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Bilateral Functional Electrical Stimulation for the Treatment
of Presbyphonia in a Sheep Model

Andrijana Kirsch, PhD ; Claus Gerstenberger, MSc; Bernhard Jakubaß, MSc; Magdalena Tschernitz, MSc;
Justin D. Perkins, MSc; Andrea Groselj-Strele, PhD; Hermann Lanmüller, PhD; Jonathan C. Jarvis, PhD;

Stefan Kniesburges, PhD ; Michael Döllinger, PhD; Markus Gugatschka, MD, DMSci

Objectives: The aim of the study was to increase muscle volume and improve phonation characteristics of the aged ovine
larynx by functional electrical stimulation (FES) using a minimally invasive surgical procedure.

Methods: Stimulation electrodes were placed bilaterally near the terminal adduction branch of the recurrent laryngeal
nerves (RLN). The electrodes were connected to battery powered pulse generators implanted subcutaneously at the neck
region. Training patterns were programmed by an external programmer using a bidirectional radio frequency link. Training
sessions were repeated automatically by the implant every other day for 1 week followed by every day for 8 weeks in the
awake animal. Another group of animals were used as sham, with electrodes positioned but not connected to an implant. Outcome
parameters included gene expression analysis, histological assessment of muscle fiber size, functional analysis, and volumetric
measurements based on three-dimensional reconstructions of the entire thyroarytenoid muscle (TAM).

Results: Increase in minimal muscle fiber diameter and an improvement in vocal efficiency were observed following FES,
compared with sham animals.

Conclusion: This is the first study to demonstrate beneficial effects in the TAM of FES at molecular, histological, and func-
tional levels. FES of the terminal branches of the RLN reversed the effects of age-related changes and improved vocal efficiency.

Key Words: aged larynx, functional electrical stimulation, vocal fold atrophy.
Level of Evidence: NA
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INTRODUCTION
In a rapidly aging society, a steady increase in

age-related diseases is expected. Age-related changes
affect the larynx, with the incidence of impaired vocal
function affecting 10–20% of elderly patients in modern
Western societies, with a negative impact on quality of
life.1 In patients with presbyphonia, age-related atrophy
of the laryngeal muscles, primarily the thyroarytenoid

muscle (TAM), leads to vocal fold bowing and glottal
gap.2,3 This, combined with reduced laryngeal electromyo-
graphic amplitudes, leads to reduced sound pressure levels,4

resulting in a hoarse, breathy voice and significantly
reduced vocal capacity. Current treatment is based
on conservative speech therapy and laryngeal surgery
(phonosurgery). Speech therapy is time- and cost-consuming,
whereas traditional phonosurgery only provides symp-
tomatic therapy, without treating the underlying cause
of presbyphonia.

In a previous study using a sheep model, we implanted
an electrode using a minimally invasive surgical approach
and showed that unilateral functional electrical stimulation
(FES) of the terminal adductor branch of the recurrent
laryngeal nerves (RLN) resulted in a significant volume
increase of the stimulated TAM, compared with the
unstimulated side.5 In the current study, we used the same
approach bilaterally to investigate the functional conse-
quences of TAM stimulation. We hypothesized that the
increase in muscle volume would have an ameliorating effect
on the phonatory characteristics of the aged sheep larynx.

MATERIALS AND METHODS

Animal Experiments
Female sheep aged approximately 10 years were used for

the study. Given an average life expectancy of 11 years, and in
line with similar studies, these sheep can be considered old.6 A
total of 24 sheep were used, and they were assigned to two
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different cohorts (“functional/volumetric” and “molecular/
histological,” 12 sheep each), based on the postexperimental ana-
lyses, as it was not possible to perform all analyses on the same
larynges. Within each cohort, sheep were randomly assigned to
either the stimulated group (n = 6) or the sham group (n = 6). All
procedures were approved by the Austrian Federal Ministry of Edu-
cation, Science and Research (BMBWF-66.010/0015-V/3b/2019),
complied with the institution’s animal care guidelines and were
performed by experienced veterinarians. The skin was incised
under general anesthesia,7 to expose the inferior margin of the thy-
roid cartilage. The tip of the stimulation electrode (K5-P4, 5F,
4-Pole Electrode, Osypka, Germany) was inserted using a custom-
made hollow needle (IT5F Split, Pajunk, Germany) that acted as a
searching probe while connected to a stimulator (Pajunk,
Germany). After identifying the “hot spot” (i.e., the position where
a unilateral palpable muscle contraction of the TAM was elicited),
the electrode was screwed into place. We sought to place the elec-
trode near the cricothyroid joint, as the terminal branch of the RLN
constantly passes this anatomical structure.5 The electrode was
connected to the “MiniVstim 18B” implanted pulse generator (IPG)
(improved version of a previously published model,8 Center for
Medical Physics and Biomedical Engineering, Medical University of
Vienna), which was placed subcutaneously in the neck region. This
procedure was performed bilaterally. In the sham group, the elec-
trodes were secured into the above-mentioned position but not con-
nected to the IPG. The IPG was programmed with predesigned
training parameters via an external programmer using a bidirec-
tional radio frequency link. A 9-week long-term stimulation protocol
was started 1 week after implantation. Training sessions were
automatically started by the IPG every other day in the first week
of the training phase and every day for the following 8 weeks. The
training duration was chosen to allow sufficient muscle growth.9

During the training phase, the terminal adductor branch of the
RLN was stimulated at exactly the same time of day with 10 sets
of contractions separated by 1 min. Each set consisted of 16 contrac-
tions (repetitions, 3 seconds on/0.5 seconds off). The stimulation
frequency was 99 Hz, pulse width was 258 μs, and the initial ampli-
tude was 0.5 to 3 mA. The total stimulation time was therefore
480 seconds per day, calculated from the “on” time in each set. The
training pattern parameters were determined experimentally in
previous studies.5,7 The initial amplitude was adjusted for each
sheep to three times the value that elicited the first detected
response obtained endoscopically during the test stimulations. As
simultaneous contraction of both left and right TAM could cause
breathing problems, the stimulation of the left side was delayed
(time shifted) compared with the right side: 24 h in the first week
and 12 h in the following 8 weeks of the training phase. Once the
IPG had been programmed, no further anesthesia or sedation was
required. As in our previous study,5 the very first training session
in awake animals was carefully monitored, and no signs of stress
were observed. Every other week, we performed transnasal endos-
copy in the sedated but awake animal to ensure the implant was
functioning correctly by observing the VF movement produced in
response to the stimulation.

Tissue Harvest
After 9 weeks of training, animals were euthanized7 and their

larynges harvested. For the “molecular/histological” cohort, the
TAM (vocalis portion) and posterior cricoarytenoid muscle (PCAM)
was harvested for histology and RNA isolation as previously
described.7 Samples were stored at �80�C until processing. The
TAM and PCAM were harvested bilaterally, except for two sheep
in the cohort, in which the stimulation of the left side was not suc-
cessful after 3 and 6 weeks, respectively. For these sheep, only the
right stimulated side was harvested. For the “functional/volumetric

cohort,” the larynges were shock frozen in liquid nitrogen and
stored at �80�C until further processing.

Functional Analysis
The multimodal measurement setup used in this study

enables reproducible and highly accurate measurements of mul-
tiple aspects of the phonatory process within an ex vivo setting.10

The frozen harvested larynges were thawed overnight, prepared
as previously described,11,12 and mounted in the ex vivo setup in
which measurements of the sound produced during phonation
were made while adjusting air flow through the larynx and the
loading of the vocal apparatus A detailed protocol is described in
the Supplemental Information. In total, 768 measurement runs
were performed. The analysis was performed in MATLAB ver-
sion R2017b (The MathWorks, Inc, Natick, MA, USA). IBM SPSS
software package version 28 (IBM, Armonk, NY, USA) was used
for statistical analysis (Mann–Whitney U test).

Micro Computed Tomography
After the completion of the functional analyses, the laryn-

ges were immersed in 4% phosphate-buffered formalin solution
for fixation and processed further as previously described,11 with
minor modifications. Bruker SKYSCAN 1276 X-Ray Micro-
tomograph (Bruker Corporation, Billerica, Massachusetts, USA)
with a maximum spatial resolution of 20 μm was used to gener-
ate CT images, whereas the scanning protocol was set using
SKYSCAN 1276 measurement software. Volumes and diameter
of the left and right TAM were averaged to obtain one value per
sheep, except for one sheep, were a large sarcocystis was found
within the right TAM. Statistical analysis was performed with
SPSS (Mann–Whitney U test).

Triple Immunofluorescence Labeling of
Cryosections

Cryosections (10 μm) were prepared from frozen muscle sam-
ples and correct orientation of specimens was confirmed via stan-
dard haematoxylin and eosin staining. Subsequently, sections on
Superfrost Plus microscope slides (Thermo Scientific, Waltham,
MA, USA) were subjected to triple immunofluorescence labeling
based on a previously described method.7,13 A detailed protocol
can be found in the Supplemental Information. In total, 34,558
fibers of the TAM were analyzed, 15,694 in the stimulated and
18,864 in the sham group. A total of 31,483 PCAM fibers were
analyzed, 14,195 in the stimulated and 17,288 in the sham group.
A Generalized Estimating Equations model14,15 was used to com-
pare treatment, fiber type, and minimum feret diameter using
SPSS. GraphPad Prism 9.3.1. (San Diego, CA, USA) was used for
the statistical analysis of muscle fiber type distribution (Mann–
Whitney U test).

Gene Expression Analysis
RNA isolation, reverse transcription, and quantitative poly-

merase chain reaction (RT-qPCR) were performed as previously
described.7 Primer sequences are provided in Table SI.

Each combination of cDNA sample and gene of interest was
assayed in technical triplicates. Quantitation cycle (Cp) values
from triplicates were averaged. Normalized relative quantities
(NRQ) for all targets were calculated as previously described.5,7

This strategy allows assessment of the relative abundances
of distinct mRNAs within the same sample, as well as the rela-
tive comparison of mRNA levels between distinct samples.
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The NRQ values of the left and right side were averaged for
every mRNA target (except in 2 sheep where only the right muscle
was harvested), to obtain one value per target per sheep. Gene
expression data were analyzed using GraphPad Prism (Mann–
Whitney U test).

All figures were made using GraphPad Prism.

RESULTS
All animals successfully completed the bilateral

stimulation protocols except for two animals of the “histo-
logical/molecular group,” where it was unilateral. As
these animals were not intended for functional analysis,
the additional burden of a revision surgery was deemed
unnecessary.

VE data analysis was restricted to highly periodic
vocal fold oscillations (defined as type 1 by Titze16). Data
were also excluded if the video analysis failed because of
bad contrast. Because of a large sarkocystis, one larynx
of the sham group was excluded completely. Overall,
272 measurement runs (70.8%) from the sham group
were included in the analysis and 376 (97.9%) of the stim-
ulated group, which sums up to 648 (84.3%) of the total
768 recorded measurement runs.VE values of the stimu-
lated group were significantly higher than those of the
sham group (Mann–Whitney U test, p < 0.001, Fig. 1).

Mean volumes and diameters of the stimulated TAM
were on average 6% and 16% larger than the sham group,
respectively, but failed statistical significance (Fig. 2A,B,
respectively).

Immunohistology of the TA muscles revealed larger
muscle fiber minimal feret diameter of type II but not
type I fibers in the stimulated group, compared with the
sham: 31.96 � 0.57 versus 28.37 � 0.69 μm (p = 0.0002),
and 25.26 � 0.69 versus 24.24 � 0.79 μm, respectively
(Fig. 3A). Fiber type distribution was not significantly
altered in stimulated TAM, compared with sham
(Fig. 3B). Representative images of stimulated and sham
TAM are shown in Figure 3C,D, respectively.

Because excessive muscle contraction can induce a
switch in muscle fiber types, which would impair TAM
function, we investigated the expression of relevant
sarcomeric myosin heavy chain (MyHC) isoforms. FES
did not induce significant changes in the relative mRNA
levels of any MyHC isoform (Fig. 4A). Gene expression
analysis revealed that the expression of peroxisome
proliferator-activated receptor gamma coactivator 1-α
(PPARGC1A), a marker of mitochondriogenesis, was
significantly upregulated in the stimulated group
(p = 0.008, Fig. 4B). However, mitochondrial transcrip-
tion factor A (TFAM), essential for the replication and
translation of mitochondrial DNA, was not altered
(Fig. 4C). Myostatin (MSTN), a muscle growth inhibiting
cytokine, was downregulated in the stimulated group,
compared with sham (p = 0.041, Fig. 4D), whereas
insulin-like growth factor 1 (IGF1) was unchanged
(Fig. 4E).

As the RLN stimulation could affect the PCAM, we
performed the same histological and gene expression
analyses and found no significant changes in the mini-
mal feret diameter or muscle fiber type distribution of
stimulated PCAM, compared with sham (Fig. S1A,B,
respectively). Likewise, no effect of the stimulation was
seen on the gene expression level, compared with sham
(Fig. S1C–G).

DISCUSSION
We have previously shown that FES of the terminal

(adduction) branches of the RLN resulted in a significant
increase in the entire volume of the TAM muscle by 11%.5

However, only a unilateral stimulation protocol was used
in this study. A bilateral stimulation protocol was needed
to assess whether this increase in volume was sufficient to
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Fig. 2. Thyroarytenoid muscle (TAM) volume (A) and diameter (B) analyzed with micro-computed tomography (micro-CT). Data are represented
as median with interquartile range.
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Fig. 3. FES significantly increased minimum feret diameter of type II muscle fibers (A). Fiber-type distribution was not altered (B). Representative
images of stimulated (C) and sham (D) TAM. Green: collagen, blue: type I fibers, red: type II fiber, scale bar: 250 μm. Data are represented as
mean with standard error (A) and median with interquartile range (B). [Color figure can be viewed in the online issue, which is available at www.
laryngoscope.com.]
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improve functional characteristics. Atrophy of the laryn-
geal muscles in presbyphonia leads to a glottal gap and
reduced sound pressure levels,2,4 resulting in a breathy
voice and significantly reduced vocal capacity. VE, the
ratio of acoustic power to aerodynamic power is decreased
when the laryngeal mechanism is disordered.17 Glottal clo-
sure insufficiency and asymmetric VF oscillations decrease
the VE value.18 Our study demonstrated for the first time
that bilateral stimulation of the terminal adduction fibers
of the RLN resulted in an improvement in vocal efficiency,

compared with sham ovine larynges. As the absolute
dimensions of larynges vary between sheep,11 and the
volume of the TAM depends on the size of the larynx itself,
the 6% increase in TAM volume of the stimulated sheep
was not statistically significant given the sample size.
Ideally, the volume change should be calculated from
volume measurements before and after the bilateral stimu-
lation. However, due to our micro-CT protocol, the TAM
volume cannot be determined in vivo before the start of
the stimulation. Therefore, the exact increase in volume
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caused by FES could not be determined in the settings of
this study. Nevertheless, histology showed a significant
increase in minimal feret diameter of type II fibers, indi-
cating muscle volume increase of the stimulated TAM.
Similar results have been observed in resistance exercise
studies,19,20 as well as in a study using FES to stimulate a
denervated PCAM.21 Compared with our previous study,5

we have modified the training pattern. One-week stimula-
tion every other day was chosen to support the healing
process after implantation, followed by 8 weeks of stimula-
tion every day, as studies have shown that 6–10 weeks of
training promotes muscle hypertrophy.9,22 Based on the
histological analysis of fiber type distribution and MyHC
gene expression analysis, this stimulation pattern, most
likely, did not induce an undesired switch of the skeletal
muscle fiber types. An increase in the gene expression of
PPARGC1A was observed, which is often associated with a
switch from fast to slow muscle fibers.23 Ruas et al., how-
ever, reported that there are various splice variants of the
PPARGC1A (PGC-1α), with PGC-1α4 being highly
expressed in exercised muscle but does not regulate most
known PGC-1a targets such as the mitochondrial OXPHOS
genes. Rather, it specifically induces IGF1 and represses
MSTN, thereby inducing robust skeletal muscle hypertro-
phy in mice.24 The RLN stimulation inevitably co-activated
the PCAM; however, the training had no adverse effect on
the sole abductor of the glottis.

A number of animal studies and human trials have
successfully applied FES to treat neuromuscular defects
of the larynx, with the underlying pathology being VF
paralysis.21,25–30 In these studies, a direct stimulation of
the denervated PCAM was performed to restore the
muscle function and mass. Unlike VF paralysis, where a
synkinetic reinnervation alters the nerve anatomy, the
nerve structure itself is intact in elderly patients.

There are, however, some limitations to this study.
We have used a small sample size of only 6 animals per
group. Although we could show a significant effect of the
stimulation on the functional and histological levels,
the long-term effect of the stimulation has not been deter-
mined. It is likely that continuous FES stimulation will
be needed to maintain the positive effect of FES, as the
muscles would eventually revert to the prestimulation
size after stimulation cessation, although there is some
evidence that maintenance of mass may need a small
amount of daily activation.31 Furthermore, the current
procedure has been optimized for studies in large animals
and is not intended for human trials. However, future
minimally invasive techniques could pave the way for
FES as a causal treatment for presbyphonia.

CONCLUSION
Bilateral FES is a promising method for the causal

treatment of presbyphonia by targeting the TAM. This is
the first study to demonstrate the effects of FES on the
molecular, histological, and functional levels. Stimulation
of the terminal adductor branch of the RLN resulted in
an increase of minimal muscle fiber diameter of the TAM
and improved vocal efficiency of the stimulated larynges.
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