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A B S T R A C T   

Low-cost and field-viable methods that can simultaneously assess external kinetics and kinematics are necessary 
to enhance field-based biomechanical monitoring. The aim of this study was to determine the accuracy and 
usability of ground reaction force (GRF) profiles estimated from segmental kinematics, measured with OpenCap 
(a low-cost markerless motion-capture system), during common jumping movements. Full-body segmental ki-
nematics were recorded for fifteen recreational athletes performing countermovement, squat, bilateral drop, and 
unilateral drop jumps, and used to estimate vertical GRFs with a mechanics-based method. Eleven distinct 
performance-, fatigue-, or injury-related GRF variables were then validated against a gold-standard force plat-
form. Across jumping movements, a total of six and three GRF variables were estimated with a bias or limits of 
agreement <5 % respectively. Bias and limits of agreement were between 5 and 15 % for seventeen and nineteen 
variables respectively. Moreover, we show that estimated force variables with a bias <15 % can adequately 
assess the within-athlete changes in GRF variables between jumping conditions (arm swing or leg dominance). 
These findings indicate that using a low-cost and field-viable markerless motion capture system (OpenCap) to 
estimate and assess GRF profiles during common jumping movements is approaching acceptable limits of ac-
curacy. The presented method can be used to monitor force variables of interest and examine underlying 
segmental kinematics. This application is a jump towards researchers and sports practitioners performing 
biomechanical monitoring of jumping efficiently, regularly, and extensively in field settings.   

1. Introduction 

Performance testing and injury-risk screening are fundamental 
components of athlete monitoring (Thornton et al., 2019). Performance 
testing provides objective feedback on athletes’ physical capabilities to 
help design individualised training programmes (Crowcroft et al., 
2020). Injury-risk screening is a proactive means to enhance athlete 
longevity, determine athlete adaption in response to training, and 
minimise the risk of injury, illness, and/or extended fatigue (Halson, 
2014; Thorpe et al., 2017), and can likewise aid (p)rehabilitation stra-
tegies to accommodate individual athletes’ needs. Both performance 
and injury-risk assessments commonly involve the examination of 
loading patterns during controlled jumping movements (e.g., counter-
movement or drop jumps), to facilitate sport-specific decision-making 
for coaches and athletes (Bakal et al., 2022; Bates et al., 2013; Kotza-
manidis et al., 2005; Marshall and Moran, 2013). 

Performance and injury-risk assessments have traditionally been 

performed in biomechanics laboratories. Such assessments typically use 
motion-capture systems and ground-embedded force platforms, which 
together provide a full three-dimensional kinematic and kinetic 
description of the musculoskeletal system during movement. However, 
biomechanical equipment is expensive and a need to visit dedicated 
biomechanics labs does not allow for frequent athlete screening and 
monitoring. Moreover, marker-based collections of kinematics can be 
time-consuming due to marker placement and post-processing proced-
ures (Kanko et al., 2021a; Nicholls et al., 2003). Alternative solutions, 
such as portable force platforms, have been used as a low-cost option for 
day-to-day in-field performance monitoring and injury-risk screening. 
Portable force platforms (e.g., Force Decks, Hawkin Dynamics) can 
measure the external ground reaction force (GRF) during jumping and 
can help identify specific variables of interest – e.g., propulsive force, 
landing impulse, flight time and height, or duration of the propulsive 
and landing phases (Bishop et al., 2022; Painter et al., 2022). Although 
such information may be used to evaluate performance improvements 
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over time or identify injury-related risk factors, force-derived variables 
do not allow for further analysis of the underlying kinematics that 
contribute to performance or injury. Methods that are low cost and field 
viable, and can simultaneously measure GRFs and whole-body kine-
matics, are thus desirable to further enhance field-based biomechanical 
assessments (Verheul et al., 2020). 

Three-dimensional motion capture technologies have recently made 
rapid advances. Markerless motion capture systems for measuring ki-
nematics, such as Theia3D (Kanko et al., 2021b), KinaTrax (https: 
//www.kinatrax.com/), OpenPose (Cao et al., 2021), and OpenCap 
(Uhlrich et al., 2023), offer a viable alternative to traditional marker- 
based systems. These systems provide new opportunities to non- 
invasively capture kinematics in sport-specific settings. Recent work 
has shown that machine-learning can help to estimate GRF profiles 
during sport movements from motion capture data (Johnson et al., 2018; 
Komaris et al., 2019; Mundt et al., 2023). However, machine learning 
requires specialist knowledge to appropriately investigate the links be-
tween kinematics and changes in estimated GRF profiles. Mechanics- 
based methods (e.g., using Newtonian mechanics; F = m•a), in which 
the direct relationship between kinematics and kinetics is used, are thus 
preferable for estimating GRF profiles to allow for examining the 
kinematic-kinetic relationship (Bobbert et al., 1991; Verheul et al., 
2019a, 2019b). It is unknown, however, if markerless measured kine-
matics can be used to accurately estimate GRFs with a mechanics-based 
approach. 

A mechanics-based method to estimate GRFs from markerless 
motion-capture data during jumping movements can 1) provide a low- 
cost alternative to jump testing with force platforms (i.e., the gold- 
standard), 2) efficiently assess within-athlete changes in performance- 
or injury-related GRF characteristics, and 3) allow for examining un-
derlying kinematics. The primary aim of this study was, therefore, to 
validate the accuracy of GRF profiles estimated from segmental kine-
matics, measured with OpenCap (a low-cost markerless motion-capture 
system), during common jumping movements. A secondary aim was to 
explore the usability of the method for detecting subtle GRF differences 
between various jumping conditions. 

2. Methods 

2.1. Participants 

Fifteen recreational athletes, who actively participated in various 
sports for a minimum of three hours per week, took part in this study 
(nine males and six females; age 22.4 ± 3.6 years; height 1.75 ± 0.07 m; 
body mass 77.9 ± 12.6 kg; sport participation 8.9 ± 4.2 h/week; 
experience in sport 10.1 ± 4.4 years). All athletes were healthy at the 
time of testing and free from any lower-limb injuries for at least six 
months. Prior to participating, each athlete provided informed consent 
and confirmed physical fitness through a physical activity readiness 
questionnaire. This study was approved by the Cardiff School of Sport 
and Health Sciences Ethics Committee (reference number: Sta-7482). 

2.2. Protocol and data collection 

Data collections were performed in a dedicated indoor biomechanics 
laboratory. On arrival, anthropometric measurements were taken for 
each athlete, and their sport and injury background were assessed. To 
determine limb dominance, athletes were asked the question: “If you 
would shoot a ball on a target, which leg would you use to shoot the 
ball?” (van Melick et al., 2017). Athletes were then verbally briefed on 
the movements to be performed. A short warm up of fifteen bodyweight 
squats repeated three times was completed before the main protocol, 
which consisted of countermovement jumps, squat jumps, bilateral drop 
jumps, and unilateral drop jumps. These movements were selected based 
on their common use in performance testing and/or injury-risk 
screening protocols. Countermovement jumps were performed by 

stepping on the force platform and jumping as high as possible. Squat 
jumps were performed by lowering into the squat position, holding for 
three seconds, and jumping as high as possible. Drop jumps were per-
formed by dropping of a 41 cm high box and, after landing, jumping as 
high as possible, either on both legs (bilateral) or on a single leg (uni-
lateral). The unilateral drop jumps were performed on both the domi-
nant and the non-dominant limb. Each jumping movement was 
performed under two conditions – either with the use of an arm swing to 
maximise jump height, or with the hands placed and fixed on the hips. 
After landing, athletes were required to stabilise on the force platform 
for a minimum of two seconds to ensure a successful landing. For each 
jump condition three successful trials were recorded (i.e., a total of 30 
trials per participant). A minimum of one minute of rest was observed 
between trials to minimise the effects of fatigue. 

During the jumping movements, GRFs and full-body kinematics were 
collected. GRF profiles were recorded with a ground-embedded force 
platform (Kistler 9287CA, 0.6 × 0.9 m, Kistler, Switzerland) sampling at 
1000 Hz using Vicon Nexus software (version 2.15, Oxford, United 
Kingdom). Kinematic data were collected using OpenCap (Uhlrich et al., 
2023; version 0.2) sampling at 240 Hz. The setup consisted of three 
iPads (iPad Pro 11-inch, 4th generation, OS version 16.2, Apple, USA) 
mounted to a tripod at a height of ~1.2 m, which were positioned 
around the location where participants performed the jumping move-
ments (in line with the minimal setup requirements described in Uhlrich 
et al. (2023)), as shown in Fig. 1. An LED synchronisation light bar (Wee 
Beastie Electronics, Loughborough, UK) was manually triggered during 
each trial, and positioned to be in the field of view for iPad 3 (Fig. 1). On 
triggering the light bar, twenty LED synchronisation lights came on 
sequentially at an interval of one millisecond, whilst a voltage drop was 
registered in a trigger signal, synchronous with the GRFs. 

The cloud-based OpenCap app (Uhlrich et al., 2023; version 0.2) was 
used to determine full-body three-dimensional kinematics during each 
jumping trial. Videos were recorded, uploaded, synchronised, and pro-
cessed in the OpenCap server – hence, the data collection required 
internet connectivity throughout (Uhlrich et al., 2023). The standard 
OpenPose model was used for pose estimation and applied to a full-body 
musculoskeletal model containing 22 segments (Lai et al., 2017; Raja-
gopal et al., 2016). After the data collections, OpenCap files for each 

Fig. 1. Visual representation of the iPad cameras, force platform, and syn-
chronisation light bar set-up (not to scale) for data collection. 
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participant were downloaded for offline analysis. The model properties 
(Lai et al., 2017; Rajagopal et al., 2016) and inverse kinematics results 
were exported to MATLAB (version R2022a, MathWorks, USA) for 
further processing. 

2.3. GRF estimation and variables of interest 

The measured GRFs were filtered at 50 Hz with a second-order 
Butterworth filter. A custom synchronisation method, using the syn-
chronisation light bar, was then used to synchronise GRFs and body 
kinematics offline. The location of the light bar in the video of iPad 3 
(Fig. 1) was manually identified after which the first frame in which one 
or more lights were on was automatically detected. The number of active 
lights in that frame was used to determine the delay between the first 
video frame with lights on, and the first data point in the GRF signal in 
which the voltage drop was visible. The force-platform measured GRF 
was then synchronised and cropped to match the length of the body 
kinematics signals (up sampled to match the GRF signal). 

After synchronisation, the vertical position of each segment centre of 
mass was filtered at 4 Hz, using a second order lowpass Butterworth 
filter, before differentiating with respect to time to calculate the vertical 
segmental velocity. Segment velocities were again filtered at 4 Hz and 
differentiated over time to get the vertical segmental accelerations. The 
filter cutoff frequencies were selected based on a qualitative inspection 
of estimated GRF profiles for one participant, with the aim to reduce 
baseline noise introduced by the upper-body segments. Each vertical 
segmental acceleration was then multiplied by its segment mass and 

summed to provide an estimate of the total vertical GRF profile (Bobbert 
et al., 1991; Verheul et al., 2019a), according to: 

GRFest
v =

∑22

j=1
mj • (av,j+g)

in which GRFest
v is the vertical GRF estimated from segmental kine-

matics, mj and av,j are the mass and vertical acceleration of each segment 
j respectively, and g is the gravitational acceleration (i.e., 9.81 m•s− 2). 
Accelerations of each segment, rather than the whole-body centre of 
mass, were used to allow for future investigations of individual 
segmental contributions to GRF variables of interest. Forces were nor-
malised to each athlete’s body weight, and GRF variables that are 
commonly used to assess performance, fatigue, or injury risk (e.g., 
Bishop et al., 2022; Painter et al., 2022), were then extracted from the 
measured and estimated GRF profiles, and used to validate the accuracy 
of the estimated vertical GRF profiles. Force variables were determined 
for the propulsive and landing phases (duration, peak/mean force, im-
pulse, time to take-off/stabilisation), and the jump (flight time, jump 
height from two calculation methods) (see Appendix A for more details). 

2.4. Statistical analyses 

For each force variable of interest, derived from the measured and 
estimated vertical GRF profiles, the mean and standard deviation were 
determined per jumping movement. Pearson linear correlations were 
calculated between the measured and estimated force variables. 

Fig. 2. Representative measured (black dotted line) and estimated (red solid line) vertical ground reaction force profiles for the four jumping movements.  
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Correlations were considered to be negligible (0–0.3), low (0.3–0.5), 
moderate (0.5–0.7), high (0.7–0.9), or very high (0.9–1) (Hinkle et al., 
2003). Significance was accepted at α < 0.05 and a Bonferroni correc-
tion was applied to account for repeated hypothesis testing. Further-
more, Bland-Altman analyses were used to assess the agreement and 
interchangeability between measured and estimated GRF variables 
(Bland and Altman, 2010, 1999). Bias (mean difference) and limits of 
agreement (±1.96 standard deviations of the difference) were calculated 
as an absolute and percentage difference from the measured GRF values. 
Outliers were removed before calculating the bias and limits of agree-
ment (~1–5 % of datapoints per GRF variable), to assure a representa-
tive calculation of the limits of agreement (Bland and Altman, 2010). 
Variables were then classed into three a priori defined categories of ac-
curacy and interchangeability, both for the bias and limits of agreement: 
1) good accuracy for regular performance-monitoring and/or injury- 
screening purposes (<5 %); 2) sufficiently accurate, likely to provide 
valuable performance and/or injury feedback, but some caution war-
ranted (5–15 %); 3) unlikely to be sufficiently accurate for reliable 
testing and screening applications (>15 %). Correlation and Bland- 
Altman analyses included trials for all participants, arm-swing condi-
tion, and leg dominance, per jumping movement. 

The ability to detect subtle within-athlete changes in GRF variables is 
essential for effective performance monitoring or injury screening, and 
usability of the method. Differences between arm-swing and leg- 
dominance were, therefore, investigated as a secondary aim. To eval-
uate if estimated force variables can adequately describe changes (in-
crease or decrease) between jumping conditions, GRF variables with a 
bias of <15 % were selected and compared between arm swing condi-
tions and leg dominance for each participant – both for measured and 
estimated values. A between-condition change was defined as a differ-
ence that was larger than the limits of agreement for that GRF variable. 
If there was a change between conditions for the measured but not the 
estimated values, this was deemed a false negative change. If no 
between-condition change was found in the measured GRF variable, but 
the estimated values did show a change, this was considered a false 
positive change. 

3. Results 

A total of 450 trials (fifteen participants × five jumping movements 
× two arm-swing conditions × three trials) were collected and pro-
cessed. After visual inspection of the estimated GRF and OpenCap 
videos, 34 trials (one squat jump, two bilateral drop jumps, and 31 
unilateral drop jumps) were discarded (7.6 %). For these discarded trials 
the estimated GRF profiles could not be analysed due to poor OpenCap 
motion capture results (e.g., physiologically impossible orientations of 
segments). Hence, a total of 416 trials were used for further analysis. 

Table 1 
Mean (±standard deviation) measured and estimated ground reaction force 
variables, differences, and Pearson correlation coefficients (r) for the four 
jumping movements. Data were combined for all participants per jumping 
movements and include both arm-swing and limb-dominance conditions. BW =
body weight.   

Measured Estimated Difference r 

Countermovement jumps 
Propulsive phase – duration 

(s) 
0.47 ±
0.08 

0.48 ±
0.08 

0 ± 0.02  0.97 

Propulsive phase – peak force 
(BW) 

2.31 ±
0.28 

2.17 ±
0.24 

− 0.14 ±
0.13  

0.90 

Propulsive phase – mean 
force (BW) 

1.39 ±
0.13 

1.38 ±
0.12 

0 ± 0.02  0.99 

Propulsive phase – impulse 
(BW•s) 

0.25 ±
0.06 

0.25 ±
0.06 

0 ± 0.01  0.97 

Time to take-off (s) 0.89 ±
0.13 

0.99 ±
0.12 

0.1 ± 0.05  0.92 

Flight time (s) 0.52 ±
0.08 

0.3 ± 0.08 − 0.21 ±
0.03  

0.94 

Jump height from flight time 
(m) 

0.33 ± 0.1 0.12 ±
0.06 

− 0.22 ±
0.05  

0.94 

Jump height from impulse 
(m) 

0.28 ±
0.09 

0.11 ±
0.07 

− 0.17 ±
0.05  

0.88 

Landing phase – duration (s) 0.49 ±
0.19 

0.51 ±
0.18 

0.02 ± 0.03  0.99 

Landing phase – peak force 
(BW) 

4.23 ±
1.05 

2.26 ±
0.29 

− 1.97 ±
0.95  

0.49 

Landing phase – impulse 
(BW•s) 

0.14 ±
0.05 

0.16 ±
0.05 

0.02 ± 0.02  0.91 

Time to stabilisation (s) 0.86 ±
0.25 

0.96 ±
0.24 

0.1 ± 0.05  0.98 

Squat jumps 
Propulsive phase – duration 

(s) 
0.47 ±
0.11 

0.52 ±
0.15 

0.05 ± 0.09  0.78 

Propulsive phase – peak force 
(BW) 

2.22 ±
0.35 

1.93 ±
0.23 

− 0.29 ±
0.19  

0.87 

Propulsive phase – mean 
force (BW) 

1.18 ±
0.09 

1.2 ± 0.09 0.02 ± 0.01  0.99 

Propulsive phase – impulse 
(BW•s) 

0.13 ±
0.06 

0.14 ±
0.06 

0.01 ± 0.01  0.99 

Time to take-off (s) 3.52 ±
0.35 

3.62 ±
0.36 

0.1 ± 0.06  0.99 

Flight time (s) 0.5 ± 0.07 0.29 ±
0.07 

− 0.21 ±
0.03  

0.92 

Jump height from flight time 
(m) 

0.31 ±
0.09 

0.11 ±
0.05 

− 0.2 ± 0.05  0.93 

Jump height from impulse 
(m) 

0.25 ± 0.1 0.11 ±
0.07 

− 0.14 ±
0.07  

0.75 

Landing phase – duration (s) 0.5 ± 0.21 0.53 ±
0.21 

0.03 ± 0.03  0.99 

Landing phase – peak force 
(BW) 

4.2 ± 1.13 2.22 ±
0.26 

− 1.97 ± 1  0.60 

Landing phase – impulse 
(BW•s) 

0.08 ±
0.07 

0.1 ± 0.07 0.02 ± 0.01  0.99 

Time to stabilisation (s) 0.93 ±
0.36 

1.02 ±
0.34 

0.09 ± 0.05  0.99 

Bilateral drop jumps 
1st ground contact – duration 

(s) 
0.46 ±
0.13 

0.49 ±
0.12 

0.03 ± 0.02  0.99 

1st ground contact – peak 
force (BW) 

3.39 ±
0.83 

2.52 ±
0.45 

− 0.86 ±
0.63  

0.67 

1st ground contact – impulse 
(BW•s) 

0.27 ±
0.07 

0.31 ±
0.07 

0.03 ± 0.01  0.99 

Flight time (s) 0.51 ±
0.08 

0.29 ±
0.08 

− 0.21 ±
0.04  

0.89 

Jump height from flight time 
(m) 

0.32 ± 0.1 0.11 ±
0.06 

− 0.21 ±
0.06  

0.90 

2nd landing phase – duration 
(s) 

0.45 ±
0.16 

0.47 ±
0.17 

0.03 ± 0.03  0.98 

2nd landing phase – peak 
force (BW) 

4.37 ±
1.02 

2.27 ±
0.27 

− 2.1 ± 0.93  0.45 

2nd landing phase – impulse 
(BW•s) 

0.16 ±
0.05 

0.17 ±
0.05 

0.02 ± 0.01  0.98 

Time to stabilisation (s) 0.84 ±
0.24 

0.93 ±
0.23 

0.09 ± 0.05  0.98 

Unilateral drop jumps  

Table 1 (continued )  

Measured Estimated Difference r 

1st ground contact – duration 
(s) 

0.43 ±
0.11 

0.43 ± 0.1 0 ± 0.02  0.99 

1st ground contact – peak 
force (BW) 

3.42 ±
0.57 

2.25 ±
0.33 

− 1.17 ±
0.54  

0.37 

1st ground contact – impulse 
(BW•s) 

0.19 ±
0.07 

0.21 ±
0.06 

0.02 ± 0.02  0.97 

Flight time (s) 0.34 ±
0.06 

0.16 ±
0.05 

− 0.18 ±
0.03  

0.85 

Jump height from flight time 
(m) 

0.15 ±
0.05 

0.04 ±
0.02 

− 0.11 ±
0.04  

0.89 

2nd landing phase – duration 
(s) 

0.41 ±
0.16 

0.43 ±
0.16 

0.02 ± 0.04  0.97 

2nd landing phase – peak 
force (BW) 

3.22 ±
0.51 

1.95 ±
0.16 

− 1.27 ±
0.46  

0.47 

2nd landing phase – impulse 
(BW•s) 

0.08 ±
0.04 

0.1 ± 0.04 0.02 ± 0.01  0.93 

Time to stabilisation (s) 0.86 ±
0.33 

0.94 ±
0.33 

0.08 ± 0.05  0.99  
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Example GRF force profiles for the four jumping movements of one 
representative participant are shown in Fig. 2. 

3.1. Measured vs estimated GRF variables 

Correlations were moderate between the measured and estimated 
peak force during the landing phase (countermovement and squat 
jump), and high for the jump height from impulse (countermovement 
and squat jump) and propulsive phase peak force (squat jump) (Table 1). 
For all other GRF variables of the countermovement and squat jumps 
there was a very high correlation. For the drop jumps, there was a low to 
moderate correlation for the peak force during both landing phases, a 
high correlation for the flight time and jump height (bilateral drop 
jump), and a very high correlation for all other GRF variables. All cor-
relations were significant (p < 0.001). 

A total of six and seventeen GRF variables were estimated with a bias 
<5 % or 5–15 % respectively (Fig. 3). Limits of agreement were <5 % for 
three variables, and 5–15 % for nineteen variables across movements. 
Absolute and percentage bias and limits of agreement results are pre-
sented in Appendix B. 

3.2. Qualitative comparison of jumping conditions 

For all selected force variables with a bias <15 %, estimated values 
adequately described the direction of change (i.e., increases or de-
creases) between arm-swing or leg-dominance conditions (Fig. 4). For 
the countermovement jumps, between-condition changes were correctly 
estimated with OpenCap for 87–93 % of the participants – propulsive 
phase impulse (one false positive, one false negative); propulsive phase 
mean force (one false negative); time to take-off (one false positive, one 

false negative). For the unilateral drop jumps, between-condition 
changes were appropriately estimated for 80–93 % of the participants 
– 1st landing impulse (one false negative); 2nd landing duration (one 
false positive, two false negatives); time to stabilise (one false positive). 

4. Discussion 

This study examined the validity and usability of GRF variables, 
estimated from markerless-measured segmental kinematics during four 
jumping movements, which are commonly used for performance testing 
and/or injury-risk screening. We show that an acceptable level of ac-
curacy (i.e., bias or limits of agreement <15 %) can be achieved for 
several estimated GRF variables across different jumps. Moreover, esti-
mated force variables can effectively reveal the within-athlete changes 
in force variables between jumping conditions. 

Across the four jumping movements and examined force variables, 
moderate to very high correlations were found between the measured 
and estimated GRF. Force variables were estimated with a bias or limits 
of agreement <15 % for, respectively, 58 % and 55 % of all variables. 
Propulsive phase characteristics of the countermovement and squat 
jumps especially, were estimated with the highest level of accuracy 
(Fig. 3). Propulsive phases of these jumps are commonly used for per-
formance profiling and neuromuscular fatigue assessments (Bishop 
et al., 2022). The presented markerless GRF estimation method may, 
therefore, be particularly suitable for performance testing and fatigue 
monitoring. 

The absolute accuracy of novel predictive methodologies is impor-
tant to examine. However, the ability to detect subtle within-athlete 
changes – e.g., due to performance, asymmetry, or fatigue – is essen-
tial for in-field and athlete-specific applications. The analysis shown in 

Fig. 3. Percentage bias and limits of agreement between the measured and estimated vertical ground reaction force variables for the four jumping movements. 
Circles/green, squares/amber, and triangles/red represent a bias/limits of agreement of <5 %, 5–15 %, or >15 % respectively. Bias and limits of agreement values 
can be found in Appendix B. LP = landing phase, PP = propulsive phase, FTM = flight time method, IMM = impulse-momentum method. 
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Fig. 4 demonstrates that estimated force variables retain the same 
directionality of change within individual athletes (increase or decrease) 
between subtle adjustments in jumping conditions – i.e., the (non) use of 
an arm swing, or landing on the dominant/non-dominant leg. Moreover, 
between-condition changes (or the absence thereof) were appropriately 
assessed by the estimated GRF variables for most of the participating 
athletes. This ability to observe changes in force characteristics is 
essential for meaningful and effective performance-testing or injury- 
screening practice. For example, alterations in force output during the 
propulsive phase or increased asymmetry between legs in the ability to 
stabilise after a landing can be important indicators of performance 
potential (Young et al., 1995) or injury risk (Fort-Vanmeerhaeghe et al., 
2022) respectively. These results thus indicate that several GRF vari-
ables estimated from OpenCap are a viable alternative to force platforms 
to help evaluate changes in performance, fatigue, or injury risk. 

To the best of our knowledge, only one previous study (Colyer et al., 
2023) has attempted to estimate GRF profiles from markerless motion 
capture using a mechanics-based modelling method. Colyer et al. (2023) 
used the whole-body centre of mass, measured from a bespoke mar-
kerless motion capture method (Needham et al., 2022), to estimate 
vertical GRFs during countermovement jumps and running. Like our 
results, that study found a very small difference (mean < 1 %) in force 
impulse, but their estimated peak forces were substantially better (<1 % 
mean difference). However, that study was limited in scope (e.g., one 
jumping movement without different conditions) and the markerless 
motion capture workflow used by Colyer et al. (2023) is not widely 
accessible. In contrast, this study examined four different jumping 
movements with two different conditional variations and used a publicly 
available and user-friendly application (OpenCap), which enhances its 
scope and opportunities for field-based monitoring. The combination of 

the findings presented by Colyer et al. (2023) and our results are 
promising, and we encourage future studies to further examine the use 
of openly available markerless motion-capture systems for estimating 
GRF across a wide range of movements. 

Characteristics of the GRF profiles that are associated with high 
frequency content were estimated with the lowest level of accuracy. For 
example, take-off and touchdown, and the impact peaks of landing were 
consistently estimated with the largest bias. We suggest that this has two 
main reasons: 1) the sampling frequency of the kinematic data, and 2) 
the filtering procedures applied. First, the sampling frequency of 
OpenCap’s kinematics data was 240 Hz. The minimal sampling fre-
quency for capturing the high frequency content of GRF profiles, such as 
the take-off and touchdown events and the impact peak of landing, has 
previously been suggested to be >1000 Hz (Kibele, 1998; Owen et al., 
2014; Street et al., 2001). It is thus unlikely that GRF estimated from 
kinematic data sampled at a lower frequency can estimate such infor-
mation well (for example, the accuracy of GRF estimations from marker- 
based motion-capture data sampled at a comparable sampling frequency 
is also limited (Verheul et al., 2019a)). Second, segmental position data 
was doubly filtered during differentiation to avoid the magnification of 
noise in the process of deriving segmental accelerations. It is thus not 
surprising that high-frequency content was not captured well in the 
estimated GRF profiles. Unless markerless motion capture allows sam-
pling at higher frequencies, extending the present method to more dy-
namic activities, such as high-speed running or side cutting, where rapid 
changes in the GRF profile are typically of interest, may not yield valid 
results. 

A total of 34 out of 450 trials (i.e., 7.6 %) were discarded due to poor 
OpenCap motion capture results. Interestingly, most of the discarded 
trials were for drop jump movements, and predominantly for the 

Fig. 4. Selected measured and estimated ground reaction force variables for all fifteen participants, compared between arm-swing conditions (top row) and leg 
dominance (bottom row). Colours represent participants for which the mean difference between arm-swing conditions or legs was larger than the limits of agreement. 
Grey represents differences between conditions to be smaller than the limits of agreement. Values are means and standard deviations for three trials per jumping 
movement and condition. A = arm swing; NA = no arm swing; D = dominant leg; ND = non-dominant leg; LoA = limits of agreement. 
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unilateral trials (31/34). The deep learning model used to augment the 
3D marker set in OpenCap is trained using existing data and is unlikely 
to perform well for movements that are not included in the training 
dataset (Uhlrich et al., 2023). Although unilateral drop jumps were part 
of the training data (Thompson et al., 2017; Thompson-Kolesar et al., 
2018), the inclusion of a larger number of trials for this type of move-
ment may be required to further enhance the pose estimations. In 
addition, the availability of sampling frequency options is probably 
another current limiting factor for estimated GRF variables, as discussed 
above. The performance and breadth of GRF estimation opportunities 
from markerless motion capture with OpenCap will, therefore, likely 
further improve with the introduction of new features in the future – e. 
g., with the use of larger training datasets, or the availability of higher 
sampling frequencies. 

In this study, we have demonstrated a selection of force variables 
that can be of interest for monitoring performance or injury risk. Further 
analysis of other GRF characteristics can be performed, depending on 
individual needs or requirements. More importantly, the presented 
method allows for analysing force in combination with the underlying 
segmental kinematics. Depending on the body part of interest (joints or 
segments), individual segmental contributions to the GRF can be iden-
tified and changes in GRF variables can be analysed by considering 
related changes in movement patterns of the various parts of the 
musculoskeletal system. Moreover, OpenCap is part of a modelling 
framework (OpenSim; Seth et al., 2018) that also allows for estimating 
muscle and joint-specific loading (e.g., joint moments, muscle–tendon 
forces). Together these abilities thus provide a major jump towards low- 
cost field-based assessments of whole-body, structure-, and tissue- 
specific load assessments (Verheul et al., 2020), linking biomechanical 
loading profiles to individualised movement analysis. 

5. Conclusion 

Low-cost and field-viable methods that can simultaneously assess 
external kinetics and kinematics can further enhance current practice for 
field-based biomechanical monitoring. This study examined the accu-
racy and usability of GRF variables, estimated from markerless- 
measured segmental kinematics, during common jumping movements. 
We show that several GRF variables can be estimated with acceptable 
limits of accuracy and can effectively reveal the within-athlete changes 
in GRF variables between jumping conditions. Markerless motion cap-
ture with OpenCap can thus be used to estimate GRF profiles during 
common jumping movements and monitor force variables of interest. 
Together, these outcomes show that the presented method is a jump 
towards performing biomechanical monitoring of jumping efficiently, 
regularly, and extensively in field settings. 
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Fort-Vanmeerhaeghe, A., Milà-Villarroel, R., Pujol-Marzo, M., Arboix-Alió, J., Bishop, C., 
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