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We present a construction to simulate Turing machines with 3 × 3 matrices over rationals. The 
correctness of simulation is guaranteed by testing that the matrices have integral elements during 
the simulation. This construction implies an undecidability result for a special identity problem 
for semigroups of 3 × 3-matrices.

1. Introduction

In this article we prove that a Turing machine can be simulated by a matrix semigroup over rational numbers with integrality 
tests. That is, the generators of the semigroup are rational matrices, but the product matrices remain integral during a correct 
simulation. Indeed, multiplying with a matrix such that an element in a simulation matrix turns non-integral is equivalent to usage 
of an incorrect transition in the Turing machine side. This allows us to faithfully simulate any Turing machine.

As a consequence, we prove that the identity problem, i.e., whether the identity matrix is in the generated semigroup, is unde-

cidable in this setting. Although this result seems to be a quite traditional undecidability result for semigroups generated by rational 
matrices, our original motivation for this study is quite far from traditional. Our goal is to prove an undecidability result for matrices 
such that in the products (simulating the computational system reduced to it) the elements of the matrices are significantly smaller 
than in the traditional reductions. Also, we are interested in pure modelling, i.e., in the question how to simulate a computational 
system operating with sequences of symbols using matrices.

Indeed, most of the known undecidability reductions for problems in integer matrix semigroups rely on the undecidability of the 
Post Correspondence Problem, PCP for short, or some of its variants. There are also some proofs that use the Hilbert’s Tenth problem in 
the reduction; see for example [1]. In the PCP, for given two word morphisms 𝑔, ℎ∶ 𝐴∗ → 𝐵∗, it is asked whether or not there exists 
a non-empty word 𝑤 such the 𝑔 and ℎ agree on it, that is,

ℎ(𝑤) = 𝑔(𝑤).

The traditional reduction from the PCP to integer matrices is based on an injective (𝑛-ary) representation 𝜎 of words in ℕ and the 
coding 𝛾 of pairs of words into 3 × 3 matrices so that the catenation operation of the word semigroups 𝐴∗ and 𝐵∗ are preserved in 
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matrix multiplication. The formal definitions of 𝜎 and 𝛾 are given in Section 4, but let us give an example how these codings work: 
for example we may define 𝛾 such that for all words 𝑢1, 𝑣1, 𝑢2, 𝑣2 ∈ 𝐵∗,

𝛾(𝑢1, 𝑣1)𝛾(𝑢2, 𝑣2) =
⎛⎜⎜⎝
𝑛|𝑢1| 0 0
0 𝑛|𝑣1| 0

𝜎(𝑢1) 𝜎(𝑣1) 1

⎞⎟⎟⎠
⎛⎜⎜⎝
𝑛|𝑢2| 0 0
0 𝑛|𝑣2| 0

𝜎(𝑢2) 𝜎(𝑣2) 1

⎞⎟⎟⎠
=
⎛⎜⎜⎝
𝑛|𝑢1𝑢2| 0 0
0 𝑛|𝑣1𝑣2| 0

𝜎(𝑢1𝑢2) 𝜎(𝑣1𝑣2) 1

⎞⎟⎟⎠ ,
for a large enough 𝑛 ∈ ℕ. Here |𝑢| denotes the length of the word 𝑢, that is, the number of symbols in 𝑢. Now if we simply set 
𝑀𝑖 = 𝛾(𝑔(𝑎𝑖), ℎ(𝑎𝑖)) for all letters 𝑎𝑖 in the alphabet 𝐴, we derive from the undecidability of the PCP that it is undecidable for the 
matrix semigroup generated by the matrices 𝑀𝑖 whether or not there exists a matrix 𝑀 in the semigroup such that 𝑀31 =𝑀32.

In our reduction, we shall use the above mentioned 𝛾 , but the mapping 𝜎 is modified. The main difference is that our reduction 
is one step below in the reduction chain of simulation. The key in all undecidability proofs of the PCP is that the pair of morphisms 
in the PCP can simulate a (universal) computational system such as Turing machines [15], semi-Thue systems [9], tag systems [23], 
normal systems [25], just to mention some of the most well-known systems. In all of these undecidability reductions, except in the 
Post’s original proof from the normal systems [25], the simulation of the computation of the chosen system is done so that there 
is a nonempty word 𝑤 for constructed morphisms 𝑔 and ℎ such that 𝑔(𝑤) = ℎ(𝑤) if and only if there exists a computation from a 
particular configuration 𝑢 of the system to the configuration 𝑣 and the word 𝑤 is a catenation of all configurations (including the 
used transitions/rules of the used systems) along this computational path.2 In other words, the word 𝑤 is very long implying that the 
words 𝑔(𝑤) and ℎ(𝑤) are very long and, therefore, the elements of the matrices 𝛾(𝑔(𝑤), ℎ(𝑤)) become huge if we consider simulation 
of the reduced computational system with matrices. For example, the element (1, 3) in mapping 𝛾 is 𝑛𝑐 where 𝑐 is approximately 
the sum of lengths of all configurations in the computation of the system. Moreover, some of the elements never decrease when a 
universal system is simulated through the PCP with the products of matrices.

Our main motivation for this study is the simulation of computational system with matrices directly without remembering the 
whole history of computation in elements of the matrices implying that the elements are smaller. In our construction for the simu-

lation, the elements of the matrices are integers encoding only the current configuration of the system. Therefore, the elements are 
much smaller than in a simulation using the PCP as a bridge from a computational system to matrices.

We apply the simulation construction and consider the existence of a particular computation of the simulated Turing machine. As 
a result we prove undecidability of a variant of the identity problem for matrix semigroups. The identity problem is a long-standing 
open problem. Unlike most other matrix semigroup problems, the three-dimensional case remains open. It was shown in [5] that 
the problem is undecidable for integral matrices of dimension four, and in [19], a better bound on the number of matrices in the 
generator set was given. For two-dimensional matrices, it is known that the identity problem is decidable for integer matrices—the 
problem is even 𝖭𝖯-complete [3]—and undecidable over rational quaternions [2]. Recently, it was shown that there is no embedding 
of pairs of binary words into SL(3, ℤ) [19]. The result suggests that the identity problem is decidable for three-dimensional matrices 
as the vast majority of undecidability results rely on embeddings of pairs of binary words into matrices. Recently, there has been a 
surge of interest in the identity problem for different classes of matrices [11,12].

In order to prove undecidability of the identity problem with integrality tests, we use an encoding of pairs of words into matrices 
that allows us to simulate a Turing machine and, in particular, allows us to use the undecidability of the halting problem for the 
empty input in a special form. The integrality tests are then used to ensure that a faithful simulation is performed. The integrality 
test can be performed by checking after each matrix multiplication that the resulting matrix is integral.

Finally, note that simulation of a computational system, such as Turing machines, with integral or rational counters is by no 
means new. There are famous models such as the Minsky machine [22] and the Fractran model defined by Conway [10], just to 
mention two. Our model for the simulation, the integral/rational matrices, is significantly different as the “counters” act on matrices.

On the other hand, there is a vast literature on dynamics of loops of form

while (𝑔() = true) do ( ∶= 𝑓 ()),

where  are the variables, 𝑔 is a guard condition that the assignment of  has to satisfy and 𝑓 is an update function that assigns 
new values to  . Often, the variables are represented by 𝑑-dimensional vectors over ℤ, ℚ, ℝ, ... The guard condition often defines a 
polytope, i.e., is a system of linear equalities and inequalities, [26,8,17,16,18], but can be defined by, e.g., Presburger formulas [13]. 
The update function is typically more varied as small tweaks to the function can lead to different results, but is often restricted to 
linear updates, i.e., multiplying by a matrix [6,7,18,20].

Our setting can be seen as a non-deterministic loop of form while (𝑔() = true) do ( ∶= 𝑓1() or  ∶= 𝑓2() or … or
 ∶= 𝑓𝑛()), where  is a 𝑑-dimensional rational matrix, each 𝑓𝑖 is a multiplication by a matrix and 𝑔() returns true if and only 
if every component of  is integral. That is, the loop is of the form

while (𝑀
?
∈ℤ𝑑×𝑑 = true) do (𝑀 ∶=𝑀𝑀1 or 𝑀 ∶=𝑀𝑀2 or … or 𝑀 ∶=𝑀𝑀𝑛).

2 In Post’s original undecidability proof the word 𝑤 consists only of the rules words used in the derivation of a normal system, not the full configurations of the 
2

derivation.
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Recall, that the termination of non-deterministic loops with linear guards and linear updates is undecidable [26].

2. Preliminaries

Let ℕ, ℤ, ℚ be the sets of the natural numbers, the integers and the rational numbers. We denote by ℙ the set of all primes.

A semigroup is a set equipped with an associative binary operation. Let 𝑆 be a semigroup and 𝐺 be a subset of 𝑆 . We say that a 
semigroup 𝑆 is generated by a subset 𝐺 of 𝑆 if each element of 𝑆 can be expressed as a composition of elements of 𝐺. In this case, 
we call 𝐺 a generating set of 𝑆 and denote 𝑆 = ⟨𝐺⟩. Given an alphabet Σ = {𝑎1, 𝑎2, … , 𝑎𝑚}, a finite word 𝑢 is an element of semigroup 
Σ∗. The empty word is denoted by 𝜀. The length of a finite word 𝑢 is denoted by |𝑢| and |𝜀| = 0.

We shall consider semigroups where the generators are 𝑑×𝑑 matrices (over rationals) and the composition operation is the matrix 
multiplication. Denote by 𝑰𝑑 the 𝑑-dimensional identity matrix. If the dimension is clear from context, we denote the identity matrix 
simply by 𝑰 .

Let 𝐺 ⊆𝕂𝑑×𝑑 for some 𝑑 ∈ ℤ+ and 𝕂 ∈ {ℤ, ℚ, ℝ, ℂ}. Let us define the integral set ⟨𝐺⟩ℤ = ⟨𝐺⟩ ∩ℤ𝑑 . That is, ⟨𝐺⟩ℤ consists of all 
elements 𝑀 ∈ ⟨𝐺⟩ such that 𝑀 ∈ℤ𝑑×𝑑 even if generators used are not in ℤ𝑑×𝑑 . It is also possible to define an element to be integral 
with respect to 𝑍 for some 𝑍 ⊆𝐺. That is, 𝑀 ∈ ⟨𝐺⟩ is integral with respect to 𝑍 if 𝑀 =𝑀 ′𝑁 , for some 𝑀 ′ ∈ ⟨𝐺⟩ and 𝑁 ∈𝑍 such 
that 𝑀 ′𝑁 ∈ ℤ𝑑×𝑑 . In Section 6, we discuss a modification of our construction that takes the integrality with respect to a set into 
account.

Let us next prove a simple property regarding a product of primes. This lemma will be useful in upcoming sections when we show 
that an incorrect product of matrices cannot result in a correct product.

Lemma 1. Let 𝑝1, 𝑝2, … , 𝑝𝑛 be odd pairwise different primes, where 𝑛 ≥ 2. Then

𝑛∏
𝑖=1
𝑝𝑖 ≠

𝑛∑
𝑗=1

⎛⎜⎜⎜⎝𝑎𝑗
𝑛∏
𝑖=1
𝑖≠𝑗

𝑝𝑖

⎞⎟⎟⎟⎠ ,
where 𝑎𝑗 ∈ ℕ ⧵ {0} for all 𝑗.

Proof. Assume towards a contradiction that the equality holds. Now

𝑛∑
𝑗=1

⎛⎜⎜⎜⎝𝑎𝑗
𝑛∏
𝑖=1
𝑖≠𝑗

𝑝𝑖

⎞⎟⎟⎟⎠ =
𝑛−1∑
𝑗=1

⎛⎜⎜⎜⎝𝑎𝑗
𝑛∏
𝑖=1
𝑖≠𝑗

𝑝𝑖

⎞⎟⎟⎟⎠+ 𝑎𝑛
𝑛∏
𝑖=1
𝑖≠𝑛

𝑝𝑖 = 𝑝𝑛
𝑛−1∑
𝑗=1

⎛⎜⎜⎜⎝𝑎𝑗
𝑛−1∏
𝑖=1
𝑖≠𝑗

𝑝𝑖

⎞⎟⎟⎟⎠+ 𝑎𝑛
𝑛−1∏
𝑖=1
𝑝𝑖.

By the assumption, the above is equal to 
∏𝑛

𝑖=1 𝑝𝑖. By rearranging terms, we have the equation

(𝑝𝑛 − 𝑎𝑛)
𝑛−1∏
𝑖=1
𝑝𝑖 = 𝑝𝑛

𝑛−1∑
𝑗=1

⎛⎜⎜⎜⎝𝑎𝑗
𝑛−1∏
𝑖=1
𝑖≠𝑗

𝑝𝑖

⎞⎟⎟⎟⎠ .
The right-hand side is positive and divisible by 𝑝𝑛. On the other hand, the left-hand side is divisible by 𝑝𝑛 only if 𝑝𝑛 − 𝑎𝑛 is. The term 
𝑝𝑛 − 𝑎𝑛 cannot be both divisible by 𝑝𝑛 and positive, hence we reach a contradiction. □

3. Halting problem

A Turing machine  (with a final state), TM for short, is a 7-tuple

 = (𝑄,Σ,Γ, 𝛿, 𝑞0,⋆,ℎ) ,

where 𝑄 is a finite set of states, 𝑞0 is the initial state, ℎ ∈𝑄 is the final state, Σ is the input alphabet, Γ is the tape alphabet with 
Σ ⊆ Γ, and 𝛿 is a partial function 𝑄 × Γ →𝑄 × Γ × {𝐿, 𝑅} called the transition function where 𝐿 and 𝑅 are special direction symbols 
and ⋆ ∈ Γ is the blank symbol. The TM operates on a one-way infinite tape.

Note that the TM’s are deterministic, however, we allow 𝛿 to be a partial function, i.e., it may be undefined for some values 
(𝑞, 𝑎) ∈𝑄 ×Γ. Therefore, if 𝛿(𝑞, 𝑎) is defined, it is unique. Each transition of a TM  is of the form 𝛿(𝑝, 𝑎) = (𝑞, 𝑏, 𝐷). Here 𝐷 refers to 
“direction”. The values 𝐿 and 𝑅 refer to “left move” and “right move”, respectively. As the tape is one-way infinite, we can assume 
that the leftmost cell on the tape is ⊳ and 𝛿(𝑞, ⊳) = (𝑞′, ⊳, 𝑅) for all 𝑞 ∈𝑄, and furthermore, that no other production rule writes ⊳
on the tape.

A configuration of the TM , at some point in its computation, is the current state of the machine and the content of its tape. 
Let the content of the tape be ⊳𝑢𝑎𝑣 ⋆ ⋆ ⋯ where 𝑢, 𝑣 ∈ Γ∗, assume that  is in state 𝑞 reading the symbol 𝑎 ∈ Γ and assume 
further that ⊳𝑢𝑎𝑣 is the shortest word containing all nonblank letters of the tape. Then the configuration represented by the word 
3

⊳𝑢(𝑞, 𝑎)𝑣 ∈ Γ∗(𝑄 × Γ)Γ∗ where 𝑣 is either 𝜀 or ends with a nonblank letter.
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A step in a computation or a move 𝛾 ⊢ 𝛾 ′ yielding from one configuration 𝛾 of  to the next one 𝛾 ′ is defined in the usual 
way. We define here only the right-move, the left-move definition is analogous. Let the configuration be ⊳𝑢(𝑞, 𝑎)𝑣 and assume that 
𝛿(𝑞, 𝑎) = (𝑝, 𝑏, 𝑅). Then

⊳𝑢(𝑞, 𝑎)𝑣 ⊢

{
⊳𝑢𝑏(𝑝,⋆), if 𝑣 = 𝜀,
⊳𝑢𝑏(𝑝, 𝑐)𝑣′, if 𝑣 = 𝑐𝑣′ and 𝑐 ∈ Γ.

As the TM’s are deterministic and since 𝛿 is a (partial) function, for each configuration 𝛾 = ⊳𝑢(𝑞, 𝑎)𝑣, there exists at most one 
configuration 𝛾 ′ such that 𝛾 ⊢ 𝛾 ′.

Let ⊢∗


or ⊢∗, for short, be the reflexive and transitive closure of the relation ⊢. Thus 𝛾 ⊢∗ 𝛾 ′ if and only if there exists a finite 
sequence 𝛾 = 𝛾1 ⊢ 𝛾2 ⊢⋯ ⊢ 𝛾𝑘 = 𝛾 ′ of configurations for some 𝑘 ≥ 1 including the possibility that 𝛾 = 𝛾 ′. Such a sequence is called a 
computation of . It is an accepting computation if the state in 𝛾 ′ is the unique final state ℎ.

A seminal result in computability theory states that the halting problem of Turing machines on the empty input is undecidable; 
see, e.g., [21].

Theorem 2. It is undecidable whether a given  TM halts on the empty input. That is, whether (𝑞0, ⊳⋆) ⊢∗ ⊳𝑢(ℎ, 𝑎)𝑣, where 𝑢, 𝑣 ∈ Γ∗, 
𝑎 ∈ Γ, holds or not.

It is well-known that there is a myriad of ways to alter the definition of Turing machines or their structure and retain the 
undecidability of the halting problem. We shall modify any TM  to an equivalent TM ′ as follows:

First, we may use the second marker (⊲) to fully surround the non-empty portions of the infinite tape and additional states that 
move this marker if extra space is required by the machine. More precisely, when the space needs to be created on the right side of 
the tape, the right-marker needs to be moved one cell to the right. That is, if the machine is in state 𝑝, the current symbol read is the 
right-marker ⊲ and there is a right-move for 𝛿(𝑝, ⋆) = (𝑞, 𝑏, 𝑅), then we add a new state 𝑝⊲ and transitions

𝛿(𝑝,⊲) = (𝑝⊲,⋆,𝑅) and 𝛿(𝑝⊲,⋆) = (𝑝,⊲,𝐿). (1)

Similarly, we need to remove extra ⋆ symbols between the markers. First of all, the extra ⋆ symbols are detected by adding a 
check for all transitions 𝛿(𝑝, 𝑎) = (𝑞, ⋆, 𝐷) (except for those that were added for adding extra space). If it is then this extra ⋆ is shifted 
by the right-border marker ⊲, the machine is in a new state 𝑝 reading ⊲ and we add transitions

𝛿(𝑝,⊲) = (𝑝′,⋆,𝐿) and 𝛿(𝑝′,⋆) = (𝑝′′,⊲,𝐿), (2)

for new states 𝑝′ and 𝑝′′ and then the machine moves back to where it printed the extra ⋆ and reads the border marker next to it.
Secondly, we may assume that the first step of the TM is to write ⊳ and ⊲ on the tape. We can further assume that the tape is 

cleared before meeting the final state ℎ, that is the problem of halting is to decide whether or not (𝑞0 , ⋆) ⊢∗ (ℎ, ⋆).
It is obvious that the markers may be missing at some particular point of computation, but it is clear that (𝑞0, ⋆) ⊢∗


⊳𝑢(𝑞, 𝑎)𝑣

if and only if ⊳(𝑞0, ⋆)⊲ ⊢∗
′ ⊳𝑢(𝑞, 𝑎)𝑣⊲. Let us note that the above changes (1) and (2) are done in our matrix simulation with one 

single matrix in each case and the markers are never missing.

Theorem 3. Let  be a Turing machine with delimiters, ⊳ and ⊲, surrounding non-blank tape content and where the initial configuration 
𝑐 = (𝑞0, ⋆). It is undecidable whether the machine reaches configuration 𝑐 again.

4. Matrix reachability from Turing machines

In this section, we simulate a Turing machine  using a matrix semigroup. That is, we will construct a set 𝛿 =
{𝑀1, 𝑀2, … , 𝑀𝑘} ⊆ℚ3×3 that simulates  when the integrality test is performed after each multiplication.

The main idea in an encoding of the computation of a Turing machine is to cut the configuration 𝑢(𝑞, 𝑎)𝑣 into two words 𝑢(𝑞, 𝑎)
and 𝑣, embed the pair of words into a matrix, and then to use specific matrices to move one symbol from one word to another.

It is worth highlighting that commonly an 𝑛-ary representation of words is done using a simple encoding of letters. Assume that 
the alphabet is binary, i.e., let 𝐴 = {𝑎, 𝑏} and 𝑤 ∈𝐴∗. Let 𝜏 ∶𝐴 →ℕ be defined as 𝜏(𝑎) = 1 and 𝜏(𝑏) = 2. Then 𝜎′ ∶𝐴∗ → ℕ is defined 
by 𝜎′(𝑤1𝑤2⋯ 𝑤𝑘) =

∑𝑘

𝑖=1 𝜏(𝑤𝑖) ⋅ 3
𝑛−𝑖. See, for example, [24,14,4]. We use a different encoding that allows us to construct matrices 

with smaller elements.

Let  = (𝑄, Σ, Γ, 𝛿, 𝑞0, ⋆, ℎ) be a Turing machine defined in the previous section. Let 𝐶 = (𝑄 ×Γ) ∪Γ ∪{#} be the set of symbols of 
a configuration, where # is a new symbol. Let 𝑚 = |𝐶| = |𝑄| ⋅ |Γ| + |Γ| +1 and 𝑝1, 𝑝2, … , 𝑝𝑚 ∈ ℙ ⧵ {2}. Let 𝜑∶ 𝐶 →ℕ be an encoding 
defined by

𝜑(𝑎𝑖) =
𝑚∏
𝑗=1
𝑗≠𝑖

𝑝𝑗 ,

for all 𝑖 = 1, … , 𝑚. That is, for any distinct 𝑎, 𝑎′ ∈ 𝐶 , gcd(𝑎, 𝑎′) ≠ 1. Denote by 𝜑(𝐶) = {𝜑(𝑎) ∣ 𝑎 ∈ 𝐶}. Let 𝑛 > 𝑝1⋯ 𝑝𝑚 and let 
4

𝜎 ∶ 𝐶∗ → ℕ be the injective mapping using the 𝑛-ary representation. That is, we associate each letter of 𝜑(𝐶) with a unique integer 
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in {1, … , 𝑛 − 1} and for a word 𝑤1𝑤2⋯ 𝑤𝑘 ∈ 𝐶∗, 𝜎(𝑤1𝑤2⋯ 𝑤𝑘) = 𝑛𝑘−1𝜑(𝑤1) + 𝑛𝑘−2𝜑(𝑤2) +⋯ + 𝑛0𝜑(𝑤𝑘). For the below, note that 
𝜎(𝑢𝑣) = 𝑛|𝑣|𝜎(𝑢) + 𝜎(𝑣), for all 𝑢, 𝑣 ∈ 𝐶∗ and especially that 𝜎((𝑐𝑣)𝑅) = 𝑛𝜎(𝑣𝑅) + 𝜎(𝑐) for all 𝑣 ∈ 𝐶∗ and 𝑐 ∈ 𝐶 .

Let 𝛾 be the mapping

𝛾(𝑢, 𝑣) =
⎛⎜⎜⎝
𝑛|𝑢| 0 0
0 𝑛|𝑣| 0
𝜎(𝑢) 𝜎(𝑣) 1

⎞⎟⎟⎠ . (3)

Let 𝑢(𝑞, 𝑎)𝑣, where ⊳ is the first symbol and ⊲ is the last symbol, be the current configuration of the deterministic TM . We 
represent this by

𝛾(𝑢(𝑞, 𝑎),#𝑣𝑅) =
⎛⎜⎜⎝
𝑛|𝑢(𝑞,𝑎)| 0 0

0 𝑛|𝑣#| 0
𝜎(𝑢(𝑞, 𝑎)) 𝜎(#𝑣𝑅) 1

⎞⎟⎟⎠ . (4)

Note that # is a new marker symbol to ensure the element (3, 2) of our matrices is nonzero. Also note that the element (3, 1) is never 
zero as it has 𝜎(𝑞, 𝑎) for some 𝑞 ∈𝑄 and 𝑎 ∈ Γ.

We are ready to define the set of matrices 𝛿 . We begin with transitions added by applying (1) or (2) when modifying the TM, 
we study these cases separately. Consider a transition 𝛿(𝑞, 𝑎) = (𝑝, 𝑏, 𝑅) of , we add matrix

𝑀(𝑞,𝑎),𝑐 =
⎛⎜⎜⎝

𝑛 0 0
0 𝑛−1 0

−𝑛𝜎((𝑞, 𝑎)) + 𝜎(𝑏(𝑝, 𝑐)) −𝑛−1𝜎(𝑐) 1

⎞⎟⎟⎠ ,
for every 𝑐 ∈ Γ to 𝛿 . Note that  is deterministic, so the state 𝑝 and symbols 𝑏 are uniquely determined by (𝑞, 𝑎). Similarly, a 
transition 𝛿(𝑞, 𝑎) = (𝑝, 𝑏, 𝐿) is represented by a matrix

𝑀(𝑞,𝑎),𝑐 =
⎛⎜⎜⎝

𝑛−1 0 0
0 𝑛 0

−𝑛−1𝜎(𝑐(𝑞, 𝑎)) + 𝜎((𝑝, 𝑐)) 𝜎(𝑏) 1

⎞⎟⎟⎠ ,
for every 𝑐 ∈ Γ which is also added to 𝛿 . Then for the transitions added when applying (1) (originally 𝛿(𝑝, ⋆) = (𝑞, 𝑏, 𝑅)) we add

𝑀(𝑝,⊲),⊲ =
⎛⎜⎜⎝

𝑛 0 0
0 1 0

−𝑛𝜎((𝑝,⊲)) + 𝜎(𝑏(𝑞,⊲)) 0 1

⎞⎟⎟⎠ . (5)

Similarly, the space removal in (2) is performed by a one special left-move matrix

𝑀(𝑝,⊲),⋆ =
⎛⎜⎜⎝

𝑛−1 0 0
0 1 0

−𝑛−1𝜎(⋆(𝑝,⊲)) + 𝜎((𝑝′,⋆)) 0 1

⎞⎟⎟⎠ ,
and left-move matrices for 𝑐 ∈ Γ

𝑀(𝑝′ ,⋆),𝑐 =
⎛⎜⎜⎝

𝑛−1 0 0
0 𝑛 0

−𝑛−1𝜎(𝑐(𝑝′,⋆)) + 𝜎((𝑝′′, 𝑐)) 𝜎(⊲) 1

⎞⎟⎟⎠ .
Note also, that there exists at most one matrix in the set 𝑀𝛿 (moving either to the left or to the right) for all combinations of 

(𝑞, 𝑎) ∈𝑄 × Γ and 𝑐 ∈ Γ as the TM  is deterministic.

Now, say the configuration of the Turing machine is 𝑢(𝑞, 𝑎)𝑐𝑣 and that there exists a (unique) transition 𝛿(𝑞, 𝑎) = (𝑝, 𝑏, 𝑅). The 
move of the TM  is represented by a product of the two matrices

𝛾(𝑢(𝑞, 𝑎),#(𝑐𝑣)𝑅)𝑀(𝑞,𝑎),𝑐

=
⎛⎜⎜⎝

𝑛|𝑢(𝑞,𝑎)|+1 0 0
0 𝑛|#𝑐𝑣|−1 0

𝑛𝜎(𝑢(𝑞, 𝑎)) − 𝑛𝜎((𝑞, 𝑎)) + 𝜎(𝑏(𝑝, 𝑐)) 𝑛−1𝜎(#(𝑐𝑣)𝑅) − 𝑛−1𝜎(𝑐) 1

⎞⎟⎟⎠
=
⎛⎜⎜⎝
𝑛|𝑢𝑏(𝑝,𝑎)| 0 0

0 𝑛|#𝑣| 0
𝜎(𝑢𝑏(𝑝, 𝑐)) 𝜎(#𝑣𝑅) 1

⎞⎟⎟⎠
= 𝛾(𝑢𝑏(𝑝, 𝑐),#𝑣𝑅),

since

𝑛𝜎(𝑢(𝑞, 𝑎)) − 𝑛𝜎((𝑞, 𝑎)) + 𝜎(𝑏(𝑝, 𝑐))
5

= 𝑛2𝜎(𝑢) + 𝑛𝜎((𝑞, 𝑎)) − 𝑛𝜎((𝑞, 𝑎)) + 𝜎(𝑏(𝑝, 𝑐)) = 𝑛|𝑏(𝑝,𝑐)|𝜎(𝑢) + 𝜎(𝑏(𝑝, 𝑐))
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Fig. 1. An illustration of a transition of a TM and the corresponding encoding changes.

= 𝜎(𝑢𝑏(𝑝, 𝑐))

and

𝑛−1𝜎(#(𝑐𝑣)𝑅) − 𝑛−1𝜎(𝑐) = 𝑛−1(𝑛𝜎(#𝑣𝑅) + 𝜎(𝑐)) − 𝑛−1𝜎(𝑐) = 𝜎(#𝑣𝑅).

Similarly, we can show that if the configuration of the Turing machine is 𝑢𝑐(𝑞, 𝑎)𝑣, using the unique transition 𝛿(𝑞, 𝑎) = (𝑝, 𝑏, 𝐿) is 
represented by a product of the two matrices

𝛾(𝑢𝑐(𝑞, 𝑎),#𝑣𝑅))𝑀(𝑞,𝑎),𝑐 = 𝛾(𝑢(𝑝, 𝑐), (#(𝑏𝑣)𝑅).

For the sake of readability, let us define a mapping 𝜓 ∶ ℚ3×3 →ℚ4 by setting

𝜓(𝑀) = 𝜓
⎛⎜⎜⎝
⎛⎜⎜⎝
𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 𝑚23
𝑚31 𝑚32 𝑚33

⎞⎟⎟⎠
⎞⎟⎟⎠ = (𝑚11,𝑚31,𝑚22,𝑚32).

We further define

𝜓(𝑀) ⋅𝜓(𝑁) = (𝑚11𝑛11,𝑚31𝑛11 + 𝑛31,𝑚22𝑛22,𝑚32𝑛22 + 𝑛32).

When restricted to matrices 𝛾(𝑢(𝑞, 𝑎), 𝑣𝑅) and 𝑀(𝑞,𝑎),𝑐 as defined above, the mapping is an isomorphism. To further simplify the 
notation, we will denote 𝜓(𝛾(𝑢(𝑞, 𝑎), 𝑣𝑅)) by 𝜓(𝑢(𝑞, 𝑎), 𝑣𝑅).

Example 4. Let ⊳𝑎𝑏(𝑞, 𝑎)𝑏⊲ be a configuration of a TM and let us simulate transition 𝛿(𝑞, 𝑎) = (𝑝, 𝑎, 𝑅). The subsequent configuration 
is ⊳𝑎𝑏𝑎(𝑞, 𝑏)⊲. The transition of the TM and the changes in the coefficients in the encoding are depicted in Fig. 1.

Let us present a few observations next. Firstly, the mapping 𝛾 is into ℕ3×3. Secondly, all matrices 𝑀(𝑞,𝑎),𝑐 are rational, regardless 
of whether they correspond to the head moving left or right. If a configuration matrix is multiplied by the “correct” matrix, then 
resulting matrix is also integral, and even in ℕ3×3. On the other hand, multiplying by an “incorrect” matrix does not guarantee that 
the resulting matrix is not integral. Let us consider this in details:

For the right transitions, let 𝜓(𝑢(𝑞, 𝑎), #(𝑐𝑣)𝑅) be a configuration and 𝜓(𝑀(𝑞′,𝑎′),𝑑 ) correspond to a transition 𝛿(𝑞′, 𝑎′) = (𝑝, 𝑏, 𝑅). 
The resulting vector is(

𝑛|𝑢(𝑞,𝑎)|, 𝜎(𝑢(𝑞, 𝑎)), 𝑛|#𝑐𝑣|, 𝜎(#(𝑐𝑣)𝑅)) ⋅ (𝑛,−𝑛𝜎((𝑞′, 𝑎′)) + 𝜎(𝑏(𝑝, 𝑑)), 𝑛−1,−𝑛−1𝜎(𝑑))
=
(
𝑛|𝑢(𝑞,𝑎)+1|, 𝑛𝜎(𝑢(𝑞, 𝑎)) − 𝑛𝜎((𝑞′, 𝑎′)) + 𝜎(𝑏(𝑝, 𝑑)), 𝑛|#𝑣|, 𝑛−1𝜎(#(𝑐𝑣)𝑅) − 𝑛−1𝜎(𝑑)) (6)

and it is integral as long as 𝑐 = 𝑑 by the last element. In other words, the pair (𝑞′, 𝑎′) does not have to match the pair (𝑞, 𝑎) of the 
configuration to ensure that the product is integral. In this case, 𝜎((𝑞, 𝑎)) − 𝜎((𝑞′, 𝑎′)) ≠ 0 will be in the coefficient of 𝑛 in the second 
component of the 𝜓 mapping. It remains to show that this remainder cannot be removed by further applications of “incorrect” 
6

matrices. This is proven in the upcoming Lemma 5.



Theoretical Computer Science 1005 (2024) 114637V. Halava and R. Niskanen

Next we consider left transitions as this case is significantly simpler. Indeed, when 𝜓(𝑢𝑐(𝑞, 𝑎), #𝑣𝑅) is multiplied by 𝜓(𝑀(𝑞′ ,𝑎′),𝑑 )
corresponding to 𝛿(𝑞′, 𝑎′) = (𝑝, 𝑏, 𝐿), we have(

𝑛|𝑢𝑐(𝑞,𝑎)|, 𝜎(𝑢𝑐(𝑞, 𝑎)), 𝑛|#𝑣|, 𝜎(#𝑣𝑅)) ⋅ (𝑛−1,−𝑛−1𝜎(𝑑(𝑞′, 𝑎′)) + 𝜎((𝑝, 𝑑)), 𝑛, 𝜎(𝑏))
=
(
𝑛|𝑢(𝑝,𝑑)|, 𝑛−1𝜎(𝑢𝑐(𝑞, 𝑎)) − 𝑛−1𝜎(𝑑(𝑞′, 𝑎′)) + 𝜎((𝑝, 𝑑)), 𝑛|#𝑏𝑣|, 𝑛𝜎(#𝑣𝑅) + 𝜎(𝑏)) , (7)

where the second component is

𝑛𝜎(𝑢) + 𝜎(𝑐) + 𝜎((𝑝, 𝑑)) − 𝜎(𝑑) + 𝑛−1(𝜎((𝑞, 𝑎)) − 𝜎((𝑞′, 𝑎′))). (8)

The component remains integral only if (𝑞, 𝑎) = (𝑞′, 𝑎′). Note that at this step, there is no requirement that 𝑑 = 𝑐 and, in fact, 𝑑 = 𝑐
implies that the correct matrix was applied. So the matrix may remain integral, with incorrect matrices, if (𝑞, 𝑎) = (𝑞′, 𝑎′) and 𝑑 ≠ 𝑐.

Let us consider the above case of multiplying by a wrong matrix with transition to the left a bit further. It turns out that the 
matrix with 𝑑 ≠ 𝑐 was used, then the next matrix in the product has to correspond to a move of the head to the right. Indeed, assume 
that we are in the case (7) with the second component integral and according to (8) it equals to 𝑛𝜎(𝑢) + 𝜎(𝑐) + 𝜎((𝑝, 𝑑)) − 𝜎(𝑑) =
𝜎(𝑢(𝑝, 𝑑)) + 𝜎(𝑐) − 𝜎(𝑑). Assume further that the vector is multiplied by a vector corresponding to a transition 𝛿(𝑟, 𝑒) = (𝑝′, 𝑏′, 𝐿), i.e., 
by the vector ((𝑛−1, −𝑛−1𝜎(𝑓 (𝑟, 𝑒)) + 𝜎((𝑝′, 𝑑′)), 𝑛, 𝜎(𝑏′)). As previously, the second component becomes

𝑛−1(𝜎(𝑢(𝑝, 𝑑)) + 𝜎(𝑐) − 𝜎(𝑑)) − 𝑛−1𝜎(𝑓 (𝑟, 𝑒)) + 𝜎((𝑝′, 𝑑′))

and this is an integer for some (𝑟, 𝑒) ∈𝑄 × Γ if and only if 𝜎(𝑐) + 𝜎((𝑝, 𝑑)) − 𝜎(𝑑) − 𝜎((𝑟, 𝑒)) = 0. This is not possible due to the way 
embedding 𝜑 is defined. Denote 𝜎(𝑐) = 𝜑(𝑎𝑖), 𝜎((𝑝, 𝑑)) = 𝜑(𝑎𝑗 ), 𝜎(𝑑) = 𝜑(𝑎𝑘) and 𝜎((𝑟, 𝑒)) = 𝜑(𝑎𝓁), where 𝑖, 𝑗, 𝑘 and 𝓁 are distinct. 
(Recall, that if 𝑗 = 𝓁, then (𝑝, 𝑑) = (𝑟, 𝑒) and the sum is non-zero as 𝑑 ≠ 𝑐.) Now,

𝜑(𝑎𝑖) +𝜑(𝑎𝑗 ) = 𝜑(𝑎𝑘) +𝜑(𝑎𝓁)

⇔
𝑚∏
𝑥=1
𝑥≠𝑖

𝑝𝑥 +
𝑚∏
𝑥=1
𝑥≠𝑗

𝑝𝑥 =
𝑚∏
𝑥=1
𝑥≠𝑘

𝑝𝑥 +
𝑚∏
𝑥=1
𝑥≠𝓁

𝑝𝑥

⇔
𝑝1⋯𝑝𝑚

𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝓁
(𝑝𝑗𝑝𝑘𝑝𝓁) +

𝑝1⋯𝑝𝑚

𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝓁
(𝑝𝑖𝑝𝑘𝑝𝓁) =

𝑝1⋯𝑝𝑚

𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝓁
(𝑝𝑖𝑝𝑗𝑝𝓁) +

𝑝1⋯𝑝𝑚

𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝓁
(𝑝𝑖𝑝𝑗𝑝𝑘)

⇔ 𝑝𝑗𝑝𝑘𝑝𝓁 + 𝑝𝑖𝑝𝑘𝑝𝓁 = 𝑝𝑖𝑝𝑗𝑝𝓁 + 𝑝𝑖𝑝𝑗𝑝𝑘

⇔ 𝑝𝑘𝑝𝓁(𝑝𝑖 + 𝑝𝑗 ) = 𝑝𝑖𝑝𝑗 (𝑝𝑘 + 𝑝𝓁),

and thus 𝑝𝑘𝑝𝓁 = (𝑝𝑘 + 𝑝𝓁) and 𝑝𝑖𝑝𝑗 = (𝑝𝑖 + 𝑝𝑗 ). It is trivial that 𝑝𝑘𝑝𝓁 ≠ (𝑝𝑘 + 𝑝𝓁). Indeed, 𝑝𝑘𝑝𝓁 is odd, being a product of two odd 
primes, while 𝑝𝑘 + 𝑝𝓁 is even, being a sum of two odd primes. Alternatively, the equation does not hold as it is a special case of 
Lemma 1.

So we have showed that in both directions it is possible to get an integral matrix with an incorrect transition matrix, but if an 
incorrect matrix with transition to the left is applied, then the next matrix in the product has to be to the right to keep the matrix 
integral.

Next we shall show that if the configuration matrix is multiplied by a wrong matrix, it creates an integer that cannot be removed 
and thus leads to a rational number if the head is moved beyond this point. This means that, in a way, a multiplication by an incorrect 
matrix results in a coefficient that cannot be removed. Thus, this makes the tape content on the other side inaccessible.

Before formally proving the above, let us define a useful notation. We say that matrix 𝑀 ∈ℕ3×3 is valid if 𝑀 = 𝛾(𝑢(𝑞, 𝑎), #𝑣𝑅) for 
some configuration (𝑢(𝑞, 𝑎), 𝑣) of the TM . This means that the words 𝑢 and 𝑣 do not contain symbols from the set 𝑄 ×Γ. Note that 
this does not imply that (𝑢(𝑞, 𝑎), 𝑣) can be reached by the TM. Analogously, we say that 𝜓(𝑢(𝑞, 𝑎), #𝑣𝑅) is valid if it corresponds to a 
valid configuration of .

Let us consider the step where the matrix becomes invalid as in our previous considerations. For that assume that 𝜓(𝑀) is valid 
and 𝜓(𝑀𝑁) is invalid for some matrix 𝑁 ∈𝑀𝛿 , but 𝜓(𝑀𝑁) ∈ ℕ4. Since by our assumption 𝜓(𝑀𝑁) ∈ ℕ4, the component that 
invalidates the vector is in the second component by our considerations in (7) and (6). Namely, if 𝑁 simulates a move to the right, 
then we have the case in (6) with 𝑐 = 𝑑, where the element in the second component is

𝜎(𝑢(𝑞, 𝑎))𝑛− 𝜎((𝑞′, 𝑎′))𝑛+ 𝜎(𝑏(𝑝, 𝑐))

for some (𝑞, 𝑎), (𝑞′, 𝑎′), 𝑏, (𝑝, 𝑐) ∈ 𝐶 and 𝜎((𝑞, 𝑎))𝑛 − 𝜎((𝑞′, 𝑎′))𝑛 + 𝜎(𝑏(𝑝, 𝑐)) ≠ 𝜎(𝑓 (𝑟, 𝑒)) for all 𝑓, (𝑟, 𝑒) ∈ 𝐶 . Necessarily, (𝑞, 𝑎) ≠ (𝑞′, 𝑎′), 
and actually, the condition is that

𝜎((𝑞, 𝑎)) − 𝜎((𝑞′, 𝑎′)) + 𝜎(𝑏) ≠ 𝜎(𝑓 )

for all 𝑓 ∈ Γ.

Similarly, if 𝑁 simulates a move to the left as in (7), then the element in the second component is as in (8) for some 
𝑑, 𝑐, (𝑞, 𝑎), (𝑞′, 𝑎′), (𝑝, 𝑑) ∈ 𝐶 and 𝑢 ∈ 𝐶+. As 𝜓(𝑀𝑁) ∈ ℕ4 holds, then (𝑞, 𝑎) = (𝑞′, 𝑎′) which implies that 𝜎(𝑐) − 𝜎(𝑑) + 𝜎((𝑝, 𝑑)) ≠
7

𝜎((𝑟, 𝑒)) for all (𝑟, 𝑒) ∈ 𝐶 .
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The following lemma shows that once a matrix product becomes invalid it cannot be transformed into a valid one with matrices 
in 𝑀𝛿 .

Lemma 5. Let 𝜓(𝑀) be valid, i.e., 𝑀 = 𝛾(𝑢(𝑞, 𝑎), #𝑣𝑅) for some configuration. Let 𝑁 ∈𝛿 such that 𝜓(𝑀𝑁) ∈ ℕ4 is no longer valid. 
Then there is no sequence 𝑀𝑖1

, 𝑀𝑖2
, … , 𝑀𝑖𝑠

∈𝛿 such that 𝜓(𝑀𝑁𝑀𝑖1
𝑀𝑖2

⋯ 𝑀𝑖𝑠
) is valid.

Proof. Let us assume that there exists a sequence 𝑀𝑖1
, 𝑀𝑖2

, … , 𝑀𝑖𝑠
∈𝛿 such that 𝜓(𝑀𝑁𝑀𝑖1

𝑀𝑖2
⋯ 𝑀𝑖𝑠

) is valid and moreover 
that 𝑠 is the smallest index such that the product is valid. Assume first that the final matrix, 𝑀𝑖𝑠

, corresponds to the head moving to 
the right

𝜓(𝑀𝑖𝑠
) =

(
𝑛,−𝑛𝜎((𝑞′′, 𝑎′′)) + 𝜎(𝑏′′(𝑝′′, 𝑐′′)), 𝑛−1,−𝑛−1𝜎(𝑐′′)

)
and

𝜓(𝑀𝑁𝑀𝑖1
𝑀𝑖2

⋯𝑀𝑖𝑠−1
) =

(
𝑛|𝑢|, |𝑢|∑

𝑗=0
𝛼𝑗𝑛

𝑗 , 𝑛|#𝑣|, 𝜎(#𝑣𝑅)
)
,

where each 𝛼𝑗 is a sum of images of letters under 𝜎 with both positive and negative coefficients. Note that by our assumption on the 
minimality of the sequence, at least one 𝛼𝑗 is not an image of a letter in Γ under 𝜎 for 𝑗 = 1, … , 𝑛 or 𝛼0 is not an image of a letter in 
𝑄 × Γ. After multiplying 𝜓(𝑀𝑁𝑀𝑖1

𝑀𝑖2
⋯ 𝑀𝑖𝑠−1

) with the final matrix 𝑀𝑠, we have(
𝑛|𝑢|, |𝑢|∑

𝑗=0
𝛼𝑗𝑛

𝑗 , 𝑛|#𝑣|, 𝜎(#𝑣𝑅)
)

⋅
(
𝑛,−𝑛𝜎((𝑞′′, 𝑎′′)) + 𝜎(𝑏′′(𝑝′′, 𝑐′′)), 𝑛−1,−𝑛−1𝜎(𝑐′′)

)
=

(
𝑛|𝑢𝑥|+1, |𝑢|∑

𝑗=0
𝛼𝑗𝑛

𝑗+1 − 𝑛𝜎((𝑞′′, 𝑎′′)) + 𝜎(𝑏′′(𝑝′′, 𝑐′′)), 𝑛|#𝑣|−1, 𝑛−1(𝜎(#𝑣𝑅) − 𝜎(𝑐′′))
)
.

(9)

Since the product matrix is valid, we observe that, for 𝑗 = 2, … , |𝑢|, each 𝛼𝑗 = 𝜎(𝑎𝓁𝑗 ) for some 𝑎𝓁𝑗 ∈ Γ. The multiplication can only 
affect 𝛼0 directly and 𝛼1 indirectly via carries.

There are two cases to consider. In the first case 𝛼0 is 𝜎(𝑒) for some 𝑒 ∈𝑄 ×Γ which implies that 𝛼1 is not an image of a letter. In 
this case, for the product to be valid,

𝜎(𝑒) − 𝜎((𝑞′′, 𝑎′′)) + 𝜎(𝑏′′) = 𝜎(𝑓 ) + 𝑦𝑛

for some 𝑓 ∈ Γ and 𝑦 ∈ℤ is such that 𝛼1 + 𝑦 = 𝜎(𝑔) for some 𝑔 ∈ Γ, must hold. This is not true due to the definition of 𝑛. Indeed, the 
largest image under 𝜑 is at most 𝑛3 . Hence 𝑦 = 0 and there are no carries. Thus 𝛼1 prevents the result from being a valid matrix.

In the second case, 𝛼0 does not correspond to an image of a letter from 𝑄 × Γ under 𝜎. Our goal is to show that there does not 
exist some 𝑑 ∈ Γ such that

𝛼0 − 𝜎((𝑞′′, 𝑎′′)) + 𝜎(𝑏′′) = 𝜎(𝑑).

We prove this as a separate lemma, Lemma 6, after this proof.

The case where matrix 𝑀𝑖𝑠
corresponds to the head moving to the left is proven in analogous way. Let 𝑀𝑖𝑠

correspond to the 
head moving to the left, i.e.,

𝜓(𝑀𝑖𝑠
) =

(
𝑛−1,−𝑛−1𝜎(𝑐′′(𝑞′′, 𝑎′′)) + 𝜎((𝑝′′, 𝑐′′)), 𝑛, 𝜎(𝑏′′)

)
and

𝜓(𝑀𝑁𝑀𝑖1
𝑀𝑖2

⋯𝑀𝑖𝑠−1
) =

(
𝑛|𝑢|, |𝑢|∑

𝑗=0
𝛼𝑗𝑛

𝑗 , 𝑛|#𝑣|, 𝜎(#𝑣𝑅)
)
,

where each 𝛼𝑗 is a sum images of letters under 𝜎 with both positive and negative coefficients. Again, we multiply the latter matrix 
by the former and obtain(

𝑛|𝑢|−1, |𝑢|∑
𝑗=0
𝛼𝑗𝑛

𝑗−1 − 𝑛−1𝜎(𝑐′′(𝑞′′, 𝑎′′)) + 𝜎((𝑝′′, 𝑐′′)), 𝑛|#𝑣|+1, 𝜎(#(𝑏′′𝑣)𝑅)
)
.

There are two subcases to consider. Either 𝛼0 = 𝜎((𝑞′′, 𝑎′′)) or 𝛼0 is not an image of a letter under 𝜎. The first subcase implies that 
𝛼𝑗 is not an image of a letter under 𝜎 for some 𝑗 = 1, 2, … , |𝑢|. That is, the analogous considerations as above show that these two 
coefficients do not become images of some letter under 𝜎.
8

Hence there is no sequence 𝑀𝑖1
, 𝑀𝑖2

, … , 𝑀𝑖𝑠
such that 𝑀𝑁𝑀𝑖1

𝑀𝑖2
⋯ 𝑀𝑖𝑠

is a valid configuration. □
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Lemma 6. Let 𝛼 =
∑𝑟

𝑖=1 𝑧𝑖𝜎(𝑠𝑖), where 𝑧𝑖 ∈ℤ and 𝑠𝑖 ∈ 𝐶 . Let (𝑞, 𝑎) ∈𝑄 × Γ and let 𝑏, 𝑐 ∈ Γ. The equation

𝛼 − 𝜎((𝑞, 𝑎)) + 𝜎(𝑏) = 𝜎(𝑐)

does not hold.

Proof. Assume the contrary. That is,

𝛼 − 𝜎((𝑞, 𝑎)) + 𝜎(𝑏) = 𝜎(𝑐) (10)

holds. Let  ⊆ 𝐶 be the set of all letters that appear in 𝛼, and let us partition 𝛼 into two sets, 𝛼+ and 𝛼−, where the coefficients of 
letters are positive or negative, respectively. That is,

𝛼+ = {(𝑎𝑖, 𝑧𝑖) ∣ 𝑎𝑖 ∈  and 𝑧𝑖 ∈ℤ, 𝑧𝑖 > 0};

𝛼− = {(𝑎𝑖, 𝑧𝑖) ∣ 𝑎𝑖 ∈  and 𝑧𝑖 ∈ℤ, 𝑧𝑖 < 0}.

It is clear that if (𝑎𝑖, 𝑧𝑖) ∈ 𝛼+, then (𝑎𝑖, 𝑧) ∉ 𝛼− (for any 𝑧 ∈ ℤ) and vice versa. Now 𝛼 =
∑

(𝑠,𝑥)∈𝛼+ 𝑥 ⋅ 𝜎(𝑠) +
∑

(𝑡,𝑦)∈𝛼− 𝑦 ⋅ 𝜎(𝑡). We can 
rewrite (10) as∑

(𝑠,𝑥)∈𝛼+
𝑥 ⋅ 𝜎(𝑠) + 𝜎(𝑏) = −

∑
(𝑡,𝑦)∈𝛼−

𝑦 ⋅ 𝜎(𝑡) + 𝜎(𝑐) + 𝜎((𝑞, 𝑎)). (11)

Let 𝜎((𝑞, 𝑎)) =
∏𝑚

𝑗=1
𝑗≠𝑘1

𝑝𝑗 , 𝜎(𝑏) =
∏𝑚

𝑗=1
𝑗≠𝑘2

𝑝𝑗 and 𝜎(𝑐) =
∏𝑚

𝑗=1
𝑗≠𝑘1

𝑝𝑗 . Without loss of generality, we assume that 𝑘1, 𝑘2, 𝑘3 ∉ . If this is not 

the case, then some coefficients of terms of 𝛼 are different but the same reasoning applies. Let us next define the sets of indexes 
of letters appearing in 𝛼+ and 𝛼−, together with 𝑘1, 𝑘2 and 𝑘3. That is, 𝑃+ = {𝑖𝑗 ∣ (𝑠𝑖𝑗 , 𝑧𝑖𝑗 ) ∈ 𝛼

+} ∪ {𝑘1} and 𝑃− = {𝑖𝑗 ∣ (𝑡𝑖𝑗 , 𝑦𝑖𝑗 ) ∈
𝛼−} ∪ {𝑘2, 𝑘3}. Equation (11) is equivalent to

𝑥𝑖1

𝑚∏
𝑗=1
𝑗≠𝑖1

𝑝𝑗 + 𝑥𝑖2

𝑚∏
𝑗=1
𝑗≠𝑖2

𝑝𝑗 +⋯+ 𝑥𝑖𝑞

𝑚∏
𝑗=1
𝑗≠𝑖𝑞

𝑝𝑗 +
𝑚∏
𝑗=1
𝑗≠𝑘1

𝑝𝑗

= −𝑦𝓁1

𝑚∏
𝑗=1
𝑗≠𝓁1

𝑝𝑗 − 𝑦𝓁2

𝑚∏
𝑗=1
𝑗≠𝓁2

𝑝𝑗 −⋯− 𝑦𝓁𝑟

𝑚∏
𝑗=1
𝑗≠𝓁𝑟

𝑝𝑗 +
𝑚∏
𝑗=1
𝑗≠𝑘2

𝑝𝑗 +
𝑚∏
𝑗=1
𝑗≠𝑘3

𝑝𝑗 ,

where (𝑠𝑖𝑗 , 𝑥𝑖𝑗 ) ∈ 𝛼
+ and (𝑡𝑖𝑗 , 𝑦𝑖𝑗 ) ∈ 𝛼

−. We can divide both sides of the equation by primes not corresponding to indexes of 𝑃+ and 
𝑃− as every product contains those primes:

𝑥𝑖1

𝑚∏
𝑗∈𝑃+∪𝑃−

𝑗≠𝑖1

𝑝𝑗 + 𝑥𝑖2

𝑚∏
𝑗∈𝑃+∪𝑃−

𝑗≠𝑖2

𝑝𝑗 +⋯+ 𝑥𝑖𝑞

𝑚∏
𝑗∈𝑃+∪𝑃−

𝑗≠𝑖𝑞

𝑝𝑗 +
𝑚∏

𝑗∈𝑃+∪𝑃−

𝑗≠𝑘1

𝑝𝑗

= −𝑦𝓁1

𝑚∏
𝑗∈𝑃+∪𝑃−

𝑗≠𝓁1

𝑝𝑗 − 𝑦𝓁2

𝑚∏
𝑗∈𝑃+∪𝑃−

𝑗≠𝓁2

𝑝𝑗 −⋯− 𝑦𝓁𝑟

𝑚∏
𝑗∈𝑃+∪𝑃−

𝑗≠𝓁𝑟

𝑝𝑗

+
𝑚∏

𝑗∈𝑃+∪𝑃−

𝑗≠𝑘2

𝑝𝑗 +
𝑚∏

𝑗∈𝑃+∪𝑃−

𝑗≠𝑘3

𝑝𝑗 .

Next, we take the common factors on both sides. Namely, those primes corresponding to indexes in 𝑃− on the left-hand side and to 
indexes in 𝑃+ on the right-hand side.

𝑝𝓁1
𝑝𝓁2

⋯𝑝𝓁𝑟
𝑝𝑘2
𝑝𝑘3

⎛⎜⎜⎜⎜⎝
𝑥𝑖1

𝑚∏
𝑗∈𝑃+

𝑗≠𝑖1

𝑝𝑗 +⋯+ 𝑥𝑖𝑞

𝑚∏
𝑗∈𝑃+

𝑗≠𝑖𝑞

𝑝𝑗 +
𝑚∏

𝑗∈𝑃+

𝑗≠𝑘1

𝑝𝑗

⎞⎟⎟⎟⎟⎠
= 𝑝𝑖1𝑝𝑥2 ⋯𝑝𝑖𝑞

𝑝𝑘1

⎛⎜⎜⎜−𝑦𝓁1
𝑚∏

𝑗∈𝑃−
𝑝𝑗 −⋯− 𝑦𝓁𝑟

𝑚∏
𝑗∈𝑃−

𝑝𝑗 +
𝑚∏

𝑗∈𝑃−
𝑝𝑗 +

𝑚∏
𝑗∈𝑃−

𝑝𝑗

⎞⎟⎟⎟ .

9

⎝ 𝑗≠𝓁1 𝑗≠𝓁𝑟 𝑗≠𝑘2 𝑗≠𝑘3 ⎠
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Now the left-hand side is equal to the right-hand side if and only if both

𝑝𝑖1
𝑝𝑖2

⋯𝑝𝑖𝑞
𝑝𝑘1

= 𝑥𝑖1

𝑚∏
𝑗∈𝑃+

𝑗≠𝑖1

𝑝𝑗 +⋯+ 𝑥𝑖𝑞

𝑚∏
𝑗∈𝑃+

𝑗≠𝑖𝑞

𝑝𝑗 +
𝑚∏

𝑗∈𝑃+

𝑗≠𝑘1

𝑝𝑗 and

𝑝𝓁1
𝑝𝓁2

⋯𝑝𝓁𝑟
𝑝𝑘2
𝑝𝑘3

= −𝑦𝓁1

𝑚∏
𝑗∈𝑃−

𝑗≠𝓁1

𝑝𝑗 −⋯− 𝑦𝓁𝑟

𝑚∏
𝑗∈𝑃−

𝑗≠𝓁𝑟

𝑝𝑗 +
𝑚∏

𝑗∈𝑃−

𝑗≠𝑘2

𝑝𝑗 +
𝑚∏

𝑗∈𝑃−

𝑗≠𝑘3

𝑝𝑗

hold at the same time. But neither equation holds by Lemma 1. □

We have proved that the computation of a TM can be simulated with matrix semigroup with integrality test. We state this as a 
theorem.

Theorem 7. Let  be a TM and let 𝐺 = {𝑀(𝑞,𝑎),𝑐 ∣ 𝛿(𝑞, 𝑎) is defined and 𝑐 ∈ Γ}, and assume that 𝑢(𝑞, 𝑎)𝑣 is a valid configuration of . 
Then ⊳(𝑞0, ⋆)⊲ ⊢∗


𝑢(𝑞, 𝑎)𝑣 if and only if there exist matrices 𝑀1, … , 𝑀𝑘 ∈𝐺 such that

𝛾(⊳(𝑞0,⋆),#⊲) ⋅𝑀1 ⋅𝑀2⋯𝑀𝑘 = 𝛾(𝑢(𝑞, 𝑎),#𝑣𝑅)

and

𝛾(⊳(𝑞0,⋆),#⊲) ⋅𝑀1 ⋅𝑀2⋯𝑀𝑗 ∈ℤ3×3

for all 𝑗 = 1, … , 𝑘.

Our first undecidability result follows from the halting problem.

Theorem 8. Let 𝐺 ⊆ ℚ3×3 be a finite set of matrices and 𝑀 ∈ ℤ3×3. Let 𝑆 be the matrix semigroup generated by 𝐺. It is undecidable 
whether or not there exists a nonempty sequence of matrices 𝑀𝑖1

, 𝑀𝑖2
, … , 𝑀𝑖𝑘

∈ 𝑆 such that

𝑀 ⋅𝑀𝑖1
⋅𝑀𝑖2

⋅… ⋅𝑀𝑖𝑘
=𝑀

and

𝑀 ⋅𝑀𝑖1
⋅𝑀𝑖2

⋅… ⋅𝑀𝑖𝑗
∈ℤ3×3

for all 𝑗 = 1, … , 𝑘.

Proof. Let 𝐺 be as in the previous theorem and let 𝑀 = 𝛾(⊳(𝑞0, ⋆), #⊲), where ⊳(𝑞0, ⋆)⊲ is the initial configuration of Turing 
machine  with undecidable halting problem. It is clear, with help of Lemma 5, that 𝐺 simulates  and that the two properties of 
the claim hold if and only if  halts. □

5. The identity problem for rational matrix semigroups with integrality tests

In this section, we apply Theorem 8 to show that the identity problem is undecidable in this setting. Let us first define the identity 
problem for a generating set 𝐺 of a 𝑑-dimensional matrix semigroup with entries from 𝕂 ∈ {ℤ, ℚ, ℝ, ℂ}, i.e., 𝐺 ⊆𝕂𝑑×𝑑 .

Problem 9 (Identity problem). Given a finite set of matrices 𝐺 ⊆𝕂𝑑×𝑑 . Does the identity matrix 𝑰𝑑 belong to the semigroup ⟨𝐺⟩?
Recall that it is known that the identity problem is decidable for 𝕂 = ℤ and 𝑑 = 2 [3], undecidable for 𝕂 =ℍ (rational quaternions) 

and 𝑑 = 2 [2], and 𝕂 =ℤ and 𝑑 = 4 [5]. We are studying the identity problem for three-dimensional matrices, which is a well-known 
open problem.

Let us introduce a variant of the identity problem, where there is an additional integrality test. Let 𝐺 ⊆ ℚ𝑑×𝑑 be a finite set of 
rational matrices. Consider 𝑀 ∈ ⟨𝐺⟩ but 𝑀 ∉ℤ𝑑×𝑑 . Then 𝑀 ∉ ⟨𝐺⟩ℤ.

Problem 10 (Identity problem with integrality test). Given a finite set of matrices 𝐺 ⊆ 𝕂𝑑×𝑑 . Does the identity matrix 𝑰𝑑 belong to ⟨𝐺⟩ℤ? 
That is, does there exist a sequence of matrices 𝑀𝑖 ∈𝐺 such that

𝑀1𝑀2⋯𝑀𝑟 = 𝑰 ,

and
10

𝑀1𝑀2⋯𝑀𝑗 ∈ℤ𝑑×𝑑
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for all 𝑗 ∈ {1, … , 𝑟}.

Naturally, we can also ask the other standard matrix semigroup questions for our scenario. But apart from the identity problem, 
hardly any new results can be derived as most of the problems are undecidable already for integral matrices (i.e., with no integrality 
tests required).

Theorem 11. The identity problem with integrality test is undecidable for 𝐺 ⊆ℚ3×3.

Proof. Let 𝐺 be the set 𝛿 constructed in the previous section together with additional matrices 𝑁1, 𝑁2 used to embed the initial 
configuration and 𝑁3 to remove the final configuration. More precisely, the matrices are

𝑁1 =
⎛⎜⎜⎝

𝑛2 0 0
0 𝑛2 0

𝜎(⊳(𝑞0,⋆)) 𝜎(#⊲) 𝑛

⎞⎟⎟⎠ ,
𝑁2 =

⎛⎜⎜⎝
𝑛 0 0
0 𝑛−1 0

−𝜎((𝑞0,⋆)) + 𝑛−1𝜎(𝑏(𝑝,⊲)) −𝑛−2𝜎(⊲) 𝑛−1,

⎞⎟⎟⎠ ,
and 𝑁3 =

⎛⎜⎜⎝
𝑛−2 0 0
0 𝑛−2 0

−𝑛−2𝜎(⊳(𝑞0,⋆)) −𝑛−2𝜎(#⊲) 1

⎞⎟⎟⎠ ,
where ⊳(𝑞0, ⋆)⊲ is the initial configuration and the second configuration is ⊳𝑏(𝑝, ⊲).

It is straightforward to see that a non-empty product resulting in the identity matrix has to start with 𝑁1 or with a matrix of form 
(5). Indeed, these are the only matrices in ℤ3×3. Let us first consider the case where 𝑁1 is the first matrix. We can further observe 
that multiplying 𝑁1 with any other matrix beside 𝑁1 or 𝑁2 or of form (5) result in a matrix that violates integrality. Indeed, for 

example, when 𝑀 =
(

𝑛 0 0
0 𝑛−1 0

−𝑛𝜎((𝑞,𝑎))+𝜎(𝑏(𝑝,𝑐)) −𝑛−1𝜎(𝑐) 1

)
∈𝛿 . Then

𝑁1𝑀 =
⎛⎜⎜⎝

𝑛2 0 0
0 𝑛2 0

𝜎(⊳(𝑞0,⋆)) 𝜎(#⊲) 𝑛

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑛 0 0
0 𝑛−1 0

−𝑛𝜎((𝑞, 𝑎)) + 𝜎(𝑏(𝑝, 𝑐)) −𝑛−1𝜎(𝑐) 1

⎞⎟⎟⎠
=
⎛⎜⎜⎝

𝑛3 0 0
0 1 0

𝑛𝜎(⊳(𝑞0,⋆)) − 𝑛2𝜎((𝑞, 𝑎)) + 𝑛𝜎(𝑏(𝑝, 𝑐)) 𝑛−1𝜎(#⊲) − 𝜎(𝑐) 𝑛

⎞⎟⎟⎠ .
Normally, 𝑛−1𝜎(⊲) would be removed by the correct choice of a matrix with 𝑐 = ⊲, but as the bottom right corner is not 1, this does 
not happen.

In any product resulting in the identity matrix, there must be an equal number of matrices 𝑁1 and 𝑁2 as multiplying by 𝑁2 is 
the only way to produce a matrix with 1 in the bottom right corner.

Let 𝑀 ∈ {𝑁1, 𝑁2}∗. 𝑀 is valid if and only if 𝑀 =𝑁1𝑁2. If 𝑀 is not valid, then analogously to the proof of Lemma 5, it can be 
proven that a valid matrix cannot be obtained using matrices from 𝛿 ∪ {𝑁1, 𝑁2, 𝑁3}.

Assume then that the first matrix is of form (5), i.e., is 
(

𝑛 0 0
0 1 0

−𝑛𝜎((𝑝,⊲))+𝜎(𝑏(𝑞,⊲) 0 1

)
for some 𝑝, 𝑞 ∈𝑄 and 𝑏 ∈ Γ. It is straightforward 

to see that matrices 𝑁2, 𝑁3 and those corresponding to moving the head to the right cannot be applied as the element (2, 2) would 
become rational. If 𝑁1, a matrix corresponding to moving the head to the left or of the form (5) is applied, then the resulting matrix 
is not valid and by Lemma 5 cannot be made valid.

Finally, observe that, similarly to how 𝑁1 had to be the first matrix, 𝑁3 has to be the last matrix and, more specifically, can only 
multiply 𝛾(⊳(𝑞0, ⋆), ⊲). The resulting matrix is the identity matrix. The matrix 𝛾(⊳(𝑞0, ⋆), ⊲) is in the semigroup if and only if the 
TM halts. Thus the identity problem is undecidable. □

6. Future work

In the previous sections, we constructed a generator set 𝐺 that allow us to simulate a Turing machine when the partial products 
are tested to be integers. It would be interesting to see if it is possible to simulate a TM with a matrix semigroup where the integrality 
test is not performed after every multiplication. That is, there is a set 𝑍 ⊆ 𝐺 such that the integrality is tested only after a matrix 
from 𝑍 appears in the product. In other words, the model has fewer integrality checks or even a fixed number of integrality checks. 
This can be achieved by constructing a universal TM with special properties that ensure that a computation consists of some special 
transitions. These special transitions would then be transformed into matrices with integrality checks. This would require a careful 
11

analysis similar to Lemma 5 of “incorrect” simulations to make sure that a valid configuration cannot be obtained.
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