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Abstract. Impact-based weather forecasting and warnings
create the need for reliable sources of impact data to gen-
erate and evaluate models and forecasts. Here we compare
outputs from social sensing – analysis of unsolicited social
media data, in this case from Twitter – against a manually cu-
rated impact database created by the Met Office. The study
focuses on high-impact rainfall events across the globe be-
tween January–June 2017.

Social sensing successfully identifies most high-impact
rainfall events present in the manually curated database, with
an overall accuracy of 95 %. Performance varies by loca-
tion, with some areas of the world achieving 100 % accu-
racy. Performance is best for severe events and events in
English-speaking countries, but good performance is also
seen for less severe events and in countries speaking other
languages. Social sensing detects a number of additional
high-impact rainfall events that are not recorded in the Met
Office database, suggesting that social sensing can usefully
extend current impact data collection methods and offer more
complete coverage.

This work provides a novel methodology for the curation
of impact data that can be used to support the evaluation of
impact-based weather forecasts.

1 Introduction

Impact-based weather forecasts are increasingly used by na-
tional meteorological and hydrological services to provide
advice and warnings about both the likelihood and poten-

tial impacts of weather events (Campbell et al., 2018). How-
ever, methods to evaluate these forecasts are currently limited
due to a lack of reliable, quality-controlled and sustainable
sources of impact data. Meteorological agencies have long-
established systems to measure and monitor weather vari-
ables, which have allowed weather forecasting to develop to
its current high level of performance. But evaluating weather
impacts depends on measurements of social activities, health
and wellbeing, socioeconomic processes and other “human
factors”; this kind of measurement lies beyond the scope of
traditional meteorology. In this paper, we compare two ap-
proaches to the evaluation of weather impacts, i.e. manual
curation of impact databases based on news media and direct
reporting and “social sensing” of impacts based on social me-
dia.

Robbins and Titley (2018) made some initial steps to de-
velop an impact-based evaluation methodology by collat-
ing information of global socioeconomic impacts related to
heavy rainfall events. These impacts represent the direct and
tangible impacts of high-impact weather (e.g. damage to
property, loss of life, evacuation and injury and restricted
or delayed access to essential services). The community im-
pact database was developed to enable the evaluation of high-
impact weather forecasts that are available from the Met Of-
fice global hazard map (GHM). The Met Office is the na-
tional meteorological service for the UK, providing weather
services and contributing to climate science research world-
wide (https://www.metoffice.gov.uk/about-us/who, last ac-
cess: 17 December 2020). The GHM summarises the risk
of high-impact weather across the globe for the next 7 d
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(i.e. weather which can result in significant impacts on safety,
property or socioeconomic activity). The community impact
database includes information on when and where an impact-
ful rainfall event occurred, as well as a description of the
impacts observed, with each event then assigned to an im-
pact severity category. The impact severity category ranges
from 1 to 4, where 4 is the most impactful and 1 is the
least impactful. There are certain criteria that the impacts of
the event must meet for each severity category. Data con-
tained within the database are obtained from a range of on-
line sources across the world, including news, humanitarian
and natural hazard websites, in the English language. Col-
lation of the database was labour intensive and required a
significant level of manual inspection to extract the relevant
temporal, spatial and impact information for each weather
event. The data were standardised so that the impact informa-
tion could be compared with the high-impact weather fore-
casts provided by the GHM in an automated way. Despite the
labour-intensive nature of the process, the authors found the
database a good solution to enable impact-based evaluation
of high-impact weather forecasts.

There are limited options available for other global
databases containing weather impacts against which to com-
pare our methodology. There are databases, such as NatCat-
SERVICE, produced to record insurance loss as a result of
natural catastrophes. However, we would like to consider im-
pacts of extreme weather (i.e. disruption to daily life), which
do not necessarily lead to financial loss and which could
be missing from this kind of record. ReliefWeb, which is a
humanitarian information source on global crises and dis-
asters, is another possible database against which to com-
pare our results; however, this is filtered for disaster events
which are most relevant to global humanitarian workers and
decision-makers rather than all impactful events. Other avail-
able databases relying on citizen input (e.g. the European
Severe Weather Database – ESWD) may be limited to cer-
tain geographical areas and are unlikely to contain the same
level of rigour as the community impact database in terms
of criteria for inclusion. Considering the options available
to us, the community impact database therefore provides the
most comprehensive database against which to compare our
methodology.

Related work

A number of studies have explored the use of social me-
dia as a source of information about the impacts of extreme
weather. Social sensing is an approach developed in recent
years to analyse unsolicited social media data to detect real-
world events of interest.

While social sensing is not specific to natural hazards and
can be applied in a variety of contexts (Liu et al., 2015; Wang
et al., 2012, 2019), social sensing has demonstrated useful-
ness for natural hazard events.

Twitter data were used by Sakaki et al. (2010) to detect
earthquakes in Japan, with reports arriving in some locations
before the shock had been detected by conventional seis-
mography. Many studies have followed, using a number of
different approaches to explore the use of social media as
an information source during and following natural hazard
events. Some studies have focused on the use of social media
to better understand risk communication during an extreme
natural hazard event. For example, Stewart and Gail Wil-
son (2016) explore the use of social media throughout the
crisis life cycle during Hurricane Sandy in the USA, building
the STREMII model to better understand crisis communica-
tion during an extreme weather event; Rainear et al. (2018)
used Twitter data collected during Hurricane Joaquin to ex-
plore the types of information communicated by state emer-
gency management accounts to better understand the flow of
risk communication during a crisis; Bossu et al. (2020) ex-
plored the use of crowdsourced information, along with Twit-
ter data, in a bespoke application during the 2019 earthquake
in Albania, finding that engagement of users with the app
provided much more information about the damage caused
as a result of the earthquake than was available using con-
ventional methods.

Other studies have explored the use of social media to
better understand the impacts of extreme weather events.
Many studies focus on individual events. For example, Fang
et al. (2019) use data from the Chinese social media plat-
form, Sina Weibo, during the 2016 Beijing rainstorm, and
find a positive correlation between social media activity and
precipitation intensity; Sit et al. (2019) examine Twitter data
collected during Hurricane Irma, using geo-located tweets to
identify locations with a high density of affected individu-
als and infrastructure damage; and Han and Wang (2019) use
data from Sina Weibo during the 2018 Shouguang flood to
analyse the changes in the sentiment of social media users
during the different development stages of the flood. Further
examples of other studies examining the impacts of individ-
ual weather events at one particular location include studies
relating to specific hurricanes in the USA (Guan and Chen,
2014; Kim and Hastak, 2018; Lachlan et al., 2014; Morss et
al., 2017; Niles et al., 2019; Wu and Cui, 2018; Zou et al.,
2018) and specific flooding events around the world (Aisha
et al., 2015; Brouwer et al., 2017; Cervone et al., 2016;
Kankanamge et al., 2020; Li et al., 2018; Rossi et al., 2018).

Some authors have begun to explore the use of Twitter for
more wide-scale, specific weather event detection. Arthur et
al. (2018) use Twitter data to detect and locate flood events
in the UK to produce maps of flood activity. De Bruijn et
al. (2019) compare Twitter activity relating to flooding and
hydrological information with flood events in the NatCat-
SERVICE disaster database, finding a good comparison be-
tween these data sources. Boulton et al. (2016) use Twitter
data collected during several time periods to detect and lo-
cate wildfires in the USA. Cowie et al. (2018) find that user
reports on Twitter during the year can help to locate peaks
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in hay fever symptoms as a result of pollen levels in the UK.
Furthermore, Spruce et al. (2020) examine Twitter data relat-
ing to named storms, wind and precipitation in the UK, find-
ing that it is possible to identify tweets which can be used to
assess the impact of storms both temporally and spatially.

In social sensing, each individual in a social network acts
as a sensor, and their posts provide pieces of sensor data
which can be used to better understand what is happening
to or near that individual at a given place and time. Filter-
ing and grouping this information by topic, time or location
provides a better understanding of an event through the eyes
of a social network. In the context of weather, social sensing
can, therefore, be used to determine where, when and how
individuals are being impacted by a specific weather event.

This study seeks to build on and expand the scope of pre-
vious work to determine if high-impact weather events can
be detected without prior knowledge of when or where an
event happened. We use the social media platform Twitter to
extract tweets from across the world containing key words re-
lating to heavy rainfall and its secondary hazards (e.g. flood-
ing or landslides). We then examine peaks in Twitter activity
(relative to the normal level of tweet activity for each loca-
tion) relating to mentions of heavy rain, flooding or land-
slides. This is then compared with the Met Office community
impact database (Robbins and Titley, 2018), for the same pe-
riod and hazard focus, to assess the value of socially sensed
tweets for impact database development. Rainfall, and its as-
sociated secondary hazards, is a good weather type for this
kind of evaluation because it occurs in many places across
the globe with relatively high frequency. In comparison with
other hazards, rainfall-related impacts are generally more
widely documented (Robbins and Titley, 2018).

The paper is split into several sections. Section 2 gives
detail of social sensing methods used, followed by Sect. 3,
which compares outputs of social sensing to the manually
curated Met Office database. Section 4 gives some interpre-
tation of the findings and places the work in a broader con-
text.

2 Methods

Most social sensing studies have made use of Twitter data,
and we follow this pattern here. Twitter is an online so-
cial networking service that enables users to send short,
280-character messages called tweets. It is currently one of
the leading social media platforms worldwide, based on ac-
tive users (Clement, 2020). It provides a platform for users
to share and exchange information and news about current
events as they unfold in a faster way than traditional media
sources (Wu and Cui, 2018). It also encourages the use of
text in messages, and data are made freely available via the
Twitter developer application programming interface (API).
There are still some countries where the use of the internet is
not as widespread or where social media is limited to cer-

tain platforms. Despite this limitation, however, Twitter is
still one of the most prevalent social media platforms across
the world and, therefore, is likely to be a good source of in-
formation for understanding where people are being affected
by extreme weather, and how they are being impacted by it.

The methods used in this paper to gather, filter and locate
the Twitter data follow a similar approach to those used in
previous social sensing studies (Arthur et al., 2018; Cowie et
al., 2018; Spruce et al., 2020). New methods were developed
to compare the results of the social sensing of Twitter data
with the Met Office community impact data.

2.1 Data collection

2.1.1 Met Office community impact database

The extract of the Met Office community impact database
provided for this study included records of high-impact rain-
fall events from 1 January–30 June 2017. The database was
provided as an Excel spreadsheet, which included the follow-
ing information about each event: impact record date, coun-
try in which the impact occurred, along with the nominal lo-
cation (state and/or province) provided by latitude/longitude,
description of impacts observed and media source of infor-
mation. Additional information was provided where known,
including the start and end dates for heavy rainfall events,
higher-resolution location (lower administrative division)
provided by latitude/longitude and additional hazard infor-
mation. Each event was also assigned an impact severity cat-
egory from 1 to 4 to reflect the severity of impacts expe-
rienced during the event. Table 1 provides a breakdown of
the criteria used for each severity category. As described by
Robbins and Titley (2018), the information contained in the
database was predominantly obtained from online news and
social media, personal correspondence with National Me-
teorological and Hydrological Services and existing hazard
and impact databases. These included specific known sources
(e.g. http://floodlist.com, last access: 17 December 2020) and
news/social media via internet searches, including terms such
as “heavy rainfall”, “flooding”, “landslide”, etc. The data set
used in this study contained 519 entries (135 unique events)
in the period January–June 2017. Unique events refers to the
fact that a single rainfall event can lead to impacts in multiple
locations.

2.1.2 Twitter data

To gather the tweet data, English language key words relat-
ing to rainfall and the impacts of heavy rainfall were used to
query the Twitter streaming API. This API returns all tweets
containing the key words from the query, up to a limit of 1 %
of the total volume of tweets worldwide at any point in time.
The key words used to identify and download relevant tweets
using the API were “rain”, “rainfall”, “raining”, “rainstorm”,
“flood”, “flooding” and “landslide”. It is unlikely that tweets
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Table 1. Descriptions of impacts required for each impact severity category related to a heavy rainfall event (adapted from Robbins and
Titley, 2018).

Severity Description of impacts
category

1 – Low Some roads and (< 10) properties inundated over a small area; 1 or 2 localised assets affected/damaged.
No fatalities/injuries or hospitalisations.
Low-level disruption to daily life (e.g. delays in transport and services shut for short periods).

2 – Moderate Multiple assets affected (transport, business and residential) over a moderately large area (e.g. multiple
districts); > 1000 homes damaged and/or destroyed; > 1000 minor injuries and hospitalisations.
Wider-scale and prolonged disruption to daily life and services; > 1000 people displaced/evacuated
and/or receiving aid.

3 – High >=1 fatalities (but < 50); > 1000 people displaced/evacuated and/or receiving aid.
Multiple assets affected (transport, business and residential) over a large area (e.g. province or state);
> 1000 homes damaged and/or destroyed.

4 – Severe > 50 fatalities; > 50000 people displaced/evacuated and/or receiving aid.
Extensive damage to multiple assets causing prolonged disruption, inaccessibility and hardship.

using these keywords will have reached the global API limit,
since rainfall events tend to be widely dispersed in time and
space. Based on these considerations and the absence of any
obvious artefacts in our time series, we are confident that the
API rate limit does not affect our collection (Morstatter et al.,
2013).

Tweets were collected during the period 1 January to
30 June 2017 in line with the time period of the sample of
the Met Office Impact Database data used for comparison in
this study. Each tweet was saved as a JavaScript Object Nota-
tion (JSON) object containing the tweet text and a number of
metadata fields relating to each tweet (e.g. timestamp, user-
name, user location, geotag, retweet status, etc). The Twitter
streaming API searches the whole of the tweet metadata for
the search terms requested in the search including tweet text,
URLs and usernames. Therefore, collected tweets were fil-
tered to extract only those with one or more of the selected
keywords in the tweet text and to remove any duplicate tweet
IDs. In total, 44.7 million tweets were collected using this
method.

2.2 Filtering Twitter data

Once all tweet data collected using the API for the study pe-
riod had been extracted, the raw unfiltered data were then
passed through a number of filtering steps to remove irrele-
vant data. Filters were applied in the following order.

2.2.1 Retweets and quotes

Tweets that were duplicates of an original tweet authored
by another user and redistributed to their own followers
(retweets) and tweets which were posted as a quote from an-
other user’s tweet (quotes) were removed using tweet meta-
data relating to “retweeted status” or “quoted status”. These

tweets do not represent original observations; therefore, re-
moving them from the data set prevents any bias in the vol-
ume of tweet activity because of secondary public interest
in a specific event or location. Though retweets and quotes
could provide additional information, their frequency is con-
trolled to a large extent by social network effects, which will
be different in different regions, depending on local popular-
ity and differences in the use of Twitter. This filter removed
20.7 million tweets (46 %) from the raw unfiltered collection,
leaving 24 million tweets to be passed to the next stage of fil-
tering.

2.2.2 Bot filter

Twitter has many automated user accounts (bots) which are
set up to perform a particular function. For example, to col-
late and post content from a set of sources outside of Twitter,
to deliver advertising or to promote a particular issue. These
types of tweets are unlikely to contain information relating
to the impacts that users have experienced from heavy rain-
fall and may therefore distort the data set. Therefore, where
possible, bot content was removed from the data set. As bot
accounts tend to create many more tweets than human users,
simple bot filtering was achieved by identifying user ac-
counts which had a disproportionately high number of tweets
(using a threshold of > 1 % of the total number of tweets in
the data set). Any tweet in the data set which was posted
by an identified bot account was removed. Manual inspec-
tion of tweets during the development of the filtering process
identified a number of other bot accounts, which were also
removed. The bot filter removed 2.7 million tweets (6 % of
the total unfiltered data set), leaving 21.3 million tweets to be
passed to the next stage of filtering.

Nat. Hazards Earth Syst. Sci., 21, 2407–2425, 2021 https://doi.org/10.5194/nhess-21-2407-2021



M. D. Spruce et al.: Social sensing of high-impact rainfall events worldwide 2411

2.2.3 Weather station filter

As the tweet collection in this study is focused on weather-
related terms, a high number of weather station tweets were
also present in the data set. Some amateur weather stations
are set up to automatically post observations to Twitter. As
for Twitter bots, weather station tweets, while containing in-
formation on the weather conditions at a particular location
and time (such as the amount of rainfall), are unlikely to
provide any relevant information on the impacts from heavy
rainfall (e.g. damage or disruption). Therefore, any weather
station tweets not picked up by the bot filter described above
required an additional weather station filter to remove them
from the data set. Many of these tweets follow a fixed struc-
ture (for example, “06:30 AM Temp: 53.0 ◦F (12 ◦C) Hum:
91 % Wind: 7.0 mph (11 kph) N Bar: 29.530 in (1013 mb)
Rain: 0.09 in (2.3 mm)”), and therefore, the majority can be
identified by searching for multiple occurrences of meteo-
rological terms and units. Any tweet with three or more of
any combination of weather terms and/or units was therefore
removed from the data set. A randomised sample of tweets
removed using this filter was checked to ensure that no tweets
that were not weather stations were removed using this filter.
The weather station filter removed 4.7 million tweets (11 %
of the total unfiltered data set), leaving 16.6 million tweets to
be passed to the next stage of filtering.

2.2.4 Phrase filter

Another issue with the collection of tweets containing
weather-related keywords is the use of weather terms in
phrases and figures of speech which are not related to the
weather. For example, “floods of tears”, “rain check”, “rain-
ing offers”, “winning by a landslide”, etc. Other terms found
to be present in irrelevant tweets are also removed. These are
generally political in nature and include terms such as “elec-
tion”, “vote”, “trump”, “labour”, “migration”, etc. Song titles
containing the key words were also removed, for example
Purple Rain, Singing in the Rain, etc. Applying the phrase
filter removed 1.3 million tweets (3 % of the total unfiltered
data set), leaving 15.3 million tweets to be passed to the final
stage of filtering.

2.2.5 Machine learning filter

Although the previous stages of filtering removed many irrel-
evant tweets, manual inspection of remaining tweets found
that there were still a large number that contained the key-
words but that were not relevant to rainfall or the impacts of
heavy rainfall. These included warnings about forecasts of
rainfall, business advertising, links to articles on other topics
and various other irrelevant content. Therefore a naïve Bayes
classifier, found to be successful in other studies (Arthur et
al., 2018; Cowie et al., 2018; Spruce et al., 2020) for the fil-
tering of tweet content, was employed.

A set of 5434 tweets were randomly selected from the
filtered data set of tweets remaining after the phrase filter
(Sect. 2.2.4). Each tweet in this random set of tweets was
manually inspected and labelled as relevant or irrelevant.
A tweet was marked as relevant based on the criteria that
the tweet had to relate to rainfall that was currently hap-
pening, had happened recently or was about the impacts of
rainfall experienced recently. Everything else was marked
as irrelevant. For example, “Rain destroys 60 buildings in
Ondo” would be marked as relevant whereas “Rain expected
in Ondo tomorrow” would be marked as irrelevant. In total,
there were 1316 tweets marked as relevant and 4118 tweets
marked as irrelevant.

The labelled data set was then used as training data for a
multinomial naïve Bayes classifier. As a first validation test
for this approach, 25 % of the data were held back as a vali-
dation set, and a classifier was trained on the remaining 75 %
of cases; this classifier had an accuracy (i.e. correctly identi-
fied the relevance/irrelevance) of 90 % on the held-back val-
idation tweets, with an F1 score of 0.88. As a second test,
to confirm the robustness of the approach, the same train-
ing/validation test was repeated with sixfold cross-validation.
The results of each test were combined to give an overall
mean F1 score of 0.89, and the summed confusion matrix
(also known as “contingency table”) is shown below (where
True is relevant, and False is irrelevant), as follows:

Predicted
False True

Actual False 3966 152
True 140 1176

 . (1)

This confusion matrix shows an overall accuracy of 95 %,
with most tweets in the filtered data set classified as not rele-
vant. Accuracy was higher for the False class (3966/4118=
96 %) than the True class (1176/1316= 89 %). This could
be attributed to the training data set being unbalanced and
biased towards irrelevant tweets. Overall, the results of the
machine learning filter testing indicate good performance.

The machine learning filter removed 10.4 million tweets
(23 % of the total unfiltered data set), leaving 4.9 million
tweets (11 % of the total unfiltered data set) for further anal-
ysis.

2.3 Location inference

Typically, only ∼ 1 % of tweets collected using the Twitter
developer API using keywords contain the geo-coordinates
needed to determine the specific location of a tweet, while a
further 2 %–3 % contain specific place coordinates (Dredze
et al., 2013). Therefore, even after filtering for relevance, de-
termining the location of a tweet collected in this way re-
quires further processing to determine where in the world it
originated from, or relates to, in a process of location infer-
ence.

https://doi.org/10.5194/nhess-21-2407-2021 Nat. Hazards Earth Syst. Sci., 21, 2407–2425, 2021
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The 4.9 million tweets remaining after the relevance fil-
tering stages were further processed to see if location could
be identified using information contained within the tweet.
The location of the tweet is important in understanding
where in the world the rainfall event had taken place or
was taking place. We chose to work at a geographic resolu-
tion of GADM (the database of global administrative areas)
level 1 units, which are sub-national administrative regions
(e.g. USA states, UK countries and Australian states). This
choice is a balance between fine-scale resolution and having
enough tweet data in each unit to give meaningful outputs; it
is also the resolution at which the Met Office impact database
was aggregated for evaluation against weather forecasts.

We found that 2 % of tweets contained specific geo-
coordinates of the tweet origination (geotag) and a further
5 % contained the coordinates for the place a user designated
in the Twitter application when posting the tweet (place).
However, this left 3.7 million tweets without specific location
coordinates. As these tweets would very likely contain rele-
vant information relating to the impacts of a rainfall event,
it was important to try to determine the location of the tweet
so that the information contained within the tweet could be
used. Therefore, a location inference process was used for
each remaining tweet to see if location could be determined
either from the location given in the user profile (user loca-
tion) or place name detected in the tweet text. The steps taken
in the location inference process are as follows.

2.3.1 Country filter

Place names alone, without any other information, such as a
country or state name can often apply to more than one coun-
try. For example York (UK and Canada), London (UK and
Canada), Pasco (USA and Peru), etc. Therefore, an initial
filter was created to identify the country associated with a
place name. For some countries, place names in the text com-
monly follow a specific pattern or use certain abbreviations.
For example, in the USA, Canada and Australia, users often
put a place name followed by a 2 – character or 3 – char-
acter abbreviation for the state (e.g. Los Angeles, CA; Van-
couver, BC; Sydney, NSW). Text scanning for place names
was extended to look for the “place name, state abbreviation”
template and the names/abbreviations of states and/or coun-
try name for USA, Canada or Australia. Where a country or
state could be identified in this way, any further location in-
ference steps only checked for place names in that particular
country. This disambiguation step gave much better location
performance overall and computational efficiency benefits.

2.3.2 Gazetteer look-up

This filter checked the tweet to determine if a discernible
place name could be detected from the user location
and/or the tweet text using gazetteers, including GeoNames
(GeoNames, 2020) and DBpedia (DBpedia, 2020). The fol-

lowing methodology was applied to each tweet which did
not contain geo or place coordinates as described in Sect. 2.3
above.

– GeoNames was used as our primary source of gazetted
features as it is a geographical database with informa-
tion about all countries with over 8 million places, such
as cities and points of interest. Where there was no
match found in the GeoNames database, the DBpedia
database was used.

– Where a match to a place name is found, a set of co-
ordinates or bounding boxes from the gazetteer database
is returned.

– Where locations were found in both the user profile and
tweet text, place names in the tweet text are preferred, as
they are more likely to relate to the subject of the tweet.

– In a small number of cases, the user profile location and
tweet text locations may differ; in that case, the place
determined from the tweet text is given more weight
during the location inference process.

– Where multiple matches to a place name were found
in GeoNames (i.e. where a place name exists in more
than one country), if there was no reference to the coun-
try elsewhere in the tweet or the country had not al-
ready been determined by the country filter described in
Sect. 2.3.1 above, then the place with the largest popula-
tion (which has been found in previous studies to be the
most likely location for the tweet (Arthur et al., 2018;
Schulz et al., 2013) was logged and the coordinates re-
turned.

– In addition, where multiple place names are determined
from a tweet, to infer the most probable location, ar-
eas of overlap between the matching location polygons
are detected before a final coordinate or bounding box
is returned. This assumes that polygon overlaps are the
highest likelihood locations.

Since some place names are also commonly used to denote
something other than a location (Liu et al., 2011), a database
of words which are also places was used to remove apparent
locations which were more likely to be a word than a place
(e.g. dew, aka, var, etc.).

2.3.3 Validation

The method described above is based on the location infer-
ence method validated by Schulz et al. (2013), who found
92 % accuracy when the inferred location from a user loca-
tion/place name mentioned in tweet was compared against
tweets for which a geotag was known. The method was
also used successfully by Arthur et al. (2018) and Spruce et
al. (2020).
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To validate the location inference approach for this study, a
random sample of 100 tweets, including the tweet metadata,
was taken after the filtering and location inference stage had
taken place from the whole data set for all dates. Each tweet’s
metadata was examined for location references, and this was
cross-referenced with the GADM level 1 location(s) that the
tweet was assigned to using the social sensing location infer-
ence method. We found that 93 out of 100 tweets in this sam-
ple were assigned to the correct location(s), which shows that
the location inference method was working well. This is also
in line with previous studies’ validation of this location infer-
ence approach. Applying this location inference approach on
a global scale carries more potential for place names used in
multiple countries being misassigned by their geographical
coordinates than if working with tweets for a single country.
Therefore, locating tweets with a 93 % accuracy in this study
is considered a good success rate given the potential ambigu-
ities.

2.3.4 Matching to GADM level 1

Once a place is identified, it is matched to the GADM level 1
administrative area polygon that contains it. If a tweet’s lo-
cation spans multiple GADM level 1 areas, then the con-
tribution of that tweet to the total count is split proportion-
ally between each area. After processing the location for
all tweets, the overall counts of tweets within each GADM
level 1 are then collated for each day within the period of
study (1 January–30 June 2017).

2.4 Metrics for comparison of social sensing and Met
Office community impact database

The number of relevant tweets in each GADM level 1 area
for each day was used to calculate a ranking for all days in
the study period for each location, given as a tweet count per-
centile e.g. day X is in the Y th percentile of tweet counts at
location Z. This metric tells us how the number of tweets on
a specific day in that location compares with “normal” tweet
activity in that place. We use percentiles in preference to ab-
solute counts of tweets to account for varying prevalence of
tweets in different locations due to either the size of the pop-
ulation or the propensity of the local population for using
Twitter. If the number of tweets in a particular location on
a particular day is low for that location, the percentile will
be low; if the number of tweets is high for that location, the
percentile will be high. We are interested in locations and
days where the percentile of tweets is particularly high as
this indicates that there is an unusually high level of Twitter
discussion about rainfall on that particular day, which in turn
suggests that there is more likely to be a rainfall event tak-
ing place. We might also infer that the higher the percentile
(i.e. the more extreme the number of tweets for that place),
the more impactful the event.

To test our theory that a higher percentile of rainfall-
related tweets in a location implies that a rainfall event or
the impacts of a rainfall event are being experienced, we
compare our percentile calculations with the events logged
in the Met Office community impact database. For each day
in the study period and location included in the Met Office
database, we compare the percentile of tweets with whether
or not an event is logged in the database on that day, in that
place. As we do not currently know the percentile threshold
that implies an impactful rainfall event is taking place, we
repeat this comparison for different tweet percentile thresh-
olds between the 65th and 99th percentiles. Where a rainfall
event spans multiple days in the database, we compare the
percentile of tweets for each day of the event. The results of
these comparisons are discussed below.

It is also worth noting the limitations of the Met Office
impact database as a validation source for our Twitter data.
As noted by Robbins and Titley (2018), the methods used
to create the records in the Met Office database use man-
ual searches of news and social media sources written in En-
glish, which does not necessarily lead to an exhaustive list
of all high-impact rainfall events that have occurred across
the world. This means that this study is not necessarily a
validation of ground truth event detection using Twitter but,
instead, is a triangulation between identified impact events
using Twitter and the Met Office impact database. In the re-
sults that follow, we present outcomes as if the Met Office
data were ground truth, i.e. where we find a false negative it
indicates a case where social sensing does not find an event
that is found in the Met Office data. The true number of false
negatives (events that occurred in reality but are not detected
by social sensing OR by Met Office data) is unknown.

3 Results

In this section, we first analyse the coverage of the two
data sets (social sensing and manually curated Met Office
database). Then we present some illustrative examples to
show the properties of the two data sources, before giving
a sensitivity analysis on factors affecting the performance of
social sensing, assuming that the Met Office data represents
the ground truth (note that this is not necessarily the case; we
return to this assumption in Sect. 4). The final set of results
shown is an assessment of local/global performance of the
social sensing method.

3.1 Data coverage

Figure 1 shows a time series of the number of tweets col-
lected per day and the number of tweets retained after filter-
ing the raw data set for relevance. There was unfortunately
some server downtime between 16 and 18 March 2017, re-
sulting in missing tweets for this time period (grey bar in
Fig. 1). These dates are therefore excluded from all further
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analysis and comparisons between the Twitter data and the
Met Office database.

Figure 2 shows the number of tweets in each GADM
level 1 area across the world for the whole study period.
The majority of tweets are located within the USA, UK
and Australia. This is not surprising given that we have col-
lected tweets containing English language terms, and these
are English-speaking countries with a very large number of
Twitter users. Any areas without any tweets during the study
period are shaded white on the map. The figure shows that
we have good global coverage of discussion about rainfall on
Twitter, with at least some tweets in most areas.

Figure 2 also shows the locations of high-impact rainfall
events recorded in the Met Office database. Again, there is a
good global spread of events both in English-speaking coun-
tries and countries with speakers of other languages. The
relevance filters are likely to remove tweets from other lan-
guages.

Figure 3 shows the number of GADM level 1 areas
which had at least one tweet recorded in the filtered
data set (3379/3491 areas) and the number without tweets
(112/3491 areas). GADM areas without tweets were found
to be predominantly areas within countries with a low pop-
ulation density (e.g. Angola, Laos and Norway) or island
nations (e.g. the Bahamas, Nauru, Seychelles and Vanuatu).
The areas with and without tweets are also compared with
the number of GADM level 1 areas with an event in the Met
Office database (224/3491 areas). All GADM level 1 areas
with an event in the Met Office database had tweets recorded.
None of the areas with zero tweets recorded had an event
in the Met Office database. It is striking how many GADM
level 1 regions have some tweets recorded that talk about ex-
treme rainfall or flooding, compared to the number that have
verified high-impact rainfall events (floods and landslides)
recorded in the Met Office database. We will return to the
reasons for this disparity in the discussion.

3.2 Comparison between social sensing and the Met
Office database

The following are illustrative examples that demonstrate the
properties of the two data sources.

3.2.1 Spatial correspondence between social sensing
outputs and precipitation observations

For each day in the study period, the percentile of tweets for
each GADM level 1 area was mapped. A visual inspection of
each map identified a number of examples of peaks in Twitter
activity that correlate with observed rainfall. Figure 4 shows
an example of a particularly impactful rainfall event in the
USA on 30 April 2017. The areas with the highest percentile
of tweets appear to correlate well with areas of significant
rainfall. This provides some confidence that the spatial dis-

tribution of peaks in Twitter data correspond to areas of ob-
served rainfall.

3.2.2 Temporal correspondence between social sensing
and event database outputs

Time series of the volume of tweets for each GADM level 1
area which had an event recorded in the Met Office database
were examined to determine whether spikes of Twitter ac-
tivity correspond to event dates in the Met Office database.
Figure 5 shows an example of this for GADM level 1 areas
in Australia. Events in the Met Office database largely cor-
respond with peaks in tweet activity for these regions. It also
appears that there may be at least one high-impact rainfall
event detected by social sensing that is not included in the
Met Office database. Looking at 9 April 2017, there is a sig-
nificantly high number of tweets in Victoria which do not
correspond to an event in the Met Office database. Investiga-
tion of news articles and weather reports for this date iden-
tified that there was a significant rainfall event on this date
that would have met the criteria for inclusion in the Met Of-
fice database. Therefore, this provides an example of where
the use of social sensing could aid with impact event detec-
tion and provide an additional source of impact information.
Other peaks in tweet activity where the volume of tweets is
above the 95th percentile for the region are also labelled as
possible high-impact events which might have met the crite-
ria for inclusion in the Met Office impact database but were
missed in the original creation.

Figure 6 shows a similar plot to Fig. 5, but for the United
Kingdom (UK). In this example, there are greater dispari-
ties between events identified in the Met Office database and
those identified using the social sensing method.

There are a number of rainfall events identifiable from
the tweet time series in Fig. 6 which are absent from the
Met Office database, namely 12–13 January, 23 February,
17 May, and 27 June 2017. A significant peak in tweet ac-
tivity (above the 95th percentile) is noted for each of these
dates, and further investigation of news media and weather
reports shows that there were rainfall impacts in the UK on or
around these dates. However, not all of the peaks in tweet ac-
tivity can be attributed to genuine high-impact rainfall events.
For example, the peak in tweet activity seen around the 27–
29 May 2017 coincided with a bank holiday weekend in
the UK with a weather forecast for bad weather. This gen-
erated a large amount of news and social media discussion
on cancelled events and holiday plans, as well as some travel
disruption, not all of which was related to the weather. This
provides an example of where social sensing can provide a
false positive result. False positives could occur for a num-
ber of reasons; for example, do smaller, less impactful rain-
fall events in the UK generate more discussion than in other
countries given that rainfall is quite common there? Or, be-
ing a relatively small country, impacts due to the weather
have the potential to be more localised, affect fewer people
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Figure 1. Number of tweets collected per day between 1 January and 30 June 2017. Data shown for both the total number of tweets collected
(top line) and the number of tweets retained after filtering for relevance (bottom line). The period where the tweet collection failed (16–
18 March 2017) is shown by a grey bar.

Figure 2. Global map showing the number of filtered heavy rainfall tweets located in each GADM level 1 administrative area during the
period of study (1 January–30 June 2017). Areas with white shading had no located tweets during the period of study; shaded areas had at
least one tweet. Locations of impact events recorded in the Met Office database are shown by black points.

and are, therefore, not as highly severe on the global impact
scale used for the curation of the Met Office database. In this
particular example, there is also a question regarding the rel-
evance of a bank holiday in affecting people’s perception of
risk and impact.

Examining the illustrative examples above and the time se-
ries for other areas (not shown), we found there was a good
match between areas with recorded heavy rainfall events and
a high percentile of tweet activity relating to rain and the im-

pacts of rain. We also found a good match between peaks
in tweet activity and events in the Met Office database for
some areas (e.g. Australia, some parts of the USA, Malaysia,
Saudi Arabia and Angola) and a poorer match for others
(e.g. UK, India and Haiti). Investigating peaks in tweet ac-
tivity which do not correspond to a recorded event in the Met
Office database, we found that most of these peaks refer to
genuine high-impact rainfall events. These findings suggest
that social sensing of rainfall events can be a useful addition
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Figure 3. Bar chart showing the number of GADM level 1 areas (from a total of 3491 areas) with tweets and without tweets, compared with
the number of areas with at least one event in the Met Office database.

Figure 4. (a)The 24 h precipitation (inches; ranging from 0 to 305 mm) for USA on 30 April 2017 (http://www.wpc.ncep.noaa.gov, last
access: 17 December 2020). (b) Map of North America showing the percentile of tweet activity for each GADM level 1 administrative area
on 30 April 2017.

to current manual methods of impact data collection, helping
to identify a wider variety and greater number of high-impact
events.

3.3 Factors affecting social sensing performance

3.3.1 Performance metrics

To understand how the social sensing method is working in
terms of links between peaks in Twitter activity (i.e. per-
centile of tweets for a particular area) and events logged in
the Met Office database, we tested the social sensing method
as an event detector, assuming that the Met Office events
database represents ground truth. To quantify performance
and account for the various methodological factors (for ex-
ample, the tweet activity percentile threshold used to de-
cide when an event had occurred), we plotted precision/recall
curves.

Recall is used to show the ability of a model to find all
of the relevant cases in a data set (Koehrsen, 2018). In this
study, calculating recall indicates how well the social sens-
ing method finds events in the Met Office database. Recall
is calculated by taking the number of true positives divided
by the number of true positives plus the number of false neg-
atives (Eq. 2). For each day in the study period, a true pos-
itive would be counted if there is an event in the Met Of-
fice database and the percentile of tweets is greater than or

equal to the chosen percentile threshold (meaning the social
sensing method correctly detects the event). A false nega-
tive would be counted if there is an event in the Met Of-
fice database but the percentile of tweets is less than the cho-
sen percentile threshold (i.e. the event was not detected using
tweets).

recall=
[true positives]

[true positives] + [false negatives]

=
[events correctly detected using tweets]

[events correctly detected] + [events not detected]
. (2)

Precision is used to show the proportion of data points a
model says are relevant compared to those which are actu-
ally relevant (Koehrsen, 2018). In this study, precision shows
how accurately the social sensing method finds events in the
Met Office database; i.e. if there is a peak in Twitter activ-
ity in a particular place on a particular day, does this corre-
spond to an event in the Met Office database? Precision is
calculated by taking the number of true positives divided by
the number of true positives plus the number of false posi-
tives (Eq. 3). For each day in the study period, a true posi-
tive would be counted as described for recall above, whereas
a false positive would be counted where the percentile of
tweets is greater than or equal to a given percentile thresh-
old but there is not an event in the Met Office database (event
detected but not actually an event).
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Figure 5. Time series of filtered tweet counts per day for each of the Australian administrative areas with events in the Met Office database.
The period of each heavy rainfall event in the Met Office database is shown by a shaded bar colour coded to the administrative area. The 3 d
after each event is shown by a grey shaded bar. Social sensing events that are not present in the Met Office database are labelled.

precision=
[true positives]

[true positives] + [false positives]

=
[events correctly detected using tweets]

[events correctly detected] + [events incorrectly detected]
. (3)

Plotting precision and recall against each other shows how
well (or not) the social sensing method is replicating the
Met Office database of recorded events. Recall and precision
were therefore calculated for each GADM level 1 adminis-
trative areas with an event in the Met Office database. As
we do not know the optimum percentile threshold that would
achieve the best social sensing performance, recall and pre-
cision were calculated using tweet percentile thresholds be-
tween the 65th and 99th percentiles. This will help to deter-
mine which percentile threshold is optimal for signalling that
an impactful rainfall event is occurring.

Further to precision and recall, we also calculated the
f score – a metric which takes both precision and recall
into account. This is a single score that indicates how well
the social sensing method is working and can be used to

find the optimal percentile threshold to signal that a rainfall
event is occurring. The F1 score is defined as the harmonic
mean of precision and recall and aids in tuning a model to
be optimised for both of these metrics (Koehrsen, 2018).
In this study, we calculate a variation of the F1 score, the
F2 score, which gives a higher weight to recall in its calcula-
tion (Eq. 4).

F2 Score= 5 ·
Precision ·Recall

(4 ·Precision)+Recall
. (4)

For reference, F2 scores fall in the range [0, 1], with a score
of 1 being perfect recall and perfect precision. As used here,
we are interested mainly in the change in F2, as different
parameters are varied, rather than its absolute value.

We choose to favour recall here as we are most interested
in how well the social sensing method detects events in the
Met Office database; furthermore, calculations of precision
are somewhat less reliable due to the lack of genuine ground
truth data. While the accuracy of the event detection is im-
portant, we prefer to detect as many events as possible and
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Figure 6. Time series of filtered tweets per day for each of the UK administrative areas with events in the Met Office database. The period
of each heavy rainfall event in the Met Office database is shown by a shaded bar colour coded to the administrative area. The 3 d after each
event is shown by a grey shaded bar. Potential missed events in the Met Office database, which are identified in the Twitter data, are labelled.

tolerate occasional peaks in Twitter activity that do not match
an event in the Met Office database. As previously noted, the
Met Office database does not provide a definitive list of all
high-impact rainfall (and secondary hazard) events that have
occurred, and there may well be events missing from this
database that Twitter can help us detect. In other words, nei-
ther data set is perfect, but utilising the positive attributes of
both methods could lead to an enhanced approach for sus-
tainable and robust impact data collection.

3.3.2 Sensitivity of social sensing performance to event
detection window

Figure 7 shows precision and recall calculated for all GADM
level 1 areas where an event was recorded in the Met Office
database. Each plotted point shows precision and recall for a
given tweet percentile threshold for event detection. Initially,
precision and recall were calculated requiring that a peak in
tweet activity must exactly match the day of the heavy rain-
fall event (day 0). However, as identified by Robbins and Ti-

tley (2018), there can sometimes be a time lag between a
rainfall event and impacts of the event being experienced or
reported. Therefore precision and recall calculations were re-
peated for event detection windows of varying duration, i.e.
day 0 only, day 0+ day 1 (day+ 1), day 0+ day 1+ day 2
(day+ 2) and day 0+ day 1+ day 2+ day 3 (day+ 3).
Longer time windows were trialled in preliminary work, but
showed no additional benefit; also, longer time windows re-
duce the ability to locate events in time. Figure 7 shows pre-
cision/recall curves for each of these scenarios, showing that
the 3 d window (day+ 3) yields the best results.

3.3.3 Social sensing performance in English-speaking
countries and countries with speakers of other
languages

As the tweets collected were in the English language only,
we are also interested in whether the social sensing method
works better for countries with native speakers of English.
Using the precision/recall calculations described above and
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Figure 7. (a) Precision and recall values when comparing tweet data with the Met Office impact database for day 0 only, day+ 1, day+ 2 and
day+ 3 from the impact event date. Each point represents the tweet percentile threshold used to signal true and false positive values for an
event taking place in the Twitter data. Tweet percentile thresholds tested the range from the 65th percentile to the 99th percentile (step size 1).
(b) Precision vs. recall plot for matches (within 3 d of event) to Met Office impact event database vs. tweet percentile thresholds 65–99 (step
size 1) for countries with native speakers of English countries vs. countries with speakers of other languages.

for day range+ 3, a precision/recall curve was plotted for
tweets from native English-speaking countries versus other
countries with speakers of other languages. Figure 7 shows
the results of this comparison and that the social sensing
method yields much better results for countries with native
speakers of English with a maximum F2 score of 0.51 com-
pared with 0.34 for countries with speakers of other lan-
guages. The difference in performance is perhaps not surpris-
ing given that tweets were collected with English language
keywords, but it is interesting to note that reasonable perfor-
mance is still achieved in countries with speakers of other
languages.

3.3.4 Social sensing performance at different event
impact levels

A further consideration for impact-based forecast evalua-
tion is the severity of impacts associated with different (in
this case, hydrometeorological) events. Each event logged in
the Met Office impact database is assigned a category from
1 (least severe) to 4 (most severe; Table 1). To see how effec-
tive the social sensing method is for events with different lev-
els of impact, we plot recall (the number of events in the Met
Office database that are matched by peaks in Twitter activ-
ity) for different impact severity categories. Figure 8 shows
recall across a range of percentile thresholds for each impact
severity category. This shows that events with the most severe
impacts (severity category 4) are more likely to be picked up
by the social sensing method. Surprisingly, the least impact-
ful events (severity category 1) achieve the next-best recall.
This plot also shows us that as the percentile threshold is in-
creased, recall decreases (i.e. more events are missed at the
higher percentile thresholds). More on finding the optimum
tweet percentile threshold for the social sensing method will
be discussed later in Sect. 3.4.

Figure 8. Recall versus tweet percentile threshold for matches
(within 3 d of event) to the Met Office impact event database for
each category of impact severity (where impact severity category 4
represents the most impactful events).

3.4 Social sensing performance around the world

Having considered some of the factors which affect the per-
formance of the social sensing methodology, we now exam-
ine how well social sensing performs in different geographic
regions around the world. To do this, we first look at the
choice of percentile threshold for different places, then the
dependence of social sensing on tweet volumes, before fi-
nally examining performance in different GADM level 1 re-
gions. Again, we assume that the manually curated Met Of-
fice impact database is a ground truth, while acknowledging
that the actual ground truth is unknown.
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Figure 9. Global map showing the tweet percentile threshold which yielded the highest F2 score of precision/recall between filtered heavy
rainfall tweet activity and events in the Met Office impact database for each GADM level 1 administrative area with an event recorded in the
Met Office database during the study period.

3.4.1 Choice of percentile threshold

The optimal tweet percentile threshold overall (yielding the
highest F2 score) was found to be around the 80th percentile;
however, this varies by location. Figure 9 plots the optimal
tweet percentile threshold for every GADM level 1 region
in which a Met Office impact event was recorded. Where the
plot is white in colour, no events were recorded; these regions
are not considered in our analysis. The plot shows that the
optimal percentile threshold for social sensing performance
varies by country (at least, in terms of recovering the known
events recorded in the Met Office database). Therefore, the
social sensing method may need to use a different percentile
threshold for different locations to achieve its best perfor-
mance.

3.4.2 Dependence on tweet volume

It is reasonable to assume that the volume of tweet activ-
ity might affect social sensing performance. This leads to an
expectation that social sensing will work best in locations
with large user populations and resulting large data volumes.
To test this assumption, we examined the relationship be-
tween F2 scores and tweet volumes for each GADM level 1
region for which an event was recorded in the Met Office
database. Figure 10 plots the average tweet count and the
maximum F2 score for each location with an event recorded
in the Met Office database. The plot shows no obvious re-
lationship between the two variables; this is confirmed by a
weak correlation (Pearson’s r = 0.11; p = 0.10). This find-
ing demonstrates that (perhaps unexpectedly) a greater num-
ber of tweets does not necessarily mean that the social sens-
ing method will be more accurate. Good performance can be
achieved with any volume of tweets as long as there is tem-
poral variation in the volume driven by rainfall events.

Figure 10. Log average number of tweets versus the maximum
F2 score for each location with an event in the Met Office database.

3.4.3 Performance of social sensing around the world

The performance of social sensing in different locations
across the world was also examined. Figure 11 shows the
maximum accuracy for each GADM level 1 administrative
area with an event recorded in the Met Office database. Ac-
curacy is calculated based on the proportion of true results
among the total number of cases examined, with 1 being
100 % accuracy, i.e. no false positive or negatives, and 0 be-
ing 0 % accuracy, i.e. no true events found. Figure 11 shows
how the accuracy is high for all areas where social sensing
was compared to the Met Office database. The maximum
accuracy achieved for each area ranges from 86 % to 99 %.
The high accuracy achieved suggests that the social sensing
method detected almost all events in the Met Office database.
However, as we are also interested in how well our social
sensing method detects high-impact rainfall events which are
not in the Met Office database, the F2 score (which also takes
this into account) is likely to provide a more realistic measure
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Figure 11. (a) Global map showing the average accuracy of true positives between filtered heavy rainfall tweet activity and events in the
Met Office impact database for each GADM level 1 administrative area with an event recorded in the Met Office database during the period.
(b) Global map showing the maximum F2 score of precision/recall between filtered heavy rainfall tweet activity and events in the Met Office
impact database for each GADM level 1 administrative area with an event recorded in the Met Office database during the period.

of how well, or otherwise, the social sensing method detected
events in the database.

Figure 11 also shows the maximum F2 score for the
GADM level 1 administrative areas with an event recorded in
the Met Office database. It is clear from this figure that there
are some places where the method works particularly well
(e.g. Australia, some parts of the USA and Saudi Arabia) and
others where the method does not work as well (e.g. Europe
and India). This may be in part due to language limitations, as
only English language tweets were analysed. It may also be
due to some parts of the world where rainfall is more com-
mon or the time frame of the study being only 6 months,
meaning some areas’ heavy rainfall (e.g. Indian monsoon)
are not included.

4 Discussion

This study has shown the potential of the social sensing of
Twitter data to identify and locate high-impact rainfall events
across the world. Social sensing can help to support the
curation of impact data following extreme weather events,

which may in turn support better evaluation of impact-based
forecasts and the development of new impact models. The
process used to generate the Met Office impact database
can produce high-quality and detailed records, with few, if
any, false positives. However, manual collection is extremely
laborious, resource intensive and ultimately unsustainable
for many meteorological services. This could be improved
by developing automated procedures which accomplish the
same goal. Social sensing is one automated approach which
could be used to automatically identify events breaching a
predetermined threshold. We have seen that social sensing
achieves high coverage (few false negatives); thus, the addi-
tion of a social sensing tool to enhance impact data collection
as part of a semi-automated process is very promising and
would allow high-quality impact data to be collected with
significantly reduced manual work.

Comparison of social sensing results with the Met Office
impact database identified a number of surprising results,
which may highlight both limitations in the design of the Met
Office database and also opportunities for the two approaches
to complement one another. In particular, we found that there
were a number of events identified in the Twitter data which
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were not included in the Met Office database. While recorded
as false positives when calculating the precision and recall of
the social sensing approach, many of these peaks in tweet ac-
tivity were found to be true events after further investigation.
On closer inspection, these events would have met the cri-
teria for being assigned an impact severity category and are
therefore genuine omissions from the Met Office database.
There are a number of possible reasons for this disparity.
First, we speculate that there are a number of high-impact
rainfall events that occurred but were not captured by Met
Office data collection methods, e.g. due to the focus on En-
glish language news sources or because they did not meet the
inclusion criteria of that database. The Met Office database
does not include news reports which did not make clear ref-
erence to the cause of the impacts. For example, if flood-
ing and associated impacts were reported but did not make
clear reference to heavy rainfall as the trigger, then the report
would not have been included in the Met Office database.
There were also temporal and spatial constraints on report
inclusion into the Met Office database so that flood events
associated with groundwater or significant fluvial flooding
(caused by long-term rainfall over a season, for example)
were not included. This was because the Met Office global
hazard map (GHM) focuses on forecasting daily heavy rain-
fall events, and therefore, the impact database was generated
with an evaluation of those forecasts in mind. By contrast,
in the Twitter data an event would be inferred by the volume
of discussion about rainfall/flooding alone, without this con-
text. Therefore, differences between the two data sets in this
case would be expected. Second, there is a difference in style
of reporting between Twitter, which typically provides an in-
dividual’s identification of a single high-impact event based
on their own experience and subjective perception of impact,
compared with the dominant sources used to produce the Met
Office impact database, which typically try to be objective
and tend to aggregate impacts (e.g. news media often report
aggregated impacts associated with an event). This means
that Twitter data may pick up a greater number of smaller-
scale, localised impacts which are often missed in broader,
aggregated sources (e.g. FloodList). Third, we note that the
presence of tweets relating to rainfall in a region does not
indicate that a major rainfall event occurred. It is likely that
many tweets are written in reference to minor or normal rain-
fall and not in response to an extreme event. However, the
disparity in coverage between Met Office data and Twitter
data does suggest that the social sensing approach may fa-
cilitate more effective wide-scale observation of high-impact
rainfall events.

It was also found that events in the Met Office impact
database were more likely to correlate with events detected
using social sensing for English-speaking countries. This is
not surprising given that the data collected from Twitter was
in the English language, and the methods used to collate the
records of impact events in the Met Office database also re-
lied on news and media sources in English. While the limita-

tions on language would lead to a clear English language bias
in terms of performance, it was encouraging to find that so-
cial sensing with English tweets does still work well in some
countries speaking other languages and also that the number
of tweets in a location does not adversely affect the social
sensing method.

The most impactful events in the Met Office database (im-
pact severity category 4) also returned better success using
the social sensing approach than the lower severity cate-
gories, which is not an unexpected result given that events
of this magnitude are likely to generate more interest in so-
cial media channels. What was surprising, however, was that
events in severity category 1 had better recall than severity
categories 2 or 3. One possible reason for the strong perfor-
mance of severity category 1 events is because of the style
of reporting by Twitter users. Category 1 includes localised
impacts and low-level disruption (i.e. disruption to daily life,
delays and short-term inaccessibility to services). Given the
individualistic nature of Twitter reporting, it is likely that
these types of impacts are registered more routinely, while
such events have to reach an undetermined significance (in
terms of interest) threshold to be reported in the media or in
other aggregated data sources. It should also be noted that the
frequency of events in each severity category, within the Met
Office database, is uneven, with events assigned to severity
category 3 far outweighing the number of category 4 events.

Limitations and further work

The main limitation to studies of this type is the lack of data
to confirm the absolute truth for validating our findings. In
this case, there is no definitive list of all impactful heavy
rainfall events across the world that we can refer to. While
the Met Office database was laborious and time consum-
ing to collect, it is very useful because it pulls information
from a wide range of sources, it includes all events found,
regardless of location in the world, and it has clear and con-
sistent criteria for events to be included within it. We have
also shown that Twitter is a good source of data for event de-
tection. Therefore, what has been presented in this study is
a comparison of two data sets, which, if combined together,
could help to provide a more holistic view of heavy rainfall
impacts across the world.

Another limitation for this study is that only 6 months of
data were examined. This means that locations which expe-
rience high rainfall at different times of the year to the pe-
riod of this study (e.g. the Indian monsoon season) would
have been underrepresented. Any further work in this area
should consider extending the timeframe to include all likely
weather extremes across the year. This would be important
as it will support improved understanding of tweet behaviour
between wet and dry seasons where these occur. The under-
lying tweet counts which were used to calculate percentiles
would also benefit from being calculated for a longer time
frame (e.g. 3–5 years) rather than just the period of this study.
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This would likely yield better results in terms of identifying
peaks in Twitter data.

Tweaks to the underlying method may also benefit the per-
formance of social sensing for both similar studies to this one
and other studies comparing Twitter data with other data sets.
In relation to this study, the terms included in the Twitter API
search could be extended to be wholly in line with terms used
to find news and media sources for the Met Office database.
For example, the tweet collection only included the word
“landslide”; however, the Met Office database would have
also included other terms such as “mudslide” and “land slip”
in searches for news reports. The development of libraries
of suitable search terms can be considered somewhat easier
for hazards, which often have well-defined usage, compared
with terms that aim to identify socioeconomic impacts. This
work has focussed on identifying impacts based on the oc-
currence of tweets with specific hazard phrases rather than
socioeconomic impact phrases. Further analysis of tweet text
from filtered tweets to extract information about the types
of impacts being experienced by Twitter users would be an
obvious next step. This could then be used to further clas-
sify the events in line with the Met Office impact severity
category criteria or to help to refine impact severity categori-
sation. It is likely that a combination approach could yield
additional insights into the details of high-impact events, but
further work would be required to fully establish the utility
of Twitter for providing detailed impact assessment.

Extending this study to investigate if tweet activity relating
to heavy rainfall (or other weather types) could be monitored
globally in real time would greatly add weight to its long-
term utility as a source of impact data. One of the primary
limitations of our method is the exclusive use of English. We
have demonstrated in Sect. 3.1 that we achieve good global
coverage despite this restriction, but as shown in Fig. 7, our
ability to detect events is lower in countries where English
is not a native language. Applying this methodology in real
time and as a source of impact data on a global scale would
require a similar list of key words to be generated in a number
of other major languages, especially those popular on Twit-
ter. The subsequent location inference and relevance filtering
steps would also have to be optimised to be language agnos-
tic. Though English is the most popular language on Twitter
(Mocanu et al., 2013), the majority of tweets are in other
languages, with Spanish, Malay and Indonesian making up
a significant proportion. We have demonstrated that there is
significant benefit to this methodology working with English
tweets only, but we must keep this bias in mind and look to
add other major languages in future work.

Despite the acknowledged limitations and the recommen-
dations for further methodological work, this study shows
that it is possible to use Twitter data to identify high-impact
rainfall events and their impacts globally. Furthermore, the
type of record that Twitter provides (i.e. eyewitness accounts
and individual reports of events taking place) is different in
nature to the aggregated sources that the Met Office database

and other similar databases use. Therefore, Twitter data can
be used as a “first pass” event detection tool, largely au-
tomating the difficult manual curation task. Prototyping this
methodology in real time to generate an automated Twitter-
based impact database would be the next step. It would also
be interesting to repeat the impact-based evaluation method-
ology described in Robbins and Titley (2018) using a Twitter-
based impact database. Based on the findings from this work,
we believe that a method that utilises the strengths of both
methods (social sensing methodology and media/aggregated
data collection from trusted sources) could lead to an en-
hanced approach for sustainable and robust impact data col-
lection. The generation of a framework to bring these data
together would allow the impact-based evaluation method to
migrate away from its original, semi-automated approach to
a fully automated impact-based evaluation methodology.

5 Summary and conclusion

In this study, data were collected from Twitter in the first
half of 2017 relating to mentions of rainfall and the impacts
of rainfall across the world. These data were analysed and
compared with a manually curated database of global rain-
fall events that caused socioeconomic impacts collated by
the Met Office for the same period of time. The aim was to
assess the potential of using Twitter as a source of impact
data following a significant weather event. A social sensing
methodology was used to apply various computational tech-
niques to filter and extract only those tweets from the data set
of relevance to the impacts of a heavy rainfall event. Tweets
without geo-located coordinates were then further processed
to infer the location of the tweet, or event mentioned in the
tweet, so that the location of the rainfall event could also be
determined. Using the percentile of the number of tweets for
a particular day and location as a proxy for the likelihood of
an impactful event taking place, this accounted for the preva-
lence of tweets in each location. Comparison of these spikes
of activity within the filtered Twitter data with the Met Office
database of high-impact rainfall events finds that the majority
of events recorded by the Met Office were also detected using
social sensing. Interestingly, the social sensing approach also
found additional impactful rainfall events within the Twitter
data which were not recorded in the Met Office database.
It was also encouraging to find that social sensing with En-
glish tweets still worked well in some countries speaking
other languages and also that the number of tweets in a lo-
cation does not adversely affect the social sensing method.
This suggests that social sensing of Twitter data would be a
useful addition to current impact data collection processes.

Code and data availability. The Python code is available on re-
quest in a private GitHub repository (https://github.com/seda-lab/
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social_sensing, last access: 17 December 2020) (Seda-lab, 2020),
which can be made available on request.

Data used in this study were collected using the Twit-
ter API. Due to Twitter’s policy on redistributing Twit-
ter content (https://developer.twitter.com/en/developer-terms/
more-on-restricted-use-cases, last access: 17 December 2020)
(Twitter, 2020), the tweet data cannot be made publicly available
but can be provided on request in the form of tweet IDs which can
be rehydrated with the tweet content by the requester using the
Twitter API.
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