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Introduction: Pediatric brain tumours (PBT) are one of the most common
malignancies during childhood, with variable severity according to the location
and histological type. Certain types of gliomas, such a glioblastoma and diffuse
intrinsic pontine glioma (DIPG), have a much higher mortality than ependymoma
and medulloblastoma. Early detection of PBT is essential for diagnosis and
therapeutic interventions. Liquid biopsies have been demonstrated using
cerebrospinal fluid (CSF), mostly restricted to cell free DNA, which display
limitations of quantity and integrity. In this pilot study, we sought to
demonstrate the detectability and robustness of cell free histones in the CSF.

Methods: We collected CSF samples from a pilot cohort of 8 children with brain
tumours including DIPG, medulloblastoma, glioblastoma, ependymoma and
others. As controls, we collected CSF samples from nine children with
unrelated blood malignancies and without brain tumours. We applied a
multichannel flow imaging approach on ImageStream(X) to image indiviual
histone or histone complexes on different channels.

Results: Single histones (H2A, macroH2A1.1, macroH2A1.2 H2B, H3, H4 and
histone H3 bearing the H3K27M mutation), and histone complexes are
specifically detectable in the CSF of PBT patients. H2A and its variants
macroH2A1.1/macroH2A1/2 displayed the strongest signal and abundance,
together with disease associated H3K27M. In contrast, mostly H4 is detectable
in the CSF of pediatric patients with blood malignancies.

Discussion: In conclusion, free histones and histone complexes are detectable
with a strong signal in the CSF of children affected by brain tumours, using
ImageStream(X) technology and may provide additive diagnostic and predictive
information.
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1 Introduction

Pediatric brain tumours (PBT) are the most frequent malignancy,
after leukaemia, during childhood and are the chief cause of pediatric
cancer-related morbidity and mortality (Jessa et al., 2019). A world
incidence of approximately 3–5 cases per 100,000 live births
represents about 20% of all cancers in children (Baade et al., 2010;
Johnson et al., 2014). Among them medulloblastoma, high-grade
gliomas (HGGs) that include diffuse intrinsic pontine glioma (DIPG)
and ependymoma, account for approximately 20%, 12% and 8% of all
PBT, respectively (Hargrave and Zacharoulis, 2007). While tumour
resection for some PBT (e.g., low-grade gliomas) are potentially both
diagnostic and curative, many other PBT (e.g., DIPG) are not eligible
for surgical removal, because of their infiltrating nature or their
neuroanatomical location.

Until 2016, the classification of brain tumours was based mainly on
histology, where tumours were ranked according to their common
morphologic features with distinct attributed cells of origin and
according to different stages of development. Subsequently, the
WHO incorporated molecular findings into the diagnosis of brain
tumours (Louis et al., 2016; Miller, 2023). For example,
medulloblastoma can be now classified as different histological-
molecular combinations of 4 histological variants and newly defined
4 molecular subgroups (Taylor et al., 2012). Several large projects have
started to profile the genetic background of both adult and pediatric
central nervous system (CNS) tumours. Genetic divergences between
pediatric and adult tumours could explain some of the diverse
responses to chemotherapy (Paugh et al., 2010). For example,
H3K27M mutation has been detected in approximately 80% of
DIPG patients, primarily occurring in children, while IDH1 and
IDH2 mutations that characterize adult glioma are generally absent.
Moreover, hypermethylation of RASSF1A, HIC1 and CDH1 was
detected in pediatric medulloblastoma (Sexton-Oates et al., 2015). In
the long term, the identification and monitoring of molecular changes
would likely be critical for the clinical management of pediatric
tumours, overcoming the limitations of magnetic resonance imaging
(MRI) and of histology (Northcott et al., 2017; Salloum et al., 2017).

In this regard, liquid biopsies are emerging as a promising
platform for cancer (Tsoneva et al., 2023; Tsoneva et al., 2023).
Biofluids, such as blood and cerebrospinal fluid (CSF), may include
small amounts of circulating tumour cells, cell free DNA (cfDNA),
fragmented peptides and intact proteins. To be suitable as clinically
useful biomarkers, they must be highly specific to the tumour and
detectable. High levels of cell free tumour DNA (ctDNA) in plasma
of adult and pediatric patients with advanced tumours have been
associated with dismal prognosis (Mehrotra et al., 2018; Andersson
et al., 2020; Liu et al., 2022). However, because of the blood-brain
barrier, in the case of brain tumours plasma contains significantly
lower amounts of ctDNA, while CSF is in intimate contact with
brain malignancies and may represent a better source of ctDNA
(Seoane et al., 2019; McEwen et al., 2020). CSF ctDNA analyses have
been aimed toward the detection of PBT-associated mutations (Sun
et al., 2021). For instance, H3K27M mutation is associated with a
poorer clinical outcome (Lu et al., 2018; Panditharatna et al., 2018).
Nevertheless, PBT have shown lower incidence of mutations when
compared to adult brain tumours (Parsons et al., 2011), making their
detection difficult. Moreover, methods of processing liquid biopsy
samples have not been fully developed and standardized yet and

ctDNA integrity is regulated by factors such as temperature and
storage methods (Parpart-Li et al., 2017; Li et al., 2021). On the other
hand, proteins derived from tumour cells are also secreted into the
plasma and the CSF, representing a more robust and detectable
alternative for the diagnosis and monitoring of malignancies and
neurological disorders (Saratsis et al., 2012; Humphries et al., 2014;
Di Meo et al., 2017; Schilde et al., 2018).

Histones are highly basic proteins organized in an octameric core
around DNA wrapped to form the nucleosome, the repeating unit of
chromatin (Thomas and Kornberg, 1975). Elevated nucleosome levels
were detected and used as diagnostic tool in several adult cancers and
in obesity (Holdenrieder et al., 2004; Bauden et al., 2015; Rahier et al.,
2017; Lo Re et al., 2019). Besides the “canonical” histones, there were
described 19 variants of H2A and 6 variants of H3, in human somatic
cells (Buschbeck and Hake, 2017). The differences among the variants
are related to their particular temporal pattern of incorporation into
the chromatin during the cell cycle (Buschbeck and Hake, 2017). The
variants macroH2A1 and macroH2A2 are the largest among the
histone proteins (Buschbeck and Hake, 2017). Others and we have
shown thatmacroH2A1 isoforms play a pivotal role in regulating stem
cell differentiation and cell plasticity (Pazienza et al., 2014; Borghesan
et al., 2016; Lo Re et al., 2018a; Lo Re et al., 2018b; Bereshchenko et al.,
2019; Lo Re et al., 2020). It remains to be elucidated whether
nucleosomes or distinct circulating histones patterns may be
employed as new biomarkers for PBT. High resolution
ImageStream(X) imaging flow cytometer has been used to detect
and quantify in a multiplex fashion the expression levels of
biomarkers on circulating blood and cancer cells, with high speed,
reliability, and cheaply (Ogle et al., 2016). We recently developed an
ImageStream(X)-based method to identify a circulating histone
signature able to discriminate between pediatric and adult patients
affected by non-alcoholic fatty liver disease (Buzova et al., 2020;
Buzova et al., 2022). In this study, we developed an
ImageStream(X)-based method to detect circulating histones in the
CSF of patients with PBT, providing a new potential tool applicable in
PBT diagnosis and prognosis.

2 Results

2.1 Circulating histones are detectable in the
cerebrospinal fluid (CSF) of children with
CNS and hematological tumours

Pediatric CNS tumours need minimally invasive molecular
profiling, in order to monitor tumour response and progression.
Therefore, we sought to determine if individual histones (H2A,
macroH2A1.1, macroH2A1.2, H2B, H3, H4 and histone
H3 bearing the H3K27M mutation), and histone complexes might
be detectable in the CSF of PBT patients. ELISA tests can identify
nucleosome or single histones in biofluids; nevertheless, a high
throughput real-time monitoring of multiple histones is lacking. In
this study, we have optimized a protocol that we have previously
developed (Buzova et al., 2020), in order to develop a multi-channel
flow imaging methodology on ImageStream(X) and image individual
histone staining on different wavelengths/channels. We analyzed the
four canonical histones (H2A, H2B, H3, H4), two variants of histone
H2A (macroH2A1.1 and macroH2A1.2) and the H3K27M mutated
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TABLE 1 Patient data. 1–8: disease characteristics and demographics of pediatric patients with brain tumors (PBT). 9–18: disease characteristics and demographics of pediatric patients without PBT and with unrelated blood
malignancies. LP, lumbar puncture.

Patient Gender Age at the
time of
diagnosis

Diagnosis Localization Localised vs. metastatic Treatment before LP Intrathecal
therapy
before LP

Condition at the
tie of lumbar
puncture

Malignant
cells in CSF

1 M 19 Diffuse midline glioma
with histone H3F3A K27M

mutation

Intraspinal
intramedullar tumor of
conus medullaris till

Th11-12

Metastases in cerebellar
hemispheres

Sine No Staging before
treatment

No

2 M 8 RELA+ anaplastic
ependymoma

Supratentorial
frontotemporal region

Localised Surgery, radiotherapy No Complete response
after surgery and
radiotherapy

No

3 M 2 Medulloblastoma, classic,
molec.subgroup D

fossa posterior Metastases in spine Th7/8,
malignant cells in CSF

Surgery, chemotherapy
(VCR, VP-16, CPM, CDDP,
MTX, thiotepa, carboplatin)

No Partial response after
high-dose

chemotherapy,
metastasis in spine

No

4 M 11 Non-germinatous germ
cell tumor of CNS

Regio pinealis Metastases in spine C1 and Th1 Chemotherapy (carboplatin,
VP-16, IFO, CDDP, VBL)

No Progression of the
tumor after

chemotherapy,
metastases in spine

Yes

5 M 10 Medulloblastoma, classic,
molec.subgroup SHH

Fossa posterior Initially localised, 05/
2015 combined metastatic relapse
- leptomeningeal and intraspinal
metastases throughout whole
spine and meninges in fossa

posterior

Surgery, radiotherapy,
chemotherapy (VCR,

CCNU, CDDP), Avastin

Yes (VP-16, MTX,
Depocyte)

Progression of
metastases in spine,

malignant cells in CSF

Yes

6 M 9 Ependymoma grade 2 Fossa posterior Localised Surgery No Partial response after
surgery

No

7 M 5 Medulloblastoma, classic,
molec.subgroup D

Fossa posterior Initially localised, 05/
2016 metastatic relapse with

ependymal metastases

Surgery, radiotherapy,
chemotherapy

(Temozolomide, VCR,
CDDP, VP-16, CPM),

Avastin

Yes (VP-16,
Depocyte)

Progression of
metastases in CNS

No

8 F 0 Initially diagnosed as
PNET, 02/2017 relapse -
epitheliolid glioblastoma

Fronto-temporoparietal
region

Initially localised, 02/
2017 metastatic relapse with

meningeal metastases

Surgery, chemotherapy
(VECC, Thio, Carbo)

Yes (VP-16,
Depocyte)

Relapse No

9 M 1 PreB/partial proB
ALL (MLL+)

Blood/systemic Blood/systemic None NA Diagnosis No

10 M 16 intermediate T-ALL Blood/systemic Blood/systemic None NA Diagnosis No

11 F 3 cALL Blood/systemic Blood/systemic None NA Diagnosis No

12 F 2 cALL Blood/systemic Blood/systemic None NA Diagnosis No

(Continued on following page)
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H3 histone, in the CSF of the eight patients with PBT and nine
patients affected by unrelated blood malignancies (without PBT)
(Table 1). Landmarks studies have demonstrated that histone
dimers may provide stable intermediate during nucleosome
assembly, and trimers do not form (Sperling and Bustin, 1976).
Individual histone types can be considered as an interchangeable
subunit of a larger complex where the dimer species is the most stable
sub-complex (Sperling and Bustin, 1976). In this respect, histones
assemble H2A-H2B heterodimers and H3-H4 heterotetramers in a
preferential manner (Luger et al., 1997). Subsequently, in presence of
DNA, H2A/H2B dimer binds to the H3/H4 tetramer because of
interactions between H2B and H4 (Luger et al., 1997). In light of this,
we probed the above-mentioned seven individual histones (H2A,
H2B, macroH2A1.1, macroH2A1.2, H3, H4 and the H3K27M
mutated histone) together with the dimers H3/H4, and the
heterotetramers H2A/H2B/H3/H4. We detected all histone species,
variants and complexes at different frequencies in the CSF of PBT
patients (Figure 1, left panel). By contrast, only H3, H4 and
macroH2A1.1 were detectable in the CSF of patients affected by
blood malignancies, which displayed higher frequencies of H4 levels
(Figure 1, right panel). Figure 2 exemplifies, using ad hoc primary
and secondary antibodies, the single imaging of histones H2A,
macroH2A1.1, macroH2A1.2 and H3K27M in four different
imaging channels in the CSF of PBT patients. Interestingly,
we observed a generally higher abundance of histones H2A,
macroH2A1.1, macroH2A1.2 and H3 bearing the K27M mutation
compared to H2B, H3, H4 and the histones complex (H3/H4; H2A/
H2B/H3/H4) in each sample (Figure 3). Also, there was an evident
opposite trend between the abundance of H2A and macroH2A1.1/
macroH2A1.2 levels in the CSF samples (Figure 3). Due to the limited
number of samples in this pilot study, a comparative and statistically
significant analysis between PBT types and/or disease stage was not
possible. In summary, we detected for the first-time circulating
histones in CSF of pediatric CNS tumours patients, and in CSF in
general, using a non-invasive and fast ImageStream (X)-based
imaging method. These pilot findings offer a proof-of-concept of
new histone-based liquid biopsies, which may enable tumour
epigenetic characterization by minimally invasive means.

3 Discussion

In this report we show for the first time, to the best of our
knowledge, that individual histones and histone complexes can be
detected with a strong signal in the CSF of children affected by
brain tumours, using ImageStream(X) technology combining flow
cytometry with high content image analysis. The advantage
ImageStream(X) over conventional flow cytometry [where only
forward scatter (FSC) and side scatter (SSC) measures are used
to assess cell volume and morphological complexity] is that
measurements obtained from an image (called “features”) are up
to 86 object-based measurements like size, shape, intensity,
circularity (Dominical et al., 2017; Buzova et al., 2020; Buzova
et al., 2022), which can capture the complexity of circulating
histones and histone complexes. Moreover, the rich multivariate
dataset derived from the large numbers of image features, with the
assistance of machine learning, could offer clear advantages in future
automated cell-free histone image analysis, enabling high-throughputTA
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identification as it was demonstrated for other biological entities
(Demagny et al., 2022; Rees et al., 2022).

While it has been established that H3K27M gene mutation
correlates with a poorer clinical outcome in PBT (Lu et al., 2018;
Panditharatna et al., 2018), ours is the first report to show the
expression of H3K27M histone protein in the CSF, which is likely to
derive from dying tumour cells.

Pediatric brain tumours represent the most common solid
malignancy in childhood. Despite multimodal intensive therapies
many PBT have poor prognosis and the long-lasting effects of
these therapies are very often devastating (Jessa et al., 2019). The
inclusion ofmolecular findings into the classification of brain tumours
can help elucidating the biological nature of tumour tissue and
therefore can help set up more specific treatment modalities based
on personalized medicine. Determining the molecular details of a
particular tumour thus requires a sample of tumour tissue by surgery
or at least a biopsy. However, some PBT [e.g., diffuse midline glioma,
DMG] are not suitable for surgical removal, because of their
infiltrating growth or their location, which is not accessible for
resection and where even a biopsy of tumour tissue may be
associated with life-threating complications. The problem is not
only the precise diagnosis of CNS tumours, but also the
monitoring of molecular-genetic changes within the tumour tissue
during treatment. The monitoring of the treatment response itself is
sometimes problematic as the surgery or biopsy is usually performed
at the diagnosis or in the case of relapse. Therefore, there is an urgent
need for a reliable biomarker in pediatric oncology that could provide
more detailed information on diagnosis, tumour classification, disease
extent, risk assessment, or to monitor tumour response to treatment,
or help identify potential treatment targets, from better available

biological material. In CNS tumours, as well as for the diseases
and injuried of the spinal cord, CSF is such an optimal medium
(Bonner et al., 2018; Siddiq et al., 2021). Several studies demonstrated
that it is possible to isolate circulating tumour DNA (ctDNA),
extracellular vesicles (EV), and tumour-specific peptides from
liquid biopsies (Bounajem et al., 2020).

Liquid biopsy has been studied to obtain material for molecular-
genetic testing in a more accessible and less invasive way (Gojo
et al., 2019; Azad et al., 2020). Circulating tumour DNA has been
successfully isolated from CSF of patients with DMG with H3K27M
mutation and was correlated with tumour progression on MRI
(Panditharatna et al., 2018). Also, the correlation between levels of
ctDNA and treatment has been demonstrated in vitro (Stallard et al.,
2018). To our best knowledge, no studies so far looked at the presence
of histones in cerebrospinal fluid in children with a tumour of CNS.

The variability in histone composition and post-translational
modifications within nucleosomes provide a vast and promising
diagnostic and prognostic potential. However, whether circulating
individual histones or histone complexes play distinct roles as cancer
biomarkers is a matter of investigation. Histones can be released
from neutrophils (Brinkmann et al., 2004) by extracellular traps.
Neutrophil extracellular traps (NETs) are complexes of extracellular
fibers made of neutrophil genomic DNA, core histones and other
factors. Inflammation-driven increased release of NETs may lead to
a characteristic fashion of immune cell death named “NETosis”
which causes histone release. Whereas NETs are observed in the CSF
in traumatic and infectious CNS conditions (Manda-Handzlik and
Demkow, 2019), their role in PBT has not been analyzed. Moreover,
together with NETosis-mediated histone release, tumour cells can
release histones upon apoptosis as well. When apoptosis occurs,
histones might part ways from genomic DNA, which leads to the
subsequent release outside the cells and in DNA fragmentation (Wu
et al., 2002). This is a pilot study with a limited sample size, whose
aim was to establish a proof-of-concept for the detection of cell free
histones in the CSF of eight children affected by PBT and, for this
reason, did not allow us to compare conditions or to consider
covariates. In fact, the impact of therapy and other factors
influencing the clinical course of PBT on circulating histone
complex composition is not yet understood: a larger sample size
is needed to determine whether there is a nexus between circulating
histones and PBT. Studies on the liquid biome (cfDNA or histones)
might redefine our approach to managing childhood CNS tumors as
well as our understanding of the associated molecular landscape.

4 Materials and methods

4.1 Patients

We assembled a pilot cohort of eight children with pediatric
brain tumours including DMG, medulloblastoma, glioblastoma,
ependymoma or non-germinoma germ cell tumors (NGGCT);
together with nine children with hematological malignancies but
without brain tumours; from the Pediatric Oncology Department of
Brno University Hospital, of whose CSF samples were available. CSF
samples were collected by lumbar puncture for routine diagnostic or
prognostic purposes in the period fromMarch 2017 and April 2018.
The local ethics committee of the Masaryk University Brno reviewed

FIGURE 1
Heatmap of histone frequencies (H2A, H2B, H3, H4, H3/H4, H2A/
H2B/H3/H4, macroH2A1.1, macroH2A1.2, H3(K27M) characterizing
each CSF sample from PBT patients (from 1 to 8) and from patients
with blood malignancies (from 9 to 17). Higher frequencies are
indicated with darker shades of blue. Generated with Heatmapper
(Babicki et al., 2016).

Frontiers in Molecular Biosciences frontiersin.org05

Buzova et al. 10.3389/fmolb.2023.1254699

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1254699


FIGURE 2
Representative images, size distribution and fluorescence signal intensity from fluorescence marker of histones H2A, two large variants of histone
H2A (macroH2A1.1, macroH2A1.2) and histone H3K27M. ImageStream photographs show bright-field images and histone staining (fluorescence from
Alexa Fluor

®
488).

FIGURE 3
Histogram representing relative abundances of histone species (H2A, H2B, H3, H4, H3/H4, H2A/H2B/H3/H4, macroH2A1.1, macroH2A1.2,
H3(K27M), expressed as % of input. Different colors represent individual histone species/complexes detected in the eight CSF samples from PBT patients.
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the studies involving human participants. Participants’ legal
guardian/next of kin provided written informed consent to
participate in this study. After the laboratory examination
residual CSF samples were centrifuged to remove cells and the
supernatant was stored at −80°C.

4.2 ImageStream(X) protocol optimization

To measure histones we used multispectral imaging flow
cytometer ImageStream MkII (Luminex Corporation). During the
experimental setup, first we included each sample stained with a
single antibody; subsequently, we regulated the power of the
appropriate laser not to indclude saturated pixels. We employed
the features “RawMax Pixel” and feature “Saturation Count” [which
can be assessed in the IDEAS® statistical analysis software package
(Amnis Corporation, United States)], indicating reports the number
of saturated pixels in the images. Pixel intensities are reported on the
camera pixels from 0 to 4,095 (12 bit) and hence become saturated
and cannot be quantified for values greater than 4,095. Individual
color controls were employed to extrapolate a spectral crosstalk
matrix that was applied to the image files to assign probed images to
individual imaging channels. The outcome, compensated image
files, were processed and results were analyzed thanks to image-
based algorithms included in the IDEAS® statistical analysis software
package. During the measurements, we started from higher voltage
to lower. Identifying optimal laser power for each individual
antibody (laser 488 nm–5 mW, laser 561 nm–20 mW, laser
642–5 mW) was adopted for the multichannel test.

Single-color controls were used to calculate a spectral crosstalk
matrix that was applied to the image files in order to isolate probed
images to single imaging channels. The resulting compensated
image files were analyzed using image-based algorithms available
in the IDEAS® statistical analysis software package (Amnis
Corporation, United States) and analysis of the results was done
with the same software.

4.3 ImageStream(X) detection of histone
complexes in the cerebrospinal fluid of
pediatric patients with CNS tumours

We employed four staining mixes: three including four different
primary antibodies and four species-matching secondary antibodies
and one including three different primary antibodies and three
species-matching secondary antibodies.

First staining set. Primary antibodies: anti-macroH2A1.1 (Cell
Signaling Technology, 12455S, United States), anti-histone H2B
(Abcam, Ab134211, United States), anti-histone H4 (Abcam,
Ab31830, United States), anti-histone H3 (Abcam, Ab12079,
United States). Secondary antibodies: anti-rabbit IgG H&L-
AlexaFluor® 488 (Thermo Fisher Scientific, A-11008,
United States), anti-chicken IgY H&L-Alexa Fluor® 594 (Thermo
Fisher Scientific, A-11042, United States), anti-mouse IgG H&L-
Alexa Fluor® 647 (Thermo Fisher Scientific, A-21235, United States);
anti-goat IgG H&L Alexa Fluor® 555 (Thermo Fisher Scientific, A-
21432, United States).

Second set. Primary antibodies: anti-macroH2A1.2 (Cell
Signaling Technology, 4827S, United States), anti-histone H2B
(Abcam, Ab134211, United States), anti-histone H4 (Abcam,
Ab31830, United States); anti-histone H3 (Abcam, Ab12079,
United States) anti-histone H3. Secondary antibodies: anti-rabbit
IgG H&L-Alexa Fluor® 488 (Thermo Fisher Scientific, A-11008,
United States), anti-chicken IgY H&L-Alexa Fluor® 594 (Thermo
Fisher Scientific, A-11042, United States), anti-mouse IgG H&L-
Alexa Fluor® 647 (Thermo Fisher Scientific, A-21235, United States);
anti-goat IgG H&L Alexa Fluor® 555 (Thermo Fisher Scientific, A-
21432, United States).

Third set. Primary antibodies: anti-histone H2A (Abcam,
Ab18255, United States), anti-histone H2B (Abcam, Ab134211,
United States), anti-histone H4 (Abcam, Ab31830, United States),
anti-histone H3 (Abcam, Ab12079, United States). Secondary
antibodies: anti-rabbit IgG H&L-Alexa Fluor® 488 (Thermo
Fisher Scientific, A-11008, United States), anti-chicken IgY H&L-
Alexa Fluor® 594 (Thermo Fisher Scientific, A-11042, United States),
anti-mouse IgG H&L-Alexa Fluor® 647 (Thermo Fisher Scientific,
A-21235, United States); anti-goat IgG H&L Alexa Fluor® 555
(Thermo Fisher Scientific, A-21432, United States).

Fourth set. Primary antibodies: histone H3 (K27M Mutant
Specific) (D3B5T) Rabbit mAb (Cell Signaling Technology,
74829S, United States), anti-histone H2B (Abcam, Ab134211,
United States), anti-histone H4 (Abcam, Ab31830, United States).
Secondary antibodies: anti-rabbit IgG H&L-Alexa Fluor® 488
(Thermo Fisher Scientific, A-11008, United States), anti-chicken
IgY H&L-Alexa Fluor® 594 (Thermo Fisher Scientific, A-11042,
United States), anti-mouse IgG H&L-Alexa Fluor® 647 (Thermo
Fisher Scientific, A-21235, United States).

The choice of the different primary antibodies in themixes relied
on preliminary testing of available flow cytometry-grade
commercially antibodies; while the choice of species-matching
secondary antibodies relied on the possibility to use
simultaneously fluorophores (excitable at 488, 555, 594 or 647)
that could be detectable on individual ImageStream channels.

Sample preparation: for each individual CSF sample from PBT
patients, 50 μL were incubated overnight at 4°C with four (or three,
according to the staining set reported above) primary antibodies
from each set, always in a ratio of 1:50. The phosphate buffer
(pH 7.4) was used to dilute them, and the antibodies were added
consecutively from separate solutions. The following day, the sample
was incubated for 2 h at room temperature with four (or three,
according to the staining set reported above) fluorescent secondary
antibodies from each set, in a ratio of 1: 100 (the same ratio for each
secondary antibody, for which dilution was used phosphate
buffer—pH 7.4 and the antibodies were added from separate
solutions, one after the other), for 2 h at RT.

For every stained CSF sample, 10,000 objects were measured
employing an excitation laser 488 nm (5 mW) for Alexa Fluor®

488 and fluorescence was detected in channel two (505–560 nm),
561 nm (20 mW) for Alexa Fluor® 555 and Alexa Fluor® 594 and
fluorescence was detected in channel three (560–595 nm) and
channel four (595–642 nm), 642 nm (5 mW) for Alexa Fluor®
647 and fluorescence was detected in channel five (642–745 nm).
The bright field image was instead collected in channel one and the
laser scatter image in channel six.
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To measure fluorescence-stained objects within all measured
objects, gating was applied to discern: 1) focused objects and 2)
fluorescent objects. The image files were subsequently processed and
analyzed using image-based algorithms available in the IDEAS®

statistical analysis software package.

4.4 Statistical analyses

All statistical tests were performed using GraphPad Prism
(version 6.0, GraphPad Software, United States) or SPSS Statistics
software (version 22.0, IBM Corporation, United States). As a first
step, the Kolmogorov-Smirnov test was used to assess the normal
distribution of continuous variables prior to further analyses.
Categorical variables were compared using the Chi-squared test.
Continuous variables with normal distribution were instead
compared using Student’s t-test. Continuous variables underlying
a skewed distribution were compared using theMann-Whitney U or
Kruskal–Wallis tests. All statistical tests used were two-sided, and p
values < 0.05 were considered statistically significant.
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