

LJMU Research Online

Schady, P, Yates, RM, Christensen, L, De Cia, A, Rossi, A, D'Elia, V, Heintz, KE, Jakobsson, P, Laskar, T, Levan, A, Salvaterra, R, Starling, RLC, Tanvir, NR, Thöne, CC, Vergani, S, Wiersema, K, Arabsalmani, M, Chen, HW, De Pasquale, M, Fruchter, A, Fynbo, JPU, García-Benito, R, Gompertz, B, Hartmann, D, Kouveliotou, C, Milvang-Jensen, B, Palazzi, E, Perley, DA, Piranomonte, S, Pugliese, G, Savaglio, S, Sbarufatti, B, Schulze, S, Tagliaferri, G, de Ugarte Postigo, A, Watson, D and Wiseman, P

Comparing emission- and absorption-based gas-phase metallicities in GRB host galaxies at z = 2-4 using JWST

http://researchonline.ljmu.ac.uk/id/eprint/23278/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Schady, P, Yates, RM, Christensen, L, De Cia, A, Rossi, A, D'Elia, V, Heintz, KE, Jakobsson, P, Laskar, T, Levan, A, Salvaterra, R, Starling, RLC, Tanvir, NR, Thöne, CC, Vergani, S, Wiersema, K, Arabsalmani, M, Chen, HW, De Pasquale. M. Fruchter. A. Fvnbo. JPU. García-Benito. R. Gompertz. B.

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

http://researchonline.ljmu.ac.uk/

For more information please contact researchonline@ljmu.ac.uk

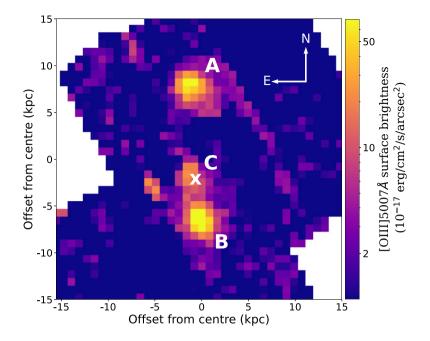
Advance Access publication 2024 May 11

Correction to: Comparing emission- and absorption-based gas-phase metallicities in GRB host galaxies at z = 2-4 using JWST

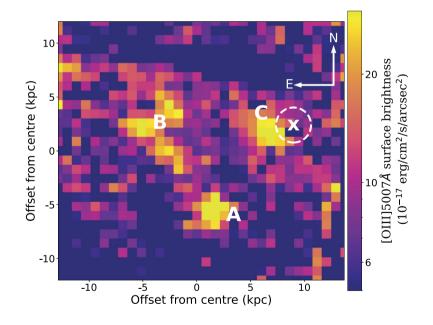
by P. Schady ^(a), ¹* R. M. Yates ^(a), ² L. Christensen, ^{3,4} A. De Cia, ^{5,6} A. Rossi ^(a), ⁷ V. D'Elia, ^{8,9} K. E. Heintz ^(a), ^{3,4} P. Jakobsson, ¹⁰ T. Laskar ^(a), ¹¹ A. Levan, ¹² R. Salvaterra, ¹³ R. L. C. Starling ^(a), ¹⁴ N. R. Tanvir, ¹⁴ C. C. Thöne, ¹⁵ S. Vergani, ^{16,17} K. Wiersema, ² M. Arabsalmani, ^{18,19} H.-W. Chen, ²⁰ M. De Pasquale, ²¹ A. Fruchter, ²² J. P. U. Fynbo, ^{3,4} R. García-Benito ^(a), ²³ B. Gompertz ^(a), ^{24,25} D. Hartmann, ²⁶ C. Kouveliotou, ²⁷ B. Milvang-Jensen ^(a), ^{3,4} E. Palazzi, ⁷ D. A. Perley ^(a), ²⁸ S. Piranomonte, ⁹ G. Pugliese, ²⁹ S. Savaglio, ^{7,30,31} B. Sbarufatti ^(a), ³² S. Schulze ^(a), ³³ G. Tagliaferri, ³² A. de Ugarte Postigo, ³⁴ D. Watson^{3,4} and P. Wiseman ^(a) ³⁵

Affiliations are listed at the end of the paper

Key words: errata, addenda – gamma-ray burst: general – ISM: abundances – galaxies: abundances – galaxies: high-redshift – galaxies: ISM – quasars: absorption lines.


This is a correction to: P. Schady and others, Comparing emissionand absorption-based gas-phase metallicities in GRB host galaxies at z = 2-4 using JWST, Monthly Notices of the Royal Astronomical Society, Volume 529, Issue 3, April 2024, Pages 2807–2831, https: //doi.org/10.1093/mnras/stae677.

We found a mistake in our abstract where we accidentally wrote that the host galaxy of GRB 090323 was at z = 4.7 whereas it is in fact at redshift z = 3.58 based on the NIRSpec emission line spectrum of the host galaxy. The redshift of this GRB host galaxy is correctly reported in the rest of the paper. We also found a bug in our code that produces the [O III] λ 5007 surface brightness maps of the host galaxies of GRB 050820A and GRB 150403A (figs 1 and 2 of the original paper) that caused the labelled physical pixel scale to be too small by a factor of ~1.4. This error only affected the axes shown in the figures and has no implications for the rest of the paper. The corresponding pixel-to-kpc conversions have now been corrected and the updated maps are shown in Figs 1 and 2.


```
* E-mail: p.schady@bath.ac.uk
```

© 2024 The Author(s).

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 1. Surface brightness (SB) map of the G140M/L100LP NIRSpec IFS observations of the host galaxy of GRB 050820A at $z_{abs} = 2.615$ centred on [O III] λ 5007. A number of resolved emission regions are detected, including components A and B identified in Chen (2012) and in the image above. The position of the GRB afterglow is indicated with an 'X', which lies close to a third emission component, labelled here as C. Additional emission can also be seen to the left of region C, which is only detected at 1.79 μ m, consistent with [O III] λ 5007 at z = 2.615. However no corresponding emission from [O III] λ 4959 or H α at this same redshift is detected at this location. The image is orientated with north up and east left. The pixel scale of the image is 0″.1, corresponding to 819 pc, and the offset from the image centre in kpc is indicated along the axes. Observations were taken with a two-point dither, which is why the shape of the field of view comprises two overlapping squares.

Figure 2. Surface brightness (SB) map of the G140M/L100LP IFS observations of the host galaxy of GRB 150403A centred on [O III] λ 5007 at z = 2.057. A number of resolved emission regions are detected, and the labels A, B, and C indicate the regions where stacked spectra have been extracted. Region B is itself resolved into multiple components. The position of the GRB afterglow is just west of component C, marked with a 'X', and the corresponding 1 σ positional uncertainty is indicated with the white dashed circle. Note that no background subtraction has been applied and the colour bar thus does not go down to zero. The image is oriented with north up and east left. The pixel scale of the image is 0'.'1, corresponding to 857 pc, and the offset from the image centre in kpc is indicated along the axes.

REFERENCE

Chen H. W., 2012, MNRAS, 419, 3039

¹Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK

²Centre for Astrophysics Research, University of Hertfordshire, Hatfield, AL10 9AB, UK

³Cosmic Dawn Center (DAWN), University of Copenhagen, 2200 Copenhagen N, Denmark

⁴Niels Bohr Institute, University of Copenhagen, Jagtvej 128, DK-2200 Copenhagen N, Denmark

⁵European Southern Observatory, Karl-Schwarzschild Str. 2, D-85748 Garching bei München, Germany

⁶Department of Astronomy, University of Geneva, Chemin Pegasi 51, CH-1290 Versoix, Switzerland

⁷ INAF - Osservatorio di Astrofisica e Scienza dello Spazio, Via Piero Gobetti 93/3, I-40129 Bologna, Italy

⁸Space Science Data Center (SSDC) - Agenzia Spaziale Italiana (ASI), I-00133 Roma, Italy

⁹INAF - Osservatorio Astronomico di Roma, Via Frascati 33, I-00078 Monte Porzio Catone, Italy

¹⁰Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland

¹¹Department of Physics & Astronomy, University of Utah, Salt Lake City, UT 84112, USA

¹²Department of Astrophysics/IMAPP, Radboud University, NL-6525 AJ Nijmegen, the Netherlands

¹³Istituto Nazionale di Astrofisica (INAF) Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Alfonso Corti 12, I-20133 Milano, Italy

¹⁴School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK

¹⁵Astronomical Institute, Czech Academy of Sciences, Fričova 298, Ondřejov, Czech Republic

¹⁶GEPI, Observatoire de Paris, Université PSL, CNRS, 5 Place Jules Janssen, F-92190 Meudon, France

¹⁷Institut d'Astrophysique de Paris and Sorbonne Université, 98bis Boulevard Arago, F-75014, Paris, France ¹⁸Excellence Cluster ORIGINS, Boltzmannstraße 2, D-85748 Garching, Germany

¹⁹Ludwig-Maximilians-Universität, Schellingstraße 4, D-80799 München, Germany

²⁰Department of Astronomy & Astrophysics, The University of Chicago, 5640 S Ellis Ave., Chicago, IL 60637, USA

²¹Mathematics, Informatics, Physics and Earth Science Department of Messina University, Papardo campus, Via F. S. D'Alcontres 31, 1-98166 Messina, Italy

²²Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218, USA

²³Instituto de Astrofísica de Andalucía, CSIC. Apartado de correos 3004, E-18080 Granada, Spain

²⁴School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK

²⁵Institute for Gravitational Wave Astronomy, University of Birmingham, Birmingham B15 2TT, UK

²⁶Clemson University, Department of Physics and Astronomy, Clemson, SC 29634, USA

²⁷The George Washington University, Department of Physics, 725 21st street NW, Washington DC 20052, USA

²⁸Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK

²⁹Anton Pannekoek Institute for Astronomy, University of Amsterdam, PO Box 94249, NL-1090GE Amsterdam, the Netherlands

³⁰Physics Department, University of Calabria, I-87036 Arcavacata di Rende, CS, Italy

³¹INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 54, I-00044 Frascati, RM, Italy

³²INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807, Merate, Italy

³³The Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden

³⁴Artemis, Observatoire de la Côte d'Azur, Université Côte d'Azur, CNRS, F-06304 Nice, France

³⁵School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK

This paper has been typeset from a TEX/LATEX file prepared by the author.

© 2024 The Author(s).

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.