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Abstract: Sailing vessel navigators always want to receive state-of-the-art prompt and accurate
marine weather-forecasting services. However, the weather-routing services by private sectors are
expensive. Further, forecasting results from public institutes are usually free, and they are not in
real-time or numerical modes, so they are not quite suitable for small-size or offshore vessels. In this
study, an intelligent system was constructed for delivering sea forecasting at specific areas according
to the navigator’s order. The system can automatically obtain web-based forecasting charts issued
from multi-source meteorological agencies and convert the regional information into numerical text
at requested points. During this step, several intelligent algorithms, like the OpenCV digital image
processing algorithm and the YOLO wind vector deep learning recognition method, were applied.
By applying this state-of-the-art system, navigators on board do not need to download different
institutional graphics (usually with large stream bytes) to explore the future states of the sea surface
in a specific area in the sailing route but can obtain the multi-source text forecasting information just
by sending the area coordinates to a designated email address. The field tests confirmed that this
auto-intelligent system could assist the navigator within a few minutes and thus greatly enhance the
navigation safety with minor text-based communication costs. It is expected that by improving the
efficiency of marine services and bringing in more artificial intelligence technology, maritime security
would be more sustainable.

Keywords: intelligent response system; sea forecasting; OpenCV image processing; YOLOv5 recognition

1. Introduction

Weather elements, especially strong surface winds, are important factors to consider
during marine navigation. Modern maritime transportation considers weather navigation
as a necessity, and it can be adopted by three optimized modes: onshore weather nav-
igation (referred to as shore navigation), ship-based weather navigation (referred to as
self-navigation), and ship–shore integrated navigation [1,2]. Currently, onshore navigation
has relatively mature navigation technology and working systems, while the level of auto-
matic navigation is constantly improving [3]. Pure ship-based weather navigation relies
greatly on the senior officers’ personal experiences and was adopted during the decades
when ship–shore communication was slow and expensive; therefore, it is very hard to im-
plement this navigation technique with reduced satellite communication costs. Ship–shore
integrated navigation also offers many advantages, such as helping the captain to fully
understand the intention of onshore alignment and maximizing cooperation with the shore
navigation company to complete the navigation task. The use of automatic navigation can
reduce the complicated communication and telegraph services of shore guidance and save
navigation costs; it is an inevitable trend for future development.

Large vessels typically followed climatology-based pre-set routes or applied commer-
cial meteorological navigation services (better known as weather routing, mostly solved
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by the A* algorithm) to receive a recommended route [4–6]. Weather-routing services are
currently obligatory for transoceanic voyages, since providers prioritize navigation safety
and economic purposes by considering various weather- and ship-related factors [7,8].
However, the recommended route may not always satisfy the captain’s preferences due
to these competing considerations [9]. Moreover, weather-routing services are mostly
expensive and have been dominated by a few private sectors. Most inland river, offshore,
or short-distance voyages will not adopt weather-routing services, but this approach can
pose a high risk if the ship encounters sudden severe weather conditions. For instance, the
inland cruise ship, the “Oriental Star”, overturned in 2015 and claimed 442 lives [10]; this
was the deadliest shipwreck accident in Chinese history since 1949. Even with advanced
technology, deadly ship overturn accidents still happen. It was estimated that in 2020,
2021, and 2022, there were 24, 13, and 20 small ships that sunk or were overturned due to
rough weather or rough sea conditions, claiming 140, 62, and 99 deaths or missing persons,
respectively [11–13]. These facts show that sustainable weather navigation services are
greatly needed.

In practice, small-size ships and particular types of offshore engineering vessels are
vulnerable to sudden strong winds. The navigators in these types of vessels do not need a
delicate and expensive transoceanic weather-routing service, nor a synoptic analysis from
regional weather charts, but a 24/7, fast-responding sea condition prediction service at
specific areas on sailing routes. Currently, these services are not available, at least in most
offshore areas of the northwestern Pacific.

In this study, on the basis of a simple model created ten years ago, an intensified
and very complicated sustainable sea forecasting system was developed, aiming to fill the
gap between basic self-navigation and expensive commercial weather-routing services,
i.e., providing an innovative, real-time, and multi-source professional weather-consulting
solution with almost no cost. The most innovative aspects of the new system are as follows:
converting conventional forecasting graphics into digital formats through a deep learning
image process, serving the navigator at the pixel level, and flexibly responding to multiple
requests from navigators on board. After preliminary field tests, it has been proved that
this concept is feasible.

This paper is organized as follows. Section 2 describes the methodology and literature,
Section 3 summaries the data sources, Section 4 presents the methods to retrieve forecasting
information from shaded graphics, Section 5 shows how to retrieve wind vectors using
the YOLO algorithm, Section 6 illustrates the field tests on board, and Section 7 draws
conclusions and presents future considerations.

2. Related Work and Methodology

Our approach contained two parts. First, we improved an auto-response pilot system
to retrieve multi-source prediction charts. Then, we applied several artificial intelligence
methods to this system to retrieve detailed prediction values at specific areas on sail-
ing routes.

2.1. Previous Auto-Response System

Currently, a modern vessel navigator can obtain many marine wind and wave forecasts
from various sources. However, few of them are seaman-oriented, auto-responsive, and
non-regional. In real-time marine wind and wave prediction methods, most designers have
focused on producing state-of-the-art accurate forecasts and releasing them to the ship
navigator at a routine frequency [14]. In many cases, the raw hydro-met forecasting data
are retrieved from Numerical Weather Prediction (NWP) products, and statistical rendering
or other mathematical algorithms like quantile-to-quantile and persistence methods are
applied to improve the prediction accuracy [15,16]. Recently, Ou et al. [17] proposed a
hybrid seasonal trend decomposition with loess (STL) decomposition deep neural network
to perform efficient offshore wind speed forecasting. However, these forecasting systems
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were seldom user-oriented and often did not respond immediately when there was an
urgent need over the sea.

Jian et al. [18] designed an automatic but non-intelligent forecasting system for surface
wind speed at marine fixed points. The core raw data were retrieved from the European
Center for Medium Weather Forecasting (ECMWF) numerical product and sent to ships
through the Beijing ground station server (Figure 1). Testing showed that it took 13 min
(or 30 min) to receive a return email onboard by using an International Maritime Satellite
organization (INMARST) F station (or C station). However, there were many factors beyond
control that made the system unable to provide continuous service. One of the reasons is
that too many servers were adopted in Europe, the USA, and China, and the connections
between those servers were slow and unstable, resulting in long waiting times or even
a failure to respond. In addition, it was difficult to acquire a long-term non-commercial
forecasting license from ECMWF.
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To avoid the above shortcomings, hereby an innovative, comprehensive, and intelli-
gent algorithm-incorporated system was re-built to combine all calculations and modules
into a single server. By using various raw numerical model results or prediction charts
issued by multiple institutions, we can obtain the latest forecasting, extract necessary
weather-related information at specific points, and return them back to the ship navigator
according to email-based requests. The entire process would be automatically executed
within a few minutes. In general, the system significantly optimizes sea area positioning
forecasts and reduces the error value of the weather forecast model, which helps vessel
navigators prevent adverse weather events and ensure navigation safety and sustainability.

Besides ship users, this system can also be applied by offshore platforms in weather-
sensitive work or tugging navigation. In the northern part of the South China Sea, the wind
velocity observation showed an obvious linearity with the raw numerical forecasting value
when the lead time was within 24–48 h (Figure 2). Based on this, a simple statistical linear
regression correction was applied for offshore China.

2.2. Pixel Reading through OpenCV Image Processing

Besides raw global dynamic model prediction, most official institutes issue wind
and wave predictions in graphic mode free of charge. Therefore, one of the challenging
problems is to convert the regional forecast results into a specific area forecast, which is
what seamen want most. This study applied an artificial intelligence method, with OpenCV
as the reading algorithm, to retrieve the wind speed and wave height from shaded charts
at the pixel level.



Sustainability 2024, 16, 1117 4 of 20Sustainability 2024, 16, x FOR PEER REVIEW 4 of 23 
 

 

Figure 2. Scatter point diagrams of three offshore platforms’ wind velocity observations versus the 

raw ECMWF forecasts at 24–48 h lead time. Over 500 wind data points were collected twice a day 

during March-November 2012. 

2.2. Pixel Reading through OpenCV Image Processing 

Besides raw global dynamic model prediction, most official institutes issue wind and 

wave predictions in graphic mode free of charge. Therefore, one of the challenging prob-

lems is to convert the regional forecast results into a specific area forecast, which is what 

seamen want most. This study applied an artificial intelligence method, with OpenCV as 

the reading algorithm, to retrieve the wind speed and wave height from shaded charts at 

the pixel level. 

OpenCV is a widely used open-source computer vision library that provides many 

functions and tools for image and video processing and can be used in many program-

ming languages such as C++, Python, and Java. OpenCV can help developers solve various 

computer vision problems, including object detection, face recognition, image segmenta-

tion, motion tracking, and more. OpenCV was developed by Intel in 1999 and has now 

become the foundation of many computer vision applications [19]. In this study, it was 

feasible to apply OpenCV to retrieve the pixel color at the sailing route point and convert 

it into wind scale or wave heights, since most of the online forecasting graphics are in 

color shade mode. 

2.3. Wind Vector Recognition by YOLO Deep Learning Algorithm 

With the rapid application and expansion of deep learning in computer vision, re-

lated target detection methods have gradually replaced the traditional handcrafted fea-

ture design and become a research hotspot in various industries. The early target detection 

algorithms relied heavily on manual feature extraction, traversed the image through slid-

ing windows, and finally determined the target class by classifiers. However, these meth-

ods have some limitations, such as high computational time, slow speed, high error rate, 

and strong subjectivity [20]. In contrast, object detection algorithms based on deep learn-

ing offer high operational efficiency, fast processing speed, and superior detection accu-

racy, making them suitable for real-time detection. The use of computer vision and con-

volutional neural network (CNN) has become the dominant approach for multi-purpose 

target detections. Deep learning target detection algorithms can be divided into one-stage 

and two-stage. Two-stage algorithms first generate a region proposal and then subject it 

to CNN for target classification and position regression. Typical models include R-CNN 

[21], Fast R-CNN [22], and Faster R-CNN [23]. This method achieves high detection accu-

racy but with relatively slow speed, so it is not investigated in this study. In contrast, the 

one-stage algorithm directly classifies and predicts the position of targets without gener-

ating region boxes, represented by SSD [24], the YOLO series [25], etc. It provides a fast 

detection speed but with reduced accuracy [26]. It should be noted that since its first re-

lease in 2015, the YOLO-Based Deep Learning Models for Object Detection have been 

Figure 2. Scatter point diagrams of three offshore platforms’ wind velocity observations versus the
raw ECMWF forecasts at 24–48 h lead time. Over 500 wind data points were collected twice a day
during March-November 2012.

OpenCV is a widely used open-source computer vision library that provides many
functions and tools for image and video processing and can be used in many programming
languages such as C++, Python, and Java. OpenCV can help developers solve various
computer vision problems, including object detection, face recognition, image segmentation,
motion tracking, and more. OpenCV was developed by Intel in 1999 and has now become
the foundation of many computer vision applications [19]. In this study, it was feasible to
apply OpenCV to retrieve the pixel color at the sailing route point and convert it into wind
scale or wave heights, since most of the online forecasting graphics are in color shade mode.

2.3. Wind Vector Recognition by YOLO Deep Learning Algorithm

With the rapid application and expansion of deep learning in computer vision, related
target detection methods have gradually replaced the traditional handcrafted feature design
and become a research hotspot in various industries. The early target detection algorithms
relied heavily on manual feature extraction, traversed the image through sliding windows,
and finally determined the target class by classifiers. However, these methods have some
limitations, such as high computational time, slow speed, high error rate, and strong
subjectivity [20]. In contrast, object detection algorithms based on deep learning offer
high operational efficiency, fast processing speed, and superior detection accuracy, making
them suitable for real-time detection. The use of computer vision and convolutional neural
network (CNN) has become the dominant approach for multi-purpose target detections.
Deep learning target detection algorithms can be divided into one-stage and two-stage.
Two-stage algorithms first generate a region proposal and then subject it to CNN for target
classification and position regression. Typical models include R-CNN [21], Fast R-CNN [22],
and Faster R-CNN [23]. This method achieves high detection accuracy but with relatively
slow speed, so it is not investigated in this study. In contrast, the one-stage algorithm
directly classifies and predicts the position of targets without generating region boxes,
represented by SSD [24], the YOLO series [25], etc. It provides a fast detection speed but
with reduced accuracy [26]. It should be noted that since its first release in 2015, the YOLO-
Based Deep Learning Models for Object Detection have been updated rapidly, especially
in recent years. For instance, YOLOv3, v4, v5, v6, v7, and v8 were released in April 2018,
April 2020, May 2020, June 2022, July 2022, and January 2023, from four different research
groups. When the study began in 2021, the latest YOLO models, i.e., YOLOv4 and YOLOv5,
were applied to detect wind vectors from Japanese 24 h and 48 h surface weather forecast
charts, reflecting the regional marine wind scales. YOLOv7 and YOLOv8, released recently,
focused on the aspects of pedestrians, damaged racks, and fracture detection [27].
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2.3.1. YOLO4

YOLOv4 is a deep learning-based target detection algorithm that achieves recognition
of objects in an image by analyzing the image in multiple stages using a convolutional
neural network.

Stage 1: Feature Extraction.YOLOv4 uses convolutional neural network (CNN) to
extract the features of the image. CNN does this by continuously convolving, pooling, and
non-linear activation of the image to abstract the most important features in the image [28].

Phase 2: Image Pyramid. In order to cover objects of different sizes, YOLOv4 uses the
image pyramid technique, where the image is sampled at multiple resolutions. This allows
the model to recognize both small and large objects.

Phase 3: Object Detection.YOLOv4 uses a technique called Multi-Channel Prediction
(MCP), which performs object detection through different prediction layers. Each layer
corresponds to a different resolution to recognize objects of different sizes.

Phase 4: Object Recognition.YOLOv4 uses a Softmax classifier to recognize objects in
an image by assigning each object to a predefined category.

YOLOv4 does this by dividing the image into multiple grids of different sizes and
then using a convolutional neural network to detect the presence of an object within each
grid and the location of the object. Each grid detects multiple different boxes, and each
box predicts the class and confidence of the object it contains [29]. YOLOv4 improves on
previous versions of YOLO to increase accuracy and speed. It uses more convolutional
layers and uses more data augmentation techniques to train the model to improve its ability
to recognize complex images. During the training process, the YOLOv4 model is validated
by continuously modifying the network weights to minimize the prediction error and by
cross-validation to verify the accuracy of the model. Finally, the model will predict the
bounding box of the target on the test data and the accuracy of the model is evaluated
using the IoU of the predicted bounding box versus the true bounding box.

2.3.2. YOLOv5

The model of YOLOv5 consists of three parts: a feature extraction network, a feature
pooling layer, and a multitask prediction layer. The feature extraction network consists of a
series of convolutional layers used to extract features from the original image. Connecting
multiple feature extraction layers into a fully connected network allows more features to be
extracted, making the model more effective in extracting useful information. The feature
pooling layer is used to pool features from the original input image and map the features
to a specific spatial scale so that the multitask prediction layer can better handle the input
features. Finally, the multitask prediction layer converts the features into predictions of
object categories and detection frames for object detection purposes. The model principle
of YOLOv5 is based on feature extraction from images, where the objects in the image
are extracted and used as inputs to the model [30]. YOLOv5 uses convolutional neural
networks (CNNs) for feature extraction, where the network structure of the convolutional
neural network uses a multi-layer network consisting of a feed-forward network and a
feedback network consisting of multiple layers, each with a different convolutional kernel
and pooling layer. It builds a three-layer deep neural network that receives features from
the output of the feature extraction module and uses these features to predict the target’s
localization information. It is implemented through a special multi-task learning framework
where each task has a separate output layer to predict the output of each localization task.

When the input image enters the network, the model decomposes the image into small
chunks and uses a specialized convolutional kernel to convolve each chunk of the image,
and then passes through a pooling layer where the convolved features are aggregated to
extract features from the image. The output features of each layer are passed on to the next
layer, then the model can extract features from the image in depth, thus obtaining more
accurate object detection results.

After the network training is completed, the model splits the image into several
chunks and detects each chunk to determine whether it contains an object. When an object
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is detected, the model calculates the bounding box of the object and gives the class and
confidence level of the object.

2.3.3. YOLOv5s

YOLOv5s is the smallest and fastest version of the YOLOv5 algorithm. Due to the
advantages in both size and computation speed, it was chosen in our experiment. The
specific structure diagram is shown in Figure 3. The backbone network is composed of
Focus structure and CSP structure, mainly used to extract target features [31]. To prevent
information loss during down-sampling, the model uses letterboxing to adaptively resize
the 2392 × 2048 × 3 image to a 640 × 640 × 3 image. The Focus module then converts
the resized image into a 320 × 320 × 32 feature map, by performing a slice operation on
the image. In contrast to a regular CBL, the CSP structure [32] divides the original input
into two branches, which are processed separately with convolutional operations to reduce
the number of channels. One of the branches then undergoes a Bottleneck × N operation,
and the two branches are subsequently merged to ensure that the input and output of the
Bottleneck CSP are of equal size. This enables the model to obtain richer feature information
through local cross-layer fusion while reducing computational complexity. The CSP1_X and
CSP2_X structures shown in Figure 3 illustrate this approach. The SPP module in YOLOv5s
borrows the idea of SPPNet, which uses convolutional kernels with uniform stride but
different sizes to implement SPP. A uniform stride means that the output feature map size
is the same, and only the sensitivity to different regions varies. After concatenation, a
1 × 1 convolution is used to fuse the features. During the object detection process, the
model extracts multiple feature layers and a total of three feature layers are extracted. Each
feature layer divides the entire image into small grids, with each grid point responsible for
detecting an area. Finally, predictions are made based on the feature results, resulting in
three prediction maps with sizes of 80 × 80 × 255, 40 × 40 × 255, and 20 × 20 × 255.
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3. Meteorological Data Sources and Acquisition
3.1. Global Forecast System and the Navigators’ Association

As one of the top NWP products, the GFS (Global Forecast System) model is generated
by NOAA (National Oceanic and Atmospheric Administration), a scientific institution
under the US (United States) Department of Commerce that focuses on marine and atmo-
spheric environment research [33]. GFS can extract open meteorological data based on
individual needs, and there are alternative data sources available, including CMC GEM
(Canadian Global Environmental Model), the US Navy NAVGEM (Navy Global Environ-
mental Model), the French ARPEGE (Action de Recherche Petite Echelle Grande Echelle)
model, and the German DWD ICON (Deutscher Wetterdienst Icosahedral Nonhydrostatic)
model. The accuracy of the data from these authoritative institutions is guaranteed.

GFS’s domain encompasses the entire world, with a one-by-one degree resolution, a
time span of 0–180 h, and an update frequency of every 3 h. After basic linear regression, the
GFS wind forecast performs similarity with ECMWF results. Additionally, the Navigators’
Association has developed a free Grib service for seafarers called MailASail Weather service.
This service is provided by communication operator MailASail and provides meteorological
data through email, file transfer protocol, and browser-based platforms. MailASail offers
navigators a free service that can be accessed through email, file transfer protocol, and web
browsers. Once the GFS model forecast data undergo processing, a corresponding table
featuring longitude and latitude wind speeds is generated.

3.2. Professional Meteorological Agencies

The raw numerical product described in Section 3.1, though it has many advantages,
has shortcomings too. Therefore, our system also acquires graphic-based hydrometeo-
rological forecast information from four major public agencies and one foreign private
meteorological service company. The characteristics of their prediction models are outlined
in Table 1. To automate the process of accessing hydrometeorological information from
the websites listed in Table 1, we utilized a web crawler [34] to search the correspond-
ing webpages, convert the obtained source code into a ‘BeautifulSoup’ object, save the
contents under the obtained path, and schedule execution times according to the node’s
meteorological forecast update schedule.

3.3. Interactive Mail Automation

In the era of big data, rapid developments in network and information technology
have led to the widespread application of artificial intelligence (AI) technologies across
various industries. Email automation is a crucial means of communication and office work,
but limited communication conditions on ships and marine platforms make it difficult
to use network terminals as easily as on land. To ensure user convenience and minimize
bandwidth usage and cost, our design utilizes cloud services and email interaction methods
to access, receive, process, and send various data information.

The Python standard library offers modules such as Zmail and smtplib for imple-
menting the SMTP protocol and sending emails. It also includes email modules to aid in
constructing email formats. However, the smtplib module can pose complex issues like
server letter rejection, and the need to determine the server’s address and port number
and parse the email structure. To minimize complications and streamline the process, our
design adopted the Zmail module. This module features simple code and automatically
fills in header information that might cause server letter rejection, as well as performing
automatic server address and port number detection.

The system extracts the latest meteorological data required from Navigators’ As-
sociation SailMail, which are loaded as an attachment in the mail. To optimize the
mail retrieval process, we established receiving rules in the mailbox, where mail from
weather@mailasail.com is stored in a specific folder. This not only reduces the time spent
traversing all mailboxes but also promptly detects the most recent mail sent by the Nav-
igators’ Association. To realize two-way communication between Webmail and E-mail
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clients, the read email is marked as ‘read’, and the system uses the IMAP protocol to
download attachments.

Table 1. Marine forecasting institutions adopted in this study.

Website
www.nmc.cn

accessed on 23
December 2023

www.nmefc.cn
accessed on 22
January 2024

www.imocwx.com
accessed on 26
January 2024

www.tmd.go.th
accessed on 26
January 2024

cfanclimate.net
accessed on 26
January 2024

Agency
Chinese National

Meteorological
Center

Chinese National
Marine

Environmental
Forecasting Center

Japan
Meteorological

Agency

Thai
Meteorological

Department

private US
forecasting

Corporation

Component Surface wind
velocity Wave height Wave height Wave height Surface Wind

velocity

Domain 88◦ E~142◦ E, 0◦

N~45◦ N
105◦ E~160◦ E, 0◦

N~45◦ N
120◦ E~140◦ E, 22◦

N~38◦ N
95◦ E~105◦ E, 5◦

N~15◦ N
100◦ E~160◦ E, 0◦

N~50◦ N

Initial time 0000 UTC
1200 UTC 1200 UTC 0000 UTC 0000 UTC 0200 UTC

1000 UTC

Max lead 72 h 168 h 72 h 96 h 240 h

Time step 24 h 6 h 3 h 3 h 6 h

Wind scale Grade 6~13 Not available Not available Not available 0~75 kts

wave height Not available 0~14 m 0~450 cm 0~250 cm Not available

Map Projection Mercator Mercator Mercator Mercator Mercator

Image resolution 795 × 793 1763 × 1442 640 × 640 494 × 640 1036 × 822

Pixel point 33~66 km2 11~44 km2 6~11 km2 4~5 km2 46~75 km2

4. Graphic Forecasting Data Retrieval
4.1. Classification and Storage of Weather Forecast

To obtain the correct weather forecast map, the system initially performs a simple
classification of the image based on various attributes. These include binary byte, tuple,
file type, color, brightness, and resolution, among others. For instance, when retrieving
pictures from the China National Meteorological Center, we eliminate any unnecessary
ones with binary bytes greater than 100,000. Subsequently, the remaining pictures undergo
classification according to different tuples. A tuple with [7937953] represents a wind
forecast map, a tuple with [6988603] indicates a sea fog forecast map, and a tuple with
[7168603] represents a strong convection forecast map. Finally, the pictures are sorted based
on time and saved in predetermined folders.

For weather forecast maps that are too similar to be classified based on image attributes,
a grid-based Kmeans algorithm was adopted [35]. The traditional Kmeans algorithm needs
to go through the whole dataset. The grid-based Kmeans algorithm is an improved Kmeans
clustering algorithm. It reduces computational complexity by dividing the dataset into
grids, reducing the memory usage, and thereby improving the efficiency of the algorithm.
The maps are first standardized and cropped to eliminate any abnormalities. Next, K
centers are randomly selected, and each image is assigned to the nearest center. These
cluster centers then compete with each other to adjust their positions so that their distance
from the maximum possible data is less than the distance from other cluster centers. The
center of each category is recalculated after this competition. This process is repeated until
the change in each type of center triggers a pre-set threshold, thus completing the picture
classification.

4.2. Interpolation to Obtain the Wind Speed or Wave Height

When it comes to predicting wind speed at specific points on sailing routes, accuracy
is crucial, even if the points do not fall precisely on the grid coordinate. To overcome

www.nmc.cn
www.nmefc.cn
www.imocwx.com
www.tmd.go.th
cfanclimate.net
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this challenge, we use the interpolation method to calculate the nearest coordinate point
and determine the corresponding wind speed. After conducting a comparison between
the cubic spline interpolation method and the bilinear interpolation method [36], using
some data, we obtained both original and interpolated data through two-dimensional
and three-dimensional visualization. Our findings revealed that the results obtained from
bilinear interpolation were rough when the data were scarce, whereas the results were
smoother with cubic spline interpolation. Consequently, the system selects cubic spline
interpolation for processing data.

Spline S(x) is a formula defined by segments. There are n + 1 points and n intervals.
The cubic spline equation satisfies the following three conditions:

(1) In each segmentation interval [xi, xi+1] (i = 0, 1, . . . , n − 1, xincreasing), S(x) = Si(x)
is a cubic polynomial.

(2) Satisfy S(xi) = yi(i = 0, 1, . . . , n).
(3) S(x), S′(x), and S′′ (x) are continuous in the interval. Therefore, the S(x) curve

is smooth.

Therefore, n cubic polynomial segments can be written as:

Si(x) = ai + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3(i = 0, 1, . . . , n − 1) (1)

4.3. Coordinate Transformation of Forecast Map

Since the earth is an irregular pear-shaped sphere with a slightly wider equator and
a slightly flat pole, its surface is a curved surface that cannot be flattened. It is necessary
to use certain mathematical rules to convert the longitude and latitude lines into a plane.
Taking Mercator projection and Lambert projection as examples, this paper expounds the
coordinate transformation of the forecast map.

As shown in Figure 4a,b, wind forecast maps with Mercator projection need the conver-
sion of longitude and latitude coordinates (x, y) to make the coordinate points correspond
to pixel points one by one due to the phenomenon of latitude gradual lengthening [37].

φ = y
X = kx + a

MP =
∫ φ

0 dMP =
∫ φ

0
3437.746771(1−e2)

1−e2sin2 φ
∗ dφ

cosφ = 7915.70447lg
[

tan
(

π
4 + φ

2
)
∗
(

1−esinφ
1+esinφ

) e
2
]

Y = b–p ∗ MP

(2)

For the wind forecast map with Lambert projection, as shown in Figure 4b, the pixel
matrix arrangement corresponding to longitude and latitude coordinates (x, y) was cal-
culated by using the variable-rate interpolation method. Divide the picture into several
coordinate systems according to the grid lines in the figure and approximate the coordinate
changes in each grid to equal scale changes. Let the four angular coordinates of the grid
where the longitude and latitude coordinates are located be (a1, b1), (a2, b1), (a1, b2), (a2,
b2), and the corresponding pixel matrix is arranged as (a11, b11), (a21, b12), (a12, b21), (a22,
b22), as shown in Figure 5a.{

X = a12 +
∂z
∂x (x − a1) +

∂z
∂y (y − b2)

Y = b11 +
b22−b21

5 (x − a1) +
b22−b12

5 (y − b2)
(3)

In addition, special point processing is also required, as shown in Figure 5b. When the
selected pixel point is on the grid line of the weather forecast map or on the land, island,
and its edge line, the pixel value represented by the point is not corresponding to the
wind intensity of the point, so Archimedes’ spiral is used to spread from the point to the
surroundings until the nearest pixel point not on the grid line of the weather forecast map
or on the land, island, and its edge line is selected.
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x = (α + βθ)cos(θ)
y = (α + β)sin(θ)
θ = θ + π

4

(4)

(Order α = 0, β = 1. The initial value of θ is 0 and π/4 is added each time).

4.4. Pixel Processing of Forecast Image

Combined with the pixel value of the legend of the forecast map, the coordinate points
identified by the OpenCV [38] in Python are compared with the pixel value of the pixel
points on the weather forecast picture to obtain the forecast results. The main functions
of OpenCV are Image Processing and Computer Vision. It provides open-source and
optimized basic code for advanced visual research, so as to provide developers with the
basis to develop common interfaces to disseminate visual related knowledge.

4.5. System Flow Chart

Currently, all of the programs of this system are carried out purely on the server at
Dalian Maritime University. The server obtains the latest meteorological data regularly
every day according to the time when the forecast agency updates the data. At the same
time, it checks the mailbox every 3 min to extract the meteorological forecast content
required by the request email, calculates the meteorological changes, and returns to the
ship, sending the request email through the maritime satellite communication (Figure 6).
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5. Wind Vector Recognition and Labeling Based on YOLOv5s
5.1. Computation Environment and Data

This experiment was based on the PyTorch framework and trained using a GPU. The
operating environment for running the experiment is Python version 3.9, with acceleration
provided by CUDA 11.2, and the deep learning framework used is PyTorch 1.9.0. The
experimental data collection mainly comes from wind vectors in forecast maps publicly
released by the Japan Meteorological Agency, as shown in Figure 7a. The collected image
resolution is 2392 × 2048, and the distribution of wind vector targets in the image is
arbitrary. The dataset is annotated using the image labeling tool (labeling) and stored in
XML file format [39] as the label for image training. The ratio of (training set + validation
set) to test set is set at 9:1, and the ratio of training set to validation set is set at 9:1. Wind
vector types were divided into six categories, as shown in Table 2.

5.2. Evaluation Standard

This experiment used metrics such as precision (P), recall (R), and mean average
precision (mAP) [40] to evaluate the performance of the YOLOv5s algorithm. The specific
formulas for each metric are as follows:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)
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mAP =
∑K

i=1 AP
K

(7)

In Equations (5)–(7), TP, FP, and FN represent true positive (the sample’s true class is
positive and the model predicts a positive result correctly), false positive (the sample’s true
class is negative, but the model predicts it as positive, producing an incorrect prediction),
and false negative (the sample’s true class is positive, but the model predicts it as negative,
producing an incorrect prediction), respectively.
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5.3. Wind Vector Recognition by YOLO

The performances of YOLOv4, YOLOv5l, and YOLOv5s models were compared.
Under the same dataset and computational environment, the experimental results of each
model are shown in Table 3. It can be observed that the improved YOLOv5s model achieved
the best detection performance; YOLOv4 provided the best precision value, but was slow
and contained a large weight value. Therefore, from the perspective of detection accuracy
and speed, the YOLOv5s object detection algorithm was chosen in the experiment, and it
was proved to meet the requirements of wind vector recognition.

Table 3. Comparison of effects of different improvement methods.

Experiment Models mAP Precision Recall Single-Image
Detection Time (ms) Weight

1 YOLOv4 0.944 0.950 0.932 42 244 MB
2 YOLOv5 0.941 0.931 0.939 30 29 MB
3 YOLOv5s 0.947 0.928 0.939 20 27 MB

During model training, the maximum training iterations were pre-set to 300. Figure 8
illustrates the training results of one of the best-performing models: YOLOv5s. In Figure 8a,
the precision rate, recall rate, and mean average precision (mAP) rapidly increased to
around 0.8 within the first 30 epochs. After 200 epochs, the values became steady around
0.95, indicating a stable convergence. Figure 8b shows the precision and recall rate variance
related to the confidence level. Based on the intersection point, the confidence threshold
value of 0.62 is set for future vector recognition processes.
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One example of the detection results of the wind vectors in this experiment is shown
in Figure 7a, with no missed or false detections and maintaining high confidence levels
(the numbers on the small rectangles represent confidence levels). The average detection
time per image is 32 milliseconds. After the goal detection in the wind vector image is
completed, the program will obtain the position information of the detected bounding
boxes, adjust the box size, inject different colors according to the wind force level, and
generate a new weather forecast image, as shown in Figure 7b, so that the system can read
meteorological forecast information using the methods described in Section 4.

6. Field Tests on the Ships
6.1. Obtain Sea Forecasting via INMARST Stations

After setting up the intelligent and auto-response system on the server of Dalian
Maritime University, multiple ship-based field tests were executed. Three vessels, including
the 6300-tonnage training ship ‘Yukun’ from Dalian Maritime University, a 27,000-tonnage
bulk carrier ship A (feedback in Figure 9), and an offshore wind power engineering ship
B (feedback in Figure 10), volunteered to examinate the land-to-ship communication via
INMARST C, F, and FBB stations, respectively.
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Figure 9. Field test: snapshot of the INMARSAT-C station screen displaying the returned wind
forecasts to ship A after it sent out a location request “120◦ E, 30◦ N” on 14 December 2021.

For comparison, the official NAVTEX weather report, which was free for all vessels
across the Yellow Sea region, interaction from the old model by Jian et al. [18], and the
interaction from the newly developed model are listed in Table 4. It can be observed that
the NAVTEX report is very synoptic, the old model result is digital and concise, and the
new model shows the best comprehensive performance.

Multiple types of communication field tests were carried out (Table 5). In the future,
this system needs to be applied on more ships and platforms for testing purposes, taking
into account the suggestions from senior officers or other requirements based on the actual
situation, and making adjustments and improvements accordingly, so that it can operate in
a timely and smooth manner under various environmental conditions.
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Table 4. Sea forecasts from (left) conventional report, (center) old model, and (right) newly devel-
oped system.

---ZCZC RE68 PAGE1---
205,000 UTC FEBRUARY 2023
DALIAN OBSY NO WARNING STOP
SYNOPTIC SITUATION 202000Z
. . .. . .
24 H WEATHER FORECAST FROM
200000Z
YELLOW SEA CLEAR TO PARTLY
CLOUDY
X E WINDS FORECE 6 TO 7 X SEA
MODERATE STOP
NNNN

TO: qixiang@dlmu.edu.cn
SUBJECT: /LAT/33/LON/123
Reply:
SUBJECT:
TEXT: /LAT33/LON123/.5deg
021912Z/11NE/12E/
022000Z/12E/13E/12E/12NE/
022100Z/11E/10SE/9SE/8S/

TO: qixiang@dlmu.edu.cn
SUBJECT: FORECAST
TEXT: 123E 33N
Reply:
SUBJECT: WIND WAVE FORECAST
TEXT: (Japan)
TILL 2012 UTC WIND 7BF, 13.9–15.1 m/s
TILL 2012 UTC WAVE 50–99 cm
TILL 2112 UTC WIND 7–8 BF, 14.5–17.1
m/s
TILL 2112 UTC WAVE 50–99 cm

Table 5. Timetable for email interaction on ship.

Ship Communication
Channel

Forecasted
Component

Request Time
from Ship

Message Receive Time
on Ship Time Taken

Bulk ship A Inmarsat-C Wind 2021-December-14 18:49 2021-December-14 18:56 7 min
Training ship Yukun Inmarsat-F Wind 2021-December-21 10:21 2021-December-14 10:27 6 min
Engineering ship B Inmarsat-F Wind/Wave 2023-February-20 08:01 2023-February-20 02:15 1 min
Engineering ship B Inmarsat-F Wind/Wave 2023-February-24 08:25 2023-February-24 08:26 1 min

Training ship Yukun Inmarsat-FBB Wind 2021-December-21 9:57 2021-December-21 9:59 2 min
Training ship Yukun Inmarsat-FBB Wind/Wave 2023-April-07 10:05 2023-April-07 10:07 2 min

6.2. Obtain Forecast Results from Multiple Institutions

The system can also return the sea forecasting results of various national institutions
at the same longitude and latitude coordinates, according to the methods described in
Section 4, for referral purposes toward ship navigators. In real-time operation, if the
requested location exceeds the range or is unreadable, then a format error prompt will be
returned to the sender. Otherwise, the system will calculate the meteorological forecast
results for agencies from China, Japan, Thailand, and the United States based on the
ship’s requirements and send them back to the ship. A sample of multi-source forecasting
application is shown in Table 6.
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Table 6. Examples of multi-source sea forecast interaction.

TO: qixiang@dlmu.edu.cn
SUBJECT: FORECAST
TEXT: April 30th 7 UTC 122E 24N
Reply:
SUBJECT: FORECAST
TEXT: (CHINA) April 30th 7 UTC less than 6BF, 5–10.8 m/s
(JAPAN) April 30th 7 UTC Wave High 200–249 cm
(US) April 30th 7 UTC less than 6BF, 5–10.8 m/s

TO: qixiang@dlmu.edu.cn
SUBJECT: FORECAST
TEXT: April 30th 7 UTC 103E 10N
Reply:
SUBJECT: FORECAST
TEXT: (CHINA) April 30th 7UTC less than 6BF, 5–10.8 m/s
(THAILAND) April 30th 7UTC Wave High 0–125 cm
(US) April 30th 7UTCless than 6BF, 5–10.8 m/s

7. Conclusions and Future Research Discussion
7.1. Conclusions: An Automatic System with Artificial Intelligence

With advanced artificial intelligence methods, a real-time automatic response system
was built to provide marine wind and wave forecasts in specific areas per request from the
sailing ship. The system is capable of running at no cost and giving rapid response in just
a few minutes. So far, this system only focuses on the northwest Pacific Ocean for wind
and wave prediction, but it can be easily extended to more marine areas and institutional
predictions, so a broad sustainable application is expected. In addition, there are also some
shortcomings, such as hard language and the inability to achieve route planning.

Based on a numerical weather product and natural language method, Jian et al. [41]
carried out a parrel study to convert the raw digital 7-day wind speed forecasts into a
natural language description. However, it is not applied to the current forecasting system
due to a lack of adequate time series data. In the future, a comprehensive meteorolog-
ical language database would be expected to provide more humanized meteorological
information services by implementing more artificial intelligence methods.

7.2. Future Research: Decision Problem with More Artificial Intelligence Algorithms

This study was performed under the assumption of letting the navigators on board to
choose their preferred institutional forecasts, thus skipping the decision problem. In the
future, advanced optimization algorithms (e.g., hybrid heuristics, metaheuristics, hyper-
heuristics, adaptive algorithms, self-adaptive algorithms, island algorithms, polyploid
algorithms) should be applied for challenging decision problems [42–47].

Heuristics algorithms, or simple heuristics algorithms, usually adapt to the current
problem and try to fully utilize the particularity of this problem without reaching the
global optimal solution. Due to their excessive greed, they often fall into a local optimal
state. However, due to their efficiency and resource saving, they have already been widely
applied in nautical weather routing problems, e.g., A* and greedy algorithm.

Metaheuristic algorithms are problem-independent techniques. Generally speaking,
they are not greedy. In fact, they may even accept temporary deterioration of the solution
in a specific problem. Metaheuristic algorithms find optimal solutions by modeling natural
phenomena (e.g., heredity, ants looking for food, etc.), so they can be considered to simulate
the marine navigators looking for a suitable route.

Hyper-heuristics find better solutions for special problems, while metaheuristics do
not add any special conditions to find the general solution space for general problems. The
particularity of hyper-heuristic algorithms lies in the fact that the space they find is not the
solution space, but the heuristic or metaheuristic space.

There are many different domains where advanced optimization algorithms have
been applied as solution approaches, such as online learning, scheduling, multi-objective
optimization, transportation, medicine, data classification, and others. The proposed
approach could be compared to various advanced optimization algorithms.
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Nomenclature

x position longitude
y position latitude
x1 position longitude rounding
y1 position latitude rounding
R1 position longitude interpolation scale
R2 position latitude interpolation scale
V1 transverse wind speed
V2 longitudinal wind speed
Vt final wind speed
a constant
b constant
X1 horizontal value of pixel matrix arrangement in Mercator projection chart
Y1 longitudinal value of pixel matrix arrangement in Mercator projection chart
X2 horizontal value of pixel matrix arrangement in Lambert projection chart
Y2 longitudinal value of pixel matrix arrangement in Lambert projection chart
k number of pixels with a length of 1◦ at any longitude in Mercator projection chart
p number of pixels of equatorial 1 length on Mercator projection chart
MP latitudinal lengthening rate
X pixel point matrix arrangement horizontal values
Y pixel point matrix arrangement vertical values
α constant
β constant
θ variable

References
1. Liu, Y.; Zhang, Q.; Sun, D.M. The Development of E-navigation and Strategy Implementation. In Proceedings of the 1st DMU

International Conference on Maritime Education and Training, Dalian, China, 15 October 2016; pp. 142–148.
2. Luan, X. Fuzzy correction method for marine meteorological navigation data based on artificial neural network. Comput.

Informatiz. Mech. Syst. 2019, 2, 123–126.
3. Pleskachevsky, A.L.; Rosenthal, W.; Lehner, S. Meteo-marine parameters for highly variable environment in coastal regions from

satellite radar images. ISPRS J. Photogramm. Remote Sens. 2016, 119, 464–484. [CrossRef]
4. Hinnenthal, J.; Clauss, G. Robust Pareto-optimum routing of ships utilising deterministic and ensemble weather forecasts. Ships

Offshore Struct. 2010, 5, 105–114. [CrossRef]
5. Vidan, P.; Kasum, J.; Zujić, M. Meteorological Navigation and ECDIS. Promet-Traffic&Trans. 2010, 22, 5.
6. Zis, T.P.; Psaraftis, H.N.; Ding, L. Ship weather routing: A taxonomy and survey. Ocean. Eng. 2020, 213, 107697. [CrossRef]
7. Szlapczynska, J.; Szlapczynska, R. Preference-based evolutionary multi-objective optimization in ship weather routing. Appl. Soft

Comput. 2019, 84, 105742. [CrossRef]
8. Sasa, K.; Terada, D.; Shigeaki, S.; Wakabayashi, N.; Ikebuchi, T.; Chen, C.; Takayama, A.; Uchida, M. Evaluation of ship

performance in international maritime transportation using an onboard measurement system—In case of a bulk carrier in
international voyages. Ocean. Eng. 2019, 84, 294–309. [CrossRef]

9. Grifoll, M.; Martorell, L.; Castells, M.; Martínez de Osés, F.X. Ship weather routing using pathfinding algorithms: The case of
Barcelona—Palma de Mallorca. Trans. Res. Procedia. 2018, 33, 299–306. [CrossRef]

10. National Investigation Report on “Oriental Star” Shipwreck Incident. 2015. Available online: http://sh.sina.com.cn/news/g/20
15-12-30/detail-ifxmxxyq4773338.shtml (accessed on 7 July 2023).

https://doi.org/10.1016/j.isprsjprs.2016.02.001
https://doi.org/10.1080/17445300903210988
https://doi.org/10.1016/j.oceaneng.2020.107697
https://doi.org/10.1016/j.asoc.2019.105742
https://doi.org/10.1016/j.oceaneng.2015.05.015
https://doi.org/10.1016/j.trpro.2018.10.106
http://sh.sina.com.cn/news/g/2015-12-30/detail-ifxmxxyq4773338.shtml
http://sh.sina.com.cn/news/g/2015-12-30/detail-ifxmxxyq4773338.shtml


Sustainability 2024, 16, 1117 19 of 20

11. List of Shipwrecks in 2020. Available online: https://en.wikipedia.org/wiki/List_of_shipwrecks_in_2020 (accessed on 1
January 2024).

12. List of Shipwrecks in 2021. Available online: https://en.wikipedia.org/wiki/List_of_shipwrecks_in_2021 (accessed on 1
January 2024).

13. List of Shipwrecks in 2022. Available online: https://en.wikipedia.org/wiki/List_of_shipwrecks_in_2022 (accessed on 1
January 2024).

14. Bertotti, L.; Cavaleri, L. Wind and wave predictions in the Adriatic Sea. J. Mar. Syst. 2009, 78, S227–S234. [CrossRef]
15. Webster, P.J.; Jian, J.; Hopson, T.M.; Hoyos, C.D.; Agudelo, P.A.; Chang, H.R.; Curry, J.A.; Grossman, R.L.; Palmer, T.N.; Subbiah,

A.R. Extended-range probabilistic forecasts of Ganges and Brahmaputra floods in Bangladesh. Bull. Am. Meteorol. Soc. 2010, 91,
1493–1514. [CrossRef]

16. Zheng, X.X.; Yang, F. Research of wind speed and wind power forecasting. Adv. Mater. Res. 2012, 347, 611–614. [CrossRef]
17. Ou, Y.; Xu, L.; Wang, J.; Fu, Y.; Chai, Y. A STL decomposition-based deep neural networks for offshore wind speed forecasting.

Wind. Eng. 2022, 46, 1753–1774. [CrossRef]
18. Jian, J.; Webster, P.J. A new marine auto-response quantitative wind forecast system. Procedia—Social. Behav. Sci. 2013, 96,

1362–1365. [CrossRef]
19. Pulli, K.; Baksheev, A.; Kornyakov, K.; Eruhimov, V. Real-time computer vision with OpenCV. Commun. ACM 2012, 55, 61–69.

[CrossRef]
20. Nie, G.T.; Huang, H. A Survey of Object Detection in Optical Remote Sensing Images. Acta Anat. Sin. 2021, 47, 1749–1768.
21. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (ICCV), Columbus, OH, USA, 23–28
June 2014; pp. 580–587.

22. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE international Conference on Computer Vision (ICCV), Santiago, Chile,
7–13 December 2015; pp. 1440–1448.

23. Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

24. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A. SSD: Single Shot MultiBox Detector. In Proceedings of
the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 17 September 2016; pp. 21–37.

25. Redmon, J.; Kumar, S.; Divvala, K.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 779–788.

26. Jian, J.; Liu, L.; Zhang, Y.; Xu, K.; Yang, J. Optical Remote Sensing Ship Recognition and Classification Based on Improved
YOLOv5. Remote Sens. 2023, 15, 4319. [CrossRef]

27. Sirisha, U.; Praveen, S.P.; Srinivasu, P.N.; Barsocchi, P.; Bhoi, A.K. Statistical analysis of design aspects of various YOLO-based
deep learning models for object detection. Int. J. Comput. Intell. Syst. 2023, 16, 126. [CrossRef]

28. Huang, Z.X.; Jiang, X.N.; Wu, F.L.; Fu, Y.; Zhang, Y.; Fu, T.J.; Pei, J.Y. An Improved Method for Ship Target Detection Based on
YOLOv4. Appl. Sci. 2023, 13, 1302. [CrossRef]

29. Yu, J.; Zhang, W. Face mask wearing detection algorithm based on improved YOLO-v4. Sensors 2021, 21, 3263. [CrossRef]
[PubMed]

30. Malta, A.; Mendes, M.; Farinha, T. Augmented Reality Maintenance Assistant Using YOLOv5. Appl. Sci. 2021, 11, 4758. [CrossRef]
31. Zhang, S.L.; Zhang, L.P.; Zeng, W.Q.; Guo, Z.; Fu, Z.Q. Identification and localization of walnut varieties based on YOLOv5. J.

Chin. Agric. Mech. 2022, 43, 167.
32. Wang, C.Y.; Liao, H.Y.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning capability

of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA,
USA, 14–19 June 2020; pp. 390–391.

33. Han, J.; Pan, H.L. Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Weather. Forecast.
2011, 26, 520–533. [CrossRef]

34. Chaitanya, A.; Shetty, J.; Chiplunkar, P. Food Image Classification and Data Extraction Using Convolutional Neural Network and
Web Crawlers. Procedia Comput. Sci. 2023, 218, 143–152. [CrossRef]

35. Rezaee, M.J.; Eshkevari, M.; Saberi, M.; Hussain, O. GBK-means clustering algorithm: An improvement to the K-means algorithm
based on the bargaining game. Knowl. Based Syst. 2021, 213, 106672. [CrossRef]

36. Arjun, B.C.; Prakash, H.N. Multimodal Biometric Recognition: Fusion of Modified Adaptive Bilinear Interpolation Data Samples
of Face and Signature using Local Binary Pattern Features. Int. J. Eng. Technol. 2020, 9, 3111–3120.

37. Wada, T. On some information geometric structures concerning Mercator projections. Phys. A: Stat. Mech. Its Appl. 2019, 531,
121591. [CrossRef]

38. Zhao, D.Z.; Wang, R.Q.; Wang, W.Z. Research on Path Planning of Mobile Robot Based on Binocular Perception. In Proceedings
of the 2019 3rd International Conference on Artificial intelligence, Systems, and Computing Technology (AISCT 2019), Brasilia,
Brazil, 12–13 October 2019; pp. 441–446.

39. Liu, J.; Chen, H.; Wang, Y. Multi-source remote sensing image fusion for ship target detection and recognition. Remote Sens. 2021,
13, 4852. [CrossRef]

https://en.wikipedia.org/wiki/List_of_shipwrecks_in_2020
https://en.wikipedia.org/wiki/List_of_shipwrecks_in_2021
https://en.wikipedia.org/wiki/List_of_shipwrecks_in_2022
https://doi.org/10.1016/j.jmarsys.2009.01.018
https://doi.org/10.1175/2010BAMS2911.1
https://doi.org/10.4028/www.scientific.net/AMR.347-353.611
https://doi.org/10.1177/0309524X221106184
https://doi.org/10.1016/j.sbspro.2013.08.154
https://doi.org/10.1145/2184319.2184337
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.3390/rs15174319
https://doi.org/10.1007/s44196-023-00302-w
https://doi.org/10.3390/app13031302
https://doi.org/10.3390/s21093263
https://www.ncbi.nlm.nih.gov/pubmed/34066802
https://doi.org/10.3390/app11114758
https://doi.org/10.1175/WAF-D-10-05038.1
https://doi.org/10.1016/j.procs.2022.12.410
https://doi.org/10.1016/j.knosys.2020.106672
https://doi.org/10.1016/j.physa.2019.121591
https://doi.org/10.3390/rs13234852


Sustainability 2024, 16, 1117 20 of 20

40. Shi, P.; Zhao, Z.; Fan, X.; Yan, X.; Yan, W.; Xin, Y. Remote sensing image object detection based on angle classification. IEEE Access
2021, 9, 118696–118707. [CrossRef]

41. Jian, J.; Wang, H.; Sun, Z.; Wu, G.; Su, X. Study on Automatic Generation of Marine Wind Forecast Text by Artificial Intelligence.
Softw. Eng. 2021, 24, 9–12.

42. Singh, P.; Pasha, J.; Moses, R.; Sobanjo, J.; Ozguven, E.E.; Dulebenets, M.A. Development of exact and heuristic optimization
methods for safety improvement projects at level crossings under conflicting objectives. Reliab. Eng. Syst. Saf. 2022, 220, 108296.
[CrossRef]

43. Fathollahi–Fard, A.M.; Dulebenets, M.A.; Hajiaghaei–Keshteli, M.; Tavakkoli–Moghaddam, R.; Safaeian, M.; Mirzahosseinian, H.
Two hybrid meta–heuristic algorithms for a dual–channel closed–loop supply chain network design problem in the tire industry
under uncertainty. Adv. Eng. Inform. 2021, 50, 101418. [CrossRef]

44. Singh, E.; Pillay, N. A study of ant-based pheromone spaces for generation constructive hyper-heuristics. Swarm Evol. Comput.
2022, 72, 101095. [CrossRef]

45. Dulebenets, M.A. An Adaptive Polyploid Memetic Algorithm for scheduling trucks at a cross-docking terminal. Inf. Sci. 2021,
565, 390–421. [CrossRef]

46. Chen, M.; Tan, Y. SF-FWA. A Self-Adaptive Fast Fireworks Algorithm for effective large-scale optimization. Swarm Evol. Comput.
2023, 80, 101314. [CrossRef]

47. Dulebenets, M.A. A Diffused Memetic Optimizer for reactive berth allocation and scheduling at marine container terminals in
response to disruptions. Swarm Evol. Comput. 2023, 80, 101334. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2021.3107358
https://doi.org/10.1016/j.ress.2021.108296
https://doi.org/10.1016/j.aei.2021.101418
https://doi.org/10.1016/j.swevo.2022.101095
https://doi.org/10.1016/j.ins.2021.02.039
https://doi.org/10.1016/j.swevo.2023.101314
https://doi.org/10.1016/j.swevo.2023.101334

	Introduction 
	Related Work and Methodology 
	Previous Auto-Response System 
	Pixel Reading through OpenCV Image Processing 
	Wind Vector Recognition by YOLO Deep Learning Algorithm 
	YOLO4 
	YOLOv5 
	YOLOv5s 


	Meteorological Data Sources and Acquisition 
	Global Forecast System and the Navigators’ Association 
	Professional Meteorological Agencies 
	Interactive Mail Automation 

	Graphic Forecasting Data Retrieval 
	Classification and Storage of Weather Forecast 
	Interpolation to Obtain the Wind Speed or Wave Height 
	Coordinate Transformation of Forecast Map 
	Pixel Processing of Forecast Image 
	System Flow Chart 

	Wind Vector Recognition and Labeling Based on YOLOv5s 
	Computation Environment and Data 
	Evaluation Standard 
	Wind Vector Recognition by YOLO 

	Field Tests on the Ships 
	Obtain Sea Forecasting via INMARST Stations 
	Obtain Forecast Results from Multiple Institutions 

	Conclusions and Future Research Discussion 
	Conclusions: An Automatic System with Artificial Intelligence 
	Future Research: Decision Problem with More Artificial Intelligence Algorithms 

	References

