

LJMU Research Online

Wang, R, Liu, Y, Thabane, L, Olier, I, Li, L, Ortega-Martorell, S, Lip, GYH and Li, G

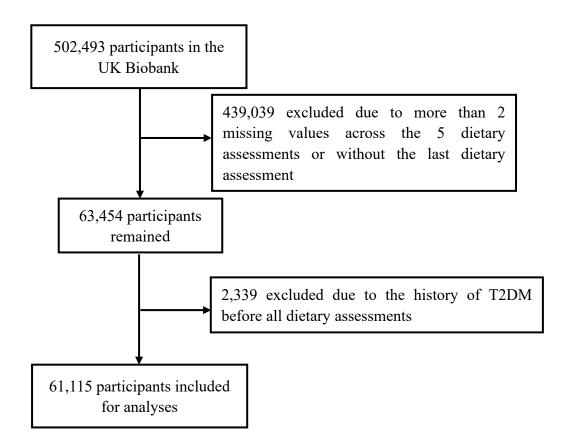
Relationship between trajectories of dietary iron intake and risk of type 2 diabetes mellitus: evidence from a prospective cohort study

http://researchonline.ljmu.ac.uk/id/eprint/22616/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Wang, R, Liu, Y, Thabane, L, Olier, I, Li, L, Ortega-Martorell, S, Lip, GYH and Li, G (2024) Relationship between trajectories of dietary iron intake and risk of type 2 diabetes mellitus: evidence from a prospective cohort study. Nutrition Journal. 23 (1). p. 15.


LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

SFigure 1. Flow diagram showing participant selection for this study

Data fields	Fields' names	Data code
2443 ¹	Diabetes diagnosed by physician	-
6153/61771	Use of insulin for diabetes	-
200031	Treatment/medication code	1140883066
200021	Non-cancer illness codes, self-reported	1220, 1222, 1223
41270 ²	Diagnoses - ICD10	E10, E11, E12, E13, E14
41271 ²	Diagnoses – ICD9	250
40001 ²	Underlying (primary) cause of death: ICD10	E10, E11, E12, E13, E14
40002 ²	Contributory (secondary) causes of death: ICD10	E10, E11, E12, E13, E14

STable 1. Identification of history of and incident type 2 diabetes mellitus in this study

ICD = international classification of diseases

¹ for history of T2DM identification only

² for both history of and incident T2DM identification

Number of groups	Trajectory shapes*	BIC (N=61,115)
2	33	-645931.5
3	3 3 3	-643009.8
3	133	-646688.3
4	3 3 3 3	-642380.7
4	1 3 3 3	-646544.1
4	1233	-651734.7
5	3 3 3 3 3	-643546.2

STable 2. Model fit parameter (Bayesian information criterion-BIC) according to number of groups and trajectory shapes

*Trajectory shapes of the best fit model according to a given number of groups; 1 = linear; 2 = quadratic; 3 = cubic.

Model	AIC	C-statistic (95% CI)
Model 1		
quartile	25207.18	0.78 (0.77, 0.79)
trajectory	14018.50	0.78 (0.76, 0.79)
Model 2		
quartile	16386.70	0.85 (0.83, 0.86)
trajectory	9290.13	0.85 (0.83, 0.86)
Model 3		
quartile	26695.56	0.52 (0.51, 0.54)
trajectory	14855.63	0.54 (0.52, 0.56)

STable 3. Comparisons of model performances between the trajectory model and quartile model

Model 1: adjusted for age, sex, BMI, and total energy.

Model 2: further adjusted for ethnicity, residence area, smoking status, alcohol drinking status, income, Townsend deprivation index, physical activity, hypertension, hypercholesterolemia, history of cardiovascular disease, glycated haemoglobin, and dietary intake of carbohydrates, protein, magnesium, fiber, and saturated fat.

Model 3: adjusted for no covariates.

Mean dietary iron intake for each individual	Mean iron intake, mg/day	Hazard ratio (95% CI)	P-value
Quartile 1	9.7	Ref	-
Quartile 2	12.5	0.73 (0.58, 0.90)	< 0.01
Quartile 3	14.7	0.64 (0.50, 0.80)	< 0.01
Quartile 4	18.2	0.69 (0.53, 0.89)	< 0.01

STable 4. Relationship between dietary iron intake (mean dietary iron intake for each individual) and risk of type 2 diabetes mellitus from the mean grouping model*

*Mean grouping model evaluated the association between mean dietary iron intake for each individual and risk of T2DM, in which we used the lowest quartile with the mean dietary iron intake of 9.7 mg/day as the reference group.

Model was adjusted for age, sex, BMI, total energy, ethnicity, residence area, smoking status, alcohol drinking status, income, Townsend deprivation index, physical activity, hypertension, hypercholesterolemia, history of cardiovascular disease, glycated haemoglobin, and dietary intake of carbohydrates, protein, magnesium, fiber, and saturated fat.

Model	Trajectory model	Mean grouping model
Net reclassification	-0.06	
improvement (NRI)	(-0.13, 0.02)	
Integrated discrimination improvement (IDI)	-0.0003 (-0.0007, 0.0001)	
AIC	13727.06	13727.47
C-statistic	0.8482	0.8468

STable 5. Comparisons of model performances between the trajectory model and mean grouping model

Both trajectory model and mean grouping model were adjusted for age, sex, BMI, total energy, ethnicity, residence area, smoking status, alcohol drinking status, income, Townsend deprivation index, physical activity, hypertension, hypercholesterolemia, history of cardiovascular disease, glycated haemoglobin, and dietary intake of carbohydrates, protein, magnesium, fiber, and saturated fat.

STable 6. Relationship between dietary iron intake trajectory groups and risk of type2 diabetes mellitus using competing risk model

Iron intake			Fully-adjusted	y-adjusted model	
trajectory group	No. of competing events	Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	P-value
1	225	Ref	-	Ref	-
2	230	0.79 (0.63, 0.99)	0.04	0.81 (0.64, 1.01)	0.07
3	362	0.64 (0.51, 0.80)	< 0.01	0.62 (0.49, 0.79)	< 0.01
4	255	0.70 (0.55, 0.89)	< 0.01	0.70 (0.54, 0.92)	< 0.01

Parsimonious model: adjusted for age, sex, BMI, and total energy.

Fully-adjusted model: further adjusted for ethnicity, residence area, smoking status, alcohol drinking status, income, Townsend deprivation index, physical activity, hypertension, hypercholesterolemia, history of cardiovascular disease, glycated haemoglobin, and dietary intake of carbohydrates, protein, magnesium, fiber, and saturated fat.

STable 7. Relationship between dietary iron intake trajectory groups and risk of type 2 diabetes mellitus by further adjusted for red meat*

Iron intake trajectory group	Hazard ratio (95% CI)	P-value
1	Ref	-
2	0.81 (0.65, 1.02)	0.07
3	0.62 (0.49, 0.79)	< 0.01
4	0.70 (0.54, 0.91)	< 0.01

* Model were adjusted for age, sex, BMI, total energy, ethnicity, residence area, smoking status, alcohol drinking status, income, Townsend deprivation index, physical activity, hypertension, hypercholesterolemia, history of cardiovascular disease, glycated haemoglobin, red meat, and dietary intake of carbohydrates, protein, magnesium, fiber, and saturated fat.

STable 8. Relationship between dietary iron intake trajectory groups and risk of type 2 diabetes mellitus by further adjusted for vitamin C and calcium*

Iron intake trajectory group	Hazard ratio (95% CI)	P-value
1	Ref	-
2	0.81 (0.64, 1.02)	0.07
3	0.62 (0.49, 0.79)	< 0.01
4	0.70 (0.54, 0.91)	< 0.01

* Model were adjusted for age, sex, BMI, total energy, ethnicity, residence area, smoking status, alcohol drinking status, income, Townsend deprivation index, physical activity, hypertension, hypercholesterolemia, history of cardiovascular disease, glycated haemoglobin, vitamin C, calcium, and dietary intake of carbohydrates, protein, magnesium, fiber, and saturated fat.

STable 9. Relationship between dietary iron intake trajectory groups and risk of type 2 diabetes mellitus by further adjusted for iron supplement*

Iron intake trajectory group	Hazard ratio (95% CI)	P-value
1	Ref	-
2	0.81 (0.65, 1.02)	0.07
3	0.62 (0.49, 0.79)	< 0.01
4	0.70 (0.54, 0.91)	< 0.01

* Model were adjusted for age, sex, BMI, total energy, ethnicity, residence area, smoking status, alcohol drinking status, income, Townsend deprivation index, physical activity, hypertension, hypercholesterolemia, history of cardiovascular disease, glycated haemoglobin, iron supplement, and dietary intake of carbohydrates, protein, magnesium, fiber, and saturated fat.

STable 10. Relationship between dietary iron intake trajectory groups and risk of type 2 diabetes mellitus by further adjusted for red meat, vitamin C, calcium, and iron supplement*

Iron intake trajectory group	Hazard ratio (95% CI)	P-value
1	Ref	-
2	0.81 (0.65, 1.02)	0.07
3	0.62 (0.49, 0.79)	< 0.01
4	0.70 (0.54, 0.91)	< 0.01

* Model were adjusted for age, sex, BMI, total energy, ethnicity, residence area, smoking status, alcohol drinking status, income, Townsend deprivation index, physical activity, hypertension, hypercholesterolemia, history of cardiovascular disease, glycated haemoglobin, red meat, vitamin C, calcium, iron supplement, and dietary intake of carbohydrates, protein, magnesium, fiber, and saturated fat.