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Abstract 
The Internet of Things (IoT) continues to introduce 

unique challenges and threats to cybersecurity. In 

parallel, adaptive and autonomous cyber defence has 

become an emerging research topic leveraging 

Artificial Intelligence (AI) for cybersecurity solutions 

that can learn to recognize, mitigate, and respond to 

cyber-attacks, evolving over time as the threat surface 

continues to increase in complexity. This paradigm 

presents an environment strongly conducive to agent-

based systems, which offer a model for autonomous, 

cooperative, goal-oriented behaviours which can be 

applied to perform adaptive cyber defence activities. 

This paper presents a modular applied framework to 

leverage data models, domain knowledge, and multi-

agent architecture to perform adaptive cyber defence 

capabilities through contextual policy generation and 

enforcement. The Belief-Desire-Intention (BDI) model 

is extended for behavioural modeling of agents to 

perform practical reasoning and deliberation of actions 

in pursuit of goals in an IoT environment with social 

robots. 

 

Keywords: Cybersecurity, Internet of Things, Agent-

Based Modelling, Adaptive Defence, Social Robots. 

1. Introduction  

Internet of Things (IoT) devices with increased 

connectivity and varying device capabilities are 

becoming more prominent in an array of industries, 

ranging from critical infrastructure, enterprises, 

automation, and healthcare. Within the consumer 

market, IoT devices within the household - ‘smart home 

devices,’ introduce a unique environment with sensitive 

personal data, availability requirements, limited 

expertise of users, and unique security threats. A 

fundamental problem with the interconnection of this 

‘Internet of Things’ is that the IoT is creating a wider 

attack surface, with billions of new and emerging 

devices (MacDermott et al. 2018). Securing IoT devices 

becomes more complex due to the environmental 

complexity, the volume of data, expanding attack 

surface, and the plethora of avenues that can be 

exploited and targeted by malicious actors.  

Artificial Intelligence (AI), machine learning, and 

automation are increasingly being adopted for 

cybersecurity applications as the intelligence and 

analytics gathered from environments can be leveraged 

and fed information from monitoring entities and 

cybersecurity frameworks. This increased integration of 

data for cybersecurity capabilities, also known as 

‘adaptive cyber defence’, aims to create semi-

autonomous cyber defences that can learn (based on 

observations in data and reference models) to recognize 

and respond to cyber-attacks, discover and mitigate 

weaknesses while evolving over time in response to 

changes in attacker behaviour, system health and 

readiness, and natural shifts in user behaviour (Marriott 

et al., 2021). Some limitations of current works within 

this domain include standalone solutions that are 

theoretical or do not provide interoperability. There is a 

strong need for a practical framework for the 

implementation of these capabilities, not only for 

security but also for regular IoT services (Coulter and 

Pan, 2018; Savaglio et al. 2021). Agent-based 

cybersecurity is an emerging topic in this interconnected 

paradigm, with agents being able to share information, 

make decisions based on observations, and have flexible 

hierarchies depending upon the needs of the 

infrastructure.  

Our work aims to bridge the gap between 

theoretical multi-agent systems research and 

cybersecurity domain knowledge to provide a novel 

applied framework for adaptive cyber defence that can 

address a wide range of challenges and provide a 

foundation for significant future research in systems 

modelling for cybersecurity and other applications. We 

present a model smart home scenario containing several 

consumer IoT devices including, lighting, physical 

security, temperature control, and a social robot which 

participate in a network of Belief-Desire-Intention 

(BDI) software agents to perform security functions. 
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Within our framework, processes are modelled as 

multi-agent plans and tasks, where agents work together 

to achieve common goals to defend the network. We 

define a multi-agent adaptive cyber defence model 

within IoT smart home environments, using BDI agents 

to perform autonomous and adaptive goal-based 

reasoning for defence actions enabled by cybersecurity 

domain knowledge graphs. 

The outline of this paper is as follows: In Section 2 

we present background information and related works 

within the area. Section 3 outlines our Multi-agent 

System (MAS) architecture using BDI, and Section 4 

details our Knowledge Graphs for BDI Agent 

Reasoning. In Section 5 we present a use-case scenario 

within an IoT smart home environment, and we 

conclude our findings in Section 6. 

2. Background and related works 

The rapid growth of the IoT has made a prominent 

impact on almost all areas of modern life, introducing a 

network of physical devices endowed with embedded 

sensors and networking capabilities to enable a vast 

array of pervasive services. The IoT is based on existing 

and evolving interoperable information and 

communication technologies. The development of IoT 

and smart home technologies are driven by advances in 

embedded and ubiquitous communication, 

virtualisation, and data analytics (Gafurov and Chung, 

2019).  

Smart home technologies are some of the most 

widely used and deployed applications for consumer 

IoT solutions, which provide digital services throughout 

the home through a range of networked devices (Hassija 

et al. 2019). Smart homes introduce an environment 

where IoT exists in the context of everyday objects in 

homes, such as doorbells, lighting, and fridges, and 

allow for greater automation and comfort of daily 

activities. These activities can be personalized, 

automated, and contextual services based on user input 

into the device controller or previously observed 

behaviour, such as playing the local weather report 

when the user turns off their Alexa alarm clock. 

Similarly, in assisted living or healthcare IoT scenarios 

(MacDermott, 2019), an alert can be sent to a healthcare 

provider if an individual is displaying abnormal 

behaviour symptomatic of a health issue.  

Data available to smart home systems can be of 

volunteered, observed, or inferred types. Volunteered 

data is explicitly provided through the user in terms of 

profile preferences. Observed data is collected through 

sensors such as microphones or usage data. Finally, 

inferred data refers to information that has been 

correlated between volunteered and observed data, such 

as what time a user is likely to return home based on 

previous usage patterns. Users may be unaware of 

observed or inferred data collected and stored by the 

system, and this information can become very personal, 

such as behaviour and life patterns (Rafferty, 2022).  

Due to the personal value of the data collected and 

retained by smart home systems, such data can be a 

target for attackers for a variety of reasons. As sensors 

are integrated into ‘things’ within the household, 

collected data can frequently be equated to physical 

observations, which can be further correlated with 

information collected from other sensors and sources. 

As IoT and smart homes are typically connected, other 

devices on the network, including smartphones and 

wearable devices, can interact with each other and share 

data. This makes it possible for further correlation 

across devices and for the data to be shared externally. 

Information collected can become increasingly intimate, 

such as health information, and can be correlated with 

data collected from other devices for further context 

extraction. Therefore, the privacy of all individuals 

within the home is at risk, including children who may 

be the primary users of some IoT technologies in the 

home, such as smart toys and social robots.  

Agent-based Modelling (ABM) is a method of 

modelling systems composed of autonomous decision-

making entities, known as agents, interacting with each 

other and their environment (Bonabeau, 2002). Agents 

execute actions based on a set of rules and often operate 

within an environment with other agents, known as 

Multi-Agent Systems (MAS). ABM has been used to 

simulate complex decentralized systems of autonomous 

agents to predict global system outcomes based on local 

interactions. Within this work, we apply agent-based 

modelling to IoT home scenarios. In ABM, the key 

attributes are the agent, environment, and relationships 

which can be defined as:   

• Agent: An autonomous entity that makes decisions 

and actions based on a set of rules based on 

independent goals and perceptions.  

• Environment: The physical or logical environment 

shared by all agents in a system, containing artifacts 

that can be perceived and impacted by agent actions. 

• Relationships: The rules through which agents 

interact with each other, work together, or resolve 

conflicts. 

The rules for how agents make individual decisions 

and interact with each other are formally defined in their 

model. The BDI model, originally developed by 

Bratman (1987), is used for behavioral modelling of 

agents to perform practical reasoning and the process of 

deciding what actions to perform to reach a goal. Agents 

receive sensory input through perceptions that influence 

their beliefs and implement their intended behaviors 

(intentions) to achieve desired states based on these 

beliefs, as illustrated in Figure 1.  
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Figure 1. BDI components (Nunes et al., 2011) 
 

The main components and functions of BDI can be 

modelled as (Simari and Parsons, 2011): 

• Percept Pn = {p0, p1, …, pn} represents a set of 

perceptions p taken as input by agents. 

• Beliefs Bn = {b0, b1, …, bn} represents a set of the 

information b maintained by the agent on its 

internal state and the environment states, updated 

according to each perception p. 

• Desires Dn = {d0, d1, …, dn} represents a set of the 

agent’s goals to be achieved d, including properties 

and costs associated with each goal. 

• Intentions In = {i0, i1, …, in} represents an action 

plan providing a set of states i the agent intends to 

bring about. The set of intentions must be consistent 

and not contain any conflicts. 

• Belief Revision Function BRF(pn,Bn) → Bm takes 

a perceptual input pn and the agent’s current belief 

set Bn, and determines a new set of beliefs Bm. 

Belief revision can include the following: 

○ Expansion: a new sentence bn+1 is added 

to the belief set B. 

○ Revision: a new sentence bn+1 that is 

inconsistent with a belief set B is added, 

but to maintain consistency with the 

resulting belief set, some old sentences are 

deleted. 

• Option Generation Function OPG(Bn,In) → Dn 

determines the possible alternatives (desires) 

available to an agent-based on its current beliefs 

and intentions. 

• Filter Function FIL(Bn,Dn,In) → In determines a 

consistent set of intentions based on the agent’s 

current beliefs, desires and intentions. 

• Action Selection Function ACT(Bn,In,) → {a0, 

a1,…,an} implements means-ends reasoning to map 

the current set of beliefs B and intentions to a 

sequence of actions a. 

A high-level process of the BDI model is conveyed 

in Figure 2. It is important to note that the BDI model 

does not account for dynamic plan generation and 

instead depends on a predefined plan database. While 

this approach is commonly static and has limitations to 

scalability and adaptation to evolving collections of 

knowledge, we expand on this approach by introducing 

novel integration with knowledge graphs – explained in 

Section 4. 
 
 

B := B0; 

I := I0; 

while true do 

get next percept p; 

B := BRF(B,p); 

D := OPG(B,I); 

I := FIL(B,D,I); 

N := PLN(B,I); 

execute( ) 

end while 

 
Figure 2. BDI process description  

 

Agent-based approaches have also been applied to 

smart home environments. Kravari and Bassiliades 

(2019) introduce shared aims of characteristics between 

IoT, multi-agent systems, and microservice architecture 

due to their distributed, autonomous, collaborative, and 

goal-oriented nature. The authors apply this approach 

through a novel reputation-oriented trust model to 

support the challenge of intelligence and trustworthiness 

of IoT. Further, Rafalimanana et al. (2020) adopt a 

collaborative agent-based approach to create a link 

between AI and services in IoT. The authors pair BDI-

agents with Representational State Transfer (REST) 

service technologies to exploit the agent capabilities as 

a service. Hilal and Basir (2014) propose an agent-based 

sensor management architecture for pervasive 

surveillance to support the coordination of sensor nodes 

and maintain situational awareness of the environment. 

The approach combines the advantages of holonic, 

federated, and market-based coordination architectures 

and models each node as an intelligent sensor using 

BDI.  

In addition, recent efforts of the North Atlantic 

Treaty Organization (NATO) to develop an 

Autonomous Cyber-Defence Agent (AICA) reference 

architecture (Théron et al., 2014) have been a significant 

development in the literature toward an autonomous 

agent system for cyber defence. While not specific to 

IoT or BDI agents, the focus of NATO’s work is to 

enable future defence actions on largely autonomous 

military assets where human intervention may not be 

possible. The architecture provides capabilities for 

autonomous planning and execution of multi-step 

activities, adversarial reasoning in response to 

intelligence, and the ability to remain undetected. While 

the existing works demonstrate promising directions in 

applications of agent-based approaches to 

cybersecurity, they have focused on specific security 

capabilities rather than on the problem from a holistic 

point of view.   
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3. Multi-agent system (MAS) architecture 

using BDI 

This section presents our proposed MAS 

architecture, which integrates autonomous defence 

capabilities into adaptive intelligent software agents 

situated to respond to the evolving cybersecurity threat 

landscape. Processes are modelled as multi-agent plans 

and tasks, where agents work together through a control 

and coordination hierarchy to achieve common goals to 

defend the network according to security requirements. 

Agents use the BDI model to perform multi-agent goal-

based deliberative reasoning for defence actions which 

are informed by domain knowledge graphs. The MAS 

architecture is composed of 3 main components: 

‘Security Services,’ ‘Coordination,’ and ‘Mission 

Deployment’ into the IoT environment. The high-level 

system architecture is shown in Figure 3, illustrating 

how the core model interacts with the IoT environment. 

Within each of these layers, agents perform operations, 

communicate with each other, and make use of the 

available resources throughout the system. 

In the ‘Security Services’ layer high-level security 

decisions are made by control agents, based on system 

observations, security requirements, and domain 

knowledge graphs. This data is used to generate defence 

policies to be actioned by agents throughout the 

network. The results of these policies are utilized by the 

‘Coordination Layer,’ where coordination agents take 

the defence policy as input, identifying security goals to 

be achieved and then mapping them to actions with 

corresponding functions for prioritization. These goals 

and actions are planned and prioritized through 

workflow planning and coordination of available 

resources to generate subsequent missions, which are 

monitored by mission control – ‘Mission Deployment’. 

Each mission consists of an action set, goal(s), 

prospective utility, and a set of agents with predefined 

beliefs, desires, intentions, and roles. Agents deployed 

through missions interact with each other in an agent 

collaboration environment as well as directly in the IoT 

environment to perform actions to achieve their mission 

objectives. An agent can interact with different 

components within the IoT environment, including 

devices, applications, and cloud services, either through 

API or directly hosted within the resource.  

3.1. Agent hierarchy 

A hierarchical agent structure is used for 

organization-level insights and emergent behavior in 

agents across the network to achieve holistic security 

goals. In this section, we continue to expand on our 

model for the generation of agents to perform the actions 

selected by the controller. Section 3.2 describes the 

behaviours of the MAS controller (Level 0) as a 

strategic defensive BDI agent which generates defence 

policies (intentions) based on beliefs and desires for an 

ideal security state. As shown in Figure 4, this results in 

a hierarchical BDI agent structure.   
 

 
Figure 4. BDI hierarchy 

 
Figure 3. High-level MAS architecture overview 
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The coordinator generates a high-level intention 

which is the template for the creation of sub-agents 

(Level 1+) with corresponding desires. Coordination 

mechanisms allow coordination between the controllers 

and coordinators to allocate resources according to the 

requirements. Taking as input the profile of the 

defenders 𝜃, attack types a, and resources available k, a 

coordination mechanism function  : (𝜃, k, a) → (x, t) is 

generated, which outputs a strategy x for the target t.  

While all decisions and sensory aspects of the 

system are performed by BDI agents of different 

functions, Figure 5 shows how initial security 

requirements are inherited as desires by downstream 

agents with the ability to perform required actions 

accordingly, where the security requirements are first 

received by the controller to create the defence policy 

according to the knowledge of the environment from the 

system monitor. The defence policy translates into agent 

desires, in which the coordinator performs mission 

generation through planned workflows and resource 

management. Missions are created to assign associated 

desires and functions to capable agents deployed within 

the environment to achieve the overall desires. 

3.2. Requirements definition 

Modeling the environment in a way that can be 

understood and reasoned by the agents is critical to 

situational awareness and understanding of environment 

states for the agents to act upon. In a common format, 

security requirements can be defined by industry 

standards, vendor policies, and user preferences. These 

requirements are combined with observations from the 

system monitor and domain knowledge graph to 

generate context-aware policies with respect to 

availability, coverage, and exposures. Together these 

form the defence policy used by the MAS control 

agent(s) to generate security goals and corresponding 

plans. If any changes are made to the requirements, the 

defence policy will be updated as necessary.  

Table 1 shows the elements of the baseline security 

requirement definition format. The security 

requirements can be in any common format, such as 

JavaScript Object Notation (JSON) or eXtensible 

Markup Language (XML) - JSON was selected for 

demonstrative purposes. Figure 6 provides an example 

of the Vulnerability Management requirement, which is 

applied globally to all devices on the network.  
 

Table 1. Baseline security requirements format 
Field Data 

ID int 

Name string 

Requirement string 

Priority [1-5] 

Associated platforms Global |Group | Device Profile | Device 

Desired state (“Subject”, “State”) 

Associated Security 
Properties 

Confidentiality | Integrity | Availability 
| Non-Repudiation | Authenticity | All 

Associated Device 

Capabilities 

DC […] 

 

 
Figure 6. Security requirement example - 

vulnerability management 

 
Figure 5. Multi-agent BDI inheritance of policy desires 
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The requirement includes the associated device 

capabilities which can achieve it, as well as the desired 

state of “Device Version is Up to Date,” which will 

define the target state for the agents’ desires. Our 

knowledge graphs provide a data model for security 

requirements to be interpreted by a policy engine 

according to the context of the environment and 

inferences to cybersecurity domain knowledge. The 

policy engine generates the policies by validating the 

security requirements provided as input. Through the 

hierarchical agent model, multiple layers of policy types 

can be maintained. 

3.3. Coverage monitor and exposures 

The Coverage Monitor tracks security controls in 

place in relation to security requirements and 

compensating controls for exposures and attacks. This 

is leveraged by the controller to track overall coverage 

to inform the policy prioritization. While some devices 

may be required to comply with a certain security 

requirement without having corresponding device 

capabilities to achieve it, compensating controls will 

need to be put in place. Once the controller has 

situational awareness of the limitations and capabilities 

of the network, appropriate missions can be deployed to 

provide coverage. 

The Exposure Monitor tracks known vulnerabilities 

and configuration risks within the network, as well as an 

understanding of the risk associated with the exposure. 

The domain knowledge ontology is used for enriching 

exposure data based on Common Vulnerability Scoring 

System (CVSS) (NIST, 2023). While exposures are 

known vulnerabilities that have not been exploited, if an 

attack is detected targeted in the exposure, it would be 

listed in the attack monitor. Each exposure should be 

prioritized by the controller for coverage according to 

the level of risk. The exposures monitor contains the 

following fields: 

• Type: the type of exposure as Common 

Vulnerabilities and Exposures (CVE) or risk. 

• CVE ID: the CVE associated with the exposure. 

• Risk Score: as listed in CVE. 

• Impact: the impact of the exposure as listed in CVE 

(confidentiality, integrity, or availability). 

• Exploitability: as listed in CVE (privileges 

required, attack vector, user interaction, scope). 

• Associated Assets: the assets affected by the 

exposure. 

• Status: tracking the status to indicate whether the 

exposure is active or remediated. 

3.4. Alerts 

The Alerts Monitor tracks alerts indicating 

suspicious or malicious behavior on the network to be 

investigated and/or remediated. Alerts are created 

within the monitoring controls and analytics, and 

contain the unique ID for the alert, impacted assets, level 

of risk determined by the domain knowledge graph, and 

MITRE ATT&CK data associated with the alert 

(MITRE, 2023). Other associated information includes 

the data source telemetry that the alert originated from, 

the type of platform associated with the alert, and data 

model references (object, actions, and fields associated 

with the cyber analytics data model). 

4. Knowledge graphs for BDI agent 

reasoning 

Our graph architecture integrates three separate 

layers for context into the network environment, 

cybersecurity domain knowledge and BDI agent 

knowledge, as shown in Figure 7. The ‘Environment’ 

layer is used to model the devices and entities within the 

network to provide ongoing context and state 

awareness. The ‘BDI Agent’ layer is used to model agent 

planning, actions and workflows based on knowledge of 

device capabilities, security requirements and context 

from the other two layers. The ‘Cyber Domain 

Knowledge’ layer integrates industry frameworks into a 

common model for identifying vulnerabilities and 

exposures, inferring security risks, attack detections and 

analysis, and informing applicable defence techniques 

based on policies and environmental awareness. Each 

layer is highly related to informing agent decisions 

based on knowledge of the environment states and 

capabilities. 
 

 
Figure 7. High-level graph layer interactions 

 

Cybersecurity domain knowledge is used to support 

actions based on risk profiles of the known environment 

and security requirements. Figure 8 presents an overall 

view of the relationships between each graph 

component of the environment, agent, and domain 

knowledge. 
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Maintaining ongoing knowledge of the 

environment is a critical function for rational agents to 

interact and receive timely feedback on their 

environment states. The environment graph is the basis 

of the agents’ situational awareness and is further 

augmented by domain knowledge enrichment data to 

infer the security implications.  

In our scenario, BDI modelling can be used as a 

rational model to add proactive behaviours. Using a 

graph model, key components of the environment can 

be defined, categorized, labelled, and related using a 

data model that allows for interconnectivity with 

domain knowledge graphs and agent planning. The 

environment graph has been designed with the 

following key requirements and integrations in mind: 

1. Model environment for agents to interpret devices, 

attributes, states, capabilities, and possible actions. 

2. Attributes to be mapped to security domain 

knowledge for understanding vulnerabilities, risk 

analysis, relation to security requirements/policies. 

3. Flexible reference data profiles and maintenance. 

4.1. Cypher queries for agent functions 

Modeling available actions based on device 

capabilities and belief states allows an agent to query the 

graph for a plan of action to achieve a path to a target’s 

desired state. BDI agents can leverage the graph to 

support their belief revision, plan selection, and action 

selection functions using Neo4j (2022) cypher queries.  

 
Table 2. BDI graph node descriptions 

Node Label Properties Relationships 

Percept value Belief 

Belief value Percept, AgentAction 

Desire value State/Belief, Plan 

AgentAction value DeviceCapability, Belief 

Belief revision is triggered by an agent receiving a 

new percept. The agent graph supports the agent’s belief 

revision function by providing relationships between 

types of percepts and the beliefs to be inferred. When a 

new desire is obtained, such as through a new security 

policy or mission, the agent must retrieve an appropriate 

plan from the graph to pursue the desired state. 

The process of plan selection (along with the applicable 

cypher query), to return a plan in the form of belief-

action pairs is as follows: 

1. Find a state/belief that is the objective of the active 

desire 

2. Find a actions that the target state is “achieved by” 

(i.e., download update, install update) 

3. Find b beliefs that precede these as “next action” 

(i.e., update available, update downloaded) 

4. Build belief/action pairs based on b and a 

MATCH (:Desire {value: “$desire”}) – 

[:OBJECTIVE]-> (targetbelief) 
MATCH (targetbelief) –[:ACHIEVEDBY]-> 

(selectedActions) 

MATCH (preBeliefs) –[:NEXTACTION]-> 

(selectedActions) 

RETURN targetbelief, selectedActions, 

preBeliefs 
 

Based on a plan to achieve a particular desired state, 

an agent must select an appropriate next action. The 

below query is used to return the next action based on 

the agent’s current beliefs:  
 

MATCH (:Desire {value:”$desire”}) –

[:OBJECTIVE]-> (targetbelief)   

MATCH (targetbelief) –[:ACHIEVEDBY]-> 

(selectedAction)  

MATCH (preBeliefs:Belief{value:”$belief”})-

[:NEXTACTION]-> (selectedAction)  

RETURN selectedAction 

 
Figure 8. Knowledge graph meta model 
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5. Smart home scenario implementation 

Next, we present our MAS architecture for adaptive 

cyber defence in a smart home network. Our 

implementation architecture consists of three 

components: Colored Petri Nets (CPN), knowledge 

graph database, and the simulation engine. The 

implementation simulates a fictional smart home 

environment, as shown in Figure 9 as an illustrative 

example of a realistic use case.  

The scenario illustrates a single-bedroom apartment 

that contains a variety of IoT devices for physical 

security, assisted living – a social robot, temperature 

control, lighting, entertainment, personal devices, and 

network devices. The devices have been added to the 

Neo4j environment graph and basic functions created 

within the simulation engine. Device capabilities for 

each device according to NIST have been generated 

(NIST, 2023). We simulated our environment and agent 

instances in CPN Tools to visualize the states and 

transitions as messages are sent through the network. 
For validation of basic agent BDI reasoning and 

communication, our implementation used external 

integrations with Neo4j and Simulation engine as the 

basis for larger scale intelligence and knowledge 

reasoning. While the CPN walks through all the logical 

steps of the environment and agent algorithm and 

visualizes the data at each step within the corresponding 

place and transition, the actual intelligence and 

processing take place outside of the net through the 

functions called to the simulation engine integration to 

execute the corresponding functions and execute cypher 

queries to the Neo4j graphs accordingly. We defined a 

common message format for simple simulated network 

communications within the system. A colorset of 

“MSG” has been defined consisting of the following 

fields: msg = { src=””, dst=””, kind=””, data=[] }, where 

Src: the source of the message, dst: the destination of 

the message, Kind: identifies the type of message to 

handle data fields, Data: a string list consisting of the 

actual data of the message within the appropriate fields.  

The “kinds” of messages described in Table 3 have 

been defined to pass messages across the network and 

for internal messages between the agent and host 

devices. Figure 10 implements the BDI components for 

the given scenario, generating Belief Revisions, 

Perceptions, and Reasoning based on the values shared 

among monitoring entities. Each device in the scenario 

has modelled device capabilities and security 

requirements which are reflected in the knowledge 

graph, while each agent has a role it plays to achieve 

these requirements within the ecosystem. For each 

observation a decision is made using the Reasoner 

engine and an action passed to the Agent. 
 

Table 3.  Message “kind” definitions 
Kind Data Format Usage 

notify [(“value”,”UpdateNotificatio
n”), (“ver”, “$ver”)] 

For update 
notifications 

request Same as action 

  

Request msg to 

another device 

response [(“Function 
name”,”id”),(“status”, 

“Success/Failed”),(result/erro

r))] 

Response msg to 
another device 

action (Function name, 

ID),(Function parameters) 

[(“update”, “id”), (“ver”, 
“$ver”)] 

Agent action on 

host device 

Action 

Response 

[(“Function 

name”,”id”),(“status”, 

“Success/Failed”),(result/erro
r))] 

Host device 

response to action 

successful/failed 

 
Figure 9. Model smart home environment and device listing 
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Our knowledge graphs have been created to 

represent BDI relationships for each of the security 

requirements and corresponding device capabilities 

related to each device as applicable within the 

environment graph. Agents can leverage the graph for 

belief revision and planning to select appropriate actions 

based on their beliefs and desires. Based on the security 

requirements, a defence policy is created by the 

controller according to the knowledge of the 

environment, which defines the high-level agent’s 

desires for the system. The elements of the defence 

policy are input into the knowledge graph, where the 

goal of each policy is identified as an agent “desire” 

associated with the desired system state. Each desire is 

related to each device or group of devices to which the 

policy is to be applied. After the defence policy is 

defined and passed on to the coordinator, it must take 

the appropriate actions to ensure the policy is enforced. 

The hierarchical agent model has been designed to limit 

unnecessary communications between agents while 

allowing autonomous agent behavior with distributed 

control and knowledge. Leveraging reusable agent 

templates and control hierarchies, we can limit 

unnecessary agent calls to the Neo4j graph by retaining 

appropriate plans within agent memory after they are 

deployed. Through this design, the control and 

coordination agents will perform most of the Neo4j 

requests to the environment and BDI graphs. In contrast, 

most of the decisions and queries would take place 

during the initialization of the system when the defence 

policy is being created and missions are coordinated. 

The simulation engine was developed for the 

purpose of simulating the device and agent instances for 

demonstrating our model, where the functions to receive 

and process messages to perform basic actions are 

defined in the graph. While the actions and functions are 

not performed within CPN tools directly, the simulation 

engine parses the message format to perform the 

appropriate functions and update states accordingly.  

While the cybersecurity capabilities in this scenario 

are largely isolated from operational functions of the 

IoT devices, our model can be integrated further. For 

example, social robots are designed to interact and 

communicate with humans and other robots (Thalmann, 

2022), following social behaviours and rules attached to 

their role for applications such as companionship, 

customer service, tutoring. Social robots can interact 

with humans or other autonomous agents, devices, or 

smart ‘things’ by following defined social behaviours 

and rules. BDI for social robots can be used as a rational 

model to add proactive behaviours and can measure how 

they behave in certain scenarios (K.C, 2019). For social 

robots, the sensor outputs can build the belief sets to 

signify the environment around the robot based on the 

defined scenario and context. A particular belief set, as 

explained above, describes a specific situation in which 

the robot is located in an instance of time. Based on 

environmental factors such as date/time/location, goals 

can be defined for the robot, known as a desire. This data 

can be used to map and measure the behaviours in a 

home environment and be used as an inference model 

on mannerisms and actions of all devices. 

 
Figure 10. Agent CPN 
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6. Conclusion 

This paper presents a multi-agent architecture for 

adaptive cyber defence with an agent reasoning model, 

control and coordination hierarchy. We created a novel 

extension of the BDI model enabled by knowledge 

graphs for cyber modelling based on industry 

knowledge bases which can be leveraged for policy-

based, adaptive agent reasoning. IoT devices are 

increasingly being utilized within workplaces and home 

environments, introducing novel security concerns and 

technical deployments which can benefit from adaptive 

cyber defence. While our MAS architecture and BDI 

characteristics are unique, this paper demonstrates only 

a subset of the features of the approach. More complex 

use cases will build upon the findings within and 

replicate real-world scenarios.  

This provides the foundation for future works on 

agent-based solutions for continued development, 

application, and optimization to support the 

advancement of autonomous, adaptive cyber defence. 

Further, the model can also be extended to additional 

use cases applicable to social robots, smart home, and 

other scenarios that can make use of policy-based, 

adaptive agent reasoning. 
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