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Abstract

Many lumbar spine diseases are caused by defects or degeneration of lumbar intervertebral

discs (IVD) and are usually diagnosed through inspection of the patient’s lumbar spine MRI.

Efficient and accurate assessments of the lumbar spine are essential but a challenge due to

the size of the clinical radiologist workforce not keeping pace with the demand for radiology

services. In this paper, we present a methodology to automatically annotate lumbar spine

IVDs with their height and degenerative state which is quantified using the Pfirrmann grading

system. The method starts with semantic segmentation of a mid-sagittal MRI image into six

distinct non-overlapping regions, including the IVD and vertebrae regions. Each IVD region

is then located and assigned with its label. Using geometry, a line segment bisecting the IVD

is determined and its Euclidean distance is used as the IVD height. We then extract an

image feature, called self-similar color correlogram, from the nucleus of the IVD region as a

representation of the region’s spatial pixel intensity distribution. We then use the IVD height

data and machine learning classification process to predict the Pfirrmann grade of the IVD.

We considered five different deep learning networks and six different machine learning algo-

rithms in our experiment and found the ResNet-50 model and Ensemble of Decision Trees

classifier to be the combination that gives the best results. When tested using a dataset con-

taining 515 MRI studies, we achieved a mean accuracy of 88.1%.

1. Introduction

Lumbar spine diseases are a major cause of disability and pain worldwide. Defects in interver-

tebral discs (IVDs), caused either by injuries or degenerative conditions, are responsible for a

large proportion of spinal disorders [1]. One of the leading causes of lumbar spine diseases is

lumbar spine stenosis, which is the narrowing of the lumbar spinal canal, where nerve roots

exit the spine, due to defects in one of the IVDs. The narrowing of the lumbar spinal canal

causes pressure on the nerve roots which then produces a wide range of symptoms associated

with the disease [2]. Early diagnosis and treatment are essential for improving patient out-

comes. However, its diagnosis can be challenging and time consuming, and requires trained
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radiologists because of a wide variation in imaging conditions that makes it difficult to detect

important and relevant imaging features.

Unfortunately, there is a heavy demand for neuroradiologists and specialists in many coun-

tries around the world. The rapid increase in population size in many countries means that

there is not a sufficient number of medical experts trained to provide a good level of service to

the population. The National Health Service (NHS) in England reported a significant increase

in the number of cases where the wait time for diagnostic radiology exceeds its maximum tar-

get of thirteen weeks [3]. The latest clinical radiology workforce census carried out in 2022 by

the Royal College of Radiologists reported that the workforce is not keeping pace with demand

for services (3% growth vs. 5% demand) and there is a 29% shortfall of clinical radiologists

which is expected to worsen to 40% by 2027 [4]. This problem is expected to deteriorate fur-

ther since the number of radiographical imaging including Magnetic Resonance Imaging

(MRI) and Computed Tomography scans has always been increasing historically. This ratio-

nalizes the need for a new approach to increase the efficiency and effectiveness of the diagnos-

tic radiology processes.

MRI is the standard modality for clinicians when inspecting a patient’s lumbar spine to

diagnose lumbar spine diseases. In addition to being radiation-free, the MRI imaging process

allows for accurate interpretation of an IVD’s condition through multi-view evaluation with

good soft tissue contrast [5]. We previously put forward a strategy for assessing the extent of

lumbar spinal stenosis in lumbar spine MRI by automatically calculating the anteroposterior

diameter and foraminal widths of the last three lumbar spine IVDs [6]. The strategy starts with

a semantic segmentation of T1- and T2-weighted composite axial MRI images using SegNet

that partitions the image into six regions that include the three most important ones namely,

the IVD, the Posterior Element, and the Thecal Sac. The accuracy of the segmentation results

is improved by applying a novel contour evolution algorithm along the boundaries between

the three important regions. Nine anatomical landmarks are then located on the image by

delineating the region boundaries. The anteroposterior diameter and foraminal widths are

determined with geometry using these nine landmark points. The algorithm’s performance

was evaluated on a dataset containing 515 MRI studies. The average error of the calculated

right and left foraminal distances and the anteroposterior diameter relative to their expert-

measured distances are 0.28 mm, 0.29 mm, and 0.90 mm, respectively.

The health of an IVD can be assessed by 1) analyzing its nucleous pulposus (or nucleus for

short) compared with its annulus fibrosus (or annulus for short) on T2-weighted images, and

2) measuring its height as observed from the sagittal view. On MRI, the hyperintense signal of

the nucleus on T2-weighted images has been shown to correlate directly with the health of the

IVD and any reduction in intensity correlates with progressive degenerative changes [7].

Many clinicians use the Pfirrmann Grading system which is based on MRI signal intensity,

disc structure, and distinctions among the nucleus, annulus, and disc height [8].

Deep learning is a very popular technique in medical imaging and has been proposed for

the detection, classification, and grading of lumbar spine IVDs. This is because the technique

allows learning directly using raw pixel data without manual feature engineering or explicit

translation of expert knowledge into the algorithm. The technique has been shown to general-

ize well to new and unseen data provided sufficient images are used for the model develop-

ment. An example of such an approach was proposed in [9]. The method uses a deep

convolutional neural network to predict the Pfirrmann grade of 1000 T2-weighted sagittal

images of 515 patients. The method uses a Yolov5 model [10] to detect the IVD regions in the

image which will then assign one of the five Pfirrmann grades to each of the detected IVD. The

accuracy of the classification is reported to be 95%.
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The problems with similar techniques in the literature are threefold. The first is there is a

lack of explicit localization of each IVD type (e.g., L5/S1, L4/L5, etc.). This information is

important when informing clinicians on where the problem occurs. The second is there is no

segmentation of the IVD regions thus making shape analysis of the IVD and the measurement

of the IVD height impossible. Several approaches attempt to address each of these problems

individually, including two by Alomari et al. for IVD localization [11] and herniation diagnosis

[12]. The closest approach in the literature that attempts to address all the problems together is

by Zheng et al. [13] who propose a deep learning-based technique, called the BianqueNet, to

segment and locate each IVD, measure the IVD height, and quantify the degeneration factor

by assigning one of eight modified Pfirrmann grades [14] using pixel intensity histogram and

geometric features.

In this paper, we propose a novel method to annotate each individual lumbar spine IVD in

a mid-sagittal image with its predicted height and Pfirrmann grade using a combination of

deep learning-based image segmentation, geometry of the segmented IVD region, and

machine learning classification using spatial image features derived from the pixels in the IVD

region. We focused on the last three lumbar spine IVDs (L3/L4, L4/L5, and L5/S1) because

they are more prone to injury than others. These IVDs bear the most weight and pressure

from the upper body as well as higher twisting pressure due to the wider range of motion they

need to support making it more susceptible to twisting and bending forces that can damage

the discs [15, 16].

2. Materials and methods

Our proposed method for lumbar spine annotation involves IVD height measurement and

Pfirrmann grade prediction. The method uses a deep learning technique to segment different

regions of a mid-sagittal image, locate and identify each IVD, analyze the segmented IVD

region geometrically to locate certain points in the region and calculate their distance as the

IVD height, and extract image features from the region and use machine learning to predict

the Pfirrmann grade. Fig 1 shows an overview of the proposed methodology. The manual IVD

height measurement and degeneration assessment are carried out by an expert radiologist with

over ten years of experience. This stage of the methodology aims to produce ground truth IVD

height and Pfirrmann grade data to be used to evaluate the performance of the methodology

later.

Each stage of the methodology will be described in this section, but first, we will start by

describing the dataset used.

2.1 The dataset

The material used in this study was retrieved on 13 February 2023 from an archived sample of

DICOM lumbar spine MRI images available publicly in [17]. This dataset contains 515 anon-

ymized clinical MRI studies of patients with symptomatic back pains. We can confirm that the

data does not contain any information that could be used to identify individual participants.

The dataset consists of 48,345 T1-weighted and T2-weighted MRI images of each patient’s

lumbar spine taken using a 1.5-Tesla Siemens Magnetom Essenza MRI scanner and saved in

the Digital Imaging and Communications in Medicine (DICOM) format. The following infor-

mation is obtained by extracting the information stored in the metadata of the DICOM files.

The scanning sequence used in all scans is Spin Echo (SE), which is produced by pairs of radio-

frequency pulses, with segmented k-space (SK), spoiled (SP), and oversampling phase (OSP)

sequence variants. Fat-Sat pulses were applied just before the start of each imaging sequence to
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saturate the signal from fat matters to make it appear distinct from water. The range of acquisi-

tion parameter values used during sagittal MRI scans is provided in Table 1.

Each MRI study includes at least the last three lumbar vertebrae (L3, L4, and L5) and their

adjacent posterior elements, the topmost sacral bones (S1), and the last three IVDs (L5/S1, L4/

L5, and L3/L4). Each study contains both sagittal and traverse view scans and their corre-

sponding cross-view information. This allows us to see the direction and position of the image

plane of a traverse view slice on the sagittal view, and vice versa in a DICOM viewer applica-

tion. Each study has at least four sequences, or sets of images, that correspond to a

Fig 1. A flowchart describing an overview of the methodology. The red highlight marks the automated process

output whereas the blue highlight marks the manual process output.

https://doi.org/10.1371/journal.pone.0302067.g001
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combination of T1-weighted or T2-weighted and sagittal or traverse scans. Each sequence is

stored as a set of.ima files in a folder with the following folder naming format <T1/

T2>_TSE_<SAG/TRA>_PatientID_SequenceID. For example, a folder named T2_TSE_-

SAG_0001_0003 contains the images in the third sequence of the T2-weighted sagittal view

study of the first patient.

2.2. Data selection and pre-processing

In each MRI study, a mid-sagittal image is automatically selected from the T2-weighted sagittal

sequence using the image classification technique we described in [18] resulting in 515

T2-weighted mid-sagittal slices. Mid-sagittal images are defined as the image that is located

closest to the median plane bisecting the body vertically through the midline roughly equally

from the left and right side. These 515 images will be the input to the methodology we are

describing in this paper. An expert radiologist examined the last three lumbar IVDs in each

image to measure their heights and determine their condition by assigning a Pfirrmann grade

to each, resulting in 1545 Pfirrmann grades. The distribution of the grades is 60, 1002, 167,

295, and 21 for Pfirrmann grades 1, 2, 3, 4, and 5, respectively. This information is stored as

the ground truth data and to be used later to measure the accuracy of the proposed

methodology.

All 515 mid-sagittal images are in Siemens DICOM image format. The Pixel Spacing (ps)
attribute and the Image Dimension (dm) attribute of each DICOM image are extracted and

stored as metadata. Although not all images have the same image dimension or pixel spacing,

our observation of the data found that all images have an identical number of pixels and pixel

spacing in both x and y-axis directions, therefore a single variable can be used to represent

each attribute of both axes. Most of the images, 508 out of 515, have a pixel spacing of 0.7292,

two images have a pixel spacing of 0.6771, one image has a pixel spacing of 0.7344, and four

images have a pixel spacing of 0.8750. All pixel spacing has a unit of millimeters per pixel. The

majority of the images, 511 of 515, have an image dimension of 384 x 384, and four images

have a dimension of 320 x 320. We make the image dimension uniform across the dataset by

scaling those having 320 x 320 dimensions to 384 x 384 using the cubic interpolation

Table 1. MRI scanning parameters for T2-weighted sagittal scans.

Scanning Parameters Value or Range of Values

Number of Echoes (ETL) 1

Repetition Time (milliseconds) 3190 to 3660

Echo Time (milliseconds) 90.0 to 96.0

Slice Thickness (mm) 4

Spacing Between Slices (mm) 4.8 to 5.4

Imaging Frequency (MHz) 63.7

Scanning Sequence SE

Sequence Variant SK\SP\OSP

Scan Options SAT1

Pixel Spacing X and Y (mm/pixel) 0.6771 to 0.875

Image Dimension X and Y (pixels) 320 or 384

Echo Train Length 9, 13, 15, or 16

Percent Sampling 70 to 78

Pixel Bandwidth 150 to 195

Flip Angle 150

https://doi.org/10.1371/journal.pone.0302067.t001
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technique. For each of these images, a new pixel spacing (ps’) is calculated by scaling the origi-

nal pixel spacing with the dimension ratio, i.e.,

ps0 i ¼ psi �
dmi

384
ð1Þ

Where psi, ps’i, and dmi are the original pixel spacing, new pixel spacing, and original

dimension of the ith image in the dataset. The number 384 comes from the new image dimen-

sion of the scaled image. After this, all images are then converted to greyscale and saved as

PNG files.

2.3. Image segmentation using deep learning

The sequence of processes in this stage of the methodology is illustrated in Fig 2. This stage

starts with manual segmentation of the MRI images to produce the Ground Truth (GT) label

image dataset, followed by splitting the MRI and label image dataset into Training and Test

datasets, with the former being used to train a deep learning segmentation model. The follow-

ing is the description of the manual segmentation step.

With the help of the radiologist and three experienced image labelers, each MRI image is

segmented into six distinct non-overlapping regions, namely Anterior, PosteriorA, PosteriorB,

Vertebrae, IVD, and Sacrum. An example of an MRI image superimposed with color-coded

labels of the six regions is shown in Fig 3.

A set of conditions is imposed when labeling each image to minimize the occurrence of

labeling errors that could be introduced during the process. Each label image must satisfy the

following six requirements:

1. There should be only one large Anterior region. The region must not have any holes.

2. There should be only one large PosteriorA region. The region must not have any holes.

Fig 2. The process to train the deep learning segmentation model. The red, green, and blue-highlighted components are used subsequently in the

performance analysis step, illustrated in Fig 4.

https://doi.org/10.1371/journal.pone.0302067.g002
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3. There should be only one large Sacrum region. The region must not have any holes.

4. There is no requirement to have only one PosteriorB region but every PosteriorB region

must not have any holes.

5. There should only be one large Vert-IVD region. The Vert-IVD region is defined as the

union of all IVD and Vertebrae regions. The Vert-IVD region must not have any holes.

6. The relative placement of IVD and Vertebrae regions inside the Vert-IVD region is alter-

nating, starting with an IVD region at the bottom (just above the Sacrum region), followed

by a Vertebrae region, then another IVD region, and so on.

The data splitting step divides the MRI and label dataset into training and testing sets with

an 80:20 ratio. The training sets are further divided by a 60:20 ratio to allow the smaller portion

of the dataset to be used to validate the segmentation model during the training process. Our

methodology uses, as the architecture for the model, the encoder-decoder structure with an

atrous separable convolution known as DeepLabv3 architecture [19]. Five DeepLabv3 deep

learning networks are considered, they are ResNet-18, ResNet-50 [20], MobileNetv2 [21],

Fig 3. An MRI image superimposed with color-coded labels of the six regions illustrating the location of each region in the image.

https://doi.org/10.1371/journal.pone.0302067.g003
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Xception [22], and InceptionResNetv2 [23]. We adopted the Transfer Learning approach

when training the model by using pre-trained network weights as the model’s starting weight

values and using a small learning rate to tune the model to our training data. The performance

of the model is then analyzed by using the model to perform inference on all images in the

Test MRI dataset to create the Inferred Test label images and compare them with the Ground

Truth Test label images. This step is illustrated in Fig 4.

The training process also considers several combinations of training options and hyper-

parameter values to find the best-performing model for each network. The best overall model

is chosen from all the trained models based on the average of the mean accuracy, intersection-

over-union, and BFScore of the Vertebrae and IVD regions only. This model is then used to

segment all the images in the MRI dataset to create the IF label dataset, to be used as the input

to the next, Post-Processing, stage.

2.4. Post-processing

This stage is performed to ensure that the automatically segmented label images in the IF label

dataset meet the same requirements as the manually created label images. This stage uses

binary image processing and morphological techniques [24] to find Connected Component

Regions (CCR) of the different region types in a label image and close all the holes in the

CCRs. The steps in this stage are described below:

1. Find all CCRs of the detected Anterior region. If there is more than one CCR, keep the larg-

est CCR and merge the smaller CCRs with the surrounding region. We merge smaller

CCRs with the surrounding region because there can only be one CCR of the Anterior

region in the entire image. We then proceed to find and close all holes in the largest CCR.

2. Repeat Step 1 for the PosteriorA and Sacrum regions individually.

3. Find all CCRs of the PosteriorB region and close any holes in them. We do not merge

smaller CCRs with surrounding regions because our observation shows that there can be

more than one PosteriorB CCR in a label image.

4. Merge the Vertebrae and IVD regions to make a combined region called the Vert-IVD

region. Repeat Step 1 for the Vert-IVD region. The rationale is, that the Vert-IVD region

should make up the main contiguous spine region, with Sacrum as a separate region at the

Fig 4. The process to analyze the performance of the trained model using the test dataset. The red, green, and blue-highlighted components are the same

highlighted output components in the previous model training step, illustrated in Fig 2.

https://doi.org/10.1371/journal.pone.0302067.g004
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bottom. We ensure that any CCR marked as Vertebrae or IVD that are detached from this

main Vert-IVD region are removed and the main Vert-IVD region is free of holes.

5. We then check the CCR of each Vertebrae and IVD region to make sure that they are not

too small, which most likely occurs due to imperfection in the semantic segmentation, by

counting the number of pixels in each CCR and merging them with the surrounding region

if the number of pixels is smaller than 20.

We call the set containing the output images of this stage as PP label dataset which is to be

used as the input to the next, Individual IVD Region Labeling, stage.

2.5. Individual IVD region labeling

Although by this stage we already have the information of all detected IVD regions, we have

yet to determine the order or the sequence of the IVD CCR along the spine in order to assign

a specific label to each IVD CCR. To achieve this, first, we need to find a sequence of points

that thread along the middle of the spine connecting the bottom part to the top part of the

spine. The idea is, by traversing along the line from the bottom up, we can ascertain the

order of the IVD and Vertebrae CCRs as they are encountered and hence be able to label

them in sequence, e.g., L5, L4, L3, L2, and L1 for the Vertebrae and L5/S1, L4/L5, L3/L4, L2/

L3, and L1/L2 for the IVD. We always traverse from the bottom since it is always guaranteed

to start from the Sacrum region. To find this sequence of points first we merge all IVD, Ver-

tebrae, and Sacrum CCRs into one contiguous region. We then apply the morphological

thinning technique [8] to find the thinnest middle line of this region. For brevity, we refer to

this line as the spine line. The spine line will have a width of one pixel and run along the

length of the region connecting the Sacrum CCR at the bottom to the topmost IVD or Verte-

brae CCR.

The result of the morphological thinning process is a binary image with white foreground

pixels marking the locations of the spline line. The process does not necessarily produce a sin-

gle line with only two endpoints, because we could also end up with a line that has branches

with false endpoints along the main line. These branches can occur at any point along the line,

as illustrated in Fig 5.

The next step is to determine the sequence of coordinates of the points, denoted as pi2<
2

where i denotes the order of point p in the sequence, connecting the Start and Finish end

points. We set the end point with the highest y-coordinate value (i.e., the lowest point) as the

Start end point and set the end point with the lowest y-coordinate value (i.e., the topmost

point) as the Finish end point. We then apply the A-Star pathfinding technique [9] on the

binary image to get the sequence. The A-Star pathfinding technique is a popular technique

used in the game development community to find the shortest path between two points given

a grid containing passable and obstruction cells. In our case, the two points are the Start and

Finish end points, the grid is the binary image, and the passable and obstruction cells are the

white and black pixels, respectively. Any points that are not found to belong to pi are then

removed. We would like to note that given there is only one unique path connecting the Start

and Finish end points, using any other pathfinding algorithms is an equally valid alternative

and should produce the same sequence of points. Once the sequence of coordinates has been

established, we traverse the line from start to finish and count the number of times an IVD

region is encountered. The first IVD region is assigned with the L5/S1 label, the second with

the L4/L5 label, and so on. We do the same with the Vertebrae region. The first Vertebrae

region is assigned with the L5 label, the second with L4, and so on.
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2.6. IVD height measurement

Finding the height of an IVD is essentially a process of finding a line segment that best bisects

the IVD approximately parallel to the spine line. If the nucleus of the IVD is apparent, the line

should connect the top and bottom edges of the nucleus, otherwise, its two end points should

be about one millimeter above and below the bottom and top edges of the IVD, respectively.

This process is a two-phase process that is performed on each detected IVD region from the

previous stage. The first phase is the determination of MT and MB points, the two end points of

Fig 5. An example result of a morphological thinning process, creating a spine line connecting the Sacrum part of the spine to the top part.

Two branches are apparent in this result showing two false end points in addition to the two true end points.

https://doi.org/10.1371/journal.pone.0302067.g005
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the first estimate of the bisecting line segment. The steps involve geometry and are described

using Fig 6 to illustrate the different components of the analysis, as follows:

1. Apply a low-pass Gaussian filter noise to reduce the amount of noise in the MRI image.

2. Upscale the smoothed MRI image by a factor of four using cubic interpolation. Also,

upscale its corresponding label image by a factor of four using nearest interpolation.

3. Locate the top and bottom boundary points of the IVD. For example, for the L5/S1 IVD,

the bottom boundary points mark the edges between the IVD and Sacrum regions and the

top boundary points mark the edges between the IVD and L5 vertebrae.

4. Find the coordinates of the middle 30% portion of each boundary point and calculate the

average coordinate of each middle portion to get the coordinates of CT and CB, the top and

bottom center points, respectively.

5. Apply linear regression to each middle portion to get the top and bottom best-fit lines.

6. Calculate vector vT, which is perpendicular to the top best-fit line, and another vector vB,

which is perpendicular to the bottom best-fit line.

Fig 6. Illustration of the different components of geometry used to determine the first estimate (magenta line) of the bisecting line segment of an IVD.

https://doi.org/10.1371/journal.pone.0302067.g006
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7. Extend vector vT from point CT to intersect with the bottom best-fit line to get point C’T.

Likewise, extend vector vB from point CB to intersect with the bottom best-fit line to get

point C’B

8. Calculate the coordinate of point MT as the halfway point between CT and C’B. Similarly,

calculate the coordinate of point MB as the halfway point between CB and C’T.

The second phase refines the location of MT and MB points to get M’T and M’B points to

make them closer to the edge of the IVD nucleus. We do so by searching the pixels in the vicin-

ity of the initial points and in the direction of vT and vB, respectively which has the highest

pixel gradient. The search range is controlled by variable k, the higher the value of k the longer

the search range will be. The steps start by calculating the gradient magnitude and direction of

each pixel in the MRI image that belongs to the IVD region using the Prewitt gradient opera-

tor. We denote the magnitude and direction of the gradient at pixel p as mp and βp, respec-

tively. We also ensure that the range of βp is -180˚< βp�180˚. The steps to find the refined

bottom point M’B are as follows:

1. Calculate vector uB which is the unit vector of vB.

2. Calculate the vector’s angle α as α = tan-1(vBy/vBx) and 180 < α� 180, where vBx and vBy are

the x and y components of vector vB, respectively.

3. Calculate the coordinate of two points A and B, where A = MB—uB and B = MB + k × uB,

where k is the search range variable.

4. For every pixel p that lies on line segment AB, calculate the angle difference, δp, at point p as

δp = βp− α.

5. Multiply the magnitude of the pixel gradient with the cosine of the angle difference to get bp

= cos(δp) × mp.

6. The refined location of the bottom point M’B is determined as the point p that has the high-

est value of bp.

A similar step is used to find M’T, but with using vector vT instead of vB. The height of the

IVD (in mm) is then calculated as the product of the Euclidian distance between M’T and M’B
points and ps’, the current image’s pixel spacing, calculated using Eq 1 and divided by four, the

scaling factor.

2.7. Pfirrmann grade prediction

The process of assessing the degeneration of an IVD is akin to assessing the brightness and

homogeneity of the pixels in the nucleus of the IVD and taking into account the height of the

IVD. The brighter the pixels and the more homogenous the nucleus, the better the condition

of the IVD. Our prediction algorithm of Pfirrmann grade is preceded by checking if the IVD

height as calculated in the previous stage is shorter than a threshold. If it is, then the Pfirrmann

grade is automatically set to 5. The height threshold is set to 3.0 mm. This value is based on the

assessment of the radiologist on the data that we possess while making little assumption on

what is considered as healthy or normal IVD height. Our review of the literature [25–27] in

this regard yields quite wildly varying statistics on what is considered normal IVD heights,

which could perhaps be attributed to the difference in race, genetics, and overall health of the

population where the studies were conducted.

The Pfirrmann grade classification for IVD whose height is longer than the threshold takes

into account the brightness and homogeneity of the pixels in the nucleus of the IVD and is
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performed using Machine Learning, which requires extraction of image features from corre-

sponding IVD region of the MRI image. The feature engineering component of this stage is

described next.

2.7.1. Feature engineering. Before we extract any features from the MRI image, we first

adjust the overall brightness of the MRI image according to the mean pixel intensity of the ver-

tebrae regions. The rationale for this is that, when radiologists assess an IVD they do not use

absolute brightness of the nucleus but rather its brightness relative to the surrounding verte-

brae. Due to variations during the MRI scanning phase, the overall brightness of the MRI

images can vary which reflects on the brightness of the vertebrae and IVD regions. An overex-

posed image will have a higher average pixel intensity than a normal one, which itself has a

higher average pixel intensity than an underexposed one. To provide proof of this, we show

the probability distribution of vertebrae pixel intensities over the entire dataset in Fig 7. In the

figure, it can be seen that the pixel intensities have roughly a normal probability distribution

with a mean value grey level value, glvert_mean, of 69. In the absence of any widespread major

defects in all of the vertebrae regions, this wide variation in the vertebrae pixel intensities can

be attributed to the variation during the scanning stage.

When adjusting the brightness of an MRI image, we first calculate the mean intensity of all

vertebrae pixels in the current image, denoted as glvert. We then subtract the difference

between glvert and glvert_mean and subtract the result from the original pixel intensities, glorig to

obtain the adjusted pixel intensity value, gl as expressed in Eq 2.

gl ¼ glorig � ðglvert � glvert meanÞ ð2Þ

Fig 7. The probability distribution of the pixel intensities belonging to all vertebrae regions in the entire dataset.

https://doi.org/10.1371/journal.pone.0302067.g007
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We cap the adjusted pixel intensity values to between 0 and 255. It is worth emphasizing

that the value of glvert is calculated as the average pixel values in the Vertebrae regions in the

current image whereas the value of glvert_mean is calculated as the mean of all glvert values across

the entire dataset. Therefore, by subtracting the bracket term from the original pixel value, we

are offsetting the pixel value with the difference. If the current image has glvert higher than

glvert_mean that suggests the image is overexposed hence the pixel values will be reduced, and

vice versa.

To capture the homogeneity of a region, we decided to use the color correlogram [28]. The

color correlogram is a three-dimensional table indexed by color and distance between pixels.

It expresses how the spatial correlation of color changes with distance in a stored image. It is a

feature used in image analysis for indexing and comparing images. It captures the spatial cor-

relation of colors and is effective for content-based image retrieval and pattern recognition,

and has been found to be superior to other non-spatial features such as color histograms [29].

This is because the latter only describes the global color distribution in an image whereas the

color correlogram includes spatial correlation information. It is robust to changes in appear-

ance and shape caused by variations in viewing positions, camera zooms, and other imaging

variables. Although color correlogram is a three-dimensional table when multiple distances

are considered, in our case, we only use one distance hence our color correlogram is only a

two-dimensional table. Also in our case, the color is an indexed greyscale value, glind, produced

by capping and quantizing the greyscale pixel intensities, as opposed to the literal meaning of

the word color in the image processing context. The greyscale quantization and greyscale cap

values are set to 30 and 150, respectively. The formula to derive the indexed greyscale value,

glind, from the adjusted pixel intensity, gl, given the greyscale quantization, ngl, and greyscale

cap glmax, values are:

glind ¼
minðgl; glmaxÞ

Dgl

" #

ð3Þ

Dgl ¼
glmax

ngl
ð4Þ

Where ngl and glmax in our case were set to 30 and 150, respectively. The square bracket

operator in Eq 3 denotes the floor() operator.

It is important to note that we do not calculate the color correlogram from the entire

detected IVD region, but instead from its inner nucleus region. The step to detect the nucleus

of an IVD starts by applying morphological erosion to the IVD region to shrink the size by

20%. This is to remove any non-IVD pixels belonging to neighboring regions that are incor-

rectly assigned as that IVD region. Then we identify candidate pixels by adaptive binary

thresholding to the shrunk region. We start with a high value of the threshold, if the percentage

of the number of pixels above the threshold is lower than 30% of the shrunk IVD region, we

reduce the threshold and repeat the process until we do. The result at this point is our candi-

date nucleus region which may be fragmented. Then we locate the largest CCR of the candi-

date nucleus region and apply morphological closing to it. If the percentage of the number of

pixels of the CCR is less than 20% of the shrunk IVD region, we repeat the process by reducing

the threshold value. We will eventually get either a large contiguous CCR that is brighter than

the rest of the IVD or the initial eroded IVD. The latter will occur if the IVD region has very

low pixel intensities and the nucleus is not distinctly distinguishable from the annulus. If the

nucleus CCR is detected, we then apply a further morphological erosion to it to shrink the size
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by 10%, to get the inner nucleus region. It is from this region that we calculate the color corre-

logram. The image scaling factor, which is four, is used as the distance.

The feature that we extracted is a subset of the entire color correlogram. A color correlo-

gram of N number of colors has N2 number of cells. The majority of information in a color

correlogram is concentrated along the main diagonal cells of the matrix hence several studies

have suggested not to use the entire matrix but only these cells [30, 31]. They are called auto

color correlograms. We modified this approach by also using cells in the region around the

main diagonal cells as our image feature. We call this feature, the self-similar color correlogram
feature. The width of the region, denoted as w, determines how large the region is. Fig 8 illus-

trates a color correlogram with the number of colors N = 10. The yellow-shaded cells are the

main diagonal cells and the blue-shaded cells are cells within the region width w = 2. The

length of the feature, denoted as len, can be expressed as a function of N and w:

len ¼ Nð2wþ 1Þ � wðwþ 1Þ ð5Þ

The values of N and w should always be positive integer numbers.

Fig 8. An illustration of the color correlogram of ten unique colors. Each cell in a matrix, Cij, contains the

probability of occurrence of color i and j between two pixels, d distance apart. The yellow-shaded cells are the auto

color correlogram, where i is identical to j, whereas the blue-shaded cells represent additional information included in

our self-similar color correlogram feature where |i-j|<w and w = 2.

https://doi.org/10.1371/journal.pone.0302067.g008
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2.7.2. Machine learning classification. The classification of grades 1, 2, 3, and 4 of the

Pfirrmann grade is performed by machine learning using the self-similar color correlogram

feature. The training of the machine learning classifier uses ground truth data consisting of the

actual Pfirrmann grade annotated by the radiologist (GT IVD Pfirrmann Grade dataset), the

actual IVD height measured by the radiologist (GT IVD Height dataset), and the color correlo-

gram feature calculated using the manually segmented label image (GT Label Image dataset).

Six machine learning classifiers are considered, they are K-Nearest Neighbors, Classification

Tree, AdaBoostM2 Classification Tree, Discriminant Analysis, Feedforward Fully Connected

Neural Network [32], and Error-Correcting Output Codes [33]. The best model of each classi-

fier type is obtained by incorporating 10-fold cross-validation during training. This means the

models are trained 10 times using ten unique non-repeating training sets consisting of 90% of

the data and tested with the remaining 10%. The final trained models are then used to predict

the Pfirrmann grade of the same set of MRI images using IVD heights and color correlogram

features calculated using the automatically segmented label image (PP Label Image dataset).

3. Results and discussion

In this section, we will present the implementation of the methodology followed by the experi-

mental results and their analysis. The code was implemented using MATLAB on a PC running

Microsoft Windows 11 operating system with an i9-13900K Intel CPU, two NVidia GeForce

RTX 4090 GPUs, and 128 GB RAM.

3.1. Image segmentation and labeling results

The implementation of the image segmentation stage using the five DeepLabv3 deep learning

networks, namely ResNet-18, ResNet-50, MobileNetv2, Xception, and InceptionResNetv2, is

presented here. Each network was used to produce multiple models trained using a range of

combinations of training options and hyperparameter values. The parameters are optimization

algorithm, initial learning rate, learning rate drop factor, learning rate drop period, L2-regular-

ization factor, gradient decay factor, and number of epochs. The performance of the models is

measured using three metrics namely accuracy, intersection over union, and BFScore. Since

we consider the vertebrae and IVD regions as the most important regions, we therefore only

consider the segmentation performance of those regions. We use the mean score, calculated as

the average of the six performance metrics, as an indication of which model to use for the next

stage.

The performance of the best model for each network type over the search range of hyper-

parameter values and training options is provided in Table 2. As shown in the table, ResNet-50

Table 2. The performance of the best model for each network type.

ResNet-18 ResNet-50 Mobile NetV2 Xception Inception ResNetV2

Vertebrae

Accuracy 97.0 97.2 96.8 97.0 97.1

IoU 92.0 92.4 91.5 91.5 92.3

BFScore 99.3 99.5 99.2 99.0 99.5

IVD

Accuracy 97.7 97.7 97.5 97.6 97.7

IoU 87.6 88.2 87.5 87.4 88.0

BFScore 98.9 99.1 99.1 98.8 99.3

Mean Score 95.4 95.7 95.3 95.2 95.7

https://doi.org/10.1371/journal.pone.0302067.t002
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and InceptionResNetV2 models have an identical mean score of 95.7. We opted to use the

ResNet-50 model since it is faster to train, 47 minutes compared to the 88 minutes required

for InceptionResNetV2.

The values of hyperparameters and training options that were used to train the best

ResNet-50 model are provided in Table 3.

The trained ResNet-50 model was then used to segment the entire MRI image dataset to

produce the IF label image dataset. Each image in this dataset was then post-processed to pro-

duce the PP label image dataset. This dataset is then used to detect and label each individual

IVD and vertebrae. The results have 100% accuracy in terms of correct label names assigned to

each IVD and vertebrae in all cases notwithstanding the performance of the segmentation

stage before that. An example of the vertebrae and IVD labeling results are shown in Figs 9

and 10, respectively.

3.2. IVD height measurement results

Fig 11 shows a visualization of the IVD height measurement stage. The red semi-transparent

region highlights the L5/S1 IVD and the small green semi-transparent region highlights part of

the L4/L5 IVD above it. The two magenta points mark the initial top and bottom, MT and MB,

endpoints. The yellow points mark the refined top and bottom end points, M’T and M’B, of the

bisecting line segment obtained after shifting the original points in the directions of the blue

and red arrows, respectively. The yellow dotted line is the final bisecting line segment from

which the IVD height is calculated.

As for the overall performance, the predicted IVD heights were compared with the actual

IVD height for the entire image in the dataset. We set the relative difference between the pre-

dicted and actual IVD height, defined as the former minus the latter, as the accuracy measure

of the IVD height measurement stage. Their statistics are shown as box charts in Fig 12. The

figure shows that the first, second, and third quartiles of the data are well within one millime-

ter. There are, however, quite a few outliers in the results and some are very severe, including

one case where the predicted height is 12.8 mm longer than the actual height.

We noted five outlier cases and analyzed each case of the outliers to ascertain the causes and

found that the majority of them are associated with trauma affecting the top cartilaginous end

plate of the vertebrae below the disc as exemplified in Fig 13. During the manual IVD height

measurement, the radiologist took the vertebrae defect into account and estimated the line

where the missing cartilaginous end plate of the vertebrae would have been. Since they look

similar to IVD and the two regions are often connected, the deep learning segmentation model

always considers them as one IVD region. This error is then propagated to the IVD height mea-

surement stage causing the algorithm to produce the unusually high value of output.

Table 3. The values of hyperparameters and training options that were used to train the best model.

Hyperparameters/training options Value

Optimization Algorithm ADAM

Initial Learning Rate 10−3

Learning Rate Drop Factor 0.3

Learning Rate Drop Period 10

L2 Regularization Factor 0.005

Gradient Decay Factor 0.9

Number of Epochs 120

Mini Batch Size 16

https://doi.org/10.1371/journal.pone.0302067.t003
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3.3. Pfirrmann grade prediction results

Following the IVD height measurement stage, the Pfirrmann grade prediction stage is imple-

mented as a combination of the height function and machine learning classification using the

self-similar color correlogram features. The implementation considered six machine learning

classifiers, which are K-Nearest Neighbors (KNN) with Error-Correcting Output Codes

(ECOC) [33], Support Vector Machine (SVM) with ECOC, Discriminant Analysis (DA) with

ECOC, Feedforward Fully Connected Neural Network, Decision Tree, and Ensemble of Deci-

sion Trees. Before the training, the best training options were selected using Hyperparameter

optimization. The training also uses custom weight values for each data based on its class fre-

quency. The class training weight twc of class c is calculated as:

twc ¼
medianðf Þ

fc
ð6Þ

Where f is a set containing the frequency of occurrence of each class, and fc2f, is the fre-

quency of occurrence of class c.

The best training options were then used to train the best model for each classifier type.

The performance of the models was then evaluated using a 10-fold cross-validation technique.

Fig 9. An example of the vertebrae regions labeling result.

https://doi.org/10.1371/journal.pone.0302067.g009
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This means ten versions of the same model of each classifier type were developed, each trained

using 90% of the data and evaluated using the remaining 10%. The metric used to assess the

model performance is the mean accuracy, which calculates the percentage of correctly pre-

dicted Pfirrmann grades in the entire dataset.

The performance of the models is given in Table 4. The table indicates that all classifiers

produce relatively comparable results ranging from 78.2% using the DA with ECOC classifier

to 88.1% using the Ensemble of Decision Trees classifier. The resulting Ensemble of Decision

Trees classifier model is then used as the chosen model in the subsequent analysis. The search

range and the best value of the hyperparameters are given in Table 5.

3.4. Analysis, discussion, and future work

The result of the combined Pfirrmann grade prediction approach using the best Ensemble of

Decision Trees classifier and the predicted IVD height is shown as a confusion matrix in Fig

14. Note that the overall or mean accuracy of this classifier is 88.1% as mentioned in Table 4.

That figure is the average of the class accuracies weighted by the percentage population of each

class. If we dissect further the Pfirrmann grade classification results in Fig 14, we will find that

the class accuracies for Pfirrmann Grade 1 to 5 are 68.3%, 92.6%, 79.0%, 82.7%, and 76.2%,

Fig 10. An example of the IVD regions labeling result.

https://doi.org/10.1371/journal.pone.0302067.g010
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respectively. The figure also shows a relatively high misclassification rate of 30% of Pfirrmann

Grade 1 IVDs as having Pfirrmann Grade 2. A closer visual inspection of these IVDs found

that they indeed have very similar characteristics with Pfirrmann Grade 2, making them visu-

ally more difficult to distinguish and hence have a higher chance of misclassification.

The result also shows a few cases (0.6%) where some IVDs having Pfirrmann Grade 2 and 4

were misclassified as having Pfirrmann Grade 5 (rightmost column), as well as a misclassifica-

tion of 23.8% of IVDs that have Pfirrmann Grade 5 (bottom row). These misclassifications are

the result of errors in measuring the IVD height. As we discussed in the previous section, the

latter misclassification is attributed to the five outlier cases in which defects in adjacent verte-

brae cause the algorithm to predict higher IVD height than the actual one. Currently, we have

not devised a way to counter this as that may involve adding an additional layer of expert

knowledge to the methodology. However, we envisage two approaches that we can take our

work forward in this direction.

First, we could employ an adapted method to the height measurement process to produce a

height profile of the IVD instead of the middle height only. This profile could include all the

heights measured from the anterior to the posterior of the IVD. This additional information on the

height would allow a more representative picture of the IVD’s health than the middle height only.

Secondly, we could employ a different approach by considering a shape analysis of the IVD.

There are several shape measurements that could provide a better picture of the health of the

IVD than just the middle height alone. These include rectangularity, rectilinearity, moments,

Fig 11. A visualization of the IVD height measurement stage showing the starting points (magenta), refined points (yellow), final bisecting line segment

(yellow dotted line), and the vectors used to shift the points (red and blue arrows).

https://doi.org/10.1371/journal.pone.0302067.g011
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ellipticity [38], and Fourier descriptors [39]. These measurements have been popular in com-

puter vision and used in conjunction with machine learning for shape-based object recogni-

tion tasks before the era of deep learning. Alternatively, we could revisit the segmentation

process and attempt to include more samples of vertebral defects to allow us to train the model

better in distinguishing and separating regions associated with defects in vertebrae from the

IVDs. This approach, however, requires acquiring more data that contains the said defects,

something which would also be an objective of our future work.

One limitation of this study stems from the imbalanced distribution of the data. As reported

in the dataset section, the result of the manual assessment of the last three lumbar IVDs in 515

images is 60, 1002, 167, 295, and 21 cases of Pfirrmann grades 1, 2, 3, 4, and 5, respectively. In

terms of percentages, they are 3.9%, 64.9%, 10.8%, 19.0%, and 1.4%, respectively. The relatively

very low occurrences of grades 5 in the dataset seem to amplify the shortcomings of the

approach in dealing with outlier cases. We also acknowledge another limitation in our study in

which we only have one radiologist to perform the initial data analysis and ground truth data

preparation. It is widely accepted that inter-observer and intra-observer variances do exist [40]

and having more radiologists analyzing the data on multiple occasions can highlight uncer-

tainties in the ground truth data and have an effect on the assessment of the proposed algo-

rithm. Nonetheless, our approach has a significant advantage over the state-of-the-art [9] in

that it also produces accurate segmentation of the spinal images and is able to measure the

height of the IVDs. Furthermore, as we will show in the following section the methodology

can be used to provide descriptive annotation for each IVD which can help explain the ratio-

nale behind the classification result produced by the algorithm.

Fig 12. Box chart of the relative difference between the predicted and actual IVD heights.

https://doi.org/10.1371/journal.pone.0302067.g012
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3.5. Presentation of annotation results

To finish this section off, we present in Figs 15 and 16, two examples of the annotation results

which are produced with the information gathered and predicted at different stages in the pro-

cess. The presentation crops out a rectangular region surrounding each IVD and marks the

border of the detected IVD region with a magenta line. If the IVD nucleus is detected, it will

Fig 13. An example IVD height measurement result that shows the predicted height of three lumbar IVDs. There

is a clear case of trauma at the top plate of the L5 vertebrae causing the algorithm to produce unusually high height

prediction for the L4/L5 IVD.

https://doi.org/10.1371/journal.pone.0302067.g013

Table 4. The performance of the Pfirrmann grade classification models.

Machine Learning Classifier Mean Accuracy (%)

KNN with Error-Correcting Output Codes 80.3

SVM with Error-Correcting Output Codes 85.3

DA with Error-Correcting Output Codes 78.2

Feedforward Fully Connected Neural Network 84.5

Decision Tree 80.1

Ensemble of Decision Trees 88.1

https://doi.org/10.1371/journal.pone.0302067.t004
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Table 5. Range and best hyperparameter values for ensemble binary classification decision tree model.

Hyperparameter Search Range/Set Best Value

Method {RUSBoost [34], AdaBoostM2 [35], Random Forest [36]} Random Forest

Number of Learning Cycles 10–478 15

Minimum Leaf Size 1–730 1

Maximum Number of Splits 1–1505 114

Split Criterion {deviance, twoing, gdi [37]} twoing

Number Sample Variables 3–172 20

https://doi.org/10.1371/journal.pone.0302067.t005

Fig 14. The confusion matrix of the Pfirrmann grade classification results. Grades 1 to 4 were produced using the best Feedforward Fully Connected

Neural Network classifier whereas grade 5 used the calculated IVD height.

https://doi.org/10.1371/journal.pone.0302067.g014
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mark its border with a blue line and mark the inner nucleus (the inner 90% of the nucleus

region) with a red line. A yellow line is used to mark the bisecting line from which the IVD

height is calculated.

The first example in Fig 15 shows the annotation of an L5/S1 IVD with reasonably healthy

features where the IVD has a normal height and only limited degeneration characteristics. The

second example in Fig 16 shows the L4/L5 IVD of the same patient with unhealthy features.

This IVD is annotated with a short IVD height and Pfirrmann grade 5. The blue and red lines

in this case do not correspond to the nucleus boundary but rather inner region of the IVD that

has relatively brighter pixels than the annulus.

4. Conclusion

We have presented a methodology to automatically annotate lumbar spine IVDs with their

height and Pfirrmann grade that quantifies the degenerative state of the IVD. The method

starts with semantic segmentation of a mid-sagittal MRI image into six distinct non-overlap-

ping regions that include the IVD and vertebrae regions. Each IVD region is then located and

assigned its label before being analyzed geometrically to find a line segment bisecting the IVD.

The Euclidean distance of this line segment is then used as the IVD height. We engineered an

image feature, called the self-similar color correlogram, and extracted it from the nucleus of

the IVD region as a representation of the region’s spatial pixel intensity distribution. We then

use the IVD height data and machine learning classification process to predict the Pfirrmann

grade of the IVD. We considered five different deep learning networks and six different

Fig 15. The annotation of an L5/S1 IVD with reasonably healthy features where the IVD has a normal height and

only limited degenerative characteristics.

https://doi.org/10.1371/journal.pone.0302067.g015
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machine learning algorithms in our experiment and found the ResNet-50 model and Ensem-

ble of Decision Trees classifier to be the combination that gives the best results. Our experi-

ment using a dataset containing 515 MRI studies gives a mean accuracy of 88.1%.
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