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Abstract

Mild Cognitive Impairment (MCI) is a condition characterized by a decline in cognitive abili-

ties, specifically in memory, language, and attention, that is beyond what is expected due to

normal aging. Detection of MCI is crucial for providing appropriate interventions and slowing

down the progression of dementia. There are several automated predictive algorithms for

prediction using time-to-event data, but it is not clear which is best to predict the time to con-

version to MCI. There is also confusion if algorithms with fewer training weights are less

accurate. We compared three algorithms, from smaller to large numbers of training weights:

a statistical predictive model (Cox proportional hazards model, CoxPH), a machine learning

model (Random Survival Forest, RSF), and a deep learning model (DeepSurv). To compare

the algorithms under different scenarios, we created a simulated dataset based on the Alz-

heimer NACC dataset. We found that the CoxPH model was among the best-performing

models, in all simulated scenarios. In a larger sample size (n = 6,000), the deep learning

algorithm (DeepSurv) exhibited comparable accuracy (73.1%) to the CoxPH model (73%).

In the past, ignoring heterogeneity in the CoxPH model led to the conclusion that deep learn-

ing methods are superior. We found that when using the CoxPH model with heterogeneity,

its accuracy is comparable to that of DeepSurv and RSF. Furthermore, when unobserved

heterogeneity is present, such as missing features in the training, all three models showed a

similar drop in accuracy. This simulation study suggests that in some applications an algo-

rithm with a smaller number of training weights is not disadvantaged in terms of accuracy.

Since algorithms with fewer weights are inherently easier to explain, this study can help arti-

ficial intelligence research develop a principled approach to comparing statistical, machine

learning, and deep learning algorithms for time-to-event predictions.
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Introduction

Background

The continuous improvement of lifestyle and healthcare has led to an increase in the average

life expectancy worldwide. However, longer life expectancy also increases the likelihood of

developing age-related brain disorders, which can have severe impacts on daily life and even

be direct causes of death [1]. One such disorder is Alzheimer’s disease (AD), which causes a

decline in cognitive abilities such as memory and concentration. These cognitive changes con-

tribute to the loss of the ability to independently perform basic everyday activities. AD causes

dementia symptoms that become worse over time and are irreversible. Alzheimer’s patients

face the risk of progressing to mild cognitive impairment (MCI) and later to dementia. While

dementia currently has no cure, promising therapies can slow down the progression of indi-

viduals who are not yet at the MCI stage [2]. Therefore, accurately predicting the time of pro-

gression to MCI in cognitively normal patients is of great importance.

In order to accurately predict the time to MCI progression, it is crucial to have access to a

well-structured dataset that captures the necessary information. Such a dataset must have a

recording of time when a patient progressed to MCI along with other variables, and it is called

survival dataset [3]. These types of datasets are often also referred to as time-to-event data, as

the ground truth we measure is the time to occurrence of the event of interest. In our case, the

event of interest is the conversion to MCI, which we refer to as the time to MCI progression.

A typical feature of survival data is censoring. Censoring refers to situations where the exact

occurrence time of an event of interest is unknown for certain subjects in the study [4]. For

example, some subjects are lost to follow up, i.e. they left the study for an MCI-unrelated rea-

son such as death, refusal to continue to be in the study, or relocation. Other subjects’ date of

conversion to MCI can be unknown because the researcher had to end the study or the data

collection before the subject converted.

In electronic health records (also called routinely collected datasets) and national observa-

tional studies, such as the National Alzheimer’s Coordinating Center (NACC), data is collected

routinely, often up to a specific time point. This practice creates censoring for subjects who are

still being followed but have not yet experienced the event of interest, in this case, the progres-

sion to MCI. Patients who dropped out of the study, died, or still exhibit normal cognition are

considered right censored. It is important to recognize that censored times should not be

treated as missing data. Instead, they provide valuable information by indicating that the event

has not yet occurred for those individuals. Treating censored times as missing would disregard

this useful information. Therefore, any algorithm aiming to predict the time to MCI progres-

sion must take into account both the event times and the censoring times.

Various automatic prediction algorithms have been developed and used to predict the time

to event, however, only one paper has been published to predict time to MCI progression [5].

Generally, in the medical field, there are three main types of predictive algorithms: (A) classical

statistical predictive models, (B) machine learning algorithms and (C) Deep learning algo-

rithms. From classical statistics, there are methods used for survival analysis: Kaplan-Meier

estimator for estimating the survival function [6] together with Log-rank test as an approach

to assess whether the Kaplan-Meier curves for two (or more) groups are statistically equivalent

[3]. Another widely used type of classical statistical model is semiparametric Cox proportional

hazard regression model [7], which can be used to study risk factors as well as for prediction

(thus belonging to a set of so called statistical predictive models). In addition to classical statis-

tical models, machine learning methods have emerged as powerful tools for time-to-event

analysis. Two notable machine learning algorithms used in survival analysis are Random Sur-

vival Forest (RSF) and Support Vector Machine (SVM) [8]. Among the deep learning models
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employed in time-to-event analysis, DeepSurv stands out as one of the most widely utilized

methods, utilizing neural networks as its fundamental framework [9].

Related work

Limited research has been conducted comparing analytical techniques for automatic predic-

tion of time to event in medical applications. However, a recent methodological review by

Smith et al. [10] addressed this gap by examining relevant studies. The review identified 10

papers that met the study inclusion criteria. Although none of the studies focused on Alzhei-

mer’s disease, they employed Monte Carlo simulations based on clinical time-to-event data.

The Cox proportional hazard model was the most commonly applied method in the studies

reviewed and it was compared to machine learning approaches such as Random Survival For-

est (RSF), survival Support Vector Machine (SVM), or neural networks. Multiple evaluation

metrics, such as the C-index, Integrated Brier score (IBS), and Mean Squared Prognostic Error

(MSPE), were utilized to assess the performance of these models. However, the review did not

yield a conclusive finding regarding the most accurate technique and its optimal scenario [10].

Clinical studies, particularly those focused on dementia, often involve data that is high-

dimensional, censored, and may contain missing information. These complexities pose chal-

lenges when predicting future events. While there is currently no cure for dementia, interven-

tions exist that can slow down the progression to cognitive impairment. Therefore, early

detection, even before symptoms manifest, is crucial for successful management. Spooner

et al. [11] emphasize the need for machine learning models capable of predicting the onset of

dementia. In their study, they compared ten machine learning algorithms in conjunction with

eight feature selection methods, specifically designed for survival analysis of high-dimensional

clinical data. The performance of these models was evaluated using the C-index metric.

Overall, the study conducted by Spooner et al. [11] revealed that the Cox model without fea-

ture selection exhibited the poorest performance, with a decline of 7% and 21% in the C-index

metric. Conversely, both the Cox model with feature selection and the Random Forest survival

models demonstrated higher and comparable performance in predicting dementia onset,

based on the analysis of two clinical datasets. When it comes to predicting the conversion to

MCI, it is crucial to employ accuracy evaluation metrics such as the C-Index, Integrated Brier

Score (IBS), or Mean Squared Prognostic Error (MSPE). In certain medical domains, different

algorithms may yield similar levels of accuracy, as demonstrated by Spooner et al. [11].

In a review of predictive algorithms based on cross-sectional studies Christodoulou et al.

[12] compared the performance of logistic regression with machine learning methods. Their

findings indicated no significant difference in performance between these two approaches. As

a result, the authors emphasized the necessity for further studies that directly compare the per-

formance of different predictive algorithms.

When multiple algorithms demonstrate similar accuracy, it provides an opportunity to con-

sider other desirable properties in the decision-making process. For instance, simplicity,

explainability, and trustworthiness are important factors to consider. Simplicity refers to an

algorithm that uses a smaller number of features or features that are easier to obtain (e.g. non-

imaging features), or are more reliable to obtain (e.g. not prone to recall bias), while still

achieving comparable accuracy to more complex algorithms. Explainability refers to an algo-

rithm’s ability to provide two types of explanations: 1) explaining how it works, its capabilities,

and evaluation, and 2) clarifying why and how it reached a specific conclusion. These explana-

tions should be understandable to a range of users, with the level of detail adjusted to the con-

text. By offering clear explanations, an algorithm promotes transparency, and trust, and

enables users to assess its reliability and limitations [13]. Explainable AI can be achieved
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through two approaches: constructing the model as inherently explainable, like the Cox

model, or incorporating explainability features afterward (post-hoc approaches). We consider

AI as trustworthy if it demonstrates honesty, competency, and reliability [14, 15]. For example,

an AI system is considered trustworthy when it can openly express uncertainty regarding its

own claims, demonstrating transparency and integrity. The trustworthiness of AI, including

uncertainty-aware AI, is a current area of research and focus as expressed by the European

Commission and its High-Level Expert Groups.

The relationship between the accuracy of prediction algorithms and the size of training

data is not fully understood due to the complexity of both the data and the algorithms

involved. This holds true for both cross-sectional studies (e.g., diagnostic studies) and longitu-

dinal studies (e.g., survival studies). Consequently, there may not be readily available mathe-

matical formulas for determining sample sizes in such cases. In Cox regression, the

determination of sample size depends on the specific goal of the analysis, whether it is to assess

associations or make predictions. In an association study, we compare groups (younger vs

older) with respect to time to event, in prediction studies we predict individual time to event.

Predicting individuals is harder than comparing groups, hence we need more data for training

if the aim is to predict individuals. If Cox regression is used to learn about associations then

there are methods to calculate the sample size [16] which increases with an increasing number

of features in Cox regression. If Cox regression is used for the prediction (prognosis) the sam-

ple size needs to be even higher, however, this is not fully understood [16]. This gap in knowl-

edge highlights the need for further research in this area. For modern machine learning

algorithms like Support Vector Machines (SVM), Random Forest (RF), or deep learning meth-

ods, it is generally known that larger sample sizes are necessary to achieve higher accuracy and

mitigate the risk of overfitting [17]. This emphasizes the importance of investigating the

impact of training sample sizes on the accuracy and precision of predictive algorithms.

It is also not clear how predictive algorithms compare under different survival distributions

of data e.g. distribution of time to event. Due to suggestions that machine learning approaches

may be able to improve clinical outcome predictions, Austin et al. [18] explored in their paper

the predictive performance of machine and statistical learning methods. Their main aim was

to identify which machine learning approaches outperform classical statistical learning meth-

ods. The study focused on two large simulated cardiovascular datasets with a binary outcome

variable indicating whether the patient died within 30 days. Six different methods were evalu-

ated: bagged classification trees, stochastic gradient boosting machines using trees as base

learners, random forests and lasso, ridge, and unpenalized logistic regression. Eight perfor-

mance metrics were employed to assess the performance of these methods. The results of the

study indicated that the performance of all methods was similar, with no single method emerg-

ing as superior across all the metrics used. However, the authors noted that certain methods,

such as random forests, exhibited poorer performance when the outcomes were generated

under a model different from random forests. The study was limited, however, as the datasets

used were similar in size thus it was recommended that further analysis is required to compare

the model’s performance on datasets of varying sizes.

When it comes to prediction problems in human studies there is another challenge: the het-

erogeneity of patients. For example, Gao et al. [19] described this problem and claimed that

heterogeneity is not uncommon among patients in many diseases and ignoring this issue

might lead to poor clinical diagnostics. Ignored heterogeneity leads to biases in estimated

weights and in inefficient prediction (e.g. analysis of highway accident data [20]). Therefore, it

is crucial to consider and address heterogeneity when developing predictive models. Heteroge-

neity can manifest as observed or unobserved. When differences between two or more groups

relate to observable characteristics (e.g. differences in progression risk in males and females
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relating to cognitive status), this is observed heterogeneity. Such characteristics (gender and

cognitive status) can be used to partition the patients into separate groups and carry out

group-specific analyses (either separate analyses or one analysis with relevant dummy variables

flagging separate groups, called interaction terms in statistics). Unobserved heterogeneity

occurs when in addition to the observed variables under study, there exist other relevant vari-

ables that are unobserved but correlated with the observed variables (with outcome variables

and/or with predictors).

A fair comparison of algorithms should be conducted on the same dataset, which can either

be real datasets or simulated datasets. Smith et al. [10], in their review, highlighted the advan-

tages of simulation studies. These studies allow us to understand the performance of methods

under known data-generating mechanisms and enable comparisons in various settings, such

as varying sample sizes or complexity of relationships between predictors. Simulation studies

provide valuable insights into how different methods perform under different scenarios. How-

ever, it is important to ensure that the data simulation process closely resembles the character-

istics of real data from the clinical domain. By using realistic data simulation techniques, we

can gain a better understanding of how predictive algorithms will perform in real-world

applications.

In summary, to our knowledge, there is currently no comparison of algorithms focused on

predicting the time to conversion to MCI. Important areas to investigate are the effect of sam-

ple sizes, the effect of the survival distribution of the data, and the effect of heterogeneity on

model performance.

Aim and objectives

The primary objective of this study was to assess and compare the performance of three popu-

lar models used for predicting time-to-event outcomes: the Cox Proportional Hazards model

(commonly referred to as Cox Regression), Random Survival Forest, and DeepSurv (a non-lin-

ear version of Cox Regression using deep learning techniques). These models were chosen

because they represent different approaches commonly employed in survival analysis: Cox

Regression as a statistical model, Random Survival Forest as a machine learning model, and

DeepSurv as a deep learning model. The aim was tackled via three objectives: 1) compare the

models’ performance according to varying sample sizes, 2) compare the models’ performance

when the survival distribution deviates from an exponential distribution, and 3) compare the

models’ performance under heterogeneity (unobserved heterogeneity when some variables are

missing and observed heterogeneity).

Materials and methods

Alzheimer data

In our research, we performed a simulation study inspired by clinical Alzheimer’s data from

the National Alzheimer’s Coordinating Center (NACC). The actual dataset provided by

NACC contains 748 clinical variables. They include age, gender, education, presence/absence

of dementia, normal cognitive behavior, patient medical history as well as family history, and

many others.

In order to make our simulation study numerically transparent, we first chose a subset of

features (variables) from the full set of 748. It is likely that the 748 features have redundancy,

thus feature selection would need to be incorporated in the simulations. However, the feature

selection was not a part of our three objectives. We considered the 15 identified features from

Lin et al. (2018) [5] and then we applied on them a forward selection procedure using a Cox
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model, which yielded a set of ten features (see S1 Table in S1 File for definitions). Briefly, the

selected ten features are

• Demographics information: age (AGE), sex (SEX), years of education (EDUCATION),

• Participant or co-participant reported behavioral information: memory impairment (MEM-

ORY), judgment and problem-solving impairment (JUDGMENT) and difficulty with travel-

ling (TRAVEL),

• Clinical judgment of symptoms: decline in non-memory cognitive abilities (DECCLIN),

motor function difficulties (MOTREM), impaired cognitive status (COGSTAT), and decline

in memory and cognitive status (DECIN).

For more information, see S1 Table in S1 File.

Framework followed in our simulation study

Although simulation studies are widely used and come with various advantages [10], they are

still lacking proper analysis, design, and report. This fact was pointed out by Morris et al. [21]

who therefore introduced new guidelines for simulation studies called ADEMP. The ADEMP

recommends structuring a simulation study and reporting five key components: Aims of sim-

ulations, Data-generating mechanism, Estimands, Methods, and Performance measures. In

what follows, we explain the details of the simulation based on the ADEMP approach.

Aim of simulations

The aim of our simulation study is to compare the three most common algorithms in the task

of predicting the time to MCI progression. We explained the three algorithms in previous sec-

tions: Cox proportional hazards model, Random Survival Forests, and DeepSurv.

Data-generating mechanism

The data-generating mechanism is inspired by a real-world and popular dataset called NACC.

We consider one main data-generating algorithm which we then modify into several scenarios.

It is crucial that the simulated data mimic a real-life scenario [10], hence here the main algo-

rithm is inspired by the real dataset extracted from NACC in September 2020.

First, we generated the features (predictors) of N people, using the following distributions:

SEX � Bernoulliðp0 ¼ 0:5; p1 ¼ 0:5Þ

AGE � Uniformð55; 85Þ

EDUCATION � Uniformð0; 36Þ

MEMORY � Bernoulliðp0 ¼ 0:917; p1 ¼ 0:083Þ

JUDGMENT � Bernoulliðp0 ¼ 0:96; p1 ¼ 0:04Þ

DECCLIN � Bernoulliðp0 ¼ 0:95; p1 ¼ 0:05Þ

TRAVEL � Multinomialðp0 ¼ 0:95; p1 ¼ 0:03; p2 ¼ 0:02Þ

MOTREM � Bernoulliðp0 ¼ 0:99; p1 ¼ 0:01Þ

COGSTAT � Multinomialðp0 ¼ 0:7; p1 ¼ 0:16; p9 ¼ 0:14Þ

DECIN � Bernoulliðp0 ¼ 0:88; p1 ¼ 0:12Þ

ð1Þ
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Next, we generated the time of survival for each simulated person. As one of the survival

time distributions we used the exponential distribution:

Texp ¼ �
logðUÞ
li

ð2Þ

with U following uniform distribution U* Uni(0, 1) and li ¼ expðXib̂Þ.

Next, we generated the censoring time for each simulated person. The censoring times were

generated following the truncated normal distribution

Tcensoring � maxf0;Nðm ¼ 2; s ¼ 3:611Þg ð3Þ

This lead to the the simulated pair of survival value {T, C} for each person, where T is sur-

vival time and C is censoring

T ¼ minðTexp; TcensoringÞ

C ¼ 1 if Texp > Tcensoring;C ¼ 0 otherwise
ð4Þ

To tackle the Objective 1, on sample size we considered several values of sample size N:

250, 500, 2,000 and 6,000. The choice of small sizes 250 and 500 was motivated by the observa-

tion that statistical models have higher accuracy than machine learning approaches (including

deep learning) in small sample sizes, owing to the fact that the statistical models have a much

smaller number of weights (parameters) to train. However, this only applies if the data meet

the assumptions of the statistical model.

To tackle Objective 2, on survival distribution we additionally simulated the survival

times from Weibull and Log-Logistic distributions

Tweibull ¼ �
logðUÞ
li

� �1=b

and Tlog� logistic ¼
1

li

U
1 � U

� �1=b

ð5Þ

To tackle Objective 3 on unobserved heterogeneity, we also considered scenarios where

some features are missing in the analysis. This mimics the situation when some features are

either not collected on real patients and then not accounted for in analyses, or it reflects the sit-

uation when features are collected but mistakenly not used in the analysis by the prediction

models.

To tackle Objective 3 on observed heterogeneity, we added heterogeneity into the datasets

so we can investigate its effect on the performance of the models. We got inspired by the real

NACC dataset where cognitive status (COGSTAT) leads to higher progression risk in males

than females (SEX). In the simulations, it was necessary to add dummy features (called interac-

tion variables in statistics) into the dataset. Since (COGSTAT) has three values (0, 1, and 9) we

added two dummy features:

fCOGSTAT;1 ¼ SEX ∗ IfCOGSTAT ¼¼ 1g

fCOGSTAT;9 ¼ SEX ∗ IfCOGSTAT ¼¼ 9g;
ð6Þ

where I is an indicator function. Thus a female with cognitive status 1 (i.e., abnormal test

score, coded as COGSTAT = 1) gets fCOGSTAT,1 = 1, while every other person gets fCOGSTAT,1 =

0. Every male gets value 0 for fCOGSTAT,1. Also every woman with the cognitive status 0 or 9

gets fCOGSTAT,1 = 0. Then in the simulations, this dummy feature will get its own weight. If the

weight is positive (negative) then a female with the cognitive status 1 will have a higher (lower)

progression risk than a male who has the same cognitive status.

PLOS ONE Comparing the performance of algorithms to predict time-to-event

PLOS ONE | https://doi.org/10.1371/journal.pone.0297190 January 22, 2024 7 / 20

https://doi.org/10.1371/journal.pone.0297190


Analogically, a female with cognitive status 9 (i.e., clinician unable to render an opinion,

coded as COGSTAT = 9) gets fCOGST AT,9 = 1, while every other person gets fCOGST AT,1 = 0.

Every male gets value 0 for fCOGST AT,9. Also every woman with the cognitive status 0 or 9 gets

fCOGST AT,9 = 0. Then in the simulations, this dummy feature will get its own weight. If the

weight is positive (negative) then a female with the cognitive status 9 will have a higher (lower)

progression risk than a male who has the same cognitive status. The weights (β values) for the

dummy features are estimated from the real NACC dataset, as explained in the Results section.

Estimands

Estimands, according to ADEMP guidelines, are the parameters of the data-generating mecha-

nism that are relevant for the predictive algorithms comparisons. In the case of predictive algo-

rithms, a relevant estimand needs to be a measure of prognostic ability. We chose estimands:

C-index and Integrated Brier Score which are commonly used for evaluating time-to-event

data and are suitable for censored data as well.

Methods

Methods, according to ADEMP guidelines, are the methods being compared head-on-head in

the simulated datasets. In our study they Cox regression, Random survival forests, and Deep-

Surv (a deep feed-forward neural network).

These methods were chosen based on a recent comprehensive review of Smith et al. [10],

which showed the three methods to be the most commonly used in a wide range of medical

areas. The review also concluded that it was not quite clear how the three methods compare in

terms of accuracy due to the lack of head-on-head comparisons and the lack of studies utilising

simulated datasets. In our study, we compare the three methods via simulated datasets.

In the choice of the three methods we were also inspired by the effort to encompass a spec-

trum of algorithms from three areas of learning from data: statistical learning, machine learn-

ing and deep learning. Such choice allows investigating the requirement of the size of training

data since such requirement can depend on the number of parameters that need to be tuned.

In this respect, the chosen methods differ in the number of parameters to tune, with the small-

est number of parameters in statistical learning methods, and the largest number of parameters

for deep learning methods.

All three chosen methods are designed to predict the time of the event from survival data.

They are able to tackle the challenges of censored data. They allow the inclusion of multiple

risk factors (features), non-linear effects and interactions and missing data—however, this is

accomplished via different approaches.

The first chosen model is the Cox Proportional Hazard Regression model (Cox model). It

belongs to statistical learning approaches. It is the most frequently used statistical learning

method for the prediction of the timing of future events from survival data. The missing data

imputation, the inclusion of nonlinear effects and the inclusion of interactions need to be engi-

neered by the data analyst. Cox regression has an easy interpretation due to simplicity, and

thus, Cox regression is transparent [22]. It is however still unclear if the simplicity always leads

to a lower accuracy when compared to machine learning or deep learning methods [10]. This

is one of the reasons we study Cox regression here.

The second chosen model is a Random survival forest. It is a machine learning algorithm

designed for predicting the times of events from survival data. Its reported strengths lie in its

ability to adapt to nonlinearities and interactions in datasets without the need to rely on the

data analyst. The advantage is that data analyst does not need to craft them, but the disadvan-

tage is that it is difficult to see what nonlinearities or interactions have been found; thus, it is
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referred to as a “black box” model. Another advantage is its reasonable computational speed

[23]. Our study plans to bring light into the accuracy and the need for training data of a Ran-

dom survival forest.

The third chosen model is DeepSurv. It is a deep learning model, and it is known as a Cox

proportional hazards deep neural network and state-of-the-art survival method for predicting

the times of events from survival data [9]. DeepSurv can capture intricate nonlinear relation-

ships as well as interactions, effectively, without relying on the data analyst. However, it is diffi-

cult to see how the model works, and thus, it is referred to as a “black box” model.

Furthermore, large deep-learning models such as DeepSurv typically require substantial

amounts of data to perform well and avoid overfitting. We use the DeepSurv architecture from

Katzman [9] we plan to shed light on how much data it needs for the training.

Cox proportional hazards model. In survival analysis, the Cox proportional hazards

regression model is the most popular statistical predictive model. It is a semiparametric model

which does not rely on as many assumptions as parametric models, and therefore, it is widely

used [7]. The essential assumption in this model is the proportionality of the hazard function

which is defined as:

hðt;XÞ ¼ h0ðtÞe
Pk

i¼1
biXi ð7Þ

where h0(t) is the baseline hazard function, Xi represents a vector of predictor variables (fea-

tures) measured on subject i, and β is a k x 1 vector of unknown parameters (weights). Another

assumption of the proportional hazards (PH) models is that the models assume that the hazard

ratio (HR) of two people is independent of time i.e. that the proportionality of hazards stays

the same over time, hence the name proportional hazard [3, 22, 24]. The model can be built by

using partial likelihood and by maximizing the partial likelihood function, the estimates for

parameters can be obtained. The partial likelihood can be written as:

LðbÞ ¼
Yj

i¼1

e
Pk

i¼1
biXi

P
l2RðtiÞ

e
Pk

i¼1
biXi

ð8Þ

which is a product of several likelihoods where R(ti) is failure time also denoted as the “risk

set” of the set of individuals who are at risk at a given time ti [3, 22].

Random Survival Forests. Random survival forest (RSF) is a machine learning method

based on extended Breiman’s [25] random forests (RF) method, for time-to-event data which

is able to take censoring into account. The process of creating survival trees is similar to it

would be for classification or regression. It is based on the bootstrapping and the splitting rule.

The bootstrap sample is used to create a tree where randomly selected predictor variables are

used to split the root node into two daughter nodes. The splitting rule used in RSF is the log-

rank test which tests the dissimilarity of two groups for chosen predictor x at split value c [26,

27].

The value of the log-rank test is calculated by the following formula:

Lðx; cÞ ¼

PN
i¼1

di;1 � Yi;1
di
Yi

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1

Yi;1

Yi
1 �

Yi;1

Yi

� �
Yi � di
Yi � 1

� �

di

s ð9Þ

where N is the number of individuals in node, di,j is the number of events in the daughter node

j at time ti and Yi,j is the number of individuals at risk in the daughter node j at time ti. In
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order to maximize the value of |L(x, c)| which gives us the difference between two groups, we

try to find the predictor vector x* and the split value c* that satisfy |L(x*, c*)|�|L(x, c)| [22, 27].

DeepSurv. Artificial neural networks have come to the fore in survival analysis. Katzman

et al. [9] presented DeepSurv as a non-linear Cox regression model with the use of neural net-

works. DeepSurv is a deep feed-forward neural network that estimates each individual’s effect

on their hazard rates [9]. A diagram of DeepSurv is shown in Fig 1 where X is a set of observed

predictors (features) as input data. This model is built from hidden layers which are fully-con-

nected nonlinear activation layers followed by dropout layers. The output layer is a single node

with a linear activation function. This output is the estimation of the log-risk function denoted

as ĥyðxÞ. The loss function used in this model is the average negative log-partial likelihood

with regularisation [9, 28].

Performance measures

Performance measures (or evaluation metrics), according to ADEMP guidelines, are the

numerical quantities to assess the performance of a method of the algorithm. We chose three

performance measures: the mean, 5% lower quartile, and 95% upper quartile. The mean helps

Fig 1. Architecture of DeepSurv model used in this study. The architecture is the same as in [9].

https://doi.org/10.1371/journal.pone.0297190.g001
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to explore the central tendency of the estimated values of the Integrated Brier score and C-

index. The lower and upper 5% quartiles help to explore the variability of the Brier score and,

hence the algorithm’s uncertainty.

C-index. There are multiple metrics available for the evaluation of survival models when

taking time-to-event censored data into account. The concordance index (C-index) is one of

the most commonly used metrics while multiple types of estimators of the C-index were pro-

posed. Harrell’s C-index [29] is given by formula:

C ¼

X

i; j
Ið~Ti >

~TjÞ � IðZi > ZjÞ � dj
P

i; jIð~Ti >
~TjÞ � dj

ð10Þ

and represent the ability of the model to provide reliable survival times based on the individual

risk scores. In general, C-index can be understood as the area under the time-dependent ROC

curve. Similarly to the AUC if C-index = 1, it represents the best prediction of the model,

whereas a C-index of 0.5 corresponds to a random prediction [28, 30].

Brier score and integrated Brier score. Another widely used metric to evaluate the pre-

diction accuracy is the Brier score (BS), which represents the average squared distances

between the observed survival status and the predicted survival probability [31]. The value of

the Brier score lies between 0 and 1 and can be calculated as:

BSðtÞ ¼
1

N

XN

i¼1

ð1Ti>t � Ŝðt; ~xiÞÞ
2

ð11Þ

with perfect accuracy when Brier score = 0. However, the given formula for BS can be used

only when there is no censoring present. In the case of right-censored data being present in

the dataset, the score needs to be adjusted by weighting the squared distance using the inverse

probability of censoring weights method. Thus the formula is such that:

BSðtÞ ¼
1

N

XN

i¼1

ð0 � Ŝðt; ~xiÞÞ
2
� 1Ti�t;di¼1

Ĝð~TiÞ
þ
ð1 � Ŝðt; ~xiÞÞ

2
� 1Ti>t

ĜðtÞ

 !

ð12Þ

where ĜðtÞ is the estimator of the conditional survival function [28, 31].

The integrated Brier Score (IBS) is an overall measure of model performance at all available

times which is calculated with the formula:

IBSðtmaxÞ ¼
1

tmax

Z tmax

0

BSðtÞdt ð13Þ

In order to get a good view of C-index and IBS, each generated dataset of sample size N was

partitioned into a training and testing set, where the training set was used to train a model and

the testing set was used to obtain the estimates of C-index and IBS. The most common split

ratio was used which is 80:20, where 80% is a training set and 20% is a testing dataset. For each

simulation scenario, we simulated the dataset 50 times, thus getting 50 estimates of the C-

index and IBS. Then we provide:

• mean C-index and IBS to report the accuracy, and

• 90% confidence interval for C-index and IBS to report the precision. This tells us how much

the estimates of C-index and IBS vary from one sample to another, with 90% confidence.
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Results

Comparison of prediction models at various sample sizes

As planned, in Objective 1 we compare the prediction models at various sample sizes. We con-

sider four scenarios:

Scenario: Very small sample size, N = 250

Scenario: Small sample size, N = 500

Scenario: Medium sample size, N = 2, 000

Scenario: Large sample size, N = 6, 000

The mean of C-index and IBS is improving with increasing sample size (Table 1, for each

predictive model. The largest improvement can be seen in the RSF model where the C-index

increased from 60.2% to 72.2%. The DeepSurv has the best improvement in IBS where the

score decreased from 14.3% to 7.7%. The CoxPH model showed only small differences in per-

formance when increasing the sample size. In small sample sizes (N = 200 and N = 500), the

Cox model achieves the best results (for C-index) (Table 1). At the largest sample size

(N = 6,000) the three methods have similar performance. Any differences are small. DeepSurv

model is only 0.1% and 0.86% better than CoxPH in terms of C-index and IBS. The distribu-

tions of the C-index and Brier score are roughly symmetric (see S1-S4 Figs in S1 File, top

rows).

The pairwise differences in C-index show that CoxPH was always better than RSF (see

S1-S4 Figs in S1 File, bottom rows).

The precision of C-index and IBS estimates is also improving with increasing sample size.

This can be seen in the confidence intervals getting narrower as the sample size increases. Hav-

ing a narrow confidence interval is desirable, as it means that the estimate (C-index or IBS)

does not vary much between samples. At the small sample size (N = 250) the highest precision

of C-index and IBS is for the CoxPH model. At the largest sample size (N = 6,000) all models

have similar precision of C-index and IBS estimates.

Comparison of prediction models when simulating data from different

survival distributions

Here we compare the performance of the models again, on simulated data from different sur-

vival distributions, as planned in Objective 2. We consider three scenarios:

Scenario: Exponential distribution. The exponential distribution is the distribution

assumed by the CoxPH model. While RSF and DeepSurv do not assume any specific survival

distribution.

Scenario: Weibull distribution. This distribution was chosen to see how CoxPH will per-

form when there is a deviation from the Exponential distribution. So effectively this investi-

gates if the CoxPH model is robust against a misspecification of the survival distribution.

Table 1. Comparison of prediction methods according to different sample sizes (N). The mean value and the 90% confidence interval are reported here, over 50 inde-

pendent simulation runs.

Sample size, N C-index IBS

CoxPH RSF DeepSurv CoxPH RSF DeepSurv

250 0.713 (0.642, 0.762) 0.602 (0.522, 0.687) 0.684 (0.617, 0.752) 0.133 (0.086, 0.174) 0.117 (0.078, 0.168) 0.143 (0.087, 0.202)

500 0.724 (0.681, 0.764) 0.668 (0.622, 0.707) 0.702 (0.654, 0.744) 0.125 (0.090, 0.165) 0.106 (0.071, 0.134) 0.114 (0.087, 0.144)

2,000 0.731 (0.710, 0.754) 0.712 (0.690, 0.738) 0.726 (0.705, 0.744) 0.111 (0.089, 0.129) 0.09 (0.076, 0.109) 0.087 (0.068, 0.105)

6,000 0.730 (0.715, 0.745) 0.722 (0.707, 0.737) 0.731 (0.718, 0.745) 0.103 (0.086, 0.119) 0.083 (0.075, 0.094) 0.077 (0.065, 0.091)

https://doi.org/10.1371/journal.pone.0297190.t001
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Scenario: Log-logistic distribution. This distribution was also chosen to see how CoxPH

will perform under misspecification of the survival distribution.

The experiments were performed on sample sizes N = 500 (see Table 2) and N = 250 (see S2

Table in Supporting information).

The mean accuracy is the best for the CoxPH model when the data follow the exponential

distribution, as it was expected. This is seen by the largest mean C-index and the smallest

mean IBS values.

The mean accuracy of the models decreases when the data deviate from the exponential dis-

tribution (Weibull or Log-Logistic). The largest decline can be seen in the Log-Logistic survival

distribution. The decline in the accuracy is in the CoxPH model which is expected. However,

there is a decline in the mean accuracy in models RSF and DeepSurv too.

Comparison of prediction models in unobserved heterogeneity

In our third objective, we focus on the impact of incomplete information in datasets and het-

erogeneity. By incomplete information, we mean that the informative variable is not available

(e.g. was not collected) for various reasons. This incompleteness was achieved by removing

some variables from the simulated dataset and then training the models on fewer features. We

consider three scenarios (Table 3):

Scenario: None unobserved heterogeneity. Here there is no heterogeneity. This scenario is

serving as a baseline scenario to be compared with another two scenarios.

Scenario: Missing data on cognitive status. Here the feature COGSTAT is simulated, but

then not included in the training set.

Scenario: Missing data on TRAVEL and DECIN. Here the features TRAVEL and DECIN

are simulated and thus used to derive the survival times, but then they are not included in the

training set.

It can be seen from the results that the performance of all three models decreased when we

removed some information from the simulated dataset. The CoxPH model and DeepSurv

model had a similar decrease in accuracy (based on C-index) whilst the RF model had a

slightly smaller decrease in accuracy.

When features TRAVEL and DECIN were removed, the decrease in accuracy (C-index) is

lower than when we removed COGSTAT. This suggests that COGSTAT has a bigger impact

Table 2. Comparison of prediction methods at varying survival distributions of data with sample size N = 500 over 50 simulation runs. The mean value and the 90%

confidence interval are also reported in the table.

Survival distribution C-index IBS

CoxPH RSF DeepSurv CoxPH RSF DeepSurv

Exponential 0.724 (0.681, 0.764) 0.668 (0.622, 0.707) 0.702 (0.654, 0.744) 0.125 (0.090, 0.165) 0.106 (0.071, 0.134) 0.114 (0.087, 0.144)

Weibull 0.716 (0.679, 0.766) 0.658 (0.612, 0.720) 0.696 (0.655, 0.745) 0.127 (0.086, 0.188) 0.106 (0.076, 0.151) 0.118 (0.079, 0.175)

Log-Logistic 0.673 (0.615, 0.747) 0.623 (0.564, 0.685) 0.626 (0.568, 0.679) 0.188 (0.136, 0.238) 0.167 (0.125, 0.221) 0.208 (0.161, 0.261)

https://doi.org/10.1371/journal.pone.0297190.t002

Table 3. Comparison of prediction models when unobserved heterogeneity. In each of the three scenarios the ample size N is 2,000 and we used 50 simulation runs to

estimate C-index and IBS. The mean value and the 90% confidence interval are also reported in the table.

Heterogenity unobserved C-index IBS

CoxPH RSF DeepSurv CoxPH RSF DeepSurv

None heterogeneity 0.731 (0.710, 0.754) 0.712 (0.690, 0.738) 0.726 (0.705, 0.744) 0.111 (0.089, 0.129) 0.090 (0.076, 0.109) 0.087 (0.068, 0.105)

Missing COGSTAT 0.656 (0.637, 0.675) 0.646 (0.631, 0.660) 0.650 (0.630, 0.670) 0.115 (0.089, 0.142) 0.100 (0.079, 0.123) 0.104 (0.086, 0.128)

Missing TRAVEL and DECIN 0.673 (0.645, 0.702) 0.662 (0.639, 0.690) 0.670 (0.650, 0.693) 0.117 (0.093, 0.145) 0.095 (0.076, 0.117) 0.099 (0.079, 0.125)

https://doi.org/10.1371/journal.pone.0297190.t003
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on predicting the conversion to MCI. This could be due to it being an expert test and not a

value based on an individual’s own report.

Comparison of prediction models in observed heterogeneity

In the real NACC dataset, the progression risk related to levels of COGSTAT are different

between males and females (SEX), so-called observed heterogeneity. A part of our objective

three was to see how the models perform when heterogeneity is present in the dataset. Thus,

we simulated three scenarios with different strengths of heterogeneity.

Scenario: None observed heterogeneity. Same weights of COGSTAT were used for men

and women, calculated from the real NACC dataset:

male : b1 ¼ 0:57; b9 ¼ � 0:44

female : b1 ¼ 0:57; b9 ¼ � 0:44
ð14Þ

Scenario: Small observed heterogeneity. The same weights of COGSTAT were used for

men as before. We changed the weights for women by the mean of the interaction values

found in the NACC dataset, which were -0.13 and -0.31 for COGSTAT 1 and 9 respectively. So

the weights for the small observed heterogeneity were

male : b1 ¼ 0:57; b9 ¼ � 0:44

female : b1 ¼ 0:57 � 0:13; b9 ¼ � 0:44 � 0:31
ð15Þ

Scenario: Medium observed heterogeneity. Same weights of COGSTAT were used for

men as before. We changed the weights for women by the sum of the mean and of one stan-

dard deviation of the interaction values. The estimated standard deviations were 0.13 and 0.16,

for COGSTAT 1 and 9 respectively from NACC dataset. So the weights for the medium het-

erogeneity were

male : b1 ¼ 0:57; b9 ¼ � 0:44

female : b1 ¼ 0:57 � ð0:13þ 0:13Þ; b9 ¼ � 0:44 � ð0:31þ 0:16Þ
ð16Þ

Scenario: Large observed heterogeneity. Same weights of COGSTAT were used for men

as before. We changed the weights for women by sum of the mean and of two standard devia-

tions of the interaction values. The estimated standard deviations were 0.13 and 0.16, for

COGSTAT 1 and 9 respectively from NACC dataset. So the weights for the medium heteroge-

neity were

male : b1 ¼ 0:57; b9 ¼ � 0:44

female : b1 ¼ 0:57 � ð0:13þ 2� 0:13Þ; b9 ¼ � 0:44 � ð0:31þ 2� 0:16Þ
ð17Þ

In the simulated three scenarios of observed heterogeneity, the accuracy of the three

models does not change. For example, the CoxPH model has C-index is 73.1% for non-

heterogeneity, 72.4% for small, 72.9% for medium, and 73.4% for large heterogeneity

(Table 4). The differences are small and can be due to random variation. In the scenarios,

none of the models decreases in the accuracy of the prediction, when the heterogeneity was

ignored.
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Discussion

Contributions

We proposed and implemented a novel simulation framework in Python to simulate time-to-

MCI conversion in patients, and then we used it to compare the three most common predic-

tive algorithms for time-to-event data that are subject to the right censoring [10]: one classical

statistical predictive algorithm (Cox proportional hazards model, CoxPH), one machine learn-

ing algorithm (Random survival forest, RSF) and one deep learning algorithm (DeepSurv). We

compared them under various scenarios: varying sample sizes, varying survival distributions

of data, incomplete datasets, and heterogeneity of risks for males and females.

In our simulations, inspired by the NACC dataset, the CoxPH prediction algorithm showed

the best accuracy compared to the other two algorithms, when the training sample size was

small at n = 200. The C-index was better by 11.1% (compared to RSF) and by 2.9% (compared

to DeepSurv). This was not surprising because, when having a small number of patients for

training, the predictive algorithms with fewer training parameters (weights) have better accu-

racy—as long as the data-generating mechanism is similar to the assumptions of the predictive

algorithms. Deep learning algorithms are data-hungry [17, 32], while there is no easy way to

do sample size calculation. We found here that the training size of 4800 patients is needed

(4800 = 80% of 6000) for the deep learning model to have the same accuracy of up to 0.001 dif-

ference in C-index measured on 0–1 scale (so up to 0.1% difference).

When we simulated data from a generating mechanism different from the CoxPH model,

in the sense that the survival distribution is not exponential we found that all three algorithms

decreased in their prediction accuracy. However, the decrease in model performance

depended on differences in how survival distribution was calculated. A bigger deterioration in

the accuracy was seen for the Log-Logistic distribution where the C-index reached 7% smaller

accuracy in the DeepSurv model than with the Weibull distribution. We did not witness an

advantage of DeepSurv or RSF against CoxPh, which is similar to the finding of Austin et al.

[18] study.

Next, we investigated scenarios of unobserved heterogeneity, when one or two features

were omitted from the training and prediction. This aims to mimic a real-life situation when

some feature or variables are not collected for various reasons, or not used for prediction. Our

study shows that missing information on cognitive status (COGSTAT) or on travelling diffi-

culty (TRAVEL) and a decline in the subject’s memory (DECIN) can lead to lowered predic-

tion accuracy in all three considered models. Besides that, some predictive variables have a

greater influence on model performance than others. This was confirmed by our experiments

when removing COGSTAT from data led to worse accuracy in an average of 7.2% among all

models but removing only TRAVEL and DECIN resulted in a 5.5% decrease in models perfor-

mance. Such investigation is novel, as to our knowledge this was not investigated for Alzhei-

mer’s disease. It gives us important knowledge: if our patients are heterogeneous in their risk

Table 4. Comparison of prediction methods at various scenarios of observed heterogeneity: None, small, medium, and large. The size of simulated data is N = 2, 000,

size of training data is 80% of N = 2,000. The mean value and the 90% confidence interval are reported here, over 50 simulation runs.

Observed heterogeneity C-index IBS

CoxPH RSF DeepSurv CoxPH RSF DeepSurv

None 0.731 (0.710, 0.754) 0.712 (0.690, 0.738) 0.726 (0.705, 0.744) 0.111 (0.089, 0.129) 0.090 (0.076, 0.109) 0.087 (0.068, 0.105)

Small 0.724 (0.707, 0.742) 0.705 (0.684, 0.724) 0.723 (0.704, 0.746) 0.114 (0.090, 0.144) 0.087 (0.068, 0.106) 0.084 (0.067, 0.101)

Medium 0.729 (0.703, 0.754) 0.710 (0.681, 0.741) 0.730 (0.702, 0.752) 0.115 (0.094, 0.136) 0.088 (0.073, 0.107) 0.082 (0.064, 0.101)

Large 0.734 (0.709, 0.756) 0.718 (0.682, 0.745) 0.733 (0.701, 0.756) 0.115 (0.090, 0.136) 0.082 (0.070, 0.096) 0.078 (0.057, 0.094)

https://doi.org/10.1371/journal.pone.0297190.t004
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of MCI progression, and if the relevant features are not measured then all three algorithms will

drop in accuracy.

When the simulated data exhibited observed heterogeneity of risks we found that the

CoxPH model gave the same accuracy as RSF and DeepSurve—which is a novel result. The

heterogeneity of risks is crucial to recognize so that we can choose a predictive algorithm that

has the highest accuracy. In the real Alzheimer data from NACC, we found that males and

females have significantly different risk estimates for cognitive status (COGSTAT) hence there

was a heterogeneity. Specifically, if someone has cognitive status abnormal (COGSTAT = 1)

the risk of progression to MCI increases but the amount of increase is higher in men than in

women, which is an observed heterogeneity. In the published reports of comparative analysis

of predictive algorithms, the heterogeneity of risks was not investigated. Thus our work brings

novel contributions to understanding the performance of the chosen three algorithms in case

of the observed heterogeneity.

On the relevant note, the existing published reports did investigate the non-linearity of

risks (e.g. quadratic), but then they used a linear CoxPH model which not surprisingly showed

a decrease in accuracy and deep learning models did not decrease in the accuracy [10]. Here

we found that if we use linear Cox PH without heterogeneity, its accuracy drops, and when we

use the Cox PH model with heterogeneity, then its accuracy is the same as that of the deep

learning method. Such a comparison was never done for predictive algorithms. One reason

may be that the Python library does not have the heterogeneity implemented in the Cox PH

model, so we had to code it by creating the interaction dummy variables.

Finally, it is important to discuss the evaluation of the predictive algorithms on larger simu-

lated datasets and on real datasets. We found the computer-generated datasets to be adequate

for the scope of this study while the largest dataset contained 6,000 patients. When we

increased the sample size beyond 6,000, we observed that the accuracy of all models was not

improving any further. Regarding the evaluation of the real-world datasets there is a work of

Lin et al. [5] who utilised the NACC dataset in conjunction with machine learning techniques

to predict the conversion to Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD).

In their research, they employed ROC AUC as the metric of evaluation and approximately

75% accuracy was achieved. In our study, we achieved slightly lower accuracy (73% for C-

index). Thus the models used in our study came very close to matching the level of perfor-

mance reported by Lin et al. However, it is noteworthy that Lin et al.’s study utilised a much

more expansive dataset, encompassing not only a greater number of patients but also a wider

array of predictive variables. In future, it will be beneficial to do more real-world data compari-

sons of the predictive algorithms.

Advantages of our approach

We did a systematic comparison of one statistical predictive algorithm, one machine learning,

and one deep learning algorithm to predict time to MCI conversion. There is a lack of such

comparisons mainly because the data-generating mechanism is complex to propose and

implement. Some existing papers have only one or two features, we had 10 features that were

chosen from the existing trained Cox PH model. Only via computer simulation, we can under-

stand in which data-generating mechanisms do certain predictive algorithms work better than

others [10].

The main advantage of our paper is in comparing the predictive algorithms via implement-

ing a computer simulation of time to MCI conversion data sets. The existing data-generating

simulations show a lack of plausibility in the sense that they are often biased toward the

machine-learning approach. For example, they simulate a non-linear relationship between
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features and time to conversion and then apply a CoxPH model with linear effects, concluding

that a neural network is “better” [10]. Here, we simulated the heterogeneity of risk factor cog-

nitive status (COGSTAT) and then applied a CoxPH model with heterogeneity, to avoid such

bias. Namely, in the NACC dataset, the impaired cognitive status (COGSTAT) leads to higher

progression risk in males than females (SEX). We manually inserted the heterogeneity weights

into the CoxPH model, since the Python library for CoxPH does not have heterogeneity imple-

mented as an option.

The equal performance of the CoxPH, RSF, and DeepSurve algorithms is an advantage

because it suggests that statistical models are capable of solving problems similar to those that

can be solved by machine learning algorithms. Statistical models are often more interpretable

and transparent than more complex machine learning models, which are based on implicit

relationships learned from data. The results of statistical models can often be explained in

terms of assumptions of the model, making it easier to understand the relationships between

features (predictors).

Explainable and interpretable models that are also highly accurate are often preferred in the

medical domain. This is signified by EU regulations requiring such methods to be transparent

etc (can reference this). The benefit of simulation studies like ours is thus of high benefit, yet

infrequently done. As we illustrated, in a simulation study we can see when and how which

model works better and we can then consider the best use-case scenario for the model. I.e. if

via simulation DeepSurv and CoxPH models give equivalent performance then in the medical

application where data is often limited and models require transparency the CoxPH would be

the favored approach.

We created a data-generating mechanism and implemented it in Python, so this can be

used by others in the future to investigate the comparisons further and to do sample size calcu-

lations too. An additional benefit is the detailed description of the simulation study, which the

authors [10] have criticized in other articles for their lack of important information in their

reports.

Disadvantages of our approach and what can be done in future

A limitation of our study is in our data generating mechanism because we did an independent

simulation of feature values i.e. we assume independence of the features. In the future, this can

be further expanded by using conditional distributions.

In our simulated data, we did assume no outliers. Indeed, in real medical data, it is not

uncommon to have unusual observations. It is therefore important, in a future study, to simu-

late e.g. 5% outliers and study how the models perform in the presence of outliers. If their per-

formance does not decrease much, then they are called to be robust.

Although the implementation of baseline models offers an advantage of aligning with state-

of-the-art approaches, it does come with potential limitation. In future, we encourage to

explore the modifications or customizations of these models, e.g. modifying layers and param-

eters in deep learning model, to enhance their performance as well as their adaptability to spe-

cific medical domains.

Conclusion

We showed how to do computer simulations in a novel medical domain of progression to

MCI in Alzheimer’s disease however this is applicable to any medical domain with survival

data. We illustrated that the comparison of predictive algorithms is complex and which algo-

rithm is the best does depend on a combination of several factors such as sample size, survival

distributions of data, missing information, or heterogeneity.
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As some of the related articles demonstrate, we were able to verify the significance of the

sample size of the data used for model training. For machine learning models to perform better

or equal to classical statistical algorithms, the training sample size needs to be large. The per-

formance of models is affected by the type of survival distribution. The performance of models

is affected by the type of survival distribution of the time-to-event data and the heterogeneity

of the risks. When the data have exponential distribution, we found that deep learning predic-

tions and Cox model predictions have the same performance, as long as there is a large enough

training dataset for deep learning and as long as heterogeneity is included in the Cox model.

When it comes to missing information in data, it is problematic not only for statistics but

also for machine learning methods, because it can cause a significantly worse accuracy in

model prediction. Simulation studies are crucial for prediction algorithm comparisons, espe-

cially because we can simulate any level of heterogeneity, and thus create a fair comparison of

algorithms.

Supporting information

S1 File.

(PDF)

Acknowledgments

We the authors would further like to acknowledge the NACC team for providing detailed doc-

umentation and datasets that inspired our data generation mechanisms. However, the NACC

team had no role in the study design, data collection and analysis, decision to publish, or prep-

aration of the manuscript.

Author Contributions
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