1,1,2),

49 lwd=c(2,2,2,3,5,1),cex =0.8)

50 title("Forecasts the next 3 Kings using the quadratic model")

51

52 R OUTPUT:

53

54 > # Hence getting the point predictions for the three times is

as simple as:

55 > predict(kings.quad ,newdata=mydatanew)

56 1 2 3

57 81.05488 83.56055 86.15534

58 > # Or getting the 95% prediction intervals is also simple:

59 > predict(kings.quad ,newdata=mydatanew ,interval="prediction",

level =0.95)
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60 fit lwr upr

61 1 81.05488 48.87500 113.2348

62 2 83.56055 50.76011 116.3610

63 3 86.15534 52.64689 119.6638

64 > # Or 80% prediction intervals

65 > predict(kings.quad ,newdata=mydatanew ,interval="prediction",

level =0.80)

66 fit lwr upr

67 1 81.05488 60.31472 101.7950

68 2 83.56055 62.42043 104.7007

69 3 86.15534 64.55891 107.7518

3. [Purpose: Analysis of central England temperatures data.] Here
we will do simple exponential smoothing and Holt’s exponential smoothing
for Temperature data.

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: Input the England Temperature Data , plot it and then

perform SES (Simple Exponential Smoothing). We will use

alpha 0.6

4 # ------------------------------------------------------------

5 #

6 # Copy and paste data:

7 Y <-

8 c(17.3 , 17.9, 17.3, 15.4, 15.0, 17.6, 18.2, 17.2, 16.6, 15.7,

9 15.1, 16.8, 17.2, 18.7, 19.4, 18.3, 17.9, 18.5, 20.3, 19.5,

10 19.2, 20.2, 19.8, 20.2, 21.7, 19.8, 19.7, 18.3, 19.3, 17.3,

11 18.5)

12 # Check if Y was created correctly

13 Y

14 n<-length(Y)

15 # Create the Time variable

16 dt1 <- as.Date("2004 -07 -14")

17 dt1

18 # Then we create a whole column of n days:

19 Time <-seq(dt1 , length = 31, by = "days")

20 str(Time) # Checking that Time is indeed a date format.

21 head(Time ,13) # checking first 13 values of Time

22 # Initialise the vector Yhat of size 1xn , of values NA

23 # NA is how R codes missing values. So we created an empty

vector.

24 Yhat=rep(NA,n)

25 Yhat

26 # Need to initialise the first value of Yhat. One way to do it

is to simply copy the first value of Y.

27 Yhat [1] <-Y[1]

28 Yhat

29 ## Create the constant alpha

30 alpha <-0.6

31 # Do calculate other values of Yhat. Use a ’for ’ function to

create a loop:

32 for (i in seq(2,n)){

33 Yhat[i]<- alpha *Y[i-1] + (1-alpha)*Yhat[i-1]

34 }

35 Yhat
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36 # Now calculate the squared errors for each of the predictions

37 error <-Y-Yhat

38 # Squares of errors

39 error^2

40 # Finally , the sum of squared errors

41 SSE <-sum(error ^2)

42 SSE

43 # Plot the model and fitted values

44 plot(Time ,Y,ylab="Central England temperatures [Celsia]", xlab

="Day",type="l",main="Central England temperatures in 2004

")

45 # Add the plot of the fitted values

46 lines(Time , Yhat ,lty =2)

47 # Next add a legend to the plot

48 legend(dt1 ,21, legend=c("Time Series", "SES alpha =0.6"), col=c

("black","black"), lty=c(1,2), lwd=c(1,1),cex =0.8)

Next, we present an alternative solution via the built-in function ses in
R, from library forecast:

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: An alternative solution to the above goal , now using

the

4 # function ses from the library called forecast.

5 # ------------------------------------------------------------

6 #

7 # Attach the library forecast

8 library(forecast)

9 # Next use the function ses from the library forecast.

10 # The function ses is able to choose the most optimal alpha ,

but we will

11 # not use such functionality now , we will ask ses to use alpha

=0.6

12 fit.ses.Y <- ses(Y,alpha =0.6)

13 # plot the model and fitted values (Yhat)

14 plot(Time ,Y,ylab="Central England temperatures [Celsia]", xlab

="Day",type="l",main="Central England temperatures in 2004

")

15 lines(Time , fit.ses.Y$fitted ,lty=2)
16 legend(dt1 ,21, legend=c("Time Series", "SES alpha =0.6"), col=c

("black","black"), lty=c(1,2), lwd=c(1,1),cex =0.8)

17

18 # Next , we check the values of the estimated parameters.

19 # Note that the output in R will show us that the ses model is

using

20 # alpha =0.6

21 summary(fit.ses.Y)

22

23 R OUTPUT:

24

25 > summary(fit.ses.Y)

26

27 Forecast method: Simple exponential smoothing

28

29 Model Information:

30 Simple exponential smoothing
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31

32 Call:

33 ses(y = Y, alpha = 0.6)

34

35 Smoothing parameters:

36 alpha = 0.6

37

38 Initial states:

39 l = 17.3391

40

41 sigma: 1.1852

42

43 AIC AICc BIC

44 118.9222 119.3508 121.7902

45

46 Error measures:

47 Training set

48 ME RMSE MAE

49 0.05262822 1.146358 0.9558096

50 MPE MAPE MASE ACF1

51 0.002338004 5.352873 0.9558096 0.1829013

52

53 Forecasts:

54 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

55 32 18.31794 16.79901 19.83687 15.99493 20.64094

56 33 18.31794 16.54658 20.08930 15.60887 21.02701

57 34 18.31794 16.32588 20.31000 15.27135 21.36453

58 35 18.31794 16.12731 20.50857 14.96765 21.66823

59 36 18.31794 15.94529 20.69059 14.68929 21.94659

60 37 18.31794 15.77628 20.85960 14.43081 22.20507

61 38 18.31794 15.61783 21.01805 14.18848 22.44740

62 39 18.31794 15.46817 21.16771 13.95960 22.67628

63 40 18.31794 15.32599 21.30989 13.74215 22.89373

64 41 18.31794 15.19027 21.44561 13.53458 23.10130

Next, we will do simple exponential smoothing again, for Central England
temperature data again. However, this time we will find and use the opti-
mal value of α. We find such optimal value, and for that, we will use the
function ses.

1 # R Code

2 # ------------------------------------------------------------

3 # Goal: Input the Central England Temperature Data , plot it

and then perform SES with optimal alpha.

4 # ------------------------------------------------------------

5 #

6 # Next use the function ses from the library forecast.

7 # The function ses is able to choose the most optimal alpha.

8 # What we do is we do not tell ses which alpha to use , and

that way

9 # the function ses knows that the optimal alpha needs to be

found first.

10 fit.ses.Y <- ses(Y)

11 # plot the model and fitted values (Yhat)

12 plot(Time ,Y,ylab="Central England temperatures [Celsia]", xlab
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="Day",type="l",main="Central England temperatures in 2004

")

13 lines(Time , fit.ses.Y$fitted ,lty=2)
14 legend(dt1 ,21, legend=c("Time Series", "SES alpha =0.6"), col=c

("black","black"), lty=c(1,2), lwd=c(1,1),cex =0.8)

15

16 # Next , we check the values of the estimated parameters.

17 # Note that the output in R will show us that the ses model is

using

18 # A different value of alpha (not 0.6)

19 summary(fit.ses.Y)

20

21 R Output:

22 > summary(fit.ses.Y)

23

24 Forecast method: Simple exponential smoothing

25

26 Model Information:

27 Simple exponential smoothing

28

29 Call:

30 ses(y = Y)

31

32 Smoothing parameters:

33 alpha = 0.7743

34

35 Initial states:

36 l = 17.3835

37

38 sigma: 1.1775

39

40 AIC AICc BIC

41 120.5181 121.4070 124.8201

42

43 Error measures:

44 Training set

45 ME RMSE MAE MPE MAPE MASE

46 0.03915644 1.138912 0.9796218 -0.03237187 5.45775 0.9796218

47 ACF1

48 0.05465299

49

50 Forecasts:

51 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

52 32 18.32345 16.81438 19.83251 16.01553 20.63136

53 33 18.32345 16.41487 20.23202 15.40453 21.24236

54 34 18.32345 16.08558 20.56131 14.90092 21.74597

55 35 18.32345 15.79888 20.84801 14.46245 22.18444

56 36 18.32345 15.54157 21.10532 14.06893 22.57796

57 37 18.32345 15.30613 21.34077 13.70885 22.93804

58 38 18.32345 15.08777 21.55912 13.37490 23.27199

59 39 18.32345 14.88324 21.76365 13.06211 23.58478

60 40 18.32345 14.69021 21.95668 12.76689 23.88000

61 41 18.32345 14.50693 22.13996 12.48659 24.16030

Next, we do Holts’ exponential smoothing to Central England temperature
data. We also recreate the Figure 3.18.
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1 # R Code

2 # ------------------------------------------------------------

3 # Goal: Holts ’ exponential smoothing to Central England

4 # temperatures data and plot.

5 # ------------------------------------------------------------

6 # R code

7 #

8 # Plot of data and fitted values

9 plot(Time ,Y,type="l",

10 xlab="Day",

11 ylab="Central England temperatures [Celsia]" ,main="

Central England temperatures in 2004",lwd =2)

12 fit.holt.Y<-holt(Y)

13 lines(Time ,fit.ses.Y$fitted ,lty=3,col="blue",lwd =2)
14 lines(Time ,fit.holt.Y$fitted ,lty=2,col="red",lwd =3)
15 legend(Time [1],21, legend=c("Time Series", "SES", "Holt"),

16 col=c("black","blue","red"), lty=2, lwd=c(1,2,3),cex

=0.8)

In what follows, there are further R Lab questions for you to
work on. Solutions are not provided here. They are provided
upon request.

4. [Purpose: to practice forecasting.] You are asked to do forecasting for
Central England Temperature data. Do all analyses in R.

(a) Using R, and suitable criteria compare SES and Holt’s models.

(b) For the model that is better, do the goodness-of-fit analysis.

(c) Do the forecast for 6-time points ahead. Do you trust your forecasts?
Explain.

5. [Purpose: to practice forecasting.] You are asked to analyse securities
yield time series data (Risk-2021-Yield-Data.csv). Do all analyses in R.

(a) Use R to model the data in three ways: simple exponential smoothing,
Holts, and Holt-Winters. Which is the best in terms of RMSE?

(b) Generate the autocorrelation (correlogram) for the Yield time series.

(c) Generate the autocorrelation (correlogram) for the errors of each of
the three models.

(d) Look at the plotted autocorrelation and judge if there is evidence
against the model. Based on autocorrelation which model is the best?
Based on autocorrelation can we trust the predictions of the model?

(e) Fit a Holt-Winters model to the data.

(f) Generate a one-step-ahead prediction and prediction intervals for that
prediction.

(g) State your assumptions upon which the interval is based.

(h) If the assumptions are not satisfied, can we trust the prediction in-
tervals?
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6. [Purpose: to practice forecasting. ] You are asked to analyse Plastic
sales data. The plastics data set consists of the monthly sales (in thou-
sands) of product A for a plastics manufacturer for five years. The dataset
is stored as PlasticsMonthlySales.csv. Do all analyses in R.

(a) Plot the time series of sales of product A. Visually, can you identify
seasonal fluctuations, a trend or a cyclic component?

(b) Calculate the logarithm of the time series and plot it again.

(c) Use a classical additive decomposition to calculate the trend-cycle
and seasonal indices.

(d) Do the results support the graphical interpretation from part (a)?

7. Purpose: to practice forecasting.] You will work with Monthly data of
totals of international airline passengers (Jan 1949- Dec 1960). The data
are stored in the file AirPassengers.csv. Do all analyses in R.

(a) Plot the time series data to get a feel for its structure. What type of
time series decompositions should be done? Additive or multiplica-
tive? Why?

(b) Take the logarithm of the series and plot it. Does the log-transformed
time series look suitable for additive or multiplicative decomposition?

(c) Use the decompose function to do the time series decomposition (of
original passenger data) automatically, twice: additive, and multi-
plicative decomposition. Create the plots and comment on the plots:
do they differ? Why?

8. Purpose: to practice forecasting.] You are asked to analyse Yield
data (Jan 1950-Dec 1970). They are stored in a file called Yield.csv. Do
all analyses in R.

(a) Plot the time series data. Does the seasonality appear additive or
multiplicative? Why?

(b) Do seasonal decomposition of the data assuming an additive model
for the components, by using the decompose R function.

(c) Next, do seasonal decomposition of the data assuming a multiplica-
tive seasonality, by using the decompose R function and compare with
the additive decomposition.

3.9 Exercises

Solve the following exercises by using pen, paper and calculator.
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1. [Purpose: Practicing simple exponential smoothing. Given the fol-
lowing central England mean temperatures
y = (17.3, 17.9, 17.3, 15.4, 15.0, 17.6, 18.2, 17.2, 16.6, 15.7,
15.1, 16.8, 17.2, 18.7, 19.4, 18.3, 17.9, 18.5, 20.3, 19.5, 19.2,
20.2, 19.8, 20.2, 21.7, 19.8, 19.7, 18.3, 19.3, 17.3, 18.5)
do the following:

(a) Using simple exponential smoothing, and α = 0.4, calculate the first
7 predictions (i.e. Yt for t = 1, · · · , 7).

(b) Now calculate the squared errors for each of the predictions.

(c) Finally, find the sum of squared errors.

(d) Repeat the procedure for α = 0.3. Which is the better value of α?
Justify your answer.

2. [Purpose: Practicing the decision process on what predictor vari-
ables should be used.] You are asked to list the possible predictor vari-
ables that might be useful, assuming that the relevant data are available.
(Adopted from Hyndman & Athanasopoulos, Forecasting: Principles and
Practice, the online book).

Case 1 A large car fleet company asked us to help them forecast vehicle
resale values. They purchase new vehicles, lease them out for three years,
and then sell them. Better forecasts of vehicle sales values would mean
better control of profits; understanding what affects resale values may al-
low leasing and sales policies to be developed in order to maximize profits.
At the time, the resale values were being forecast by a group of specialists.
Unfortunately, they saw any statistical model as a threat to their jobs and
were uncooperative in providing information. Nevertheless, the company
provided a large amount of data on previous vehicles and their eventual
resale values.

Case 2 In this project, we needed to develop a model for forecasting
weekly air passenger traffic on major domestic routes for one of Australia’s
leading airlines. The company required forecasts of passenger numbers for
each major domestic route and for each class of passenger (economy class,
business class and first class). The company provided weekly traffic data
from the previous six years. Air passenger numbers are affected by school
holidays, major sporting events, advertising campaigns, competition be-
haviour, etc. School holidays often do not coincide in different Australian
cities, and sporting events sometimes move from one city to another. Dur-
ing the period of the historical data, there was a major pilot’s strike during
which there was no traffic for several months. A new cut-price airline also
launched and folded. Towards the end of the historical data, the airline
had trialled a redistribution of some economy class seats to business class,
and some business class seats to first class. After several months, however,
the seat classifications reverted to the original distribution.
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3. [Purpose: Practicing a visual inspection of plotted time series -
recognising the trend, seasonal and cyclic changes.] In the following
Figure 3.25, there are four data series showing trend, seasonality, and cyclic
behaviours. Which shows increasing seasonality with the increasing trend?

FIGURE 3.25: Four-time series showing patterns typical of business and
economic data. Source:

https://www.stat.berkeley.edu/ arturof/Teaching/STAT248/lab10part1.html

4. [Purpose: Practicing the estimation of covariance and correlation
matrix.] We have a short Olympic Women’s 100 m data. Use these data
to estimate the covariance matrix between time t and values Y. Use these
data to estimate the correlation matrix.

ti Yt u v u · u u · v v · u v · v
1928 12.2
1932 11.5
1948 11.9
1952 11.5

E[]

5. [Purpose: Practicing the calculation of the lagged time series
Given a time series with the following values y = (5, 1, 4,−9, 3,−3, 7, 0,−1, 8)
What is the time series lagged by 5? Use pen, paper and a calculator and
clearly show your work.

6. [Purpose: Practicing the calculation of autocorrelation.] Use the
following time series values y = (5, 1, 4,−9, 3,−3, 7, 0,−1, 8)

• Which pairs of values are used for calculating the autocorrelations r3
and r6?

• Calculate the two autocorrelations, r3 and r6. Use a pen, paper and
a calculator and clearly show your work.
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• In any time series (not just this one), the autocorrelation at lag 0 is
1. Why is it?

7. [Purpose: Practicing the calculation of moving averages for
yearly time series data.]

Year Average Temperature

1659 8.83
1660 9.08
1661 9.75
1662 9.50
1663 8.58

(a) Calculate the moving average of order 3 for the years 1660, 1661 and
1662.

(b) Why can the moving average of order 3 not be calculated for the
years 1659 and 1663

(c) Is it possible to calculate a moving average of order 5 for these data?

8. [Purpose: Practicing the calculation of moving averages for quar-
terly time series data.] Here is a simple dataset of quarterly beer pro-
duction data. (data from Hyndman’s book, Chapter 6.2).

Year Quarter Observation

1992 Q1 443
1992 Q2 410
1992 Q3 420
1992 Q4 532
1993 Q1 433
1993 Q2 421
1993 Q3 410
1993 Q4 512
1994 Q1 449
1994 Q2 381
1994 Q3 423
1994 Q4 531

(a) Calculate the moving average of order 4 using calculator.

(b) Calculate the moving average of order 4 using R and compare.
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In this chapter, we are exploring a widely applicable probability model called a
Markov chain, named after Russian mathematician A. A. Markov (1856-1922).
He observed that many real-world phenomena can be modelled as a sequence
of transitions from one state to another, while there is some probability about
the transition. For example, a person can be healthy and each day the person
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can transition to an unhealthy state with some probability, or it can stay in
the healthy state. Or a homeowner’s house has a certain value and each day
it can transition to another value, it can go up or down, or stay the same. Or
a bus driver is transitioning between several locations in a city.

In all these examples, we need to know the probabilities of transitioning
from one state to another state or staying in the same state. Additionally, we
need to know which state the system is in: where is the taxi driver now, how
much money the gambler has now, and what the value of the house is today.
Then we will be able to predict the next state. For the taxi driver, we do not
need to know how he got into the current position, we need to know where
he is now and the transition probabilities, and then we can guess where he
will be next. For the house price, we do not need to know how the house price
evolved in the past, we only need to know the current price and the transition
probabilities, then we can make a guess what the next day price will be. For
the gambler, we do not need to know how he got to the current state, we only
need to know how much he owns now, and then we can estimate his next state.

Learning objectives

• Learn what Markov chains are and how they are mathematically defined.

• Learn matrix notation to facilitate Markov chain computations.

• Learn about regular chains and their exceptional property embodied in
the Steady State Theorem.

• Learn about special types of Markov chains: irreducible, periodic and ape-
riodic.

• Learn to simulate Markov chains in R.

4.1 Building a Markov Chain model

We will start with an example, and then we introduce theory.

Example: Cereals buyers.We will consider the following scenario. Com-
pany K, the manufacturer of breakfast cereal, currently has 25% of the market.
Data from the previous year indicates that 88% of K’s customers remained
loyal that year, but 12% switched to the competition. In addition, 85% of the
competition’s customers remained loyal to the competition, but 15% of the
competitor’s customers switched to K (Table 4.1).

Note, that the above implies that the decision to stay or to switch the
cereals brand is happening at discrete time points, once a year. Without loss
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Next cereal by
K Competition

Last cereal by
K 0.88 0.12
Competition 0.15 0.85

FIGURE 4.1: Cereal buyer’s consumption state-transition diagram.

of generality, we can imagine that this decision is done by each customer on
1 January of each year. Assuming that these trends continue, we are asked to
determine K’s share of the market:

a) in 2 years,

b) in the long-run (i.e. the long-term prediction).

This cereals buyers’ problem is an example of a brand-switching problem
that often arises in the sale of consumer goods. We can construct a diagram in
Figure 4.1, where the two circles represent the two states a customer can be in,
and the arcs represent the probability that a customer makes a transition each
year between states. Note the circular arcs indicating a transition from one
state to the same state. The diagram is called the state-transition diagram.

In every such state transition diagram (Figure 4.1), the sum of probabil-
ities on branches exiting a state must equal 1. For example, in Figure 1 the
probabilities of exiting state K (i.e. state 1, the Brand K cereal) are 0.12 and
0.88, they add up to 1. We include in this calculation the probability 0.88 in-
dicated by a loop in the state diagram, which simply means that the customer
has a 0.88 probability of staying in state K (i.e. 1) in the next time step, once
he/she has been buying K brand cereals in the present time step (here the
steps are years).

4.1.1 Terminology

Define Y0 to be the cereal brand which was bought by the customer in the
initial time step, hence at time 0. Define Yn be the cereal brand which is bought
by the customer at time n (in this example n-th year). Since Y0, Y1, Y2, . . .
”occur” in sequence, they are often referred to as a chain. More precisely, this
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particular sequence is a finite-state, discrete-time, time-homogeneous Markov
chain. Each of these terms is explained below.

We will define Markov Chain mathematically.

• Let 1,..,s denotes the set of states (also called the state space) of the
Markov Chain (in Cereal Example, 1 = buying company K cereals, and 2
= buying competitions cereals, so s=2)

• Let Y0, Y1, Y2, . . . are random variables, indicating the states at times n =
0, 1, 2, ...

• Let yn be the observed value of the state at time n.

For example, we can observe the following chain of states: 1 → 2 → 2 →
1 → 1 see the Table 4.1:

Time 0 1 2 3 4 5

State that has occurred Y0 = 1 Y1 = 2 Y2 = 2 Y3 = 1 Y4 = 1 Y5 =?

TABLE 4.1: Cereals buyer Bob’s Markov chain realisation. Note, that in this
example the time steps are years.

Table 4.1 shows the realised states for one customer, say, Peter, where 1
means buying K, 2 means buying from a competitor, i.e. his chain is 1 → 2 →
2 → 1 → 1, in years 0 to 4, while we do not know what he is going to buy in
year 5. Another customer, let us call her Anita, can follow the same model (the
probabilities in Figure 1) and her realised sequence can be 2 → 2 → 2 → 2 → 1
in years 0 to 4. These two chains of values are two realisations of the Markov
Chain, one for Peter and Anita, the chains are different but they still are
following the same model which is depicted by Figure 4.1 and can be worded
as there is an 88% probability to stay with K in next year, 12% chance to
switch from K to Competition, 85% probability to stay with Competition,
and 15% probability to switch from Competition to K.

Markov chain is a stochastic process because the values appear randomly
according to some probability rules. Time series are also examples of stochastic
processes. But time series (like the number of car sales, or yields of shares)
are a series of values measured on a continuous scale, hence they do not live
in a finite space.

In the Cereals buyers example, in the Markov chain the time is discrete (see
Figure 4.2). Hence the Markov chain is called to be a discrete-time Markov
chain. The time is indexed by the discrete listing n=0,1,2. . . . In Cereals buyers’
example, the time’s steps are years (but they can be anything e.g. months,
days, every 6 months).

In Cereals buyers’ example the state variables are discrete i.e. they take on
a finite or countably infinite number of states (i.e. the number of elements in
the state space is finite or countably infinite). This is why this Cereals buyer’s
example Markov Chain is called a finite-state Markov chain.
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FIGURE 4.2: Illustration of the timeline in Markov Chain.

The Cereals buyers example is also time-homogeneous, in that the specified
probabilities do not change over time (there is no n in Figure 1). One could
imagine a different, more complicated model where the probabilities specified
apply to young customers, but different probabilities apply once the customer
gets older.

4.1.2 The Markov property

The Cereals buyers example has an important feature known as Markov prop-
erty. It says that the value of the chain at time n+1 (i.e. the value yn+1), only
depends on the value of the chain at time n (i.e. on the value yn). In other
words, once the current state is specified, the path that brought the chain to
that state is irrelevant. This has an important implication in how we estimate
the value of the future state. Knowing the present state helps us to calculate
the probabilities of the values of the future state, however, once we know the
present state we won’t get any additional information about the future by
gathering the information about the past.

Consider, for example, the random walk of Cereals buyers example: if say
for n = 4 we have Y4 = 1 (brand K), then we know Y5 = 1 or 2 with prob-
ability 0.88 or 0.12, respectively. It does not matter whether we speak about
Peter or Anita, they have a different history of states, but they are both at
state 1 at time n=4. Their probability distribution of the next state at time
n = 5 is the same. This notion is formalised in the following definition.

Definition. Let sequence Y0, Y1, Y2, . . . be a sequence of random variables
(a chain) on some discrete state space (e.g. 1= customer buys from Company
K, and 2= customer buys from Competitor, in the cereal example). This
sequence is said to have the Markov property if, for any time index n and any
set of states the following holds:

P (Yn+1 = sn+1|Y0 = s0, Y1 = s1, . . . , Yn = sn) = P (Yn+1 = sn+1|Yn = sn)
(4.1)

The Markov property is also called the memoryless property . Because once
we know the current state, that is all we need to find probabilities of the future
state, we do not need to know the past states i.e. we can forget the past
(Figure 4.3). This is not to say that the future states do not depend on the
past. Indeed, the future depends on the past events. But, once we know the
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current state, the future does not depend on the past. In other words, once we
know the current state, knowing the past is not adding any new information
about the future.

The probabilities P (Yn+1 = sn+1|Yn = sn) in Equation 4.1 are the one-
step transition probabilities of the chain, or sometimes called just transition
probabilities. These are the probabilities specified in the Cereals example (e.g.
see Figure 1). It is critical to recognise that these are conditional probabilities:
they specify the likelihood of the next member of the chain Yn+1 being in any
particular state, given the current state of the chain Yn.

Example: Cereals buyers. (continue) Let

• state 1 = customer buying K’s cereal bran and

• state 2 = customer buying competition’s cereal brand.

The sequence of successive cereal brands bought by customer Bob is char-
acterised by four one-step transition probabilities. For example, it is stated
that the customer “transitions” from Company K to the competitor with a
probability 0.12, which means that for any time index, n,

P (Yn+1 = 2 | Yn=1) = 0.12

This probability does not depend on the value of n, because the chain is
time-homogeneous. Instead of writing P (Yn+1) = 2 | Yn = 1) = 0.12, we
will sometime abbreviate with P (1 → 2) = 0.12 to emphasize the idea of
transitioning from one state to another. Thus, the complete set of one-step
transition probabilities for a cereal customer is

P (1 → 1) = 0.88, P (1 → 2) = 0.12

P (2 → 1) = 0.15, P (2 → 2) = 0.85

The probabilities P (Yn+1 = sn+1 | Y0 = s0, Y1 = s1, . . . , Yn = sn) in Equa-
tion 4.1 are also conditional probabilities (we learned conditional probabilities
in Chapter 2). The Equation 4.1 says, that the conditional distribution of the
future states of the chain depends only upon the present state, not on the
sequence of events that preceded it (i.e. not on past), as is also illustrated on
Figure 4.3.

FIGURE 4.3: Markov property.
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4.1.3 One-step transition probabilities

We introduced the notion of a Markov chain and its one-step transition prob-
abilities. We can organise all transition probabilities into a matrix: the proba-
bility in i-th row and j-th column indicates the transition probability P (i → j):

Definition. Let Y0, Y1, Y2, Y3 . . . be a finite-state, time-homogeneous
Markov chain, and index the states of the chain by the positive integers
1, 2, . . . , s. The (one-step) transition matrix of the Markov chain is the s×s
matrix P whose (i, j)-th entry is given by

pi,j = P (i → j) = P (Yn+1 = j | Yn = i)

for i = 1, . . . , s and j = 1, . . . , s.

Example: Cereals buyers. (continue) We have two states, so s = 2. We
called it State 1 when a customer buys from Company K, and State 2 is the
customer busy from a Competition Manufacturer. The matrix P was 2 × 2
matrix:

P =

[
P (1 → 1) P (1 → 2)
P (2 → 1) P (2 → 2)

]
=

[
0.88 0.12
0.15 0.85

]
=

So for example the entry of the matrix P in the second row and first column
is

P (2 → 1) = P (Yn+1 = 1 | Yn = 2)

and it is equal to 0.15 in the Cereal Example. So if a customer is now buying
a competitor cereal brand, then next time the customer will switch and buy
from company K, with a probability of 0.15.

Note, that the matrix of one-step transition probabilities, P, must satisfy
the following three conditions:

1. All the elements of P must lie between 0 and 1;

2. P must be a square matrix;

3. Each row of the matrix must sum to 1. This will always be the case: given
that the chain is currently in some state i, it has to go somewhere in its
next step (even if that entails remaining in state i). That is, for any state
i and any time index n, we must have

s∑
j=1

pi,j =

s∑
j=1

P (i → j) =

s∑
j=1

P (Yn+1 = j | Yn = i) = 1
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4.1.4 Initial and one-step probability distributions

Thus far, every probability we have considered has been conditional. For ex-
ample, the entries of any one-step transition matrix indicate P (Y(n + 1) =
j|Yn = i). In this section, we briefly explore unconditional probabilities which
result from specifying a distribution for the random variable Y0, the initial
state of the chain. We will consider one case: modelling the initial state Y0 as
a random variable. Another case is to model the initial state as fixed, but we
will not do it here.

Example: Cereals buyers. (continue) We will assume that we decided
to call January 2000 as the initial year. On January 2000 we did a survey
and found that 25% of customers are buying cereal K and 75% buy from
competitors. That is, we have assigned the following initial distribution to the
Markov chain:

State i 1 (K brand) 2 (competition brand)

P (Y0 = i) 0.25 0.75

TABLE 4.2: Initial state distribution for Bob from Cereals buyers example.

This also means, that if we randomly chose a participant, then there is a
chance of 0.25 that he/she is buying K and a chance of 0.75 that he/she is
buying cereal from the competition. We will use the notation:

p(0) = [0.250.75].

Unlike the conditional probabilities that comprise the transition matrix
of the Markov chain, this initial distribution specifies the unconditional (aka
marginal) distribution for the random variable Y0. In what follows, we will
sometimes refer to the bottom row of the table above or to p(0) as the “ini-
tial probability vector” “starting probability vector” “initial distribution” or
“probabilities of the initial state”.

What do we need to define a Markov chain? Two mathematical structures
are sufficient to determine a Markov Chain fully:

1. The one-step transition matrix, P, of one-step transition probabilities,

2. The row vector, p(0) , of probabilities of the initial state.

Now that we know the probabilities of the initial state, can we calculate
the probability of future states? Now consider the random variable Y1, the
brand of cereal bought by the customer in year 1 (i.e. exactly 1 year after
the initial date). What is the probability that he buys K after one time step,
hence after 1 year? This can be determined by the law of total probability
(see Chapter 2).

P (Y1 = 1) = P (Y1 = 1 | Y0 = 1)P (Y0 = 1) + P (Y1 = 1 | Y0 = 2)P (Y2 = 2)
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= (0.88)(0.25) + (0.15)(0.75) = 0.3325

The foregoing computation is the product of the initial probability vector
with the second column of the matrix P. Both probabilities must add up to
one (so we could have just calculated P (Y1 = 2) = 1 − 0.3325 = 0.6675. So
altogether, the unconditional probability mass function, p(1), for the random
variable Y1 (what the customer is buying one time step after the initial time)
is:

State i 1 (K brand) 2 (competition brand)

P (Y1 = i) 0.3325 0.6675

TABLE 4.3: Initial state distribution for Bob from Cereals buyers example.

An efficient way to determine the distribution of Y1 is to compute all (here
two) products simultaneously through matrix multiplication. If we multiply
the transition matrix P on the left by a 1x2 row vector containing the initial
probabilities for Y0, we obtain

p(1) = p(0)P (4.2)

which is

p(1) = p(0)P = [0.25, 0.75]×
[

0.88 0.12
0.15 0.85

]
= [0.3325, 0.6675]

Interpretation:

• So after one year (n=1), for a randomly chosen person there is a 33.25%
chance that he is buying K and 66.75% competitor cereals. This is equiv-
alent to the following:

• So after one year (n=1), 33.25% of the people are in state 1 - that is,
buying K’s cereal. So the expected market share of cereal K is 33.25%,
after 1 year.

• This result makes intuitive sense, e.g. of the 25% currently buying K’s
cereal 88% continue to do so next year, while of the 75% buying the com-
petitor’s cereal, 15% change to buy K’s cereal - giving a (fractional) total
of (0.25× 0.88) + (0.75× 0.15) = 0.3325 buying K’s cereal.

Note 1: We should always check that the total of p(0) adds up to 1, the
total of p(1) adds up to 1, etc.

Note 2: When multiplying the vector p(0) with the matrix P the order of
calculation is important. First, we write the vector and then the matrix (i.e.,
p(0)P) because:

p(0)P ̸= Pp(0),
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p(1)P ̸= Pp(1).

Note 3: We use small and thin letter p for a row vector of probabilities,
and capital bold P for the transition matrix.

The method illustrated in the Cereal example can be generalised to find
the unconditional distribution of the states Yn in the chain after any number
of transitions n, starting with a specified initial distribution for Y0.

Theorem: Let Y0, Y1, Y2, Y3 . . . be a Markov chain with state space 1, . . . , s
and one-step transition matrixP. Let p(0) be a 1×s vector specifying the initial
(starting) distribution of the chain, i.e. p(0) = (P (Y0 = 1), . . . , P (Ys = 1)).
Then

p(1) = p(0)P

More generally, if p(n) denotes the 1 × s vector of marginal probabilities for
Yn

p(n) = p(0)Pn

where p(n) is the probability vector representing the probability of each state
at time n i.e. after n steps, and Pn is the one-step transition matrix P to the
power of n.

Proof. The formula p(n) = p(0)Pn can be derived using the same mathe-
matical approach displayed in Example Cereal for p(1). Now consider p(2), the
vector of unconditional probabilities for Y2. By the same reasoning, we have

p(2) = p(1)P

The substitution p(1) = p(0)P then yields

p(2) = p(0)PP = p(0)P2

Analogically, we have for general n that

p(n) = p(n−1)P = (p(0)Pn−1)P = p(0)Pn,

as claimed. Hence the above is true for any n, by induction principle.
Example: Cereals buyers. (continue) Next, we want to know what is the

state of the system in year 2. To answer such a question, we need to calculate
the 2x1 vector of marginal probabilities: the probability that a customer will
be in state 1 (buying K) after two years, and the probability of a customer
being in state 2 (buying competitor brand) after two years. In two years from
now (i.e. n=2), the state of the system is given by:

p(2) = p(0)P2

= [0.25, 0.75]

[
0.88 0.12
0.15 0.85

]2
= [0.25, 0.75]

[
0.7924 0.2076
0.2595 0.7405

]
= [0.3927, 0.6073]
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Alternatively,

p(2) = p(1)P

= [0.3325, 0.6675]

[
0.88 0.12
0.15 0.85

]
= [0.3927, 0.6073]

Interpretation: So two years from now, 39.27% of the people will be buying
K’s cereal, and 60.73% will be buying from the competitor. So if we randomly
choose a customer, and if we do not know what was her/his initial state, then
such a customer will be buying K’s cereal two years from now with a proba-
bility of 39.27%, or competition cereals with a probability of 60.73%.

Note that p(n) is the probability vector of being in states 1, 2, . . . s at time
step n. These are marginal probabilities, as they give the probability of being
in state i at n steps, i.e. they do not condition on anything. And p(0) is the
vector of probabilities of initial states, i.e. at time 0.

4.1.5 Multistep transition probabilities

We now turn to the determination of multistep transition probabilities. Given
that a Markov chain is currently in state i, what is the probability it will be
in state j two steps later (i.e., after two transitions)? Three steps later? We
begin by introducing the definition.

Definition. Let Y0, Y1, Y2, Y3 . . . be a time-homogeneous Markov chain.
For any positive integer k, the k-th step transition probabilities are defined
by

p
(k)
i,j = P (k)(i → j) = P (Yn+k = j | Yn = i), (4.3)

where i and j range across all the states of the chain (typically 1, . . . , s. When
k > 1 then we call these probabilities the multistep transition proba-
bilities. For k = 1, i.e., one-step transition, we will typically revert to the

previous notation: P (1)(i → j) = P (i → j). For k = 1, 2, dots the p
(k)
i,j are con-

ditional probabilities because they give the probability of getting into state j
given that we were in state i exactly k steps ago. The superscript (k) above in
expression 4.3 does not indicate taking the k-th power; it indicates the state
of the system (the customer or the market) in k steps. The matrix containing
P (k)(i → j) is called the multistep transition matrix, describing the tran-
sitions over k steps.

We have already seen how to calculate the probability of future states (see
Theorem 4.1.4). We used matrix Pn to transition from an initial state into
future states in n steps. Since the Markov chain is homogeneous, the matrix
should allow us the transition from any time point to any future time point,
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in other words, such a matrix is the matrix of transition probabilities that we
are looking for.

Chapman-Kolmogorov equations. If a Markov chain has a one-step
transition matrix P, then the k-th step transition matrix of probabilities are
the entries of the matrix Pk, i.e. k-th power of matrix P. In other words,

p(k)(i → j) = p
(k)
i,j is the (i,j)-th entry of matrix Pk

Example: Cereals buyers. (continue) Find the 2-step transition matrix,
and use the theorem above to find the 2-step probability distribution. Sup-
pose that the customer just bought cereals from the K brand. What is the
probability that two years from now he will again be buying the K brand, i.e.
P (2)(1 → 1) = P (Yn+2 = 1 | Yn = 1)? To answer the question, we realise that
the one-step transition matrix is

P =

[
0.88 0.12
0.15 0.85

]

Hence the two-step-transition matrix is

P2 =

[
0.88 0.12
0.15 0.85

]
×
[

0.88 0.12
0.15 0.85

]
=

[
0.7924 0.2076
0.2595 0.7405

]

Hence, two years after buying the K brand, a customer will be again buying
the K brand with a probability of 79.24%. Similarly two years after buying
a competitor brand, the customer will be again buying the competitor brand
with a probability of 74.05%.

4.1.6 Long-run prediction of the state

When we first introduced the Cereal Example we also asked what happens in
the long run, i.e. after a sufficiently long time, we want to know which states
are likely to occur and with what probabilities. In other words, we are asked
to find the long-term prediction of the states when n goes to infinity. This
means we need to find the long-run probabilities of the states. This assumes
that, eventually, the system will reach a long-run distribution in the sense
that the state of the system at time n is equal to the state of the system at
time n− 1, i.e. the vectors of probabilities are not changing any more:

p(n) = p(n−1)

This does not mean that transitions between states no longer take place, they
do, but they balance out so that the number in each state remains the same.
Such long-run distribution is also called long-term distribution. It is also said
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that, for large n, such a system is then in a stationary state as it is not changing
any more. Some also call it the equilibrium state or steady state.

There are two basic approaches to calculating the long-term probability
distribution:

1. Computationally: by calculating p(n) for n = 1, 2, 3 . . . and stop when
p(n−1) and p(n) are approximately the same. This is easy for a computer
to do but can be lengthy to do by hand.

2. Algebraically: to avoid the lengthy arithmetic calculations needed to write
the vector p(n) algebraically for n = 1, 2, 3 . . . , we use an algebraic short-
cut. This is what we will do next.

An algebraic solution to find the long-run prediction can be found by easy:

• In the long run the row-vectors of probabilities are the same:

p(n) = p(n−1)

• The left hand side (i.e. the p(n)) can be written as p(n) = p(n−1)P, while
the right hand side is p(n−1), so due the equality we have

p(n−1)P = p(n−1).

• We will use this last equality to find the stationary vector p(n−1) of the
probabilities.

Example: Cereals buyers. (continue) We next find the long-term be-
haviour of the Cereal Markov Chain example, via the algebraic approach. The
vector p(n) has two elements because there are only two states in our example
Cereal Manufacturer. Let p(n−1) = [Y1, Y2] then we need to find the two values
Y1 and Y2 such that:

[Y1, Y2] = [Y1, Y2]×
[

0.88 0.12
0.15 0.85

]

and such that Y1 + Y2 = 1. This means that we have to solve three equations
of two unknowns:

Y1 = 0.88Y1 + 0.15Y2

Y2 = 0.12Y1 + 0.85Y2

1 = Y1 + Y2

Since 2 < 3, it means that there is some redundancy in the three equa-
tions. In fact, it can be shown that the system of the above three equations is
equivalent to (i.e. has the same set of solutions, (Y1, Y2): 0.12Y1 − 0.15Y2 = 0
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and Y1 + Y2 = 1. The equation Y1 + Y2 = 1 is essential, as without it we
could not obtain a unique solution for Y1 and Y2. Solving the system of equa-
tions, we obtain Y1 = 0.5556 and Y2 = 0.4444. This means that in the long
run, K’s market share will be 55.56% and competitor’s 44.44%. There will be
customers who will be switching from one brand to another, but the split of
the customers will not be changing. This can only happen, if the number of
customers who switch from K to competition, is the same as the number of
customers who switch from competition to K.

Comment 1: A useful numerical check (particularly for larger systems of
equations) is to substitute the final calculated values back into the original
equations to check that they are consistent with those equations.

Comment 2: Using a computational approach, n = 12 iterations were
needed before the vectors p(n) and p(n − 1) were approximately the same
(see Section 1).

Comment 3: We were making an assumption that such a long-run state
of the system exists. For example, the system with the following transition
matrix and the initial state does not have a long-run probability distribution

P =

[
0 1
1 0

]
p(0) ̸= [0.5, 0.5]

Do you see why the system above does not have a long-run distribution? What
if the initial vector was p(0) = [0.5, 0.5]?

Comment 4: How do we come up with reasonable estimates of the transi-
tion probability matrix, P? The data needed to deduce transition probabilities
can be easily gathered. As an example, such data used to be gathered for con-
sumer brand switching by surveying customers individually. However, many
supermarkets in the UK now have their own “loyalty cards” which are swiped
through the checkout at the same time as a customer makes their purchases.
These provide a mass of detailed information as well as other information such
as the effect of promotional campaigns. Consider the supermarkets that are
gathering a mass of data from which they can deduce brand-switching tran-
sition matrices. Do you think those matrices might be of interest (value) to
other companies or not?

Comment 5: Should the transition probabilities be constant? You should
note that transition probabilities ought not to be considered as fixed numbers,
they are, in fact, numbers that we can influence or change.

Comment 6: Our Cereal example was very simple. The competition was
represented by one state (so there were two states in total: K and competitor).
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With more detailed data that state could be changed into a number of differ-
ent states - maybe one for each competitor brand of cereal. We could also have
different models for different segments of the market - maybe brand switching
is different in rural areas to that in urban areas for example. Families with
children would constitute another important segment of the market.

4.2 Further topics on Markov Chains

In this section, we continue with Markov Chains by bringing more complex
examples.

4.2.1 Commuter Cyril example

In this section, we bring more examples, introduce regular Markov chains,
discuss the interpretation of the long-run distribution, and introduce irregular
and aperiodic Markov chains. We will also discuss one example of a Markov
chain that does not live in time, but rather in space (e.g., a land).

Example: Cyril going to work. A man either drives his car or catches
a train to work each day. Suppose he never goes by train two days in a row;
but if he drives to work, then the next day he is just as likely to drive again
as he is to travel by train. Before his first day of work he needed to go to his
new workplace to bring all his paperwork, for that the man tossed a fair die
and drove to the workplace if a 6 appeared. The state space of the system (i.e.
the list of all the states) is train, drive or simply t, d. Questions:

1. Now, the probability that the system changes from state t to state d in
exactly 2 steps?

2. What is the probability that the system changes from state t to state d in
exactly 4 steps?

3. What is the probability that on the fourth working day, the man is driving
to work?

This is another example of a Markov chain since the outcome on any day
depends only on what happened the previous day. This can be summarised in
Table 4.4 and visualised on a one-step transition diagram in Figure 4.4.

The one-step transition matrix of this Markov chain is:

P =

[
0 1
1
2

1
2

]

The first row of the matrix corresponds to the fact that he never goes by train
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Next flight by
BA Competition

Last flight by
BA 0.85 0.15
Competition 0.10 0.90

TABLE 4.4: Commuter Cyril’s one-step transition probabilities for choosing
the type of transportation from home to his work.

FIGURE 4.4: Commuter Cyril’s one-step transition diagram for choosing the
type of transportation from home to his work.

two days in a row, and so he will certainly drive the day after he travels by
train. The second row of the matrix corresponds to the fact that the day after
he drove to work, there is an equal probability that he will drive or go by train.
Now, the probability that the system changes from, state t to state d in exactly
2 steps is calculated by using a second power of matrix P, i.e. using matrix
P2 (where the superscript is the power of 2): Hence the two-step-transition
matrix is

P2 =

[
0 1
1
2

1
2

]
×
[

0 1
1
2

1
2

]
=

[
1
2

1
2

1
4

3
4

]

So the answer to the first question is that the probability that the system
(the man who needs to travel to his work) changes from state t to state d in
exactly 2 steps is 0.5.

Next, to answer the second question on the probability that the system
changes from state t to state d in exactly 4 steps we need to calculate the
fourth power of matrix P:

P4 = P2 ×P2 =

[
1
2

1
2

1
4

3
4

] [
1
2

1
2

1
4

3
4

]
=

[
3
8

5
8

5
16

11
16

]

So we have the four 4-steps transitions probabilities:

P (4)(t → t) =
3

8
, P (4)(t → d) =

5

8

P (4)(d → t) =
5

16
, P (4)(d → d) =

11

16
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So the answer to the second question is that the probability that the system
changes from state t to state d in exactly 4 steps is 5

8 .
To answer the third question (the probability that on the fourth day, the

man is driving a car to work) we need the initial distribution. We were told,
there was a day zero, when the man had to go to work to bring his paperwork.
We were also told that the man tossed a fair die and drove to work if a 6 ap-
peared, so he can bring his paperwork. This means that his initial probability
distribution is P (0) = [ 56 ,

1
6 ] (remember we always write the train probabil-

ity first, then the driving a car). Then, after 4 time steps (here work days)
the multi-step probabilities of each state are (from the Chapman-Kolmogorov
equations):

P (4) = P (2)P4 =

[
5

6
,
1

6

] [
3
8

5
8

5
16

11
16

]
=

[
35

96
,
61

96

]

gives the probability of states on day four, i.e.

P
(4)
t =

35

96
, P

(4)
d =

61

96

so, with probability 35
96 he is taking a train, and with probability 61

96 he is
driving, on day four of his work.

4.2.2 Regular Markov chains

A finite-state Markov Chain with one-step transition matrix P is said to be
a regular chain if there exists a positive integer n such that all of the entries
of the matrix Pn are positive (i.e. non-zeros). In other words, for a regular
Markov chain, there is some positive integer n such that every state can be
reached from every state (including itself) in exactly n steps.

It is straightforward to show that if all entries Pn are positive, then so
are all the entries of P(n+1) and P(n+2), and so on. Our Cereal Example
is a regular chain, and since P has all entries positive (non-zero), and our
Example Commuter Cyril is also a regular chain, as P2 has all entries positive
(see previous section).

4.2.3 Steady-state theorem

What is so special about regular Markov chains? The transition matrices of
regular Markov chains exhibit a rather interesting property.

The Steady-state theorem Let P be the one-step transition matrix of
a finite-state regular Markov Chain. Then the following limit

Π = [π1, π2, . . . , πs] = lim
n→∞

Pn

exists. Moreover, the rows of the limiting matrix Π are all identical, with all
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positive entries. In other words, if the regular Markov Chain runs for a long
time the Pn will stop changing, and it will be equal to a matrix with identi-
cal rows, and all elements are positive (non-zero). So in other words, in the
long-run, every regular Markov chain reaches a steady state. We demonstrate
the idea in the next example.

Example: Cereals buyers. (continue) In previous sections, we intro-
duced Cereal Example. Its one-step transition matrix P is regular, as it has
all elements positive (non-zero). Hence by Steady-state theorem the matrix
Pn is converging to a limiting matrix, moreover, all rows of the limiting ma-
trix are identical, with all positive entries. We can see this by calculating the
powers in R (see Section 1):

P 1 =

[
0.88 0.12
0.15 0.85

]
P 2 =

[
0.7924 0.2076
0.2595 0.7405

]
P 20 =

[
0.5563764 0.4436236
0.5545295 0.4454705

]
P 40 =

[
0.5555571 0.4444429
0.5555537 0.4444463

]
P 60 =

[
0.5555556 0.4444444
0.5555556 0.4444444

]
P 200 =

[
0.5555556 0.4444444
0.5555556 0.4444444

]
We see that every row of the matrixP60 is identical to seven decimal places.

The same holds for matrix P200. If we try even higher power, we will get the
same matrix again and again. This example illustrates the central theorem of
regular Markov chains: the Steady-state theorem, which says that for regular
Markov chains the powers of transition matrix reach a limiting matrix which
we will call as Π i.e., the capital Greek letter Pi. In Cereal example:

Π =

[
0.5555556 0.4444444
0.5555556 0.4444444

]

4.2.4 Interpretation of the long run distribution

If we let the vector Π = [π1, π2, . . . , πs] denote each of the identical rows of the
limiting matrix Π of a regular Markov chain, then the vector Π is called the
long-run probability distribution of the Markov chain (also called stationary
distribution, steady-state distribution).

Thus for the Cereals buyers example, the long-run distribution is Π =
[0.5556, 0.4444] (with 4 decimal places). The steady-state distribution can be
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interpreted in several ways. We present three here (for further discussion see
the recommended book by Carlton and Devore [13], p450):

1. If the “current” state of the Markov chain is observed after a large number
of transitions, there is an approximate probability πj of the chain being
in the state j; that is for large n, P (Yn = j) ≈ πj . Moreover, this holds
regardless of the initial distribution of the chain (i.e. the unconditional
distribution of the initial state Y0).

(a) The first sentence above is essentially the definition of the Π and it
follows from the Steady-state theorem.

(b) The second sentence above says that the effect of the initial state
or the initial probability distribution of the process wears off as the
number of steps of the process increase.

(c) In the Cereal example, if we let the chain run for some amount of
time, and then we randomly choose a customer, there is a 55.56%
chance that she is buying K at that current time.

2. The long-term (i.e. long-run) proportion of time the Markov chain visits
the j-th state is πj . So, in the Cereal example, if we let the chain run for
some amount of time, then after that this is what we can say about each
customer: a customer spends about 55.56% of time buying brand K and
44.44% of time buying from competitor.

3. If we assign Π to be the initial distribution of Y0 then the distribution of
Yn is also Π for any number of subsequent transitions n. For this reason,
Π is customarily referred to as the stationary distribution of the Markov
chain. Also, Π is sometimes called the fixed probability vector transition
matrix P.

Example: Cereals buyers. (continues) If the initial distribution is p(0) =
[0.25, 0.75], then after 20 steps the market share is: p(0)P20 = [0.5556, 0.4444].
We have seen, that from n=20, the Pn is not changing much. Also, we found
that in the long term the proportion of the market is (0.5555556 0.4444444).

What if the initial market share is [0.99, 0.01]? What will be the market
share after 20 steps (years)? What if the initial distribution is [0.01, 0.99]?
What will be the market share after 20 years? The effect of the initial state
wears off. We also saw this previous section with the Cereal Example. Now
we will do it again with the Example of Commuter Cyril.

Caution! It is not possible to make long-range predictions with all tran-
sition matrices. However, for a regular transition matrix, it is always possible
to make long-range predictions. In other words, a Markov process that has a
regular transition matrix will have a steady state. Also, a Markov chain does
not have to be regular for the limit of Pn to exist. (one example is in the book
by Carlton and Devore, p449).
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Example: Commuter Cyril. (continue) What is the long-term predic-
tion for this Markov chain? We showed above that this is a regular Markov
chain, so it will reach a steady state or equilibrium, let us call it: Π = [π1, π2].
We will use that π1 + π2 = 1, so we can simply reparameterise Π = [x, 1− x]
i.e. x = π1 and 1− x = π2. Furthermore, thanks to Theorem 4.1.4 the vector
Π must satisfy:

[x, 1− x]

[
0 1
1
2

1
2

]
= [x, 1− x]

which is a system of two equations of one unknown, in a vector and matrix
notation. Multiplying the vector on the left-hand-side with the matrix, and
then equating it to the vector on the right, we get:

1

2
(1− x) = x

1 +
1

2
(1− x) = 1− x

which is true if and only if

x =
1

3

hence

Π =

[
1

3
,
2

3

]
Thus, in the long run, the man will take the train to work one-third of the

time and drive to work two-thirds of the time. Since there is a unique solu-
tion, we can say that the system will reach a steady state or equilibrium, if
the transition probabilities do not change. The stationary distribution of this
long-term prediction is this: [13 ,

2
3 ] i.e., with probability 1

3 he will take train,
and with probability 2

3 he will drive his car.

Next, we calculate the powers of the matrix P in Example Commuter Cyril
and estimate the limiting matrix. To answer this question we need to check
if there exists a positive integer n such that all of the entries of the (power)
matrix Pn? Yes, this Markov chain is regular, because for n=2, the second
power of P has all entries positive (non-zero):

P 2 =

[
0.5 0.5
0.25 0.75

]
And since the matrix P is regular then the steady-state exists according

to State-State Theorem. Next, we can calculate the 10th and 20th power

P 10 =

[
0.3339844 0.6660156
0.3330078 0.6669922

]
P 20 =

[
0.333334 0.6666666
0.333333 0.6666667

]
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FIGURE 4.5: Bus driver Lubos’s one-step transition diagram.

We, therefore, estimate that the limiting matrix must be:

Π =

[
0.333333 0.6666667
0.333333 0.6666667

]

4.2.5 Irreducible Markov Chains

The existence of a stationary distribution is not unique to regular Markov
chains.

Definition. Let i and j be two (not necessarily distinct) states of a Markov
chain. State j is accessible from state i (or, equivalently, i can access j) if
P (n)(i → j) > 0 for some integer n ≥ 0.

For n = 0, the symbol P (0)(i → j) > 0 is interpreted as the probability of
going from i to j in zero steps, an so necessarily P (0)(i → i) = 1 for all i and
P (0)(i → j) = 0 for i ̸= j. In particular, this means that every state i is, by
definition, accessible from itself.

Definition. A Markov chain is irreducible if every state is accessible from
every other state in a finite number of steps.

It should be clear that every regular chain is irreducible (do you see why?).
However, the reverse is not true: an irreducible Markov chain need not be a
regular chain. See the next Example Bus driver.

Example: Bus driver Lubos. Consider the following Markov Chain. A
bus driver follows his bus route from campus (state 1), to the nearby student
housing complex (state 2), do downtown (state 3), and then back to campus.
The associated Markov chain cycles endlessly. Assuming it starts at state 1,
the chain is: 1 → 2 → 3 → 1 → 2 → 3 → 1 . . .. The one-step transition
diagram is in Figure 4.5.

The one-step transition matrix is:

P =

 0 1 0
0 0 1
1 0 0


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The powers of the matrix P are

P2 =

 0 0 1
1 0 0
0 1 0

 ,P3 =

 1 0 0
0 1 0
0 0 1

 = I,P4 =

 0 0 1
1 0 0
0 1 0

 , ...

Where I is an identity 3× 3 matrix. So we have that

P4 = P3P = IP = P

P5 = P4P = PP = P2

P6 = P5P = P2P = I

P7 = P6P = IP = P

P8 = P7P = PP = P2

and so on, the Pn is equal to one of P, P2 and I for every positive integer
n, and all three of these matrices contain some zero entries. Therefore, this is
not a regular Markov Chain. Lubos can access any of the three locations in
visits from any other location, so the chain is irreducible.

Question:What is its long-term prediction for the bus driver Lubos? Does
it achieve a steady state? And if yes, what is the stationary distribution of
this steady state?

Answer: Since it is not a regular Markov Chain we cannot apply the
Steady-State theorem i.e. the theorem does not apply here and hence is not
telling us if this has steady-state. So, we need another approach. We will do a
direct proof. We will assume that such stationary distribution exists, we will
call it π = (x, y, z) and we will find it. (If we cannot find it then it does not
exist). In order to find it, we will use the fact that a stationary distribution
has to satisfy

[x, y, z]

 0 1 0
0 0 1
1 0 0

 = [x, y, z] (4.4)

and x+ y + z = 1.
From 4.6 it follows that x = z, y = x, z = y. By applying the condition

x+ y + z = 1, we get that

[x, y, z] =

[
1

3
,
1

3
,
1

3

]
(4.5)

is the stationary distribution of the steady-state. So in the long term, the
chain achieves a steady state.

So, the interpretation of the above is that if the bus driver Lubos is equally
likely to be at any of its three locations right now, it is also equally likely to
be at any of those three places after the next transition. This is the stationary
distribution of states for Lubos the bus driver even though the chain is not
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regular. This means there are chains that are not regular, and yet achieve a
steady–state in the long run (in the long term). In the next subsection we will
look into them closely.

4.2.6 Periodic and aperiodic Markov chains

Definition. The period of a state i is defined as the greatest common divisor
(gcd) of all positive integers n such that P (n)(i → i) > 0; if that gcd equals
1, then state i is called aperiodic.

Example: Bus driver Lubos. (continue) All three states have period 3,
because for every state the period is gcd of 3, 6, 9, . . . hence it is 3. Hence, all
states are periodic with period 3, i.e. they are not aperiodic.

It can be shown that every state in an irreducible chain has the same
period. A Markov chain is said to be aperiodic if that common period is 1
and is called periodic otherwise. In other words, irreducible Markov is called
aperiodic if all states are aperiodic.

Why is periodicity important? It plays a role when we discuss long-term
(i.e. limiting) distributions.

Theorem: A finite-state Markov chain is regular if, and only if, it is both
irreducible and aperiodic.

How, do we check the periodicity of an irreducible Markov Chain? Consider
a finite irreducible Markov chain. If there is a self-transformation in the chain
(P (i → i) > 0 for some i), then the chain is aperiodic.

Note: The bus driver Lubos’s example is a case of an irreducible Markov
chain that is not regular, it is irreducible and periodic. Hence, we cannot use
the Steady-State theorem to tell if there is a steady state; nevertheless, it has
a steady state, as we calculated previously. On the other hand, Going to Work
and Cereal examples are regular, and hence irreducible and aperiodic.

Example: Fatima investigating forest health. Markov chain models
have been used to study the pattern of diseased and healthy trees in forests.
In one such model, it was assumed that the forest could be divided into areas
of two types:

• gaps, which contained only healthy trees,

• and patches, which contain both diseased and healthy trees.

Each tree could be classified as

• a diseased tree (state 0),

• as a healthy tree (state 1)

• or as a healthy gap tree (state 2).

Fatima is tasked to investigate the forest’s health. She decided to walk in
the forest, choosing her path randomly. Each tree along a randomly chosen
path through the forest is one of these three types. Suppose that the types of
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trees Fatima encounters on her path can be modelled by a Markov chain. The
transition matrix can be given by:

P =

0 1 2
0 0.3 0.1 0.6
1 0.1 0.3 0.6
2 0.1 0.1 0.8

 
Approximately what proportion of the trees Fatima encounters on a long

path are healthy?
Solution: The question is the same as asking for the stationary distribu-

tion of the chain but here instead of time, our Markov chain lives in space i.e.
across the forest space. Hence we need to solve:

[x, y, 1− x− y]

 0.3 0.1 0.6
0.1 0.3 0.6
0.1 0.1 0.8

 = [x, y, 1− x− y] (4.6)

which leads to the following equations

0.3x+ 0.1y + 0.1(1− x− y) = x
0.1x+ 0.3y + 0.1(1− x− y) = y
0.6x+ 0.6y + 0.8(1− x− y) = 1− x− y

which leads to
0.1 = 0.8x
0.1 = 0.8y
0.2 = 0.8x+ 0.8y

Solving these equations we obtain

x =
1

8
, y =

1

8
, z =

3

4

The healthy trees are trees in states 1 and 2, so the proportion of trees that
are healthy is given by 1

8+
3
4 = 7

8 . Hence, Fatima will encounter approximately
7
8 proportion of healthy trees encountered on a long path.

4.3 Tips to think and act like a risk expert

Here we will give two give tips and tricks.

4.3.1 Not all sequences are Markov Chains but some can be
turned into Markov Chains

Not all sequences of random variables possess the Markov property. In econo-
metrics (statistical methodology applied to economics, for example, most mod-
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els for the closing price Xn+1 of stock on the n+1st day of trading incorporate
not only the previous day’s closing price Xn but also information from many
previous days (the data Xn−1, Xn−2, . . . and so on). The likelihood that Xn+1

will be £5 higher than Xn may depend on the stock’s behaviour over all of
last week, not just where it closed on day n.

That said, in some instances a model that includes more than a one-time-
step dependence can be modified by reconfiguring the state space in such a
way that it satisfies the Markov property.

For example, in the Snowy days example (see below Exercises), we assume
that one can model tomorrow’s weather based on today’s conditions without
incorporating any previous information. A more realistic model might assume
that tomorrow’s snow depth depends on today’s and yesterday’s weather.
Suppose, for example, that tomorrow will be a snow day with a probability of
0.8 if both yesterday and today were snow days; with a probability of 0.6 if
today was snow and yesterday was a green day; with a probability 0.3 if it was
green day today and snow yesterday; with probability 0.1 if both previous days
were green. Once again, let Xn = “the state of the weather on day n: G for
green, S for snowy”. Then the sequence {X0, X1, X2, X3. . . } does not satisfy
the Markov property, because the conditional distribution of Xn+1 depends
on both Xn and Xn−1 (the weather on previous two day’s weather condition).

We can turn the sequence into a new sequence which has Markov property,
which is what we show next. So for such sequence {X0, X1, X2, X3. . . } we can
try to make the following modification: Let us define a new chain of variables
Yn

Yn = (day nweather, day n+ 1weather) = (Xn, Xn+1)

i.e. each Yn is defined as a vector of two random variables Xn and Xn+1.
So, for example, consider days 4 and 5:

• If snow depth was ≥ 50mm on day 4 but < 50mm on day 5, then we
denote it as Y4 = (S,G).

• The weather on day 6 depends on these previous two days, but they are
now both contained in a single “variable” Y4.

• In other words, Y5, can be modelled entirely by knowing Y4: Y5’ s first entry,
X5, matches the second entry of Y4, and the probability distribution of
the second entry of Y5 (i.e., X6) is determined by the rules given at the
beginning of this example.

Thus with this modification, the sequence {Y0, Y1, Y2, Y3, . . . } forms a Markov
Chain. The state space is not {S,G} but rather {(S, S), (S,G), (G,S), (G,G)}.
The earlier weather rules can be expressed as one-step transition probabilities
for this chain:
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P ((S, S)) → (S, S)) = 0.8
P ((S,G)) → (G,S)) = 0.3
P ((G,S)) → (S, S)) = 0.6
P ((G,G)) → (G,S)) = 0.1

Four other transition probabilities can be found by considering the com-
plements of the given transition events:

P ((S, S)) → (S,G)) = 1− 0.8 = 0.2
P ((S,G)) → (G,G)) = 1− 0.3 = 0.7
P ((G,S)) → (S,G)) = 1− 0.6 = 0.4
P ((G,G)) → (G,G)) = 1− 0.1 = 0.9

The final eight transition probabilities (with four states, there are 42=16
total one-step transition probabilities) are all 0, so we have:

P ((S,G)) → (S, S)) = 0
P ((G,S)) → (G,S)) = 0
P ((G,G)) → (S, S)) = 0
P ((S, S)) → (G,S)) = 0
P ((S,G)) → (S,G)) = 0
P ((G,S)) → (G,G)) = 0
P ((G,G)) → (S,G)) = 0
P ((S, S)) → (G,G)) = 0

Finally, the one-step transition matrix of {Y0, Y1, Y2, Y3. . . } is in the fol-
lowing table

Next weather
(S,S) (S,G) (G,S) (G,G)

Last weather

(S,S) 0.8 0.2 0 0
(S,G) 0 0 0.3 0.7
(G,S) 0.6 0.4 0 0
(G,G) 0 0 0.1 0.9

4.3.2 Sensitivity analysis

In the examples above, we assumed that we know the probabilities. For ex-
ample, we assumed precise probabilities of transition from K to Competition
in the Cereal buyer example. In real life, we do not know them precisely, but
hopefully, we have some imprecise answers. For example, in the Cereals exam-
ple, we may estimate that the transition probability from K to Competition
is between 0.1 to 0.15. In other words, we are facing uncertainty, as we do
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not have the precise probabilities to put into the transition matrix. How can
we resolve this problem? A way to resolve it is by conducting as sensitivity
analysis.

Sensitivity analysis is an important tool of risk analysis (not just Markov
Chains). It aids in reducing uncertainty by identifying high-impact parameters
(such as probabilities). This can help in finding out which data (information)
to acquire to reduce uncertainty on said parameters.

In Markov Chains, it is crucial to do sensitivity analysis. It can help in
finding out how the result (the multistep probabilities and stationary distri-
bution) depends on the specification of the probabilities or on outcome values.
For example, we can calculate the stationary distribution with 0.1 and again
with 0.15 and compare the stationary distributions to how much they differ. If
they differ a lot, then the stationary distribution is sensitive to how we specify
the transition probability from K to Competition.

4.4 Summary

We learned in this chapter:

1. Markov Chain is a finite-state stochastic process; it has a Markov “memo-
ryless” property. Markov chain is defined by two components: initial prob-
ability distribution and a one-step-transition matrix.

2. We learned how to calculate k-step transition P (k)(i → j) = P (Yn+k =
j|Yn = i) using iterations or k-step transition matrix P k (Chapman Kol-
mogorov equation).

3. We learned how to find long-term prediction, i.e. how the chain behaves
after many steps (when k is very large).

4. We saw that some Markov chains will reach stationary distribution after
a sufficient number of steps. We also call it a steady-state, equilibrium or
long-run distribution. We learned how to calculate the stationary distri-
bution π = (Y1, . . . , Ys) by finding a unique solution to equations: πP = π
and Y1 + Y2 + . . . + Ys = 1. We learned how to find out which Markov
chains will reach a stationary distribution.

5. We learned about several types of Markov chains: regular/irregular, re-
ducible/irreducible and periodic/aperiodic. We learned how to recognise
them (see definitions), and we learned some useful properties. For exam-
ple, the steady-state theorem says that a regular Markov Chain will always
reach a stationary distribution. Then we found a chain that was not regu-
lar and still reached a stationary distribution (see the Example Bus driver
Lubos).
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4.5 Further reading

The chapter mainly followed the notation and structure in the book ”Proba-
bility with Applications in Engineering, Science, and Technology” by Matthew
A. Carlton and Jay L. Devore [13] (see their Chapter 6). However, we added
several examples and discussions related to risk and uncertainty. Further rec-
ommended resources are:

1. For a dedicated R package we recommend [54].

2. Markov Chains are extremely popular and powerful with many applica-
tions. One of the most famous applications of Markov Chains is the Page
rank algorithm to rank web pages. It was developed in the late 1920s by
Sergey Brin and Larry Page, then graduates at Stanford University, when
they worked on their project to organise the World Wide Web’s informa-
tion. In 1998 they published their work and founded Google. We invite the
reader to google the history of the algorithm as well as how it was applied
for page ranking.

4.6 R lab

We first show how to use R to solve problems using Markov Chains. First,
several questions are provided with a solution. Then we give more questions
to you to work on but without a solution.

1. [Purpose: Getting experience of using R for simulation of Markov
Chains, specifically to find the effect of initial distribution on
limiting distribution from Section 4.1.] Assume initial state: 0.25
and 0.75 for K and Competition brand of cereals, respectively. Next, we
will use R to find the market share after n steps (n = 1, . . . , 100). This
is to find out the long-term prediction for the market share for each of
the two brands of cereal. We will not simulate the Markov Chain; rather,
we will evaluate the transition n times to get the multi-step probabilities
distributions.

1 > states <- c(1,2) # 1 for K company , 2 for competition

2 > p_0<-c(0.25 ,0.75) # initial probability distribution

3 > P = matrix(c(0.88 ,0.12 ,0.15 ,0.85) ,nrow=2,ncol=2,byrow=TRUE)

4 # Next we initialise the multi -step probability distributions

for states 1 and 2 at steps 1 to 100

5 > P_m1 <- rep(NA ,100)

6 > P_m2 <- rep(NA ,100)

7 # Next , the step 1 is to be done manually; this is an

initialisation
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8 > next_step <- NA

9 > next_step <- p_0 %*% P

10 > P_m1[1] <- next_step [1] # the marginal probability at time n

-1

11 > P_m2[1] <- next_step [2] # at time n

12 # Next , all the other probability distributions calculated in

a loop

13 > for (n in seq (2 ,100)){

14 > next_step <-NA

15 > next_step <-c(P_m1[n-1],P_m2[n-1])%*%P # <--- p(n) = p(n-1)

P

16 > P_m1[n]<-next_step [1]

17 > P_m2[n]<-next_step [2]

18 > }

19 # plot the n-step probability distributions

20 > plot(seq (0 ,100),c(p_0[1],P_m1),type="l",xlab="n time steps",

21 ylab="Prob after n steps",col="red",ylim=c(0,1))

22 > lines(seq (0 ,100),c(p_0[2],P_m2), col="blue")

23 > legend("topright",col=c("red","blue"),

24 legend=c("State 1 (company K cereals)","State 2 (

competition cereals"))

25 # Next , we plot the probabilities , we use the library(ggplot2)

26 > my.data <-data.frame(c(seq (0 ,100),seq (0 ,100)),

27 > matrix(c(p_0[1],P_m1,p_0[2],P_m2),nrow =202, ncol=1,byrow=

FALSE),

28 as.factor(c(rep (1 ,101),rep (2 ,101))) )

29 > colnames(my.data)<-c("Time.Steps","Prob.After.n.steps","

State")

30 > ggplot(my.data , aes(x=Time.Steps , y=Prob.After.n.steps , fill

=State)) +

31 geom_area()

32 # plot the differences for company K: proportion of market now

minus one step ago

33 we have to add the proportion (probability) at time 0.

34 > plot(diff(c(p_0[1],P_m1)),type="l",xlab="n",ylab="X at n - X

at n-1")

35 # Next , we print the first 38 differences

36 > diff(P_m1 [1:38])

37 # Long -term prediction:

38 > c(P_m1[100] ,P_m2 [100])

39

40 OUTPUT:

41 > Changes in the probability distribution of K cereal

42 > diff(P_m1 [1:5])

43 [1] 6.022500e-02 4.396425e-02 3.209390e-02 2.342855e-02

1.710284e-02

44 > Long -term prediction:

45 > c(P_m1[100] ,P_m2 [100])

46 [1] 0.5555556 0.4444444

The R-code above estimated the changes in the share of the market and
produced Figure 4.6. The share of K is smaller at year 0, but then, after
about 12 years, it gets a higher and higher share of the market till it stops
changing. So the long-term prediction for the market is a state that is not
changing.
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FIGURE 4.6: Cereals market shares over time, with the initial shares 0.25
and 0.75. The states are two: 1 = K brand cereal and 2 = Competition
brand. The time steps are years, i.e. it is assumed that each customer is

switching or staying with the same brand once a year.

Do we expect the actual market share to approach the long-term predic-
tion for the market or not? In other words: is the calculated long-term
prediction likely to happen? To answer this question we need to think
about what can intervene with our long-term prediction. Based on the
figure, it takes about 12-time steps (hence years) to reach the long-term
prediction of the steady state. In our calculations, we assumed that the
transition matrix P is not changing over the 12 years. Any changing cir-
cumstances can change the matrix P. For example, if a new competitor
enters the market this would likely render the transition matrix invalid
and hence make it impossible for the actual market share to reach the
calculated long-term prediction.

Next, we will change the initial state: 0.0001 and 0.9999 (K and com-
petition cereals), so we can see if and how the market share is affected
by the initial distribution. Use R to find the market share after n steps
(n=1..100). We use the same R-code as above, with one change:

1 > Initial probability distribution

2 > p_0 <- c(0.0001 , 0.9999)

Then the output is:

1 > OUTPUT:

2 > Changes in the probability distribution of K cereal

3 > diff(P_m1 [1:5])

4 [1] 6.022500e-02 4.396425e-02 3.209390e-02 2.342855e-02

1.710284e-02

5 > c(P_m1[100],P_m2 [100])

6 [1] 0.5555556 0.4444444
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FIGURE 4.7: Cereals market shares, with the initial shares 0.0001 and
0.9999. The states are two: 1 = K brand cereal and 2 = Competition brand.
The time steps are years, i.e. it is assumed that each customer is switching

or staying with the same brand once a year.

When we compare the two calculations, the initial state 0.25 and 0.75 vs.
0.0001 and 0.9999 (Figures 4.6 and 4.7), we see that the effect of the initial
state wears off. So the long-term prediction is the same as before.

In what follows, there are further R-lab questions for you to
work on. A solution is not provided here but can be provided
upon request.

2. [Purpose: Getting experience of using R for simulation of Markov
Chains, specifically simulation of individual customers from Sec-
tion 4.1 - while using library called base.]

1 > # Goal: This is a simulation of a Markov Chain.

2 > # We simulate a person buying either K (1) or a competitor

brand (2).

3 > states <-c(1,2) # 1 for K, 2 for competitor

4 > # Initial probability distribution

5 > p_0 <- c(0.25 ,0.75)

6 > # P, one -step transition matrix

7 > P = matrix(c(0.88 ,0.12 ,0.15 ,0.85) ,nrow=2,ncol=2,byrow=TRUE)

8 > # Simulate the initial state of a customer

9 > X <- sample(states ,1,TRUE ,p_0)

10 > current <-X

11 > for (i in 1:100){

12 nextstate <-sample(states ,1,TRUE ,P[current ,])

13 X<-c(X,nextstate)

14 current <-nextstate

15 }

16 > X

17 OUTPUT: Three outputs (i.e. running the above code three times

) for three independent customers:
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18 > X

19 [1] 2 2 2 2 2 2 2 2 2 1 2 2 2 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

20 [42] 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

21 [83] 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 2 1 1 1 1 1

1 2 2 2 1 1 1 1 1 1 1 1 2

22 [124] 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2

2 1 1 1 1 1 1 1 1 1 1 1 1

23 [165] 1 1 1 1 1 1 1 1 2 2 2 2 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

24 > X

25 [1] 2 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 1 2

26 [42] 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1

1 1 1 2 2 1 1 1 2 2 2 2 2

27 [83] 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

28 [124] 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1 2 1 1 1 2 2 2 2 2 2 2

2 2 2 2 1 2 1 2 2 2 2 2 2

29 [165] 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2

1 1 2 2 2 2 1 1 1

30 > X

31 [1] 2 2 2 2 2 2 2 2 1 1 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 2

2 1 2 2 2 2 2 1 1 1 1 1 1

32 [42] 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

2 1 1 1 1 1 1 1 1 1 1 1 1

33 [83] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2

1 1 1 1 2 2 2 1 1 1 1 1 1

34 [124] 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 1 1 1 1

35 [165] 1 2 2 2 2 2 2 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 1 1 1

1 1 1 1 1 1 1 1 1

3. [Purpose: Defining matrix P in R, from the Example Commuter
Cyril from Section 4.2.] In R, create a 2-by-2 matrix P. It should
contain the 1-step transition probabilities from the Example Commuter
Cyril. Then calculate the matrix of 2-step transition probabilities, i.e. P 2.

1 > P<-matrix(c(0 ,0.5 ,1 ,0.5) ,2,2)

2 > P

3 [,1] [,2]

4 [1,] 0.0 1.0

5 [2,] 0.5 0.5

6 > P%*%P

7 [,1] [,2]

8 [1,] 0.50 0.50

9 [2,] 0.25 0.75

4. [Purpose: Defining matrix P in R, from the Example Commuter
Cyril from Section 4.2.] Use R and Markov Theorem to find the n-step
predictions and long-term predictions. Assume initial state: 5/6 and 1/6
for (train and drive). What is the long-term prediction for the commute
behaviour of this person?
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1 # R Code. This is not a simulation of a Markov Chain.

2 # Goal: This is a calculation of the multi -step probability

distributions

3 # so we can numerically find the long -run behaviour of this

Markov Chain.

4

5 # To initialise the two states.

6 states <-c(1,2) # 1 for Train , 2 for drive the car

7

8 # initial probability distribution

9 p_0<-c(5/6, 1/6)

10

11 step transition matrix

12 P=matrix(c(0,1,.5,.5),nrow=2,ncol=2,byrow=TRUE)

# matrix P

13 # P, one # multi -step probability distributions for states 1

and 2 at steps 1 to 100

14 P_m1<-rep(NA ,100)

15 P_m2<-rep(NA ,100)

16

17 # Step 1 must be done manually

18 next_step <-NA

19 next_step <-p_0%*%P

20 P_m1[1] <-next_step [1]

21 P_m2[1] <-next_step [2]

22 # Other steps in a loop

23 for (n in seq (2 ,100)){

24 next_step <-NA

25 next_step <-c(P_m1[n-1],P_m2[n-1])%*%P

# p^((n))=p^((n

-1)) P

26 P_m1[n]<-next_step [1]

27 P_m2[n]<-next_step [2]

28 }

29

30 # plot the n-step probability distributions

31 plot(seq (0 ,100),c(p_0[1],P_m1),type="l",xlab="n time steps",

32 ylab="Prob after n steps",col="red",ylim=c(0,1))

33 lines(seq (0 ,100),c(p_0[2],P_m2), col="blue")

34 legend("topright",col=c("red","blue"),

35 legend=c("State 1 car","State 2 train"))

36 # library(ggplot2)

37 my.data <-data.frame(c(seq (0 ,100),seq (0 ,100)),

38 matrix(c(p_0[1],P_m1,p_0[2],P_m2),nrow

=202, ncol=1,byrow=FALSE),

39 as.factor(c(rep (1 ,101),rep (2 ,101))) )

40 colnames(my.data)<-c("Time.Steps","Prob.After.n.steps","State"

)

41 ggplot(my.data , aes(x=Time.Steps , y=Prob.After.n.steps , fill=

State)) +

42 geom_area()

43 # plot the differences for Company K: proportion of the market

now minus one step ago

44 # We have to add the proportion (probability) at time 0.

45 plot(diff(c(p_0[1],P_m1)),type="l",xlab="n",ylab="X at n - X

at n-1")

46 # print the first 38 differences



176 Elements of Risk Analysis with Applications in R

FIGURE 4.8: Changes in the market share over time, for the Cereals market
shares example, with the initial shares 5/6 and 1/6. The states are two: 1 =
K brand cereal and 2 = Competition brand. The time steps are years, i.e. it
is assumed that each customer is switching or staying with the same brand

once a year.

47 diff(P_m1 [1:38])

48 # stationary distribution (probabilities in steady -state)

49 c(P_m1[100] ,P_m2 [100])

50

51 OUTPUT:

52

53 Changes in the probability distribution of K cereal:

54 > diff(P_m1 [1:5])

55 [1] 3.750000e-01 -1.875000e-01 9.375000e-02 -4.687500e-02

2.343750e-02

56 > c(P_m1[100],P_m2 [100])

57 [1] 0.3333333 0.6666667

There were some “oscillations” during the first 10 time steps (see Fig-
ure 4.8). But then the long-term prediction is that this person will achieve
steady-state, in 1 out of 3 days he will use the train and in 2/3 days he
will use the car.

Would you expect the actual commute of this person to approach the
long-term prediction or not? In other words: is the calculated long-term
prediction likely to happen? Think how many time steps it takes to achieve
long-term prediction and what can intervene with your prediction during
those time steps.
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4.7 Exercises

Solve the following exercises by using pen, paper and calculator.

1. [Purpose: Practicing Markov Chains topics from Section 4.1.]
In analysing switching by Business Class customers between airlines the
following data has been obtained by British Airways (BA):

Next flight by
BA Competition

Last flight by
BA 0.85 0.15
Competition 0.10 0.90

Currently, BA has 30% of the Business Class market. Business Class cus-
tomers make two flights per year on average. (Hint: Square the matrix first
to get the yearly switching data).

a) Draw the state-transition diagram.

b) What would you forecast BA’s share of the Business Class market to
be after two years?

2. [Purpose: Practicing Markov Chains topics from Section 4.1.] A
company is considering using Markov theory to analyse brand switching
between three different brands of floppy disks. Survey data has been gath-
ered and has been used to estimate the following transition matrix for the
probability of moving between brands each month:

To brand
1 2 3

From brand
1 0.80 0.10 0.10
2 0.03 0.95 0.02
3 0.20 0.05 0.75

The current (month 1) market shares are 45%, 25% and 30% for brands
1, 2 and 3 respectively.

a) What will be the expected market shares after two months have
elapsed?

b) What is the long-run prediction for the expected market share for each
of the three brands?

c) Would you expect the actual market share to approach the long-run
prediction for the market or not (and why)?
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3. [Purpose: Practicing Markov Chains topics from Section 4.1.]
Vauxhall is currently investigating the behaviour of car fleet buyers in
switching between companies. Preliminary investigations have revealed
that fleet buyers usually have a number of companies from whom they
buy, but that they tend to keep in mind a target percentage for each
company. Market research indicates that, for the purpose of preliminary
analysis, a fleet buyer’s target percentage for Vauxhall cars can be regarded
as being one of 100%, 70%, 50% or 20%. An in-depth study of previous
buying behaviour has produced the transition matrix shown below for the
probability of switching each year between target percentages:

To target %
100 70 50 20

From target %
100 0.60 0.30 0.10 0.00
70 0.00 0.70 0.30 0.00
50 0.40 0.40 0.20 0.00
20 0.00 0.20 0.50 0.30

The current situation is that, for every 100 fleet buyers, 5 have a target
percentage for Vauxhall cars of 100%, 30 a target percentage of 70%, 45 a
target percentage of 50% and 20 a target percentage of 20%.

a) Draw the state-transition diagram.

b) What will be the percentage of fleet buyers having a target percentage
for Vauxhall cars of 50% in (i) 2 years’ time and (ii) the long run?

c) Would you expect the actual percentage of fleet buyers having a target
percentage for Vauxhall cars of 50% to approach the long-run figure
calculated above or not (and why)?

d) What advantages and disadvantages can you think of in using Markov
theory to forecast fleet buyers’ behaviour in this way?
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1. [Purpose: Practicing Markov Chains topics from Section 4.2.]
The article “Markov Chain Model for Performance Analysis of Transmit-
ter Power Control in Wireless MAC Protocol” (Twenty-first International
Conference on Advanced Networking and Applications, 2007) describes a
Markov chain model for the state of a communication channel using a
particular “slotted non-persistent” (SNP) protocol, for hourly time scale.
The channel’s possible states are (1) idle, (2) successful transmission, and
(3) collision. For particular values of the authors’ proposed four-parameter
model, the following one-step transition matrix of this Markov chain is:

P =

 0.50 0.40 0.10
0.02 0.98 0.00
0.12 0.00 0.88


a) Draw the state transition diagram for this chain.

b) Is this Markov chain irreducible?

c) Is this chain aperiodic?

d) We are told that P (Y0 = 1) = 0.1, P (Y0 = 2) = 0.8. Determine the
probability distribution of Y3, i.e. of the state of the communication
channel three hours after the initial valuation. Interpret.

e) At time 8 hours, what is the probability that the system is in a collision
if it was idle at time 7?

f) At time 8 hours, what is the probability that the system is in a collision
if it was idle at times 0, 1 . . . , 7?

g) At time 8 hours, what is the probability that the system is in a collision
if it was successfully transmitting at times 0, 1 . . . , 6, and then at time
7 it was idle?

h) Find P (Y0 = 1, Y1 = 2, Y2 = 1, Y3 = 3) and interpret it.

i) At time 5 hours, what is the probability that the system is in a collision
if it was successfully transmitting at times 0, 1 . . . , 4?

j) What is the long-term prediction for this channel? Does it achieve a
stationary distribution?

k) What proportion of time is this channel idle, in the long run?

l) Would you expect the actual channel to approach the long-run predic-
tion or not? Justify your answer.



180 Elements of Risk Analysis with Applications in R

2. [Purpose: Practicing Markov Chains topics from Section 4.2.]
The article “Markov Chain Models of Negotiators’ Communications” (En-
cyclopaedia of Peace Psychology 2012: 608-612) describes the following
set-up for the back-and-forth dialogue between two negotiators. If at any
stage a negotiator engages in a cooperative strategy, the other negotiator
will respond with a cooperative strategy with a probability of 0.6. Other-
wise, the response is described as a competitive strategy. Similarly, there
is a probability of 0.7 that a competitive strategy offered at any stage
of the negotiations will be met by another competitive strategy. Let Yn=
strategy employed at the n-th stage of a negotiation.

a) Identify the state space for the chain, specify its one-step transition
probabilities, and draw the corresponding state diagram.

b) Construct the one-step transition matrix for the Markov chain Yn=
strategy employed at the n-th stage of a negotiation, assuming the
states are (1) cooperative and (2) competitive.

c) If negotiator A employs a cooperative strategy at some stage, what
is the probability she uses a competitive strategy the next time?
[don’t forget that A’s turns are two-time steps apart since B counter-
negotiates in between.]

d) Now introduce a third state (3) end of the negotiation. Assume that
a Markov chain model with the following one-step transition matrix
applies:

P =

 0.6 0.2 0.2
0.3 0.4 0.3
0.0 0.0 1.0


Given that the initial strategy presented is cooperative, what is the
probability the negotiations end within three-time steps?

e) Refer back to c). Given that the initial strategy presented is compet-
itive, what is the probability the negotiations end within three-time
steps?

3. [Purpose: Practicing Markov Chains topics from Section 4.2.]
Markov chains are often used to model changing weather conditions; re-
search literature in both meteorology and climate science is filled with
Markov chain applications. The paper by Rodondi [49] provides data for
several US cities on the daily transitions between “snow days”, defined by
a snow depth of at least 50 mm, and “green days” (snow depth ¡ 50mm).

So, for each city, we can view the weather as a system, and the system can
be in one of two states: green day or snowy. In probability language, this
means that the state space of the system (i.e. the list of all the states) is
G, S or simply green day, snow. Let Xn represent the snow status, either
S for snow or G for green, on the nth recorded day. For New York City,
the following one-step transition probabilities are provided in the article:
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P (G → G) = 0.964, P (G → S) = 0.036

P (S → G) = 0.224, P (S → S) = 0.776

So, if today is a “green day” in New York, then there is a 96.4% chance
that tomorrow’s snow depth will also be below 50 mm, based on the avail-
able weather data (which, incidentally, stretches back to the year 1912 for
New York). On the other hand, as the author notes, “the presence of a
significant snow depth (accumulation) on the current day in Central Park
(New York) has an approximately 1 in 5 chance of melting before the next
day”. Hence the one-step transition matrix is

Next weather
G S

Last weather
G 0.964 0.036
S 0.224 0.776

And we have a sequence of random variables X0, X1, X2, X3. . . which is
a Markov Chain, i.e. it has Markov property because the probability of
tomorrow’s state is determined by the state today and by the transition
matrix P i.e. we do not need to know the states of snow or green in days
before today.

a) Identify the state space for the chain, specify its one-step transition
probabilities, and draw the corresponding state diagram.

b) What is the long-run prediction for this weather?

c) Will it achieve a steady state?

d) What proportion of days will it be green and what proportion snowy,
in the long run?
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When Cameron enters a casino and decides to bet money, assuming he is suf-
ficiently skilled and rational, he can calculate all the possible outcomes that
can happen and their probabilities. When he decides on his betting strategy
in the casino, he knows he faces the risk of losing money or the chance of win-
ning money. He does not know whether he will win or lose, but he knows the
chances (probabilities). We call such a situation: precise risk (see also Chapter
1).

A different situation occurred in early 2020 when the Covid-19 pandemic
started. Clinicians could articulate all future outcomes for a Covid-19 positive
patient, but they could not give probabilities of each outcome. The Covid-19
situation was different from Cameron’s casino situation: the Covid-19 situation
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involved uncertainty about surviving or dying, as well it involved uncertainty
about the probabilities of surviving and dying. We call such a situation: impre-
cise risk (see Chapter 1). Even though risk always involves less-than-complete
information, there is less information in situations of imprecise risk.

Cameron deciding on betting in a casino is a clear-cut example of making
decisions under precise risk. Such clear-cut decision-making situations under
precise risk are unusual in real life. In real life, there are often uncertainties
about outcomes or probabilities or consequences (see Figure 1.3). Life is more
like an expedition into an unknown jungle rather than a visit to a casino. Yet,
sometimes, decision-makers (sometimes wrongly encouraged or misinformed
by data modellers) proceed as if they had reliable estimates of all outcomes,
consequences and chances: they assume that the lack of knowledge is the same
as random chance. Such a mistake is called the tuxedo fallacy [30], , and it
leads to suboptimal, even fatal, decisions.

Various indications suggest that we have uncertainty in knowing the pos-
sible outcomes o consequences, including:

1. Variability within a sampled population or repeated measures leading to,
for example, statistical margins-of-error and prediction intervals, e.g. high
variability in weekly Covid-19 new cases will lead to wide prediction in-
tervals,

2. Computational or systematic inadequacies of measurement, also called im-
precision of measurement, e.g. underreporting the new weekly Covid-19
cases will lead to too low forecasts,

3. Limited knowledge and ignorance about underlying processes, e.g. if we
do not know how Covid-19 spreads from one person to another, then we
cannot employ the right data analytical methods for forecasting,

4. Expert disagreement, the credibility of a witness on a criminal legal case.

Note that another situation of imprecise risk is when the probabilities are
only available with some imprecision. For example, we may estimate a prob-
ability of a person having cancer as 5 to 8% probability (which would be a
case of a small probability uncertainty since 8-5 is 3%). Or we can estimate for
another person the probability of cancer to be 5 to 20%, which would be a case
of medium probability uncertainty. And for a third person, we may estimate
the probability of cancer to be 5 to 80%, thus large probability uncertainty. If
we estimate the probability to be between 0 to 100%, then this is a complete
probability uncertainty (as a special case of imprecise probability).

Learning objectives

1. Learn that each decision maker has a different attitude to risk, and this
attitude can be expressed via utility functions.
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2. We will look into how to make decisions when facing precise risk. We will
learn to consider the decision maker’s utility in our recommendations.

3. Then we will learn how to decide in a situation of imprecise risk, where
we do not know the probabilities of outcomes, i.e. complete probability
uncertainty. We will explore several alternative decision criteria.

5.1 Making decisions under precise risk

Next, we look into several strategies that we use to advise a decision-maker
who is facing a risk.

5.1.1 Measuring the risk with variance

Example. Makovnik Bakery. To motivate the decision under precise risk,
we consider an example of the owner of a Slovak bakery called Makovnik. The
owner is deciding where to open a new bakery. Figure 5.1 shows the prob-
ability distributions of possible weekly profits if the owner decides to locate
the new bakery in either Kuchyňa, Lozorno, or Malacky. The means, standard
deviations, and coefficients of variation for each distribution are displayed in
Figure 5.1. Which city should the owner choose to open one new bakery?

We now outline three rules for making decisions under precise risk:

1. The rule of maximum expected value: choose the decision with the
highest expected value. This rule employs the mean in order to make a
decision.

2. The mean-variance rules: employ both mean and variance in choosing
a decision. We discuss it below in more detail.

3. The rule of minimum coefficient of variation: choose the decision
with the smallest coefficient of variation. coefficient of variation (CV) is
a statistical measure of the relative dispersion of data points in a dataset
around the mean. It represents the ratio of the standard deviation to the
mean:

CV = E[X]/SD[X]

where X is the random variable representing all possible outcomes for
opening the restaurant in, e.g. Kuchyňa, and each outcome has a known
probability of happening, E[X] is the mean, and SD is the standard de-
viation. The CV is useful for comparing the degree of variation from one
data series to another, even if the means are different from one another.
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FIGURE 5.1: Weekly profits in Example Makovnik Bakery at three
locations. M = Mean, SD = Standard Deviation, CV = Coefficient of

variation.
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The mean-variance rules are as follows: employ both mean and variance
in choosing a decision. Given two risky decisions (designated A and B), the
mean-variance rules for decisions under precise risk are

1. If decision A has a higher expected outcome and a lower variance than
decision B, decision A should be made.

2. If both decisions A and B have identical variances (or standard deviations),
the decision with the higher expected value should be made.

3. If decisions A and B have identical expected values, the decision with the
lower variance (standard deviation) should be made.

The mean–variance rules are based on the assumption that a decision maker
prefers a higher expected return to a lower, other things equal, and a lower
risk to a higher, other things equal. It, therefore, follows that the higher the
expected outcome and the lower the variance (risk), the more desirable a deci-
sion will be. Under rule 1, a decision maker would always choose a particular
decision if it has a greater expected value and a lower variance than other de-
cisions being considered. With the same level of risk, the second rule indicates
decision maker should choose the decision with the higher expected value. Un-
der rule 3, if the decisions have identical expected values, the decision maker
chooses the less risky (lower standard deviation) decision.

Example. Makovnik Bakery. (Continues.) The expected weekly
profit in Kuchyňa is $3,750, in Lozorno is $3,500, and in Malacky is $3,500.
Using the rule of maximum expected value, the owner will choose Kuchyňa.
In this rule, the owner is not concerned (or is oblivious) with risk. Note that
if the owner had been choosing between only the Lozorno and Malacky loca-
tions, the expected value rule could not have been applied because each has
an expected value of $3,500. In such cases, some other rule may need to be
used.

How do we make decisions using the mean-variance rules?

• There is no location that dominates. Even though Kuchyňa has the high-
est expected value, it does not have the smallest spread among all three
locations.

• However, Kuchyňa dominates Malacky because it has a higher expected
value and a lower risk (rule 1).

• Lozorno also dominates Malacky regarding rule 3 because both locations
have the same expected value ($3,500), but Lozorno has a lower standard
deviation, thus less risk. So, if a decision is made between Lozorno and
Malacky, the location in Lozorno should be chosen.

• Next, how do we choose between Kuchyňa and Lozorno?
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• If the owner compares the Kuchyňa and Lozorno locations, the
mean–variance rules cannot be applied. Kuchyňa has a higher weekly ex-
pected profit ($3,750 >$3,500), but Lozorno is less risky (SD of Lozorno
¡ SD or Kuchyňa). Therefore, when making this choice, the owner must
make a trade-off between risk and expected return, which would depend
on the owner’s valuation of higher expected return versus lower risk. We
will use the coefficient of variation rule because it uses information on the
expected value and dispersion and can be used to make decisions involving
trade-offs between expected return and risk.

Using the rule of minimum coefficient of variation, the owner will calculate
the CV first. They are

• CV (Kuchyňa) = 1,545 / 3,750 = 0.41

• CV (Lozorno) = 1,025 / 3,500 = 0.29

• CV (Malacky) = 2,062 / 3,500 = 0.59

Since Lozorno has the smallest CV, the owner will choose Lozorno, according
to the Rule of minimal coefficient of variation.

Which rule is the best? At this point, you may wonder which of the three
rules for making decisions under precise risk is the “correct one.” After all,
the owner of Makovnik Bakery either reached a different decision or did not
decide, depending on which rule was used. Using the expected value rule,
Kuchyňa was the choice. Using the coefficient of variation rule, Lozorno was
chosen. According to mean–variance analysis, Malacky was out, but the deci-
sion between Kuchyňa and Lozorno could not be reached. If the decision rules
do not all lead to the same conclusion, the owner must decide which rule to
follow.

The art of decision-making under precise risk is closely associated with
a decision-maker’s (or stakeholder’s) preferences concerning risk-taking. De-
cision makers (e.g. business owners, managers, prime minister, head of the
school, people, you) can differ greatly in their willingness to take risks in
decision-making. Some are quite cautious, while others may seek out high-risk
situations.

In the next section, we present a theory of decision-making under precise
risk that formally accounts for a people’s attitude toward risk: if they like risk
a lot, if they are okay with some level of risk, or if they avoid risk as much as
possible.

5.1.2 What are the preferences of people toward risk?

Utility is a term economists use to describe the measurement of usefulness
that a consumer obtains from any good. The utility may measure how much
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one enjoys a movie or the sense of security from buying a deadbolt. Different
people may have different utilities.

Example. Two lotteries. You are asked to choose between two lotteries:
A and B.

• Lottery A: Get £3,125 for sure

• Lottery B: Win £4,000 with probability 0.75, and win £500 with proba-
bility 0.25

Which lottery do you prefer? The rule of maximum expected value advises
choosing the one with a higher expected value (i.e. choosing the one that gives
a higher expected profit). Is the rule of maximum expected value a good cri-
terion for deciding between two lotteries?

FIGURE 5.2: Example utility functions for risk-averse, loving and neutral
people.

To answer the question, we take a close look at the two lotteries:

• The two lotteries have the same expected value: £3,125.

• The lottery A has no risk, and the variance is zero. So by the rule of max-
imum expected value, we cannot decide. However, by the mean-variance
rules and the rule of minimal coefficient of variation, we decide on lottery
A.

• Probably most people will choose Lottery A because they dislike risk. Such
a person is called risk averse.
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FIGURE 5.3: Diminishing (decreasing) marginal utility. The gain in
happiness from one ride depends on the person’s starting point. Giving an
additional ride to a person who has done ten rides will increase his/her

happiness less than giving an additional ride to a person who has done two
rides.

• However, according to the rule of maximal expected value, both lotteries
are equivalent. Expected value is not a good criterion for people who dislike
risk. We call such people risk averse.

• If someone is indifferent between A and B, the risk is unimportant to him.
Such a person is called risk-neutral.

• A risk-loving person is an investor who is willing to take on additional risk
for an investment that has a relatively low additional expected return in
exchange for that risk. For example, if there is a Lottery C: win £4,000
with a probability of 0.1 and 500 with a probability of 0.9, the expected
return is £400+450=850. The risk-loving person would choose Lottery C
even if it gives lower expected returns than Lottery A and Lottery B.

The Two lotteries example illustrates that the optimal decision depends
on the utility of the decision maker, i.e. how he/she values the outcomes as
well as the risk. Not only does a decision maker care about the utility that the
money provides, but an individual also cares about the risk. A rational per-
son values Lottery A more than Lottery B despite having the same expected
monetary value. This is because Lottery A has a lower risk (in fact, no risk).

There are three types of people’s attitudes toward risk (Fig-
ure 5.2):

• Risk averse person. His or her utility function is concave by definition. It
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is a decision maker who makes the less risky of two decisions that have
the same expected value.

• Risk loving person. A decision maker who makes the riskier of two decisions
that have the same expected value.

• Risk neutral person. A decision maker who ignores risk in decision-making
and considers only the expected values of decisions.

We define utility formally as a function U(x), where x is the money amount.
In general, x can also be any goods or services, but in this book, we will
consider monetary utilities only. A utility function must satisfy the following
three properties:

• Monotonically increasing utility. This means that individuals prefer more
money than less money, so the utility function is a strictly increasing
function:

U ′(x) > 0

• Decreasing marginal utility. This means that the same increase in money
will cause a smaller increase in happiness if the person already owns more
money. In other words, the gain in utility depends on the starting point,
e.g. if I am rich or not. This property is also called diminishing marginal
utility. Mathematically, such property is satisfied by concave functions
(Figure 5.3)

U ′′(x) < 0

Utility functions for profit are often defined on continuous space of out-
comes (like assets or wealth), with continuous probabilities, and hence the
utilities are continuous functions. They are also called monetary utilities. We
could use gains or losses in making a monetary decision, e.g. an investment
decision. However, it makes more sense to use our current position (our as-
sets). The decisions we make could depend on the starting point. For example,
my decision may depend on whether I am rich or poor. I could make a riskier
decision if I am rich than poor. Monetary utility functions are defined over a
continuous variable (assets) or wealth.

Constant risk aversion is one of the types of risk aversion. Let us assume
that such a person forms a portfolio with one risky and one risk-free asset.
If the person experiences an increase in wealth, he/she will choose to keep
unchanged the number of pounds of the risky asset held in the portfolio since
her/his risk aversion is constant. An example utility curve for a person with
a constant risk aversion is

u(x) = 1− e−cx (5.1)

where c = 0.01 (Figure 5.4). In this case, the probability premium is constant
for a given value of c.
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FIGURE 5.4: Utility of a person with constant risk aversion.

FIGURE 5.5: Utility of a person with decreasing risk aversion.

Decreasing risk aversion is another type of risk aversion. Let us assume
that such a person is forming a portfolio with one risky asset and one risk-free
asset. If the person experiences an increase in wealth, he/she will choose to
increase the number of pounds of the risky asset held in the portfolio since
her/his risk aversion is decreasing. An example utility curve for a person with
a constant risk aversion is

u(x) =
ln(x+ a)− ln(a)

b
(5.2)

where a = 1 and b = 7 (Figure 5.5). Upon visual inspection of the plot, we
see that the utility curve is initially steeper and then flattens off.



Decisions under precise risk and under imprecise risk 195

5.1.3 Maximising expected utility of a decision maker

Imagine a situation with m possible decision options we can take, d1, ..., dm.
There are also n possible outcomes when we make a decision, θ1, ..., θn. And
each outcome is associated with a probability, P (θ1), ..., P (θn). We also assume
that each combination of decision (di) and event (θj) will have a consequence
Ci,j on us. It is useful to organise all values as shown in Figure 5.1.

Outcome
θ1 x z θ2

Decision

d1 u(C1,1) u(C1,2) · · · u(C1,n)
d2 u(C2,1) u(C2,2) · · · u(C2,n)
...

...
...

dm u(Cm,1) u(Cm,2) · · · u(Cm,n)
Probabilities P (θ) P (θ1) P (θ2) · · · P (θn)

TABLE 5.1: Decisions, states and utilities. This table illustrates how we
organise all of the decision options, measures of uncertainty (such as

probabilities) and utilities into a table format.

Each consequence Ci,j in Table 5.1 has a utility assigned to it. A utility
is a number that says how much the relevant stakeholder likes a consequence.
The number u(Ci,j is the utility of consequence Ci,j , i.e. the utility of making
decision i and facing the outcome j. If u(Ci,j) > u(Ck,l) then this means that
Ci,j is better than Ck,l. An illustration of these concepts is shown in Piston’s
example.

Example. Piston. Manufacturer Peng is producing a piston for an en-
gine (Figure 5.6), and she needs to decide whether to sell her item or whether
to perform extensive (and hence expensive) testing and then sell it. We will
assume that the piston is either free from flaws or has flaws and that extensive
testing will catch all the flaws. The consequences of this situation are sum-
marised in Table 5.2.

Outcome
θ1 Good part θ2 Poor part

Decision
d1 Inspect C1,1 C1,2

d2 Do not inspect C2,1 C2,2

TABLE 5.2: Manufacturer Peng’s table for utilities and consequences, in
Piston example.

The value Ci,j is the consequence of the decision i and outcome j. The
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consequences are defined in a textual way. The value C1,1 = the manufac-
turer’s piston is free from flaws and the manufacturer decides to inspect it.
The value C2,1 = the manufacturer’s piston is free from flaws, and the manu-
facturer decides not to inspect it. The value C1,2 = the manufacturer’s piston
is flawed, and the manufacturer decides to inspect it. The value C2,2=The
manufacturer’s piston is freely flawed, and the manufacturer decides not to
inspect it. Of course, the manufacturer has no idea about the condition of the
piston when she has to decide on whether to test it.

FIGURE 5.6: A piston.

The engineer prefers some scenarios more than others. Her preferences
are expressed in utilities u in Table 5.3. The bigger u, the better utility or
perceived usefulness. The C1,1) consequence has the largest utility. For this
manufacturer (the one whose utilities are in Table 5.3), it is the best conse-
quence to hold in hands a piston that was just confirmed to be good by the
test. The manufacturer decides on these utilities, or a data analyst elicits the
utilities from the manufacturer. In this example, the piston manufacturer has
a finite number of outcomes; hence we have a finite number of utilities.

Outcome
θ1 Good part θ2 Poor part

Decision
d1 Inspect u(C1,1) = 0.9 u(C1,2) = 0.5
d2 Do not inspect u(C2,1) = 0.1 u(C2,2) = 0.0

Probability P (θ1) = 0.8 P (θ2) = 0.2

TABLE 5.3: Mafucturer Peng’s utilities in Example Piston.

How should the manufacturer decide so her utilities and probabilities are
considered? She should calculate her expected utility for each decision (also
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referred to as mean or average utility), and see which decision gives the max-
imal expected utility. This is what we will do next.

We will first find the average utility for each possible manufacturer de-
cision. For example for decision d1, we calculate u(C1,1P (θ1) + u(C1,2)P (θ2)
(see the d1 row in Table 5.4). What decision should the manufacturer take?
The manufacturer should take decision d1 according to the maximisation of
the expected utilities since d1 gives the maximal expected utility (0.82 > 0.80).

Outcome Expected utility
θ1 Good part θ2 Poor part E[u|di]

d1 u(C1,1) = 0.9 u(C1,2) = 0.5 0.9× 0.8 + 0.5× 0.2 = 0.82
d2 u(C2,1) = 0.1 u(C2,2) = 0.0 0.1× 0.8 + 0.0× 0.2 = 0.08

P (θ) P (θ1) = 0.8 P (θ2) = 0.2

TABLE 5.4: Manufacturer Peng’s expected utilities in Piston example.

So, this brings us to the general formulae of expected utility (also
called average utility) for the case of discrete probabilities and discrete utility,
i.e. for a finite number of outcomes:

E[u|di] =
n∑

j=1

u(Ci,j)P (θi|di) (5.3)

which is a weighted sum of utilities, where the weights are equal to conditional
probabilities, conditioned on decisions di. In our Piston example, we assumed
that the probability of the event does not depend on the decision:

P (θj) = P (θj |di)

Next, we choose a decision that maximises the expected utility.
The formulae Eq 5.3 is an expected conditional utility, conditioned on di,
hence it is a function of di. Our task is to find the decision di that gives
the highest conditional expected utility. Mathematically we are solving the
following problem:

argmax
di

E[u|di] = argmax
di

n∑
j=1

u(Ci,j)P (θi|di) (5.4)

In the Piston example, the di that maximises the conditional expected
utility is d1, i.e. the decision to inspect.

Caution. A comment on Piston and Makovnik Bakery examples: In the
Piston example, we were not provided with the profits or monetary values of
the outcomes. We were provided with the utilities, and hence we calculated
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the expected utilities. In principle, it may be possible to obtain estimates of
the monetary values. In the Makovnik Bakery example, we were provided with
the profits in monetary values, and hence it made sense to calculate expected
profits. In principle, it is possible also to obtain data on the utilities of each
outcome, which would take into consideration the decision maker’s preferences
for risk. Maximising expected utility can lead to a different decision than the
one reached using the maximisation of expected profit rule (for example, read
Chapter 15 of the book by Thomas and Maurice [59], pages 642-645).

In the expected utility of the piston manufacturer, we assumed a finite
number of outcomes, hence we used a sum to obtain the expected utility.
What if we have utility and probability defined on an interval, i.e. continuous
probability and utility? In such case, we still need to calculate the conditional
expected utility, but via an integral operation:

E[u|di] =
∫

u(x)p(x|di) dx (5.5)

In Eq 5.5, an example of a risk-averse utility function is 10 × 1 − e−cx,
where c = 0.01 is a parameter and x is wealth. A choice of a probability
density function depends on the problem at hand. One frequent choice is a
Normal distribution. So then we would get the following integral to evaluate:

E[u] =

∫ ∞

−∞
(1− e−cx)

1√
2πσ2

e−
−(µ−x)2

2σ2 dx (5.6)

which is equal to

E[u] = 1− e
c2σ2

2 −cµ (5.7)

Example. Stock investment. Now we introduce a generic decision table
for a stock investing scenario (Table 5.5). An investor has a capital equal to
C dollars. He needs to decide if to invest or not invest in a stock. There is
a chance that the stock will appreciate and give a net profit of 10, so the
investor’s capital will be C + 10 dollars. There is a chance that the stock will
depreciate and cause a net loss of 10, so the investor’s capital will be C − 10
dollars.

Outcome
θ1 Stock appreciates θ2 Stock depreciates

Decision
d1 Invest C + 10 C − 10
d2 Leave in bank C C

TABLE 5.5: Stock investment example.

What decision should be taken: d1 or d2? This depends on the value of C,
probabilities of outcomes (probability of stock appreciation, θ1, and probabil-
ity of stock depreciation, θ2; obviously the two probabilities add up to 1) and
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on the utility of the person who invests his/her money.

In next, we will assume that C = 10 and P (θ1) = p. We are going to read
the utilities off graphs. We will assume two different investors. One investor
has a constant risk aversion and we will call him or his utility function I
Figures (5.4). The second investor has a decreasing risk aversion and we will
call him or his utility function II (Figure 5.5). For this stock example, the
values of utilities obtained from the Figures are summarised in Table 5.6.

Risk aversion
Pounds Constant (I) Decreasing (II)

20 0.181 0.435
10 0.095 0.343
0 0.000 0.000

TABLE 5.6: Stock investment example’s utilities. The values for the
constant risk-averse investor were obtained from Figures 6.13. The values for

the decreasing risk-averse investor are from Figure 6.14
.

There are three consequences that each of the two investors can face: 0,
10 or 20, i.e. having no profit, losing 10 or gaining 20. We now know the
utilities of each investor for each of the consequences (Table 5.6). To advise
on a decision, we can draw a decision table for each investor (Table 5.7).

Investor I States
θ1: Stock appreciates θ2: Stock depreciates

d1: Invest 0.181 0.000
d2 0.095 0.095

Investor II States
θ1: Stock appreciates θ2: Stock depreciates

d1: Invest 0.435 0.000
d2: Leave in bank 0.343 0.343

TABLE 5.7: Stock investment utilities for investors with constant risk
aversion (Investor I), and for investors with decreasing risk aversion
(Investor II). Here we assume a value of starting capital being C=10.

Next, we want to advise on a decision. Using the decision tables (Table
5.7) we will find the expected utility for each person, for each decision.

For the constant risk-averse investor (Investor I), the expected utility is

E[d1] = 0.181p+ 0(1− p) = 0.181p

E[d2] = 0.095p+ 0.095(1− p) = 0.095

hence, the two decisions d1 and d2 are giving equal utility, when 0.181p =
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0.095, hence when p = 0.52. Therefore, he should invest when p > 0.52, else
not invest.

For decreasing risk-averse investor (Investor II), the expected utility is

E[d1] = 0.435p+ 0(1− p) = 0.435p

E[d2] = 0.343p+ 0.343(1− p) = 0.343

hence, the two decisions are giving equal utility, when 0.435p = 0.343, hence
when p = 0.79. Therefore, he should invest when p > 0.79, else not invest.

What happens when we change C into C = 100? Then the decision tables
for the two persons are different, they are in Table 5.8.

Investor I States
θ1: Stock appreciates θ2: Stock depreciates

d1: Invest 0.667 0.593
d2: Leave in bank 0.632 0.632

Investor II States
θ1: Stock appreciates θ2: Stock depreciates

d1: Invest 0.673 0.644
d2: Leave in bank 0.659 0.659

TABLE 5.8: Stock investment utilities for investors with constant risk
aversion (Investor I), and for investors with decreasing risk aversion

(Investor II). Here we assume a value of starting capital being C=100.

Next, we need to update the table of expected utilities, see Table 5.9, where
for the person with constant risk aversion we have

E[d1] = 0.667p+ 0.593(1− p) = 0.074p+ 0.593

E[d2] = 0.632p+ 0.632(1− p) = 0.632

So, for investor I, the expected utilities of the two decisions are equal, i.e.
E[d1] = E[d2] if and only if p=0.52, which is the same as when the person
started with the capital C=10, but this is expected as this is a person with
constant risk aversion. For investor II, the expected utilities of the two deci-
sions are equal if and only if p=0.52, which is a decrease from 0.79 when the
person started with capital C=10. So investor II with initial capital C=100 is
willing to invest at a smaller probability than when the person had only C=10
initial capital, which is expected as this person has a decreasing risk aversion.

5.1.4 Probability premium

A risk-averse person will never take a fair bet. A fair bet is one for which
the expected payoff value is zero after accounting for the cost of the bet. For
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Risk aversion
Pounds Constant (I) Decreasing (II)

E[d1] 0.074p+0.593 0.033p+0.644
E[d2] 0.632 0.659

TABLE 5.9: Expected stock investment example’s utilities. Here we assume
a value of starting capital being C=100.

example, suppose I offer to pay you 2 if a fair coin lands heads, but you must
ante up 1 to play. The equal loss has a larger utility loss than the equal gain
has a utility gain.

A risk-averse person needs a greater chance of winning to compensate
for his/her risk aversion. But how much bigger should the chance be? The
difference in chances is called the Probability Premium, and it depends on the
person’s utility function and depends on how much the person owns already.
The steps to calculate the chances are:

1. Let the probability that makes a bet monetarily fair be p.

2. Let the probability that makes a bet acceptable, utility-wise, be P .

3. Then we calculate the difference P − p. This difference is the Probability
Premium. It is the increase in the probability of changing a fair bet into
an acceptable bet.

Example. A £50 bet. A decision maker with decreasing risk aversion.
Assume that he owns an asset of £50 and decides if to bet it all on a fair bet.
What is the probability premium?

The solution follows several steps:

1. Obviously, p=0.5 is the probability that makes the bet monetarily fair.

2. Next, we need to find the probability that makes the bet acceptable utility-
wise. We can proceed by following these thoughts:

• The decision maker can end up having: 0, 50 or 100. Utility of 0, 50
and 100 is 0.000, 0.562 and 0.659 (see Figure 5.5 for the decreasing
risk aversion).

• Expected utility of bet is therefore 0.5× 0.659 + 0.5× 0.000 = 0.330

• Expected utility of not betting is: 1× 0.562

• Since 0.562 > 0.330, it is therefore advised that he does not bet.

• Need to set 0.659× P = 0.562 => P = 0.85
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3. Therefore, the probability premium is P − p = 0.85–0.50 = 0.35. The
probability of winning needs to increase by at least 0.35 (from 0.5), and
then the decreasing risk-averse person will be willing to bet.

5.1.5 Monetary premium

Example. Insurance. Buying (or not) insurance is the same as taking a
bet. Here is a generic table for house insurance decision-making. We need to
decide whether or not to buy insurance to protect ourselves against a calamity.

States
θ1: Calamity θ2: No calamity

d1: Insurance Inconvenience Loss of premium
d2: No insurance Loss of house Status quo

TABLE 5.10: Insurance example with the list of all consequences.

Next, we assume that C is the value of the house, m is the price of the
insurance i.e. the premium, and h is the cost of the calamity event. We can
put all these values into the table to get Table 5.11. This table is just like the
investment tables before (e.g., 5.8), except this time the table is inverted: the
“do something” decision is the non-risky one and the “do nothing” decision
is the risky one.

States
θ1: Calamity θ2: No calamity

d1: Insurance C-m C-m
d2: No insurance C-h C

TABLE 5.11: Insurance example with the values of all consequences.

Suppose, C = 5000 Euros, calamity is a total loss of the house, i.e. h = 5000
Euros. The decision maker (here the home-owner) is decreasingly risk-averse.

We can scale the utility graph by a factor of 100. Thus we get u(50) =
0.562. Hence,

E[u1] = u(C −m)

E[u2] = 0.562(1− p)

The break-even point of the homeowner is when the expected utilities equal
each other. This happens when

u(C −m) = 0.562(1− p)
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Hence for p=0.01 we have u(50−m) = 0.562× (1− 0.01) = 0.556. Next,
we need to use the graph backwards (5.5) to find m such that it gives a utility
of 0.556. Such m is equal to 49.

Next, we work with money values:

5, 000−m = 5, 000× (1− 0.01)

Hence m=50 Euros.

Why is there a difference? The insurance company has much more assets
than the homeowner. They might have the same utility curve, but they make
their decision much further to the right on the utility curve, where the curve
is almost flat. So the insurer can make money with at least a £50 premium
and the homeowner can choose to insure with at most a £49.

A further note on portfolio management: It is sometimes said when invest-
ing to leave some money in safe investments and some in riskier investments.
If an investment is shown to be good, shouldn’t we put all our money into it?
No, because of diminishing marginal utility. Can actually find the optimum
amount to invest: analytically, via finding a maximum, or numerically, via
trying different values.

5.2 Making decisions under imprecise risk

In this section, we look at how to find optimal decisions in a situation of total
probabilistic uncertainty, i.e. we do know the probabilities.

5.2.1 General strategy when probabilities are not known

If we do not know anything about the probabilities, then we face a situation of
total uncertainty about probabilities. We can still assess and risk-manage the
situation through worst-case scenarios, risk transfer, and so on. For example:
in 2003, reinsurance companies and banks began to issue financial instruments
with returns linked to the aggregate longevity of specified populations, though
the market for these instruments is still very immature (see the book Essen-
tials of Risk Management [17], page 10).

In some life situations, it is possible that we know the probabilities to
some extent. For example, we may be 95% confident that the probability of 1
million profit is between 5 and 25%. This means we are not certain what the
probability is, but we have some knowledge. We will not discuss such cases
here in the next sections.
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Obviously, we cannot find the optimal decision by maximising the expected
utility any more. This is because the expected utility calculations involve the
use of probabilities. Since we do not know the probabilities, we need some
alternative decision criteria, which we will learn in the next section.

5.2.2 Alternative decision criteria

In this section, we are going to discuss what happens when we do not have
probabilities for the outcomes of the decisions. How do we make a decision?
Or how do we recommend a decision to the decision maker? We cannot use
the method of maximising the expected utility from the previous section as it
requires knowledge of probabilities. Instead, a different set of criteria can be
used, which are often named as alternative decision criteria.

We will learn the alternative decision criteria. We will also learn that such
criteria are often incoherent except in certain special cases. This should not
be surprising, as such criteria do not use probabilities and hence should only
be used with caution and as a last resort.

Practically all economic theories about behaviour in the absence of com-
plete information use risk tools rather than uncertainty (wrongly, of course).
Furthermore, decision science has little guidance to offer managers making
decisions when they have no idea about the likelihood of various states of na-
ture occurring. This should not be too surprising, given the nebulous nature
of uncertainty. We will, however, present five rather simple decision rules that
can help managers make decisions under uncertainty:

• Laplace criterion

• Max-min criterion

• Max-max (Wald) criterion

• Hurwitz criterion

• Min-max regret criterion.

We explain all criteria via an example.

Example. Food warehouse. Filip runs a food warehouse. One particular
item costs £40 per crate and sells for £100. Orders are made once a month,
and at the end of the month, unsold items are thrown away. Past experience
suggests that never more than 4 are sold. Assume we do not have any prob-
abilities for the amounts being sold. So given the information above, we can
construct the table of Filip profits (Table 5.12). Next, Filip gives us his utili-
ties for each of the possible 25 outcomes in Table 5.13.
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Monetary profits Amount demanded
0 1 2 3 4

Amount bought

0 0 0 0 0 0
1 -40 60 60 60 60
2 -80 20 120 120 120
3 -120 -20 80 180 180
4 -160 -60 40 140 240

TABLE 5.12: Filip’s monetary profits in food warehouse example.

Utilities Amount demanded
0 1 2 3 4

Amount bought

0 0.7 0.7 0.7 0.7 0.7
1 0.6 0.85 0.85 0.85 0.85
2 0.45 0.75 0.92 0.92 0.92
3 0.3 0.65 0.87 0.95 0.95
4 0.0 0.53 0.8 0.93 1.0

TABLE 5.13: Filip’s utilities in the food warehouse example.

Laplace criterion. If we do not know what the probabilities are, the
Laplace criterion advises us to assume that they are equiprobable and then
choose the decision that gives the maximum expected utility. It helps to or-
ganise our calculations into a table with expected utilities (see the last column
in Table 5.14). We see that the decision to buy 1 crate has the highest value of
expected utility. Hence, according to Laplace’s criterion, we shall advise Filip
to buy 1 crate.

Laplace Amount demanded E[ ]
0 1 2 3 4

Amount bought

0 0.7 0.7 0.7 0.7 0.7 0.7
1 0.6 0.85 0.85 0.85 0.85 0.8
2 0.45 0.75 0.92 0.92 0.92 0.792
3 0.3 0.65 0.87 0.95 0.95 0.744
4 0.0 0.53 0.8 0.93 1.0 0.652

Probability P() 0.25 0.25 0.25 0.25 0.25

TABLE 5.14: Utilities of Filip in the food warehouse example and the
calculations for Laplace criterion.

Max-min criterion (also called Wald criterion). If we do not know
what the probabilities are, the Max-min criterion advises to push all the prob-
ability mass onto the minimum utility for each decision (i.e. for each decision,
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we multiply the minimal utility with the probability 1 and we multiply the
rest of utilities with probability zero; this is the same as giving weight 1 to the
minimal utility and giving weight 0 to the rest of utilities). Then we choose
the decision that gives the maximum expected utility.

The Wald criterion is viewed as a pessimistic choice criterion because for
each decision it looks for the worst-case utility scenario and then finds the
decision that gives the best utility among the worst-case scenarios. It helps
to organise our calculations into a table with expected utilities (see the last
column in Table 5.15).

Max-min Amount demanded E[ ]
(Wald) 0 1 2 3 4

Amount bought

0 0.7× 1 0.7× 0 0.7× 0 0.7× 0 0.7× 0 0.7
1 0.6× 1 0.85× 0 0.85× 0 0.85× 0 0.85× 0 0.6
2 0.45× 1 0.75× 0 0.92× 0 0.92× 0 0.92× 0 0.45
3 0.3× 1 0.65× 0 0.87× 0 0.95× 0 0.95× 0 0.3
4 0.0× 1 0.53× 0 0.8× 0 0.93× 0 1.0× 0 0.0

TABLE 5.15: Filip’s utilities in food warehouse example and the calculations
for Max-min criterion (also called Wald criterion).

Max-max criterion. If we do not know what the probabilities are, the
Max-max criterion advises pushing all the probability mass onto the maximum
utility for each decision. This means that for each decision, we multiply the
maximal utility with the probability 1 and we multiply the rest of the utilities
with probability zero. Then we choose the decision that gives the maximal ex-
pected utility. It helps to organise our calculations into a table with expected
utilities (see the last column in Table 5.16). According to the Max-max cri-
terion, we shall advise him to buy 4 crates because such a decision gives the
highest expected utility.

Max-max Amount demanded E[ ]
0 1 2 3 4

Amount bought

0 0.7× 0 0.7× 0 0.7× 0 0.7× 0 0.7× 1 0.7
1 0.6× 0 0.85× 0 0.85× 0 0.85× 0 0.85× 1 0.85
2 0.45× 0 0.75× 0 0.92× 0 0.92× 0 0.92× 1 0.92
3 0.3× 0 0.65× 0 0.87× 0 0.95× 0 0.95× 1 0.95
4 0.0× 0 0.53× 0 0.8× 0 0.93× 0 1.0× 1 1.0

TABLE 5.16: Utilities of Filip in food warehouse example and the
calculations for Max-max criterion.
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Hurwicz criterion. If we do not know what the probabilities are, the
Hurwicz criterion advises calculating weighted averages of the minimum and
maximum utilities, where a weight α is given to the maximal utility and weight
(1−α) is given to the minimal utility. Then we choose the decision that gives
the maximal expected utility. In the food warehouse example, let us assume
α = 0.75. Then we do the calculations of the expected utilities (see the last
column, in Table 5.17). According to Hurwicz’s criterion with α = 0.75 we
shall advise Filip to buy 2 crates, as it maximizes the expected utility.

Hurwicz Amount demanded E[ ]
0 1 2 3 4

Amount bought

0 0.7× 0.25 0.7× 0 0.7× 0 0.7× 0 0.7× 0.75 0.7
1 0.6× 0.25 0.85× 0 0.85× 0 0.85× 0 0.85× 0.75 0.788
2 0.45× 0.25 0.75× 0 0.92× 0 0.92× 0 0.92× 0.75 0.803
3 0.3× 0.25 0.65× 0 0.87× 0 0.95× 0 0.95× 0.75 0.788
4 0.0× 0.25 0.53× 0 0.8× 0 0.93× 0 1.0× 0.75 0.75

TABLE 5.17: Filip’s utilities in food warehouse example and the calculations
for Hurwicz criterion.

Min-max criterion (also called Regret criterion, or Minimax re-
gret). The next criterion is similar to the Max-min (Wald) criterion. If we
do not know what the probabilities are, the Min-max criterion advises the
following two steps. The first step is to calculate the table of regrets. We do
this by calculating the loss for each decision and outcome. We do it by taking
the difference: the maximum utility for that outcome minus the utility. This
is the regret, the opportunity loss through having made the wrong decision,
i.e., the loss for the outcome. The second step is to choose the decision that
minimises the maximal regret. This means we choose the decision that min-
imises the maximum loss for a particular outcome.

Using the table of utilities (Table 5.13), we create a table of regrets (Table
5.18. For example, for ”amount bought 3” and ”amount demanded 2” the
regret is 0.05 because Filip bought 3, and he regrets he did not buy 2. If he
bought 2 his utility would be 0.92 after he would sell them. But he bought 3,
and his utility is only 0.87 since he can only sell 2. So the value of the regret
is 0.92-0.87=0.05. Another example, for ”amount bought 2” and ”amount
demanded 4”, the regret is 0.08. This is because Filip bought 2, and he regrets
he did not buy 4. If he bought 4 his utility would be 1.0 after he would sell
them all. But he bought 2 and can sell 2 only, so his utility is only 0.92. So
the value of the regret is 1.0-0.92=0.08.

Then we put all probability mass (hence weight) onto the maximum re-
gret. This means that for each decision, we multiply the maximum regret with
probability 1, and use zero probability elsewhere (Table 5.19). According to
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Regrets Amount demanded
0 1 2 3 4

Amount bought

0 0.00 0.15 0.22 0.25 0.30
1 0.10 0.00 0.07 0.10 0.15
2 0.20 0.10 0.00 0.03 0.08
3 0.40 0.20 0.05 0.00 0.05
4 0.70 0.32 0.12 0.02 0.00

TABLE 5.18: Filip’s regrets in food warehouse example. A regret is the
difference between the maximal utility of an outcome and the utility of the

decision at that outcome.

the Min-max regret criterion, we shall advise him to buy 1 crate because it
minimizes the expected regret.

Regret criterion Amount demanded E[ ]
0 1 2 3 4

Amount bought

0 0.00× 0 0.15× 0 0.22× 0 0.25× 0 0.30× 1 0.30
1 0.10× 0 0.00× 0 0.07× 0 0.10× 0 0.15× 1 0.15
2 0.20× 1 0.10× 0 0.00× 0 0.03× 0 0.08× 0 0.25
3 0.40× 1 0.20× 0 0.05× 0 0.00× 0 0.05× 0 0.40
4 0.70× 1 0.32× 0 0.12× 0 0.02× 0 0.00× 0 0.70

TABLE 5.19: Filip’s regrets in food warehouse example and Regret criterion.
For each decision, we put all probability mass (hence weight 1) onto the
maximal regret, and we put zero probability mass (hence weight 0) on all

other regrets.

5.3 Tips to think and act like a risk expert

Here we will give tips and tricks, for which we will bring two case studies.

5.3.1 Be aware of the criticism of the alternative criteria

The alternative criteria can often lead to inconsistency. We explain by a simple
example. Imagine we have £1. We can bet that £1 for a payoff of £u. Let d1 be
a decision to bet, and d2 is not betting. Let θ1 be a scenario when we win the
payoff, and θ2 is a scenario when we do not win. We are going to use the Max-
min criterion (see Figure 5.20). In this case, d2 will be always picked as the
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optimal decision, even if u = 1, 000, 000, which is an illogical recommendation.

θ1 θ2 E[]

d1 u 0 0
d2 1 1 1

TABLE 5.20: Table of utilities to illustrate criticism of Max-min criteria.

Min-max avoids some of the problems of Max-min (Wald) but can still be
inconsistent. We show on a simple example. In Table 5.21 decision d1 will be
chosen, according to the Min-max.

Utilities Loses
θ1 θ2 θ1 θ2 E[ ]

d1 8 0 0 4 4
d2 2 4 6 0 6

TABLE 5.21: Table of two decisions to illustrate Min-max. It leads to
choosing the optimal decision d1.

Next, what about if we add an extra decision into Table 5.21, thus getting
a new Table 5.22? According to the Min-max criterion, the decision d2 is the
best decision. This makes no sense: when comparing d1 and d2, we choose d1
as the best decision. But then when we add extra decision d3 we find d2 to
be the best, i.e. we consider d2 as better than d1. This is one of the critiques
of the Min-max criteria, that sometimes it leads to an illogical choice of the
best decision.

Utilities Loses
θ1 θ2 θ1 θ2 E[ ]

d1 8 0 0 4 4
d2 2 4 6 0 6
d3 1 7 7 0 7

TABLE 5.22: Criticism of Min-max criteria, when adding another decision
to what we had in Table 5.12. Min-max leads to optimal decision d2, i.e. it

suggests that now d1 is worse than d2.
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5.4 Summary

We learned in this chapter:

1. How to identify if the decision maker is risk averse or risk loving, by looking
at his/her plot of the utility function.

2. How to find an optimal decision via maximising the expected utility.

3. How to calculate the probability premium.

4. How to use several alternative criteria that can be used in situations where
there is no way to get reasonable estimates of the probabilities of scenarios.
We also learned that often alternative decision criteria are inconsistent,
and we looked at several examples.

5.5 Further reading

In our chapter, we were inspired by several resources. Here we mention them,
as well as recommend further resources:

1. For more insights about decisions under imprecise risk in applied in eco-
nomics, we recommend the book Managerial economics, Foundations of
business analysis and strategy by Christopher R. Thomas and S. Charles
Maurice [59] (especially their Chapter 15).

2. For a comprehensive reading on decision analysis, we recommend the book
Foundations of decision analysis by Ronald A. Howard and Ali E. Ab-
bas [33].

3. For more insight into utility functions in finance, we recommend the book
by Rob Kaas, Marc Goovaerts, Jan Dhaene and Michel Denuit Modern
actuarial risk theory using R [35]

4. For further insight into cognitive psychology and behavioural economics
of how humans make decisions under imprecise risk, we recommend start-
ing with the groundbreaking work of Tversky and Kahneman [60]. They
made discoveries of systematic human cognitive bias and handling of risk.
In October 2022, Kahneman was awarded the Nobel Memorial Prize in
Economic Sciences for their work in applying psychological insights to eco-
nomic theory, particularly in the areas of judgment and decision-making
under uncertainty. He has done this work with Amos Tversky, who died in
1996. While Tversky was acknowledged in the announcement, the Royal
Swedish Academy of Sciences does not award prizes posthumously.
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5. It is interesting to read the paper by Volz and Gigerenzer [62] where they
point to an MRI study they conducted showing that an additional area of
the brain is involved when humans are making decisions under imprecise
risk (they call it decision under uncertainty) as opposed to under precise
risk (they call it decision under risk).

6. We also recommend reading the latest research about uncertainty in the
Journal of Approximate Reasoning.
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5.6 Exercises

Solve the following exercises by using pen, paper and calculator.

1. [Purpose: Practicing how to find probability premium.] A decision
maker with decreasing risk aversion depicted in figure from the lecture has
assets of £20 and contemplates a gamble which may win her £20 or lose
her £10. It is therefore actuarially fair if the chance of winning is 1/3. De-
termine her probability premium. Do the same for the constant risk-averse
decision maker (use the Figure from the lecture. Find the probability pre-
mium for the first decision maker when her assets are £200.

2. [Purpose: Practicing how to tell where the utility function is
risk averse, and practising how to find probability premium.] A
decision maker has the following utilities for money:

Money 0 100 200 300 400 500 600 700

Utility 0 0.8 2.6 5.4 10.0 13.6 14.8 15.7

• By sketching a graph, shows that she is risk-averse for assets above
about £400 but not below this amount.

• Consider a gamble that might win or lose £100, first when her assets
are £200, and then when they are £500. In each case, determine the
probability premium.

3. [Purpose: Practicing alternative decision criteria.] Assume the fol-
lowing utility table:

Money θ1 θ2 θ3
d1 5 -1 2
d2 0 2 3
d3 -5 3 0

Determine the decisions that would be reached under the following criteria:

• Wald,

• Max-max,

• Laplace,

• Hurwicz with α = 0.7,

• Minimax criteria.
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4. [Purpose: Practicing alternative decision criteria.] Given the fol-
lowing utility table:

Money θ1 θ2 θ3
d1 110 30 10
d2 80 50 100
d3 40 115 60

(a) Determine the decisions that would be reached under the following
criteria: Wald, Max-max, Laplace, Hurwicz with α = 0.6, Minimax
criteria.

(b) Now assume that d1 is no longer available. Recalculate under this
new table and comment on the answers you got.

5. [Purpose: Practicing alternative decision criteria.] An electric store
is considering extending the range of items which it intends to stock. The
utility table is shown below. Calculate the optimal decisions according to
Laplace, Max-min (Wald), Max-max and Minimax (Regret) criteria.

Utilities Demanded
High Average Low

Amount bought

Microwaves 20 40 30
Home security 80 70 -10
Satelite TVs 90 10 -20
Large TVs 10 100 40
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In this chapter, we are looking again at how to make decisions under risk, but
now we look into how to decide in sequential decision problems, and for that,
we will use Decision Trees.

In Section 5.1.2 we worked with tables of utilities, and we learned how to
make a decision. We assumed that only one decision is made, e.g. how much
stock to buy. However, in reality, we often make several decisions that are
not isolated; rather, they are done in sequence, where the later decisions are
affected by the outcome of previous decisions. Making several decisions in a
sequence is also called a multistage decisions, sequential decisions or
phased decisions. We have a multistage decision problem if:

• we have to make multiple decisions, one after the other;
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• and the decision taken later will depend on the outcomes of the earlier
decisions.

When making two or more decisions in sequence, it is challenging to rep-
resent the decisions and outcomes in a table as we did in Chapter 5. We will
see that it is much easier to represent the problem using a decision tree. De-
cision trees provide a visual display of the sequential decision processes and
subsequent consequences. Decision trees can help in organising the computa-
tional work and hence in arriving at a recommended most beneficial decision.
It also helps in communication with stakeholders, so they see all information
displayed on one figure and all outcomes.

Learning objectives

• Learn what decision trees are.

• Learn how to draw a decision tree and do all computations to derive the
best sequence of decisions.

• Explore how to give a recommendation to a stakeholder who needs to make
several multistage decisions.

6.1 Decision tree

Here we explain the components of the decision tree and the five steps of
building a decision tree.

6.1.1 Typical decision tree format

A typical tree normally goes from left to right and has two types of nodes (see
Figure 6.1).

• Decision node: this is where the decision maker is in control. He/she makes
a decision.

• Random node: this is where things are out of the control of the decision
maker. This is where we put the value of the outcome that could happen.
This node is also called chance node or probability node

A decision tree is a single-decision tree if it includes only one decision node
along any given path. A decision tree is a sequential decision-making problem
tree if there is at least one path that contains at least two decision nodes.
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FIGURE 6.1: Decision tree format. Squares = Decisions nodes. Circles =
random (chance) nodes. The last node, where no decision and no chance

happens, is called the final points or leaves. The lines in the tree are called
branches.

FIGURE 6.2: Decision tree notation.

6.1.2 The five steps of building a decision tree

It is important to note that one of the most difficult tasks of using decision
trees is drawing them from a written description of the problem. Once that has
been accomplished, deriving the recommendation for a decision is relatively
straightforward. It might help when drawing a decision tree if we pretend we
are the relevant stakeholder and ask ourselves, ”What happens next?” at each
node of the tree as we draw it. Here a relevant stakeholder is the person who
needs to make a decision.

We will build the decision tree and do all the calculations in 5 steps. In
Steps 1 to 3, we move from left to right; in Step 4, we move from right to left.
In Step 5, we make a recommendation. The five steps are:

• Step 1: Create a decision tree structure from left to right in chronologi-
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cal order. For each decision node, we need to attach a description of the
branches coming from such nodes, we also attach costs of such decisions.

• Step 2: For random nodes, we attach probabilities to branches coming
from such nodes. These probabilities will always be conditioned on what
has occurred before.

• Step 3: Attach utilities to the terminal points.

• Step 4: Going from right to left, take the expectations of the utilities at
random nodes and maximise utilities at decision nodes.

• Step 5: Make recommendations about decisions.

6.2 When probabilities are in a convenient format

A decision tree helps to find the optimal sequence of decisions in a risk situ-
ation. The risk is expressed in probabilities. Sometimes the probabilities are
provided to use conveniently, so all further calculations are straightforward.
We explain this in one example: explaining all five steps, from building the
tree to finding optimal decisions.

6.2.1 Example: Manufacturer Mahiro

Manufacturer Mahiro faces a decision concerning a product (code-named
M997) developed by one of his research laboratories. He has to decide whether
to proceed to test market M997 or whether to drop it completely. Here is some
information:

• It is estimated that test marketing will cost £100,000.

• Past experience indicates that only 30% of products succeed in the test
market.

• If M997 is successful at the test market stage, the company faces a further
decision relating to the size of the plant set up to produce M997.

• A small plant will cost £150,000 to build and produce 2,000 units annually.

• A large plant will cost £250,000 to build and produce 4,000 units annually.

• The marketing department has estimated that there is a 40% chance that
the competition will respond with a similar product and that the price per
unit sold (in £) will be as follows (assuming all production sold):
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Example M997 information on competition
Large plant Small plant

Competition responds 20 35

Competition do not respond 50 65

TABLE 6.1: Manufacturer Mahiro’s information on competition

• We assume that the life of the market for M997 is estimated to be seven
years.

• Yearly running costs are £50,000 (both plant sizes).

• We will assume that the utility is directly measured via monetary profits.

Should the company go ahead and test the market for product M997? This
is a multistage decision problem, and we will solve this problem by building
a decision tree in the following sections. Although this example is somewhat
simplified, it represents the type of decision that often has to be made about
new products. In particular, you should note that we cannot separate the test
market decision from any decisions about the future profitability (if any) of
the product if test marketing is successful.

FIGURE 6.3: Manufacturer Mahiro’s decision tree, after we did steps 1 and
2.
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6.2.2 Solution step by step

Steps 1 and 2 Creation of the decision tree structure and attaching
the probabilities to random nodes. Figure 6.3 shows the decision tree
after completing Steps 1 and 2 for the M997 problem. We must always add
a ”do nothing” alternative at every decision node. So, for example, there is a
“no plant” alternative at the plant size decision node. This is necessary be-
cause it may not be profitable to build any plant (large or small) even if the
product is successful in the test market. In any decision tree, we must include
all possible alternatives (in action notes). It is very common in decision tree
problems to find that at decision nodes, there is a “do nothing” alternative
which is an implicit decision which can be taken.

We also need to ensure a unique path in the tree from the initial node
to each terminal node. This is very important. This must be assured when
drawing the branches and nodes.

FIGURE 6.4: Manufacturer Mahiro’s decision tree, after we did steps 1-3.

Step 3: Attaching the utilities to the terminal points. To calculate
the utility for terminal point 2 is simple:

• We drop M997 (see Alternative 1 in Figure 6.3).

• Total Revenue = 0

• Total Cost = 0

• Hence Total Profit = 0
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Note that we are ignoring in every case any money already spent on de-
veloping M997 since that is a sunk cost, i.e., a cost that does not matter for
our future decisions; such cost cannot be altered, so it has no part in deciding
future decisions. Calculating the utility of terminal point 7 is more complex.
It helps to look at the decision tree to remind ourselves of the path from the
first decision node to the terminal point 7 (Figure 6.3). Then going from the
left to the right, we see the costs and profits along the path: We test market
M997 (cost £100k), find it successful, build a small plant (cost £150k) and
find we are without competition (revenue for seven years at 2,000 units a year
at £65 per unit = £910k):

• Total Revenue = 910k

• Total Cost = 100k + 150k + (7 x 50k)[running costs] = 600k

• Total Profit = 910k - 600k = 310k

By doing the same calculations, we get the profits at all the terminal points,
see Table 6.2.

Terminal node Profit

2 0

4 -100

7 310

8 -110

10 700

11 -140
12 -100

TABLE 6.2: Manufacturer Mahiro’s product M997 decision tree’s terminal
node profits. These profits are those to be attached to the corresponding

final points of the decision tree. Note, in this example, it was agreed that the
utility is directly equal to the monetary value, i.e. the monetary profit.

Step 4: Taking expectations at the random nodes and maximising
utilities at decision nodes, while going from the right to the left.
So far, we have ignored the probabilities in the M997 example. We assigned
probabilities to the tree (in step 2), but we have not used them yet. We use
them in the next step: in step 4. We work from the right-hand side of the tree
back to the left-hand side. Going from right to left:

• We take the expectations of the utilities at random nodes. The random
nodes are those circled: nodes 6, 3 and 9.

• We maximise utilities at decision nodes. The decision nodes are those
squared: nodes 1 and 5.
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FIGURE 6.5: Manufacturer Mahiro’s decision tree, processing nodes 6 and 9.
Steps 1-3 were done; now as part of step 4 we are processing nodes 6 and 9.
The value U=142k is EMV for node 6, the value U=364 is EMV for node 9
the value U=-100k is EMV for final node 12. The calculations are in the text.

The order in which we do the calculations is crucial: we proceed from right
to left. So we will do the calculations in this order: 6, then 9 (or 9 and then
6), then 5, then 3, and finally 1.

Next, we consider the chance node 6. Since it is a chance node, we need to
calculate its expected utility. Since, in this example, the utility is equal to the
monetary value (, the company decided that their utility is directly measured
via monetary profit), we need to find the expected profit. The work is shown
in the following paragraphs. Node 6 has branches to terminal points 7 and 8.
The branch to terminal point 7 occurs with probability 0.6 and has a total
profit of £310k, while the branch to terminal point 8 occurs with probability
0.4 and has a total profit of -£110k. The expected monetary value (EMV) of
this chance node number 6 is, therefore, given by:

0.6× 310 + 0.4× (−110) = 142(k)

Essentially this value represents the expected (or average) profit from this
chance node: 60% of the time, we get £310k and 40% of the time, we get -
£110k, so on average we get £142k. Then we can put the utility into Figure 6.5.

Next, we consider the chance node 9. By analogy with chance node 6, it
can be shown that chance node 9 has the expected utility of 364 (£k). Then
we can put the utility into Figure 6.5.
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FIGURE 6.6: Manufacturer Mahiro’s decision tree, processing node 5 as part
of step 4. Node 5 is a decision node with a utility value of U=364 (£k).

Next, we consider the decision node 5. Since it is a decision node, we need
to calculate and maximise the utility of this node. The work is as follows. At
the plant decision node 5 we have three alternatives:

• Alternative 3: build a small plant, giving U = EMV = 142k

• Alternative 4: build a large plant, giving U = EMV = 364k

• Alternative 5: build no plant, giving U = EMV = -100k

It is clear that if the decision maker ends up being in the decision node
5 Alternative 4 is the most attractive to take. This is because Alternative 4
offers the highest expected monetary value (remember that in this example
we measure the utility directly via money). Thus we can discard the other
alternatives, giving the revised decision tree Figure 6.6.

Next, we can continue in the process for node 3. Since this is a random
node, we need to calculate its expected utility. Since, in this example, the
utility is equal to the monetary value (simply, the company decided that their
utility is directly measured via monetary profit), we need to find the expected
profit. The EMV for chance node 3 representing whether M997 is a success in
the test market or not is given by:

0.3× 364 + 0.7× (−100) = 39.2(k)

The revised decision tree is shown in Figure 6.7.

Step 5: Making a recommendation for decisions. Finally, we move
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FIGURE 6.7: Manufacturer Mahiro’s decision tree, processing node 3 as part
of step 4. Node 3 is a random node, and it has a utility value of U=39.2 (£k).

to node 1. It is a decision node. So here, we need to maximise the utility.
Hence the decision node (node 1) represents whether to test market M997 or
not; we have the two alternatives (see also Figure 6.7):

• Alternative 1: drop M997, this yields U=EMV=0

• Alternative 2: test market M997, this yields U=EMV=39.2k

It is clear that, in monetary terms, Alternative 2 is preferable, and so we
should advise the decision maker to test the market for M997. The updated
(and final) decision tree is in (Figure 6.8).

The recommendations for the M997 example are:

• We should test market M997 and this decision has an expected monetary
value (EMV) of £39.2k

• If M997 is successful in the test market then we anticipate, at this stage,
building a large plant (recall the alternative we chose at the decision node
relating to the size of the plant to build).

• However, it is clear that in real life we will review this once test marketing
has been completed.

• The worst possible outcome (-£140) corresponds to terminal point 11. It
is the downside of the decision to test market M997.

• The best possible outcome (£700) corresponds to terminal point 10. It is
the upside of the decision to test market M997.
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FIGURE 6.8: Manufacturer Mahiro’s decision tree, processing node 1 as part
of step 4. Node 1 is a decision node and has a utility value of U=39.2 (£k).

6.3 When probabilities are not in a convenient format

In the previous section, we did built a decision tree in Example M997, while
all probabilities were provided in a convenient format. We did not need to do
any further calculations on probabilities. We simply put all probabilities into
the tree.

The company did have to make two decisions, where the second decision de-
pended on the outcome of the first decision. We also assumed that the utility is
directly given by the amount of money lost or gained (i.e. U(money)=money).
In other words, we assumed that for the decision maker, the given utility val-
ues may be interpreted directly as £s. we also learned how to incorporate costs
in our analysis.

Here, we continue with decision trees, where the probabilities are not
in a convenient format. We will do one example and again we will assume
that the utility is directly given by the amount of money lost or gained (i.e.
U(money)=money, i.e. the utility is equal to the capital value). However, we
will not be given the probability for the random branches in the required for-
mat. We will have to do some extra calculations and for that, we will use the
law of total probability and Bayes Theorem (Section 2.3.7). We will also look
at how the choice of the optimal decision depends on costs.
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6.3.1 Example: Investor Iveta

We start with a single-stage decision problem example. Investor Iveta has
£5000 capital. She can decide whether to invest or not.

• If investment is good (θ1) she will gain £100

• If investment is bad (θ2) she will lose £100

• P (θ1) = 0.6, P (θ2) = 0.4

• We assume that the utility is directly given by the amount of money lost
or gained.

State

Decision θ1 θ2

d1: Invest 5100 4900

d2: Leave 5000 5000

Probability 0.6 0.4

TABLE 6.3: Investor Iveta’s profits. We assume that the utility is directly
given by the amount of money lost or gained. So this can also be called the

table of utilities.

If this (Table 6.3) is all the information that the investor uses, and if the in-
vestor’s utility is equal to the capital value, what decision should he/she do?
The investor can calculate the average or expected utility table because this
is a single-stage decision problem (Table 6.4) or alternatively she can visualise
it on a decision tree (Figure 6.9). According to Table 6.4, the investor should
invest i.e. should decide d1 as it has the highest expected monetary value (ex-
pected utility).

State

Decision θ1 θ2 Expected utility

d1: Invest 5100 4900 0.6 × 5100 + 0.4x4900 = 5020

d2: Leave 5000 5000 0.6 × 5000 + 0.4x5000 = 5000

Probability 0.6 0.4

TABLE 6.4: Investor Iveta’s expected utilities. In this example, we assume
that the investor’s utility is equal to the monetary profits.

Next, we additionally assume that the investor Iveta could use a broker,
at a cost of f pounds, who will advise on an investment. Here are the further
assumptions:
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FIGURE 6.9: Investor Iveta’s decision tree. Here we need to solve a
single-stage decision problem: this tree represents the payoff decision Table

6.4.

• The broker can advise to invest (we will denote it X1) or to leave (which
we will denote as X2).

• The broker is a bit better at getting winners than losers, specifically:

P (X1|θ1) = 0.8, P (X2|θ2) = 0.7

What do these two above probabilities mean? The P (X1|θ1) is the probability
of advising to invest (i.e. X1) given that the investment is good (θ1). In 80%
of good investments, the broker will correctly advise to invest, and in 20% of
good investments, the broker will mistakenly advise not to invest. The second
term is the probability of advising to leave (i.e. X2) given that the investment
is bad (θ2). Of course, we do not know if the investment is good or bad until we
wait to see the return. However, we know that in 70% of all bad investments,
the broker will correctly advise not to invest, and in 30% of bad investments,
the broker with mistakenly advise to invest.

What course of action should we recommend and why? What is the most
rational thing to do for the investor, given all the information above? This is
a sequential decision-making problem: first, the investor needs to decide if to
consult a broker, and then she needs to decide if to invest or not, while her
second decision depends on the advice of the broker. To advise her, we cannot
use utility tables, as those are suitable for situations where a single decision
is to be made. In a sequential decision-making problem, we need to construct
a Decision tree and use it to find the optimal sequence of two decisions.

Note that in this example, we assume that the utility is directly given by
the amount of money lost or gained.

6.3.2 Solution step by step

Step 1: Create a decision tree structure from left to right in chrono-
logical order. We plot the three from left to right, including all the random
and decision nodes, as well as terminal nodes. We take the tree from Figure
6.9 and add the branches that represent the decision to ask a broker for ad-
vice, thus yielding the tree in Figure 6.10. For each decision node, we need to



228 Elements of Risk Analysis with Applications in R

FIGURE 6.10: Investor Iveta’s decision tree for the two sequential decision
problems after Step 1 has been completed.

attach a description of the branches coming from such nodes, we also attach
costs of such decisions.

Step 2: For random nodes, we attach probabilities to branches
coming from such nodes. We need to attach the probabilities to branches
coming from random nodes. These probabilities are always conditioned on
what has occurred before. This step is NOT easy in the investor example.
Why not easy? Because we are not told the probabilities at the branches com-
ing from random nodes (circles). We need to calculate those probabilities. We
will start by calculating the probability on the right side of the tree.

What is the probability of being on the branch from node 14 to node 15,
in Figure 6.11? What is the probability of that we need to calculate? Below
is a set of probabilities, but only one is correct. Which of these probabilities
do we need to calculate?

• P (θ1|d1)

• P (θ1)

• P (d1)

• P (X1)

• P (X1|θ1)

• P (θ1|X1)

Here is a hint: The node 14 is a random node. Imagine, the investor is
sitting on that random node and she is asking herself: ”What is my best guess
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FIGURE 6.11: Investor Iveta’s decision tree, after step 1 has been completed
and after we added all the information for the subtree on the left. The
subtree on the left has all the information (the probabilities and payoffs)
because we calculated it previously. Note: θ1 = investment is good, θ2 =
investment is bad, d1 = decision to invest (decision of the investor), d2 =
decision not to invest, X1 = advice from broker to invest (this advice from
the broker is random to the investor), X2 = advice from the broker not to

invest.

of the probability of ending up on node 15? What information do I have to
make that guess? I paid the broker and he advised me to invest and then I
decided to invest. So the information I have is that the investor advised me to
invest. My initial guess about the goodness of the investment did alter after
I met the broker. What is now my belief about the investment to be good?
In other words, what is now my probability estimate of the investment to be
good?” See also the subjective approach to probability that we discussed in
Chapter 2.

The correct answer is: Iveta’s degree of belief of the investment to be
good is P (θ1|X1). It is a conditional probability. Her belief about investment
changed after she spoke to the broker. The probability is conditioned on what
has occurred before: on her talking to the broker.

Are you able to calculate all the probabilities on the branches coming from
nodes 14, 13, 12 and 11? The solutions are on Figure 6.13.

The decision tree Figure 6.11 shows another probability that we need to
calculate: from node 8 to node 10. What is the probability that we need to
calculate? Here is a list of options. Only one is correct. Which is correct?

• P (θ1|d1)
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FIGURE 6.12: Investor Iveta’s probabilities calculation.

• P (θ1)

• P (d1)

• P (X1)

• P (X1|θ1)

• P (θ1|X1)

Here is a hint. The node 8 is a random node. Imagine the investor is sitting
on that random node 8 and she is asking herself: ”What is my best guess of
the probability of ending up on node 14? What information do I have to make
that guess? I paid the broker, but he still needs to advise. So the information I
have is the same as at the beginning. My belief about the broker advising ’in-
vest’ is the same as at the beginning, i.e. nothing has altered my belief. What
is now my belief about the broker advising me to invest? In other words, what
is now my probability estimate of the broker advising me to invest?

The correct answer is: The probability that we need is P (X1), i.e. the prob-
ability that the investor is advised by the broker to invest. Why? This prob-
ability is always to be conditioned on what has occurred before (as the hint
says), but nothing has happened before that would give the investor useful in-
formation. Alternatively, we look at it like this: What happened before node 8?
The investor decided to ask the broker for advice. So she can calculate a condi-
tional probability P (broker advises to invest|investor asked for advice). How-
ever, in this moment, P (broker advises to invest|investor asked for advice) =
P (broker advises to invest) because the broker’s advice does not depend on
whether he is asked for an opinion or not. So, here, at this branch, the condi-
tional probability equals to the marginal probability (Chapter 2).

Before we do calculations, it is good to remind ourselves what information
we have. We know this:
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• P (Xi|θj) = Prob of being advised Xi given that the true state θj .

– P (X1|θ1) is the probability of being advised to invest given that the
investment is good. This is a conditional probability.

– P (X2|θ2) is the probability of being advised not to invest given that
the investment is not good. This is, again, a conditional probability.

– Analogically, P (X2|θ1) is the probability of being advised not to in-
vest, given that the investment is good. This is, again, a conditional
probability.

– P (X1|θ2) is the probability of being advised to invest, given that the
investment is not good. This is, again, a conditional probability.

• P (θj) = probability of the state θj .

– P (θ1) is the probability of the investment being good. This is a
marginal probability.

– P (θ2) is the probability of the investment being bad. This is a
marginal probability.

However, we need to get these probabilities:

• P (θj |Xi) = Prob of the trues state θj given that the investor is advised
Xi.

– For example, P (θ1|X2) = probability of the investment is good given
that the broker advises not to invest.

– We need four values: P (θ1|X1) , P (θ1|X2), P (θ2|X1) and P (θ2|X2).

• P (Xi), i = 1, 2 is the probability of advice.

– P (X1) = probability of being advised to invest. This is a marginal
probability.

– P (X2) = probability of being advised to not invest. This is a marginal
probability.

We recognise that the probabilities that we need are different from what
we have: we know P (Xi|θj), and we need P (θj |Xi). We will employ Bayes’
rule to calculate the conditional probabilities:

P (θj |Xi) =
P (Xi|θj)P (θj)

P (Xi)
(6.1)

where i = 1, 2 and j = 1, 2. Also we know P (θj) and we need P (Xi). We will
use the law of total probability to get the marginal probabilities that we need
(see Chapter 2). The probabilities that we have are summarised in Table 6.5.
This is our starting point.



232 Elements of Risk Analysis with Applications in R

Prior Likelihood

P (θj) P (Xi|θj)
X1 θ1 0.6 0.8

θ2 0.4 0.3

X2 θ1 0.6 0.2
θ2 0.4 0.7

TABLE 6.5: Investor Iveta’s provided probabilities.

FIGURE 6.13: Investor’s decision tree after Steps 1 and 2 have been
completed. All the calculated probabilities are shown.

Table 6.5 summarises all provided probabilities. We note that the prob-
ability that the broker advises X1 strategy, given that the investment is θ2,
is

P (X1|θ2) = 1− P (X2|θ2) = 1–0.7 = 0.3

Similarly (from Table 6.5) the probability that the broker advises X2 strategy
given that the investment is θ1 is

P (X2|θ1) = 1− P (X1|θ1) = 1–0.8 = 0.2.

Next, using the law of the total probability

P (X1) = P (X1|θ1)P (θ1)+P (X1|θ2)P (θ2) = 0.8×0.6+0.3×0.4 = 0.48+0.12 = 0.6

P (X2) = P (X2|θ1)P (θ1)+P (X2|θ2)P (θ2) = 0.6×0.2+0.4×0.7 = 0.12+0.28 = 0.4

or simply
P (X2) = 1− P (X1) = 1− 0.6,
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since X1 and X2 are two mutually exclusive events, and they create the whole
space of events. Next, using Bayes’ rule

P (θ1|X1) =
P (X1|θ1)P (θ1)

P (X1)
=

0.8× 0.6

0.6
= 0.8

Similarly, we get:

P (θ2|X1) = 0.2, P (θ1|X2) = 0.3, andP (θ2|X2) = 0.7

We can organise all the probabilities into Table 6.12, and we put them all into
the decision tree in Figure 6.13.

Step 3: Attaching utilities to the final nodes. (the leaves), see Figure
6.14. Note, that in this example, we assume that the utility is directly given
by the amount of money lost or gained. The money lost is the money paid for
the broker’s advice, which is f .

FIGURE 6.14: Investor Iveta’s decision tree after Steps 1-3 have been
completed. All the calculated probabilities are included in the tree, as well as

the utilities at the terminal nodes.

Next, in Step 4, of the decision tree building process, we go from right to
left:

• We take expectations of utilities at random nodes, and

• We maximise the utilities at decision nodes.

We go back to the Investor example. First, we calculate utilities at the
nodes that are the closest to the leaves, see the brown rectangle in Figure
6.15.
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FIGURE 6.15: Investor Iveta’s decision tree while doing Step 4 (the falling
back). Here we need to find utilities of the random nodes in the brown

rectangle.

Next, we move one node to the left. We are now at two decision nodes (see
the green rectangle in Figure 6.16). What is the best decision at the top node
in the green rectangle? Hint: We need to maximise the utility.

What is the best decision for the bottom node in the green rectangle? We
cut away the rejected decisions in the tree. This is done by drawing // on the
corresponding branch of the tree (see Figure 6.17). Next, we move one node
to the left. We are now at random nodes (see the brown rectangle in Figure
6.17). We calculate utilities at these nodes.

Question: How did we get all the utilities (above in the brown rectangle)?
Hint: This is done similarly to calculations in Figure 6.17.

Step 5: Making recommendations about decisions at the initial
decision node. How do we decide? See Figure 6.17. We need to decide so we
maximise utility.

What course of action would you recommend and why? Answer:

• Decision d2 is the worst strategy, i.e. it gives the smallest expected utility
(here it is profit).

• Decision to use the broker will be the best strategy if he charges fees f < 16
(16 = 5036− 5020). If the broker charges ¡16, then the investor should use
the broker. Then if the broker’s advice is to invest, then the investor should
invest. If the broker’s advice is not to invest, then the investor should not
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FIGURE 6.16: Investor Iveta’s decision tree while working on decision nodes
of step 4. We need to find the utilities of the random nodes in the green

rectangle.

invest. This way, the investor’s expected utility is maximised, which means
the expected profit is maximised (since here the utility value is directly
measured via money).

• Decision to not use the broker will be the best strategy If he charges
f > 16. So if the broker charges f > 16, the investor should not use the
broker. After that decision is made, the investor should invest. This way,
the investor’s expected utility is maximised, which means the expected
profit is maximised (since here the utility value is directly measured via
money).

Warning: this recommendation is based on maximising the expected utility
(or expected monetary value), and hence it should be used when the decision
maker is doing repeated decisions (i.e. has several investments of the same
payoff table). If the investor is deciding about one investment, then the payoff
she/he get is not equal to the mean, but rather to the values in the leaves, i.e.
there is a real risk of losing money.

Note that here we rejected one decision only (see the // notation for d2
branch coming from the main decision node, in Figure 6.17). The choice of
the other two decisions depends on the broker’s fee f .
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FIGURE 6.17: Investor Iveta’s decision tree, while working on step 4. Here
we take care of the nodes in the brown rectangle.

6.4 Tips to think and act like a risk expert

Here we briefly give two important tips for risk analysts.

6.4.1 Sensitivity analysis for decision trees

In the examples above, we assumed that we know the probabilities. For ex-
ample, we assumed precise probabilities of competition and market success
in the Manufacturer Mahiro example. We assumed we knew the other values
too. In Mahiro’s example, we assumed we know precisely the cost of the small
plant, of the large plant, of the number of products produced, and the price
at which he will sell the products. In real life, we do not know them precisely,
but hopefully, we have some imprecise answers. For example, Manufacturer
Mahiro may estimate that the cost of the construction of the small plant is
between £130 to £160. In other words, Mahiro is facing uncertainty, as he does
not have the precise numbers to put into the decision tree. How can he resolve
this problem? A way to resolve it is by conducting a sensitivity analysis.

Sensitivity analysis is an important tool of risk analysis (not just deci-
sion tree analysis). It aids in reducing uncertainty by identifying high-impact
parameters (such as probabilities). This can help in finding out which data
(information) to acquire to reduce uncertainty on said parameters.

In decision trees, it is crucial to do sensitivity analysis. It can help in finding
out which parameters are not needed and hence reduce the complexity of the
decision tree. It can also help to see how the result (the recommended set of
actions) depends on the specification of the probabilities or on outcome values.
For example, Manufacturer Mahiro can run a decision tree analysis with the
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£130 cost of a small plant, and then another analysis with the £160 cost of
the small plant and compare the recommended optimal decisions.

6.4.2 Value of information

The decision tree in the Investor Iveta example helps us to calculate a so-called
expected monetary value (EMV) of information. In Investor Iveta’s example,
the EMV when the advice was not sought was £5,200 (Figure 6.9). After the
investor sought the advice the EMV was £5,036-f . This means that the EMV
value of the information from the broker is £16. Iveta should pay less than
£16 for the broker’s advice.

6.5 Summary

We learned in this chapter:

1. We learned the five steps for constructing decision trees. In some decision
trees, we need to use Bayes’ theorem to get the probabilities needed for
the tree. Then we learned that careful communication of the results from
the decision tree is crucial so that the decision-maker understands us and
so he/she can make an informed decision.

2. A decision tree can be used as a model for a sequential decision problem
where the stakeholder faces risk. The advantages of using decision trees
are: (1) Constructing a decision tree may reveal alternative courses of
action that had not previously been identified or thought of. (2) A decision
tree formalises the decision-making process and makes the process more
objective and logical. (3) The decision tree offers a visual presentation of
the options. (4) The requirement of numerical values makes the results of
decision-making better. (5) The Management is forced to consider risk.

3. Disadvantages of decision trees are: (1) Probabilities will usually have to
be estimated, and might, themselves, be subject to uncertainty (expressed
via e.g. variability). The estimated probabilities (and their variance) are as
accurate as the data that we use for the estimation. So the quality of data
is important to investigate and to communicate to the decision maker too.
This is relevant to the strength of knowledge (see SoK in Figure 1.3). (2)
Not all factors can be given numerical values. Consequently, the results
are purely quantitative and ignore more important qualitative factors.
(3) Data may be out of date when a decision is actually taken. (4) The
process can be time-consuming and expensive. It may not be worth doing
a decision tree. Possible options may be overlooked. (5) Expected values
are weighted averages of outcomes and are unlikely to relate to the actual
outcome.
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6.6 Further reading

We recommend several resources for further reading:

1. A recommended reading on decision trees, with examples from business,
is the book called ”Decision Behaviour Analysis and Support” by Simon
French, John Maule and Nadia Papamichail [24]. They give many real-life
examples from their research which is mostly in business such as the Air-
line purchasing problem on pages 239-249. We also recommend ”Decision
Theory: Principles and Approaches” by Giovanni Parmigiani, Lurdes Y T
Inoue, Hedibert F Lopes [45]. They provide more business examples such
as a Travel Insurance example on pages 126-131.

2. Decision trees are very useful and popular in a field called health eco-
nomics. The tree in Exercise 3 (below) is one of the basic trees from
health economics. One method used in health economics is decision tree
modelling, which extrapolates the cost and effectiveness of competing in-
terventions over time. Such decision tree models are the basis of reim-
bursement decisions in countries using health technology assessment for
decision-making. A good source to start reading about decision trees in
health economics is the review by Rauntenberg and colleagues [48] and a
case study in [50].

3. To read more about sensitivity analyses we recommend [19] (pages 208-
224).

4. The term Decision tree is adopted in machine learning (ML) and Artifi-
cial Intelligence (AI) community, however, it has a different meaning from
the classical decision trees approach shown in this chapter. ML decision
trees share the main idea of the decision trees from this chapter: the tree
structure. However, the process of building an ML decision tree and the
goal of an ML decision tree is different from what we showed in this chap-
ter. In ML, a decision tree is a type of model that uses a set of predictor
variables to build a decision tree (to do the branching) that predicts the
value of a response variable (at the leaves). For example, we can have a set
of data from a patient (age, gender, blood test, image of retina) and we can
build a decision tree to predict if the patient has a sight-threatening dia-
betic retinopathy disease. Many ML books have a chapter on ML decision
trees. Such ML decision trees are not the aim of this book.
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6.7 Exercises

Solve the following exercises by using pen, paper and calculator.

1. [Purpose: Practicing decision trees using an oil prospering exam-
ple.] A company has to decide whether or not to drill for oil in a particular
spot. It costs c units to make a seismic test, the result of which will be a
’good’, ’fair’, or ’bad’ prospect of oil. The actual drilling operation costs
75 units. There are three possible results of drilling: a high yield of oil
which can be sold for 200 units, a moderate yield of 100 units, or no oil.
The company’s data for previous places of this type are as follows:

High Moderate None Totals

Good 20 10 10 40

Fair 9 9 12 30

Bad 3 12 15 30

In addition, drilling was not carried out at places with the following seismic
records
Good: 0, Fair: 10; Bad: 20
Had drilling been carried out it is believed that the results would have
been similar to those in the present table. In the past, in places of this
type, a seismic test has always been carried out. Answer the following
questions:

(a) What is the maximum value of c to make a seismic test worthwhile?

(b) If the actual seismic test costs 5 units less than this value, determine
the optimum interpretation of the test in terms of whether or not to
drill. What is the expected profit?

2. [Purpose: Practicing decision trees using a manufacturing de-
fects example.] A part of an aircraft engine can be given a test before
installation. The test has only a 75% chance of revealing a defect if it is
present, and the same chance of passing a sound part. Whether or not
the part has been tested it may undergo an expensive rework operation,
which is certain to produce a part free from defects. If a defective part
is installed in the engine, the loss is L utiles (loss in utility). The rework
operation costs L/5 utiles, and 1 in 8 of the parts are initially defective.

(a) Create the decision tree structure for this problem (i.e. step 1).

(b) Calculate and add utilities to the tree structure.

(c) Calculate and add the random node probabilities to the tree struc-
ture.
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(d) Calculate how much you could pay for the test and determine all the
optimum decisions.

3. [Purpose: Practicing decision trees using a medical example.] A
doctor has the task of deciding whether or not to carry out a dangerous
operation on a person suspected of suffering from a disease. If he has the
disease and does operate, the chance of recovery is only 50%, without an
operation the similar chance is only 1 in 20. On the other hand, if he does
not have the disease and the operation is performed there is a 1 chance
in 5 of his dying as a result of the operation, whereas there is no chance
of death without the operation. Assume there are only two possibilities:
death or recovery. What is the optimal decision that a doctor should make?

4. [Purpose: Practicing decision trees using a property company
example.] A property owner is faced with a choice between three deci-
sions:

• Decision A: A large-scale investment to improve her flats. This could
produce a substantial pay-off in terms of increased revenue net of
costs but will require an investment of £1,400,000. After extensive
market research, it is considered that there is a 40% chance that a
pay-off of £2,500,000 will be obtained, but there is a 60% chance that
it will be only £800,000.

• Decision B: A smaller scale project to re-decorate her premises. At
£500,000 this is less costly but will produce a lower pay-off. Research
data suggests a 30% chance of a gain of £1,000,000 but a 70

• Decision C: Continuing the present operation without change. It will
cost nothing, but neither will it produce any pay-off. Clients will be
unhappy and it will become harder and harder to rent the flats out
when they become free.

(a) Create a decision tree to help make the decisions.

(b) What choice will you recommend to the property owner?
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Communication of risk is crucial. It should not be merely a statement of risks,
but rather a dialogue between the risk expert and the stakeholders. Effective
risk communication encourages open dialogue and two-way communication be-
tween experts and stakeholders. It creates opportunities for individuals to ask
questions, express concerns, provide feedback, and contribute to the decision-
making process. Such two-way communication enables a better understanding
of risk among stakeholders, it enables a better understanding of perceptions,
needs, and values among the risk experts too. This then leads to more effective
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risk management strategies.

Learning objectives

1. Learn what the stakeholders are and get a gentle introduction into what
shapes their perception of risk and, thus, their behaviour. We will briefly
discuss several cognitive biases related to the risk that people have. By
people, we will mean the stakeholders.

2. We will look into strategies for effective risk communication. We will also
briefly discuss the ethical and legal considerations.

3. We will learn how to evaluate and improve our communication of risks.

7.1 Lost in translation: Story 1

This is a story about Ariel, an experienced risk analyst and AI developer,
who failed to communicate risk when presenting the AI prototype software
developed by her research team. For a new hypothetical patient, the AI was
estimating if the patient has sight-threatening diabetic retinopathy based on
seeing the patient’s colour fundus image of the retina. She was talking to
her collaborators: one expert in cybernetics and education and one expert in
glaucoma (inspired by our own experience, the name was changed).

She was challenged by both collaborators about the meaning of the esti-
mated probability. The probability was 91% with a 95% credible interval of
75% to 93%. While showing these numbers to the collaborators, the clinician
asked her: ”What do these probabilities mean?” And the expert in cybernetics
and education asked her, ”Are these probabilities an objective examination of
the patient’s risk?”.

They were good questions. The team planned to spend a large amount of
time negotiating with investors and persuading them to buy the prototype
and a large amount of money to pay for a patent application. It was already
established that the AI prototype is accurate enough via metrics such as sen-
sitivity, specificity, positive predictive value and negative predictive value (see
Section 2.4.2). The problem was that Ariel could not give the collaborators a
good answer. She was the risk expert but did not have clear and convincing
answers to these basic questions, also addressing how to understand uncer-
tainties related to these numbers. She was not able to communicate the results
of the AI-estimated risk in a way that was trustworthy.

The clinician was the main decision maker, and he had to decide whether
to talk to investors. He needed to be sure how to answer the questions above to
potential investors and regulators. He was informed about the probability and
the credible interval, but there was a lack of clarity on what these numbers
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meant, which made him question how such an AI prototype would be used
in real life. The questions are about interpretation. Ariel was answering in
academic terms, and she kept answering, ”It is the probability of the patient
having sight-threatening diabetic retinopathy” and ”No, the probabilities are
not objective; they are subjective estimation or guess made by AI”. The prob-
lem with the first answer is that patients do not generally use probabilities
to make decisions; they use natural frequencies. The problem with the second
answer is that the clinician and the cybernetics expert did hope for an objec-
tive answer; they were not ready to accept a subjective answer; they felt AI
”ought to be objective”. Ariel felt that AI is ”subjective” since it learns from
certain data. (As she found later, her logic was wrong.)

The long discussion ended with the collaborators telling the risk analyst
she was ”biased in her knowledge of probability”. At that point, the risk
analyst was annoyed. After all, she has trained all her life not to be biased.

This example shows how even a seemingly simple case can turn into confu-
sion. Without understanding the estimated risk, a patient and clinician would
not know how to make a decision. Another non-medical example of miscom-
munication can be found in [9] (see their Chapter 7).

7.2 Lost in translation: Story 2

This is a story about Danica, a retired former research nurse. She was failed
by a sequence of misfortunate communications in the health system, causing
her to lose sight in her left eye irreversibly (inspired by a real story we heard
from a patient we interviewed for our project, the name has been changed).

During Covid-19 time, in early 2021, she went to her optometrist to check
her left eye. Her vision was blurred. The optometrist used high-end expensive
eye cameras to check the back of the eye as well as the front of the eye. The
optometrist then told her that this was a likely cataract, which is treatable
and that she did not need to hurry to the hospital. He said it is not glaucoma
disease. He said that it is OK to wait six months till hospitals will be more
free and the pandemic calms down. He also referred her to see her general
practitioner. She saw her general health practitioner, who read the message
from the optometrist while forgetting to tell her that her intraocular pressure
was a bit too high (which is a risk factor for glaucoma). Another four months
later, she lost sight in her left eye due to glaucoma, which is irreversible as
there is no treatment. However, there is a medical treatment to slow down or
stop the progression of glaucoma.

What went wrong? The problem was in the risk communication. Danica
trusted the optometrist. She saw the optometrist operating the same cameras
as she once saw in hospitals; thus, she concluded that the optometrist is trained
to diagnose various eye diseases, including glaucoma. The optometrist did not
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express any words of uncertainty. He sounded very sure and competent. Danica
trusted her general health practitioner. However, the practitioner was unaware
(or forgot) that an increase in intraocular pressure is a risk factor for glaucoma
(though there are glaucoma patients who never had an increased intraocular
pressure).

This example shows how risk communication can turn into a wrong deci-
sion. Danica would probably act differently had she known that there is even
a small chance of having glaucoma. Danica might have acted differently if the
optometrist had said that he was unsure about what he saw and if he told her
to come to see him again in two months. Communication of the uncertainty
of the optometrist was not done here. There were two sources of uncertainty:
cataract makes it hard and sometimes impossible to see the back of the eye,
and thus to diagnose glaucoma, the optometrists do not have training for di-
agnosis of glaucoma as it is too complex and thus it is done by glaucoma
specialists at the hospitals. None of these sources of uncertainty were com-
municated to Danica. This example highlights the importance of clear risk
communication, the complexity of glaucoma disease, and the need to do more
research on glaucoma detection, including developing useful AI tools to aid
eye professionals in preserving people’s sight.

7.3 Objectives of the risk communication

Generally, the aim of risk communication is to inform the stakeholders about
the risks so that they understand them and make the best possible decision.
In what follows, we describe several specific objectives of risk communication.

Firstly, we inform the stakeholders and provide accurate, relevant, and
timely information about risks to individuals, communities, and other stake-
holders. It must be ensured that people have a clear understanding of the
nature of the risk, its potential consequences, and the actions they can take
to mitigate or respond to it.

We educate the stakeholders about the causes, factors, and underlying
science behind the risk, as well as the potential health, environmental, or
societal impacts associated with it. By improving stakeholders’ knowledge,
they can make informed decisions and take appropriate precautions. This
way, we empower the stakeholders to make informed choices and take action
to protect themselves from risks. It provides them with the necessary tools,
resources, and guidance to assess their own vulnerabilities, understand their
options, and implement risk reduction or mitigation measures.

We build trust with the stakeholders, individuals, communities, and busi-
nesses by providing transparent, honest, and consistent information. Often
communication starts with not trust. Building trust enables effective commu-
nication and facilitates a sense of collective responsibility in managing risks.
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Sometimes we need to influence the behaviour of individuals and motivate
them to adopt protective measures (such as not socialising during the Covid-
19 pandemic lockdown). By influencing behaviour, we seek to minimise the
potential impacts on individuals and communities.

We facilitate the preparedness and resilience of people in the face of risks
to be ready in case of future emergencies, disasters, or ongoing risks. It is
important to do it in such a way that it does reduce uncertainty and anxiety.

We create stakeholder engagement and participation because the stake-
holders are involved in shaping the risk management processes. The stake-
holders are encouraged to say what their fears are and what their hopes are
about risk communications. This enhances the legitimacy and effectiveness of
risk management efforts and improves the collective feeling.

7.4 Stakeholders

There are various stakeholders in risk communication, each having different
responsibilities and interests. Each risk situation involves several or many
stakeholders, where some are decision-makers, and some are affected. In the
Covid-19 pandemic, everyone was a stakeholder, from governments, doctors,
nurses, cleaners, and researchers to public individuals. In what follows, we
briefly list the types of stakeholders.

Government agencies include public health departments, environmental
protection agencies, and regulatory bodies. They are responsible for assessing
and managing risks, providing accurate information to the public, and coor-
dinating emergency response efforts. An example was Covid-19 and health
departments and government representatives needing to decide what action
to take concerning the lockdown and what to say to the public.

Scientific and technical experts and subject matter (e.g., experts in vi-
rology). They analyse data, conduct risk assessments, and provide evidence-
based information to inform risk communication strategies. These experts of-
ten collaborate with government agencies, industry representatives, and other
stakeholders to ensure accurate and up-to-date information is conveyed to the
public.

Industry and business entities that produce or handle potentially risky
products (such as toxic waste) or processes (such as AI-related risks where
AI wrongly classify a person as healthy) have a responsibility to communicate
the associated risks. They collaborate with government agencies to adhere to
regulations, provide necessary warnings or precautions, and ensure the safety
of their products or services. Industry stakeholders also play a role in crisis
communication during incidents or accidents related to their operations.

Industry and business entities also want to ensure that their businesses
are profitable and not victims of risks too caused by, e.g. digital attacks, the
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arrival of a competing product, or the effect of inflation. They want to discuss
their projects with risk analysts as well as a domain expert relevant to their
projects. Typically they want to diversify the risks into a portfolio of various
projects, some less risky, some more risky.

Non-governmental organisations (NGOs), such as advocacy groups, con-
sumer organisations, and public interest groups, often engage in risk communi-
cation to represent the concerns and interests of specific communities or pop-
ulations. They play an important role in ensuring that public opinions, needs,
and perspectives are considered. NGOs can also provide additional expertise,
mobilise community engagement, and hold other stakeholders accountable for
their risk communication efforts.

Media and journalists are vital in disseminating risk-related information to
the public. Journalists act as intermediaries between experts, authorities, and
the public, translating complex information into accessible formats. Usually,
journalists work with risk experts to ensure the information is clear and not
too simplified.

Health and safety professionals in public health, occupational health and
safety, and emergency management are instrumental in risk communication.
They work within organisations, government agencies, or independently to
assess, manage, and communicate risks related to health, safety, and emer-
gencies. These professionals provide guidance, develop protocols, and support
risk communication efforts in their respective fields.

Community leaders and local organisations are crucial in risk communica-
tion, particularly in engaging and mobilising specific communities.

The general public is an important stakeholder in risk communication. In-
dividuals and communities must be informed about risks, understand their
implications, and know how to protect themselves. Active participation, en-
gagement, and compliance with risk communication messages are vital for
effective risk management.

7.5 Brief foundations of risk communication

Here we briefly learn about risk perception and psychology: the factors influ-
encing risk perception and cognitive biases and heuristics.

7.5.1 Factors influencing risk perception

People perceive risk differently. Various factors influence them. Personal ex-
perience is the first important factor. If someone has personally experienced
a negative outcome or harm related to a specific risk, he/she may perceive it
as more significant and alarming.

Media plays a crucial role in shaping risk perception. How risks are por-
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trayed in the media can influence how people perceive them. Sensationalised
or exaggerated media coverage can lead to overestimating risks, while limited
coverage or downplaying of risks may result in underestimation.

Cultural and social factors can shape risk perception. Different cultures
and societies have varying values, beliefs, and norms that influence how they
perceive risks. Factors such as collective responsibility, trust in institutions,
and social influence can impact individual risk perceptions. If individuals have
confidence in these entities, they may perceive risks as better managed and
controlled, leading to lower levels of concern.

The degree of control individuals feel over risk can influence their percep-
tion of it. If someone believes they have control over risk, they may perceive
it as lower and more manageable. On the other hand, if they perceive a lack
of control, the risk may be perceived as higher and more threatening.

The level of knowledge and information individuals have about a particular
risk can shape their perception of it. Understanding the nature of a risk, its
potential consequences, and the likelihood of occurrence can influence risk
perception.

Emotions can play a significant role in risk perception. Risks that evoke
strong emotions, such as fear, anger, or disgust, are often perceived as more
significant and threatening. Emotional responses can sometimes override ra-
tional assessments of risks.

The availability heuristic is another factor influencing risk perception. It
refers to the tendency to judge the likelihood and severity of risks based on
how easily examples or instances of those risks come to mind. If people can
easily recall vivid or memorable instances of a risk, they may perceive it as
more common or severe.

Social amplification of risk occurs when public perception and concern
about risk are magnified through social interactions and communication. If
people perceive that others around them are highly concerned about a partic-
ular risk, it can amplify their risk perception.

It’s important to note that these factors interact and can influence each
other, leading to complex and nuanced risk perceptions among individuals
and communities.

7.5.2 Cognitive biases and heuristics

Several cognitive biases and heuristics are relevant to risk perception and
decision-making [60], [36]. Here are a few key ones:

Availability heuristic bias occurs when people judge the likelihood or fre-
quency of an event based on how easily they can recall or remember similar
events. If a particular risk or event is more memorable or vivid, it tends to be
perceived as more likely or prevalent than it is.

Anchoring and adjustment heuristic bias involve relying heavily on an ini-
tial piece of information (the anchor) when making decisions or estimations.
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Subsequent judgments are then adjusted from this initial anchor. In the con-
text of risk perception, if individuals are presented with a specific reference
point or starting point, it can influence their perception of the associated risk.

Overconfidence bias is the tendency to overestimate one’s abilities, knowl-
edge, or accuracy in making judgments or decisions. People often have exces-
sive confidence in their ability to handle risks, leading them to underestimate
the potential negative consequences.

Optimism bias is characterised by individuals believing that they are less
likely to experience negative events or risks compared to others. This bias can
lead to underestimating risks and overestimating the likelihood of positive
outcomes.

Loss aversion is the tendency to weigh potential losses more heavily than
equivalent gains. People are generally more sensitive to losses and take risks to
avoid losses than potential gains. This bias can influence risk perception and
decision-making when individuals focus more on avoiding losses than max-
imising potential gains.

Confirmation bias occurs when individuals seek or interpret information
in a way that confirms their preexisting beliefs or expectations. In the context
of risk perception, people may selectively pay attention to information that
supports their existing views on risk and ignore contradictory evidence, leading
to biased perceptions and decisions.

Social influence bias occurs when individuals are influenced by the opin-
ions, beliefs, and behaviours of others in their social groups. People may adjust
their risk perception and decisions based on what they perceive as the norm
or socially desirable behaviour within their social circles.

Understanding these cognitive biases and heuristics can help individuals
become more aware of their potential influence on risk perception and decision-
making. By recognising these biases, individuals can make more informed and
rational assessments of risks and improve their decision-making processes.

7.5.3 Communication theories relevant to risk communica-
tion

We mention here three theories: the social amplification of risk framework,
the social cognitive theory and the diffusion of innovations theory.

The Social Amplification of Risk Framework (SARF) is a theoretical frame-
work developed by social scientists to explain how social processes can amplify
or attenuate the perception, communication, and response to risks. SARF rec-
ognizes that risk perception is not solely determined by the objective char-
acteristics of a risk but is also shaped by social, cultural, and psychological
factors. The framework proposes that risk events undergo a series of am-
plification or attenuation processes as they pass through various stages of
communication and interpretation.

Social cognitive theory is also relevant to understanding risk perception and
behaviour. It provides several insights into risk perception. Firstly, it highlights



Communication of risk 251

the importance of observational learning. Individuals can acquire knowledge,
attitudes, and behaviours related to risk by observing others, such as parents,
peers, or media figures. Through observation, people can learn about the po-
tential risks, how others perceive and respond to them, and the outcomes
associated with different risk-related behaviours. Secondly, it believes in self-
efficacy. Individuals that are self-efficient are more likely to perceive risks as
manageable and have confidence in their ability to engage in risk-reducing be-
haviours. On the other hand, individuals with low self-efficacy may perceive
risks as overwhelming and may be less likely to take appropriate preventive
actions. Thirdly, the social cognitive theory emphasises the importance of
outcome expectations in risk perception and behaviour. Positive outcome ex-
pectations, such as perceived benefits or rewards, can increase the likelihood
of engaging in risky behaviours, while negative outcome expectations, such
as perceived harms or punishments, can deter individuals from taking risks.
Fourthly, the social cognitive theory sees importance in self-regulation pro-
cesses of individuals, such as self-monitoring, goal setting, and self-reflection
in risk-related decisions. Individuals who actively monitor and regulate their
risk behaviours through goal setting and self-reflection are more likely to en-
gage in adaptive risk management strategies and make informed decisions.
Fifth, the social cognitive theory highlights the bidirectional relationships be-
tween individuals and their environment. Risk perception and behaviour are
influenced by environmental factors such as social norms, cultural values, and
media messages. At the same time, individuals can shape their environment
by making choices and engaging in behaviours that affect their risk exposure
and perception. By considering social cognitive theory, risk communication
can be made so that it enables effective interventions, communication strate-
gies, and educational programs aimed at promoting accurate risk perception,
enhancing risk management skills, and facilitating behaviour change towards
safer and more informed decision-making in the face of risks.

Diffusion of innovations theory was developed by sociologist Everett
Rogers and is highly relevant to risk communication. The theory focuses on
how new ideas, behaviours, or innovations spread and are adopted within
a population. In what follows, we mention key principles. The first princi-
ple is the adoption of Risk-Mitigating behaviours. In risk communication,
the goal is often to encourage individuals to adopt behaviours that reduce
their exposure to risks. Diffusion of Innovations theory provides insights into
the factors that influence the adoption of such risk-mitigating behaviours.
These factors include the perceived benefits and relative advantages of the
behaviour, its compatibility with existing values and norms, simplicity and
ease of use, and the social influence of opinion leaders or influential individ-
uals who have already adopted the behaviour. The second principle is the
importance of choosing the right communication channels in disseminating
information about risks and risk-mitigating behaviours. Different communica-
tion channels, such as mass media, social media, interpersonal communication,
or community networks, can be utilised to facilitate the spread of risk infor-
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mation and encourage behaviour change. The third principle is about opinion
leaders. They play a crucial role in the diffusion of innovations, including risk-
mitigating behaviours. These are individuals who are influential within their
social networks and are early adopters of new ideas or behaviours. Leverag-
ing opinion leaders in risk communication can help accelerate the adoption
of risk-mitigating behaviours within a community by providing visible ex-
amples and reinforcing social norms. The fourth principle is the importance
of social norms on risk perception and behaviour. Social norms refer to the
shared expectations, values, and beliefs within a community that influence
individuals’ behaviour. Effective risk communication aims to influence social
norms by highlighting the prevalence of risk-mitigating behaviours and em-
phasising their acceptance within the community. The fifth principle is the
decision-making process. Diffusion of Innovations theory highlights the differ-
ent stages of the decision-making process individuals go through when con-
sidering the adoption of new behaviours. These stages include knowledge,
persuasion, decision, implementation, and confirmation. Risk communication
efforts can address each stage by providing information, addressing concerns,
offering incentives, and providing ongoing support to facilitate the adoption
and maintenance of risk-mitigating behaviours.

The theories we briefly mentioned here are relevant to any stakeholder:
from the public to business owners.

7.6 Toward effective risk communication

Here we discuss several ideas for effective risk communication: practical ele-
ments of the communication, ethical and legal considerations, and evaluation
and improvement of risk communication.

7.6.1 Practical elements of effective risk communication

Here we briefly mention the elements of effective communication include:

1. Message development. The message needs to be clear and concise. It needs
to be tailored to the audience. And it also needs to address uncertainty,
e.g. when communicating the risk of oesophagal cancer, we need to say
what data (information) we used to calculate the risk.

2. Channel selection. We need to choose the right mean of communication,
e.g. verbal or written, media or newspaper. We need to remember to man-
age the expectations of our audience and think about how to become
trustworthy.

3. Building trust and credibility. This is recommended by being transparent
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and not hiding any important facts, by demonstrating competence and by
trying to create a two-way communication.

4. Cultural and linguistic considerations. Here we must address cultural dif-
ferences, overcome language barriers and incorporate cultural values and
norms where possible.

7.6.2 Ethical and legal considerations in risk communication

When we communicate the risks, we need to consider the ethical principles
and dilemmas. For example, when the risk of Covid-19 was communicated
to the public in February 2020 (i.e. at the very start of the pandemic), it
was important to find the balance between transparency and public panic.
It was important to communicate so that it protects vulnerable populations
(e.g. people with immunodeficiency problems). It is also important to avoid
conflicts of interest.

When communicating risks, we also need to consider legal frameworks and
regulations. For example, we need to be compliant with privacy and data
protection laws, with advertising and marketing restrictions, and with health
and safety regulations.

7.6.3 Evaluation and improvement of risk communication

Lastly, a risk expert (or risk team) must be doing a self-reflection. This means
evaluating how the risk communication went and improving on it in future.

There are several strategies that a risk expert can use to evaluate the
quality of risk communication. The first strategy is monitoring and evaluation
metric. This means assessing audience understanding and perception, e.g. via
a questionnaire or a dialogue. This also means analysing media coverage and
public discourse. And it can also include a measurement of the behavioural
change and adherence to the change (e.g. if a doctor recommends a diet to
lower cholesterol, then there are ways to measure the cholesterol level several
weeks after the recommendation).

There are some ideas on how a risk expert can engage in continuous im-
provement of his/her risk communication. The natural ideas incorporate feed-
back and lessons learned, adapting strategies based on emerging risks and
incorporating new technologies and tools.

The risk analyst Ariel from the example at the beginning of this chapter,
did reflect after the heated discussion. She read several papers and books on
risk communication, and she consulted other risk experts. She arrived at an-
swers that were satisfactory to the clinician and cybernetics specialist. The
first question, ”What do these probabilities (91% with a credible interval 75%
to 93%) really mean?” she answered: ”It means that if we have 100 patients
with the back of the eye looking similar to the patient in front of us, then
we expect that 91 of them do have a sight-threatening diabetic retinopathy,
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however with probability 95% there can be from 75 to 93 patients having sight-
threatening diabetic retinopathy”. The second question ”Are these probabil-
ities an objective examination of the patient’s risk?”, she answered as ”yes,
these probabilities should be seen as objective (i.e. rational) beliefs as opposed
to subjective. What is meant by objective belief? The degree of belief that is
rational for a person (or AI) to hold, given the evidence available, is fixed, and
in that sense is objective. But this objectivity exists at the level of knowledge.
For AI the knowledge comes from the training data that we used to train
the AI, and the type of the model we chose for AI was convolutional neural
networks”.

7.7 Tips to think and act like a risk expert

Here we discuss several tips on risk communication by bringing in several
practical use cases.

7.7.1 On risk communication in finance

Crouhy, Galai and Mark, in their book ”The essentials of risk management”
(2006) [17] they mention a talk of Mervyn King, governor of the Bank of
England, who pointed out the distinction between risk and uncertainty using
the example of the pensions and insurance industries. These industries have
used statistical analysis to develop products (life insurance, pensions, annu-
ities, and so on) that are important to us all in looking after the financial
well-being of our families. These products act to “collectivize” the financial
effects of any one individual’s life events among any given generation.

In his speech, Mervyn King set out two principles of risk communication
for public policymakers. Such principles can be used by senior risk committees
at corporations looking at the results of complex risk calculations:

1. Information must be provided objectively and placed in context so that
risks can be assessed and understood.

2. Experts and policymakers must be open about the extent of our knowledge
and our ignorance. Transparency about what we know and what we don’t
know, far from undermining credibility, helps to build trust and confidence.

7.7.2 On risk communication in medicine

This section is based on the blog Maŕıa del Carment Climént [18] where she is
proposing seven steps to communication. We summarise the steps in Table 7.1.
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Step Need to do

Step 1 Clarify what the risk is and who is affected
Step 2 Specify the time period the risk refers to
Step 3 Present relative and absolute risks
Step 4 Pay attention to the format of numbers
Step 5 Include graphics whenever possible
Step 6 Provide balanced information
Step 7 Explain uncertainties

TABLE 7.1: Seven steps of risk communication. (Adopted from [18]).

Next, we will discuss the first step, only. In Step 1, we need to clarify what
can happen and clarify who is affected by it. For example, in the case of dia-
betic retinopathy-related harm, we need to specify if we talk about the risk of
progressing to mild retinopathy, sight-threatening retinopathy, or losing sight.
In the case of Covid-19 related harm, we need to say if we are talking about
the risk of infection, the risk of hospitalisation or the risk of dying.

We need to clarify who is affected by the risk. In other words, we need
to clearly say who is the affected stakeholder and if the research we did was
on the same type of stakeholders. For example, do we talk about diabetic
retinopathy in UK people who are 50-100 years old, or any age? Specifying
the age and location is one example of a so-called stratification. If the risk
is communicated about humans, then we should stratify the group we are
referring to as much as possible, e.g. 50-100 years old in the UK with diabetes.

Caution! The risk of contracting the disease is not the same as the risk
of dying from the disease. Contracting the disease and dying from the disease
are two different outcomes. Hence we must specify what outcome we have in
mind, i.e. what can happen.

Caution! The research done in humans, and evidence found in humans is
not the same as the research evidence found in another species. The research
results obtained in humans in Spain may not be relevant for affected people
in Slovakia. Hence we should say where the research was done.

7.7.3 On risk communication in Artificial Intelligence

AI holds the potential to improve lives, by helping us in doing complex cogni-
tive tasks. For example, there is research for AI to help optometrists to detect
glaucoma from retinal images, but such an algorithm is still not used in real
life. There are algorithms already used in real life, some are helping humanity,
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but some have created terrible mistakes [21]. There are two main types of risk
communication by AI

1. AI should be able to tell how accurate it is on a target population. We
mentioned some metrics in Chapter Probability in Section 2.4.2). There
are more metrics. Notably, sometimes AI makes mistakes which lead to
AI-related risks.

2. AI should be able to tell how precise it is on a person (item). We mentioned
one example earlier in this Chapter when we discussed Ariel’s experience
communicating her AI prototype to a clinician and cybernetics expert.
The precision was measured by the 95% credible interval (the narrower
the interval, the better the precision).

Both types are an intensive area of current research. Especially the second one
requires a lot of research attention (as concluded by European Commission
High-Level Expert Groups).

7.8 Summary

We learned in this chapter:

1. One communication of the risks can involve various stakeholders with con-
flicting needs or requirements.

2. A risk communication is not merely a state of providing information. It
is a dialogue. Even when a risk about Covid-19 is put into the news as
a one-way communication, it should be open for feedback regarding the
format, content and clarity of the messages.

3. Effective risk communication requires knowledge of cognitive psychology
and is an active area of research. The research must be ongoing and in
close collaboration and participation of the stakeholders (this is called
participatory design).

4. One emerging area of research is how to run focus groups to understand
people’s attitudes toward AI, how AI can gain the trust of people and
what people feel is a safe AI.
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7.9 Further reading

The chapter was inspired by our research, the research of others, guidelines of
international societies and several books too. Here we list the monographs we
were inspired the most, as well as we recommend resources for future reading:

1. Our chapter was mostly inspired by the monograph Risk Science by Aven
and Thekdi [9], 2022, and their chapter on communication.

2. We were also inspired by the work of psychologist Gerd Gigerenzer, es-
pecially his 2002 book named Reckoning with risk. Learning to live with
uncertainty [25] and his 2014 book named Risk savvy. How to make good
decisions [26]. The book is written in lay language, and we highly rec-
ommend reading it. It provides examples of communication of risks in all
areas of life, from criminal court cases to health screening programs.

3. We were also inspired by the paper of Tversky, A. and Kahneman, D
Judgment under Uncertainty: Heuristics and Biases, 1974 [60].

4. We only mentioned several cognitive biases. A more comprehensive list
(about 180 types) of cognitive biases can be found, e.g. in [38].

5. For a further reading we also recommend Risk Assessment and Decision
Analysis with Bayesian Networks, by Fenton and Neil [22].
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