
Halava, V and Niskanen, R

 On simulating Turing machines with matrix semigroups with integrality tests

http://researchonline.ljmu.ac.uk/id/eprint/23352/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Halava, V and Niskanen, R (2024) On simulating Turing machines with
matrix semigroups with integrality tests. Theoretical Computer Science,
1005. ISSN 0304-3975

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Theoretical Computer Science 1005 (2024) 114637

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On simulating Turing machines with matrix semigroups with

integrality tests ✩

Vesa Halava a,1, Reino Niskanen b,∗

a Department of Mathematics and Statistics, University of Turku, FIN-20014 Turku, Finland
b Liverpool John Moores University, UK

A R T I C L E I N F O A B S T R A C T

Keywords:

Turing machines

Matrix semigroup

Simulation

Undecidability

Identity problem

We present a construction to simulate Turing machines with 3 × 3 matrices over rationals. The
correctness of simulation is guaranteed by testing that the matrices have integral elements during
the simulation. This construction implies an undecidability result for a special identity problem
for semigroups of 3 × 3-matrices.

1. Introduction

In this article we prove that a Turing machine can be simulated by a matrix semigroup over rational numbers with integrality
tests. That is, the generators of the semigroup are rational matrices, but the product matrices remain integral during a correct
simulation. Indeed, multiplying with a matrix such that an element in a simulation matrix turns non-integral is equivalent to usage
of an incorrect transition in the Turing machine side. This allows us to faithfully simulate any Turing machine.

As a consequence, we prove that the identity problem, i.e., whether the identity matrix is in the generated semigroup, is unde-

cidable in this setting. Although this result seems to be a quite traditional undecidability result for semigroups generated by rational
matrices, our original motivation for this study is quite far from traditional. Our goal is to prove an undecidability result for matrices
such that in the products (simulating the computational system reduced to it) the elements of the matrices are significantly smaller
than in the traditional reductions. Also, we are interested in pure modelling, i.e., in the question how to simulate a computational
system operating with sequences of symbols using matrices.

Indeed, most of the known undecidability reductions for problems in integer matrix semigroups rely on the undecidability of the
Post Correspondence Problem, PCP for short, or some of its variants. There are also some proofs that use the Hilbert’s Tenth problem in
the reduction; see for example [1]. In the PCP, for given two word morphisms 𝑔, ℎ∶ 𝐴∗ → 𝐵∗, it is asked whether or not there exists
a non-empty word 𝑤 such the 𝑔 and ℎ agree on it, that is,

ℎ(𝑤) = 𝑔(𝑤).

The traditional reduction from the PCP to integer matrices is based on an injective (𝑛-ary) representation 𝜎 of words in ℕ and the
coding 𝛾 of pairs of words into 3 × 3 matrices so that the catenation operation of the word semigroups 𝐴∗ and 𝐵∗ are preserved in

✩ This article belongs to Section C: Theory of natural computing, Edited by Lila Kari.

* Corresponding author.

E-mail addresses: vesa.halava@utu.fi (V. Halava), r.niskanen@ljmu.ac.uk (R. Niskanen).
Available online 21 May 2024
0304-3975/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1 Supported by emmy.network foundation under the aegis of the Fondation de Luxembourg.

https://doi.org/10.1016/j.tcs.2024.114637

Received 30 November 2023; Received in revised form 10 May 2024; Accepted 14 May 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:vesa.halava@utu.fi
mailto:r.niskanen@ljmu.ac.uk
https://doi.org/10.1016/j.tcs.2024.114637
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2024.114637&domain=pdf
https://doi.org/10.1016/j.tcs.2024.114637
http://creativecommons.org/licenses/by/4.0/

Theoretical Computer Science 1005 (2024) 114637V. Halava and R. Niskanen

matrix multiplication. The formal definitions of 𝜎 and 𝛾 are given in Section 4, but let us give an example how these codings work:
for example we may define 𝛾 such that for all words 𝑢1, 𝑣1, 𝑢2, 𝑣2 ∈ 𝐵∗,

𝛾(𝑢1, 𝑣1)𝛾(𝑢2, 𝑣2) =
⎛⎜⎜⎝
𝑛|𝑢1| 0 0
0 𝑛|𝑣1| 0

𝜎(𝑢1) 𝜎(𝑣1) 1

⎞⎟⎟⎠
⎛⎜⎜⎝
𝑛|𝑢2| 0 0
0 𝑛|𝑣2| 0

𝜎(𝑢2) 𝜎(𝑣2) 1

⎞⎟⎟⎠
=
⎛⎜⎜⎝
𝑛|𝑢1𝑢2| 0 0
0 𝑛|𝑣1𝑣2| 0

𝜎(𝑢1𝑢2) 𝜎(𝑣1𝑣2) 1

⎞⎟⎟⎠ ,
for a large enough 𝑛 ∈ ℕ. Here |𝑢| denotes the length of the word 𝑢, that is, the number of symbols in 𝑢. Now if we simply set
𝑀𝑖 = 𝛾(𝑔(𝑎𝑖), ℎ(𝑎𝑖)) for all letters 𝑎𝑖 in the alphabet 𝐴, we derive from the undecidability of the PCP that it is undecidable for the
matrix semigroup generated by the matrices 𝑀𝑖 whether or not there exists a matrix 𝑀 in the semigroup such that 𝑀31 =𝑀32.

In our reduction, we shall use the above mentioned 𝛾 , but the mapping 𝜎 is modified. The main difference is that our reduction
is one step below in the reduction chain of simulation. The key in all undecidability proofs of the PCP is that the pair of morphisms
in the PCP can simulate a (universal) computational system such as Turing machines [15], semi-Thue systems [9], tag systems [23],
normal systems [25], just to mention some of the most well-known systems. In all of these undecidability reductions, except in the
Post’s original proof from the normal systems [25], the simulation of the computation of the chosen system is done so that there
is a nonempty word 𝑤 for constructed morphisms 𝑔 and ℎ such that 𝑔(𝑤) = ℎ(𝑤) if and only if there exists a computation from a
particular configuration 𝑢 of the system to the configuration 𝑣 and the word 𝑤 is a catenation of all configurations (including the
used transitions/rules of the used systems) along this computational path.2 In other words, the word 𝑤 is very long implying that the
words 𝑔(𝑤) and ℎ(𝑤) are very long and, therefore, the elements of the matrices 𝛾(𝑔(𝑤), ℎ(𝑤)) become huge if we consider simulation
of the reduced computational system with matrices. For example, the element (1, 3) in mapping 𝛾 is 𝑛𝑐 where 𝑐 is approximately
the sum of lengths of all configurations in the computation of the system. Moreover, some of the elements never decrease when a
universal system is simulated through the PCP with the products of matrices.

Our main motivation for this study is the simulation of computational system with matrices directly without remembering the
whole history of computation in elements of the matrices implying that the elements are smaller. In our construction for the simu-

lation, the elements of the matrices are integers encoding only the current configuration of the system. Therefore, the elements are
much smaller than in a simulation using the PCP as a bridge from a computational system to matrices.

We apply the simulation construction and consider the existence of a particular computation of the simulated Turing machine. As
a result we prove undecidability of a variant of the identity problem for matrix semigroups. The identity problem is a long-standing
open problem. Unlike most other matrix semigroup problems, the three-dimensional case remains open. It was shown in [5] that
the problem is undecidable for integral matrices of dimension four, and in [19], a better bound on the number of matrices in the
generator set was given. For two-dimensional matrices, it is known that the identity problem is decidable for integer matrices—the
problem is even 𝖭𝖯-complete [3]—and undecidable over rational quaternions [2]. Recently, it was shown that there is no embedding
of pairs of binary words into SL(3, ℤ) [19]. The result suggests that the identity problem is decidable for three-dimensional matrices
as the vast majority of undecidability results rely on embeddings of pairs of binary words into matrices. Recently, there has been a
surge of interest in the identity problem for different classes of matrices [11,12].

In order to prove undecidability of the identity problem with integrality tests, we use an encoding of pairs of words into matrices
that allows us to simulate a Turing machine and, in particular, allows us to use the undecidability of the halting problem for the
empty input in a special form. The integrality tests are then used to ensure that a faithful simulation is performed. The integrality
test can be performed by checking after each matrix multiplication that the resulting matrix is integral.

Finally, note that simulation of a computational system, such as Turing machines, with integral or rational counters is by no
means new. There are famous models such as the Minsky machine [22] and the Fractran model defined by Conway [10], just to
mention two. Our model for the simulation, the integral/rational matrices, is significantly different as the “counters” act on matrices.

On the other hand, there is a vast literature on dynamics of loops of form

while (𝑔() = true) do (∶= 𝑓 ()),

where are the variables, 𝑔 is a guard condition that the assignment of has to satisfy and 𝑓 is an update function that assigns
new values to . Often, the variables are represented by 𝑑-dimensional vectors over ℤ, ℚ, ℝ, ... The guard condition often defines a
polytope, i.e., is a system of linear equalities and inequalities, [26,8,17,16,18], but can be defined by, e.g., Presburger formulas [13].
The update function is typically more varied as small tweaks to the function can lead to different results, but is often restricted to
linear updates, i.e., multiplying by a matrix [6,7,18,20].

Our setting can be seen as a non-deterministic loop of form while (𝑔() = true) do (∶= 𝑓1() or ∶= 𝑓2() or … or
 ∶= 𝑓𝑛()), where is a 𝑑-dimensional rational matrix, each 𝑓𝑖 is a multiplication by a matrix and 𝑔() returns true if and only
if every component of is integral. That is, the loop is of the form

while (𝑀
?
∈ℤ𝑑×𝑑 = true) do (𝑀 ∶=𝑀𝑀1 or 𝑀 ∶=𝑀𝑀2 or … or 𝑀 ∶=𝑀𝑀𝑛).

2 In Post’s original undecidability proof the word 𝑤 consists only of the rules words used in the derivation of a normal system, not the full configurations of the
2

derivation.

Theoretical Computer Science 1005 (2024) 114637V. Halava and R. Niskanen

Recall, that the termination of non-deterministic loops with linear guards and linear updates is undecidable [26].

2. Preliminaries

Let ℕ, ℤ, ℚ be the sets of the natural numbers, the integers and the rational numbers. We denote by ℙ the set of all primes.

A semigroup is a set equipped with an associative binary operation. Let 𝑆 be a semigroup and 𝐺 be a subset of 𝑆 . We say that a
semigroup 𝑆 is generated by a subset 𝐺 of 𝑆 if each element of 𝑆 can be expressed as a composition of elements of 𝐺. In this case,
we call 𝐺 a generating set of 𝑆 and denote 𝑆 = ⟨𝐺⟩. Given an alphabet Σ = {𝑎1, 𝑎2, … , 𝑎𝑚}, a finite word 𝑢 is an element of semigroup
Σ∗. The empty word is denoted by 𝜀. The length of a finite word 𝑢 is denoted by |𝑢| and |𝜀| = 0.

We shall consider semigroups where the generators are 𝑑×𝑑 matrices (over rationals) and the composition operation is the matrix
multiplication. Denote by 𝑰𝑑 the 𝑑-dimensional identity matrix. If the dimension is clear from context, we denote the identity matrix
simply by 𝑰 .

Let 𝐺 ⊆𝕂𝑑×𝑑 for some 𝑑 ∈ ℤ+ and 𝕂 ∈ {ℤ, ℚ, ℝ, ℂ}. Let us define the integral set ⟨𝐺⟩ℤ = ⟨𝐺⟩ ∩ℤ𝑑 . That is, ⟨𝐺⟩ℤ consists of all
elements 𝑀 ∈ ⟨𝐺⟩ such that 𝑀 ∈ℤ𝑑×𝑑 even if generators used are not in ℤ𝑑×𝑑 . It is also possible to define an element to be integral
with respect to 𝑍 for some 𝑍 ⊆𝐺. That is, 𝑀 ∈ ⟨𝐺⟩ is integral with respect to 𝑍 if 𝑀 =𝑀 ′𝑁 , for some 𝑀 ′ ∈ ⟨𝐺⟩ and 𝑁 ∈𝑍 such
that 𝑀 ′𝑁 ∈ ℤ𝑑×𝑑 . In Section 6, we discuss a modification of our construction that takes the integrality with respect to a set into
account.

Let us next prove a simple property regarding a product of primes. This lemma will be useful in upcoming sections when we show
that an incorrect product of matrices cannot result in a correct product.

Lemma 1. Let 𝑝1, 𝑝2, … , 𝑝𝑛 be odd pairwise different primes, where 𝑛 ≥ 2. Then

𝑛∏
𝑖=1
𝑝𝑖 ≠

𝑛∑
𝑗=1

⎛⎜⎜⎜⎝𝑎𝑗
𝑛∏
𝑖=1
𝑖≠𝑗

𝑝𝑖

⎞⎟⎟⎟⎠ ,
where 𝑎𝑗 ∈ ℕ ⧵ {0} for all 𝑗.

Proof. Assume towards a contradiction that the equality holds. Now

𝑛∑
𝑗=1

⎛⎜⎜⎜⎝𝑎𝑗
𝑛∏
𝑖=1
𝑖≠𝑗

𝑝𝑖

⎞⎟⎟⎟⎠ =
𝑛−1∑
𝑗=1

⎛⎜⎜⎜⎝𝑎𝑗
𝑛∏
𝑖=1
𝑖≠𝑗

𝑝𝑖

⎞⎟⎟⎟⎠+ 𝑎𝑛
𝑛∏
𝑖=1
𝑖≠𝑛

𝑝𝑖 = 𝑝𝑛
𝑛−1∑
𝑗=1

⎛⎜⎜⎜⎝𝑎𝑗
𝑛−1∏
𝑖=1
𝑖≠𝑗

𝑝𝑖

⎞⎟⎟⎟⎠+ 𝑎𝑛
𝑛−1∏
𝑖=1
𝑝𝑖.

By the assumption, the above is equal to
∏𝑛

𝑖=1 𝑝𝑖. By rearranging terms, we have the equation

(𝑝𝑛 − 𝑎𝑛)
𝑛−1∏
𝑖=1
𝑝𝑖 = 𝑝𝑛

𝑛−1∑
𝑗=1

⎛⎜⎜⎜⎝𝑎𝑗
𝑛−1∏
𝑖=1
𝑖≠𝑗

𝑝𝑖

⎞⎟⎟⎟⎠ .
The right-hand side is positive and divisible by 𝑝𝑛. On the other hand, the left-hand side is divisible by 𝑝𝑛 only if 𝑝𝑛 − 𝑎𝑛 is. The term
𝑝𝑛 − 𝑎𝑛 cannot be both divisible by 𝑝𝑛 and positive, hence we reach a contradiction. □

3. Halting problem

A Turing machine (with a final state), TM for short, is a 7-tuple

 = (𝑄,Σ,Γ, 𝛿, 𝑞0,⋆,ℎ) ,

where 𝑄 is a finite set of states, 𝑞0 is the initial state, ℎ ∈𝑄 is the final state, Σ is the input alphabet, Γ is the tape alphabet with
Σ ⊆ Γ, and 𝛿 is a partial function 𝑄 × Γ →𝑄 × Γ × {𝐿, 𝑅} called the transition function where 𝐿 and 𝑅 are special direction symbols
and ⋆ ∈ Γ is the blank symbol. The TM operates on a one-way infinite tape.

Note that the TM’s are deterministic, however, we allow 𝛿 to be a partial function, i.e., it may be undefined for some values
(𝑞, 𝑎) ∈𝑄 ×Γ. Therefore, if 𝛿(𝑞, 𝑎) is defined, it is unique. Each transition of a TM is of the form 𝛿(𝑝, 𝑎) = (𝑞, 𝑏, 𝐷). Here 𝐷 refers to
“direction”. The values 𝐿 and 𝑅 refer to “left move” and “right move”, respectively. As the tape is one-way infinite, we can assume
that the leftmost cell on the tape is ⊳ and 𝛿(𝑞, ⊳) = (𝑞′, ⊳, 𝑅) for all 𝑞 ∈𝑄, and furthermore, that no other production rule writes ⊳
on the tape.

A configuration of the TM , at some point in its computation, is the current state of the machine and the content of its tape.
Let the content of the tape be ⊳𝑢𝑎𝑣 ⋆ ⋆ ⋯ where 𝑢, 𝑣 ∈ Γ∗, assume that is in state 𝑞 reading the symbol 𝑎 ∈ Γ and assume
further that ⊳𝑢𝑎𝑣 is the shortest word containing all nonblank letters of the tape. Then the configuration represented by the word
3

⊳𝑢(𝑞, 𝑎)𝑣 ∈ Γ∗(𝑄 × Γ)Γ∗ where 𝑣 is either 𝜀 or ends with a nonblank letter.

Theoretical Computer Science 1005 (2024) 114637V. Halava and R. Niskanen

A step in a computation or a move 𝛾 ⊢ 𝛾 ′ yielding from one configuration 𝛾 of to the next one 𝛾 ′ is defined in the usual
way. We define here only the right-move, the left-move definition is analogous. Let the configuration be ⊳𝑢(𝑞, 𝑎)𝑣 and assume that
𝛿(𝑞, 𝑎) = (𝑝, 𝑏, 𝑅). Then

⊳𝑢(𝑞, 𝑎)𝑣 ⊢

{
⊳𝑢𝑏(𝑝,⋆), if 𝑣 = 𝜀,
⊳𝑢𝑏(𝑝, 𝑐)𝑣′, if 𝑣 = 𝑐𝑣′ and 𝑐 ∈ Γ.

As the TM’s are deterministic and since 𝛿 is a (partial) function, for each configuration 𝛾 = ⊳𝑢(𝑞, 𝑎)𝑣, there exists at most one
configuration 𝛾 ′ such that 𝛾 ⊢ 𝛾 ′.

Let ⊢∗

or ⊢∗, for short, be the reflexive and transitive closure of the relation ⊢. Thus 𝛾 ⊢∗ 𝛾 ′ if and only if there exists a finite
sequence 𝛾 = 𝛾1 ⊢ 𝛾2 ⊢⋯ ⊢ 𝛾𝑘 = 𝛾 ′ of configurations for some 𝑘 ≥ 1 including the possibility that 𝛾 = 𝛾 ′. Such a sequence is called a
computation of . It is an accepting computation if the state in 𝛾 ′ is the unique final state ℎ.

A seminal result in computability theory states that the halting problem of Turing machines on the empty input is undecidable;
see, e.g., [21].

Theorem 2. It is undecidable whether a given TM halts on the empty input. That is, whether (𝑞0, ⊳⋆) ⊢∗ ⊳𝑢(ℎ, 𝑎)𝑣, where 𝑢, 𝑣 ∈ Γ∗,
𝑎 ∈ Γ, holds or not.

It is well-known that there is a myriad of ways to alter the definition of Turing machines or their structure and retain the
undecidability of the halting problem. We shall modify any TM to an equivalent TM ′ as follows:

First, we may use the second marker (⊲) to fully surround the non-empty portions of the infinite tape and additional states that
move this marker if extra space is required by the machine. More precisely, when the space needs to be created on the right side of
the tape, the right-marker needs to be moved one cell to the right. That is, if the machine is in state 𝑝, the current symbol read is the
right-marker ⊲ and there is a right-move for 𝛿(𝑝, ⋆) = (𝑞, 𝑏, 𝑅), then we add a new state 𝑝⊲ and transitions

𝛿(𝑝,⊲) = (𝑝⊲,⋆,𝑅) and 𝛿(𝑝⊲,⋆) = (𝑝,⊲,𝐿). (1)

Similarly, we need to remove extra ⋆ symbols between the markers. First of all, the extra ⋆ symbols are detected by adding a
check for all transitions 𝛿(𝑝, 𝑎) = (𝑞, ⋆, 𝐷) (except for those that were added for adding extra space). If it is then this extra ⋆ is shifted
by the right-border marker ⊲, the machine is in a new state 𝑝 reading ⊲ and we add transitions

𝛿(𝑝,⊲) = (𝑝′,⋆,𝐿) and 𝛿(𝑝′,⋆) = (𝑝′′,⊲,𝐿), (2)

for new states 𝑝′ and 𝑝′′ and then the machine moves back to where it printed the extra ⋆ and reads the border marker next to it.
Secondly, we may assume that the first step of the TM is to write ⊳ and ⊲ on the tape. We can further assume that the tape is

cleared before meeting the final state ℎ, that is the problem of halting is to decide whether or not (𝑞0 , ⋆) ⊢∗ (ℎ, ⋆).
It is obvious that the markers may be missing at some particular point of computation, but it is clear that (𝑞0, ⋆) ⊢∗

⊳𝑢(𝑞, 𝑎)𝑣

if and only if ⊳(𝑞0, ⋆)⊲ ⊢∗
′ ⊳𝑢(𝑞, 𝑎)𝑣⊲. Let us note that the above changes (1) and (2) are done in our matrix simulation with one

single matrix in each case and the markers are never missing.

Theorem 3. Let be a Turing machine with delimiters, ⊳ and ⊲, surrounding non-blank tape content and where the initial configuration
𝑐 = (𝑞0, ⋆). It is undecidable whether the machine reaches configuration 𝑐 again.

4. Matrix reachability from Turing machines

In this section, we simulate a Turing machine using a matrix semigroup. That is, we will construct a set 𝛿 =
{𝑀1, 𝑀2, … , 𝑀𝑘} ⊆ℚ3×3 that simulates when the integrality test is performed after each multiplication.

The main idea in an encoding of the computation of a Turing machine is to cut the configuration 𝑢(𝑞, 𝑎)𝑣 into two words 𝑢(𝑞, 𝑎)
and 𝑣, embed the pair of words into a matrix, and then to use specific matrices to move one symbol from one word to another.

It is worth highlighting that commonly an 𝑛-ary representation of words is done using a simple encoding of letters. Assume that
the alphabet is binary, i.e., let 𝐴 = {𝑎, 𝑏} and 𝑤 ∈𝐴∗. Let 𝜏 ∶𝐴 →ℕ be defined as 𝜏(𝑎) = 1 and 𝜏(𝑏) = 2. Then 𝜎′ ∶𝐴∗ → ℕ is defined
by 𝜎′(𝑤1𝑤2⋯ 𝑤𝑘) =

∑𝑘

𝑖=1 𝜏(𝑤𝑖) ⋅ 3
𝑛−𝑖. See, for example, [24,14,4]. We use a different encoding that allows us to construct matrices

with smaller elements.

Let = (𝑄, Σ, Γ, 𝛿, 𝑞0, ⋆, ℎ) be a Turing machine defined in the previous section. Let 𝐶 = (𝑄 ×Γ) ∪Γ ∪{#} be the set of symbols of
a configuration, where # is a new symbol. Let 𝑚 = |𝐶| = |𝑄| ⋅ |Γ| + |Γ| +1 and 𝑝1, 𝑝2, … , 𝑝𝑚 ∈ ℙ ⧵ {2}. Let 𝜑∶ 𝐶 →ℕ be an encoding
defined by

𝜑(𝑎𝑖) =
𝑚∏
𝑗=1
𝑗≠𝑖

𝑝𝑗 ,

for all 𝑖 = 1, … , 𝑚. That is, for any distinct 𝑎, 𝑎′ ∈ 𝐶 , gcd(𝑎, 𝑎′) ≠ 1. Denote by 𝜑(𝐶) = {𝜑(𝑎) ∣ 𝑎 ∈ 𝐶}. Let 𝑛 > 𝑝1⋯ 𝑝𝑚 and let
4

𝜎 ∶ 𝐶∗ → ℕ be the injective mapping using the 𝑛-ary representation. That is, we associate each letter of 𝜑(𝐶) with a unique integer

Theoretical Computer Science 1005 (2024) 114637V. Halava and R. Niskanen

in {1, … , 𝑛 − 1} and for a word 𝑤1𝑤2⋯ 𝑤𝑘 ∈ 𝐶∗, 𝜎(𝑤1𝑤2⋯ 𝑤𝑘) = 𝑛𝑘−1𝜑(𝑤1) + 𝑛𝑘−2𝜑(𝑤2) +⋯ + 𝑛0𝜑(𝑤𝑘). For the below, note that
𝜎(𝑢𝑣) = 𝑛|𝑣|𝜎(𝑢) + 𝜎(𝑣), for all 𝑢, 𝑣 ∈ 𝐶∗ and especially that 𝜎((𝑐𝑣)𝑅) = 𝑛𝜎(𝑣𝑅) + 𝜎(𝑐) for all 𝑣 ∈ 𝐶∗ and 𝑐 ∈ 𝐶 .

Let 𝛾 be the mapping

𝛾(𝑢, 𝑣) =
⎛⎜⎜⎝
𝑛|𝑢| 0 0
0 𝑛|𝑣| 0
𝜎(𝑢) 𝜎(𝑣) 1

⎞⎟⎟⎠ . (3)

Let 𝑢(𝑞, 𝑎)𝑣, where ⊳ is the first symbol and ⊲ is the last symbol, be the current configuration of the deterministic TM . We
represent this by

𝛾(𝑢(𝑞, 𝑎),#𝑣𝑅) =
⎛⎜⎜⎝
𝑛|𝑢(𝑞,𝑎)| 0 0

0 𝑛|𝑣#| 0
𝜎(𝑢(𝑞, 𝑎)) 𝜎(#𝑣𝑅) 1

⎞⎟⎟⎠ . (4)

Note that # is a new marker symbol to ensure the element (3, 2) of our matrices is nonzero. Also note that the element (3, 1) is never
zero as it has 𝜎(𝑞, 𝑎) for some 𝑞 ∈𝑄 and 𝑎 ∈ Γ.

We are ready to define the set of matrices 𝛿 . We begin with transitions added by applying (1) or (2) when modifying the TM,
we study these cases separately. Consider a transition 𝛿(𝑞, 𝑎) = (𝑝, 𝑏, 𝑅) of , we add matrix

𝑀(𝑞,𝑎),𝑐 =
⎛⎜⎜⎝

𝑛 0 0
0 𝑛−1 0

−𝑛𝜎((𝑞, 𝑎)) + 𝜎(𝑏(𝑝, 𝑐)) −𝑛−1𝜎(𝑐) 1

⎞⎟⎟⎠ ,
for every 𝑐 ∈ Γ to 𝛿 . Note that is deterministic, so the state 𝑝 and symbols 𝑏 are uniquely determined by (𝑞, 𝑎). Similarly, a
transition 𝛿(𝑞, 𝑎) = (𝑝, 𝑏, 𝐿) is represented by a matrix

𝑀(𝑞,𝑎),𝑐 =
⎛⎜⎜⎝

𝑛−1 0 0
0 𝑛 0

−𝑛−1𝜎(𝑐(𝑞, 𝑎)) + 𝜎((𝑝, 𝑐)) 𝜎(𝑏) 1

⎞⎟⎟⎠ ,
for every 𝑐 ∈ Γ which is also added to 𝛿 . Then for the transitions added when applying (1) (originally 𝛿(𝑝, ⋆) = (𝑞, 𝑏, 𝑅)) we add

𝑀(𝑝,⊲),⊲ =
⎛⎜⎜⎝

𝑛 0 0
0 1 0

−𝑛𝜎((𝑝,⊲)) + 𝜎(𝑏(𝑞,⊲)) 0 1

⎞⎟⎟⎠ . (5)

Similarly, the space removal in (2) is performed by a one special left-move matrix

𝑀(𝑝,⊲),⋆ =
⎛⎜⎜⎝

𝑛−1 0 0
0 1 0

−𝑛−1𝜎(⋆(𝑝,⊲)) + 𝜎((𝑝′,⋆)) 0 1

⎞⎟⎟⎠ ,
and left-move matrices for 𝑐 ∈ Γ

𝑀(𝑝′ ,⋆),𝑐 =
⎛⎜⎜⎝

𝑛−1 0 0
0 𝑛 0

−𝑛−1𝜎(𝑐(𝑝′,⋆)) + 𝜎((𝑝′′, 𝑐)) 𝜎(⊲) 1

⎞⎟⎟⎠ .
Note also, that there exists at most one matrix in the set 𝑀𝛿 (moving either to the left or to the right) for all combinations of

(𝑞, 𝑎) ∈𝑄 × Γ and 𝑐 ∈ Γ as the TM is deterministic.

Now, say the configuration of the Turing machine is 𝑢(𝑞, 𝑎)𝑐𝑣 and that there exists a (unique) transition 𝛿(𝑞, 𝑎) = (𝑝, 𝑏, 𝑅). The
move of the TM is represented by a product of the two matrices

𝛾(𝑢(𝑞, 𝑎),#(𝑐𝑣)𝑅)𝑀(𝑞,𝑎),𝑐

=
⎛⎜⎜⎝

𝑛|𝑢(𝑞,𝑎)|+1 0 0
0 𝑛|#𝑐𝑣|−1 0

𝑛𝜎(𝑢(𝑞, 𝑎)) − 𝑛𝜎((𝑞, 𝑎)) + 𝜎(𝑏(𝑝, 𝑐)) 𝑛−1𝜎(#(𝑐𝑣)𝑅) − 𝑛−1𝜎(𝑐) 1

⎞⎟⎟⎠
=
⎛⎜⎜⎝
𝑛|𝑢𝑏(𝑝,𝑎)| 0 0

0 𝑛|#𝑣| 0
𝜎(𝑢𝑏(𝑝, 𝑐)) 𝜎(#𝑣𝑅) 1

⎞⎟⎟⎠
= 𝛾(𝑢𝑏(𝑝, 𝑐),#𝑣𝑅),

since

𝑛𝜎(𝑢(𝑞, 𝑎)) − 𝑛𝜎((𝑞, 𝑎)) + 𝜎(𝑏(𝑝, 𝑐))
5

= 𝑛2𝜎(𝑢) + 𝑛𝜎((𝑞, 𝑎)) − 𝑛𝜎((𝑞, 𝑎)) + 𝜎(𝑏(𝑝, 𝑐)) = 𝑛|𝑏(𝑝,𝑐)|𝜎(𝑢) + 𝜎(𝑏(𝑝, 𝑐))

Theoretical Computer Science 1005 (2024) 114637V. Halava and R. Niskanen

Fig. 1. An illustration of a transition of a TM and the corresponding encoding changes.

= 𝜎(𝑢𝑏(𝑝, 𝑐))

and

𝑛−1𝜎(#(𝑐𝑣)𝑅) − 𝑛−1𝜎(𝑐) = 𝑛−1(𝑛𝜎(#𝑣𝑅) + 𝜎(𝑐)) − 𝑛−1𝜎(𝑐) = 𝜎(#𝑣𝑅).

Similarly, we can show that if the configuration of the Turing machine is 𝑢𝑐(𝑞, 𝑎)𝑣, using the unique transition 𝛿(𝑞, 𝑎) = (𝑝, 𝑏, 𝐿) is
represented by a product of the two matrices

𝛾(𝑢𝑐(𝑞, 𝑎),#𝑣𝑅))𝑀(𝑞,𝑎),𝑐 = 𝛾(𝑢(𝑝, 𝑐), (#(𝑏𝑣)𝑅).

For the sake of readability, let us define a mapping 𝜓 ∶ ℚ3×3 →ℚ4 by setting

𝜓(𝑀) = 𝜓
⎛⎜⎜⎝
⎛⎜⎜⎝
𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 𝑚23
𝑚31 𝑚32 𝑚33

⎞⎟⎟⎠
⎞⎟⎟⎠ = (𝑚11,𝑚31,𝑚22,𝑚32).

We further define

𝜓(𝑀) ⋅𝜓(𝑁) = (𝑚11𝑛11,𝑚31𝑛11 + 𝑛31,𝑚22𝑛22,𝑚32𝑛22 + 𝑛32).

When restricted to matrices 𝛾(𝑢(𝑞, 𝑎), 𝑣𝑅) and 𝑀(𝑞,𝑎),𝑐 as defined above, the mapping is an isomorphism. To further simplify the
notation, we will denote 𝜓(𝛾(𝑢(𝑞, 𝑎), 𝑣𝑅)) by 𝜓(𝑢(𝑞, 𝑎), 𝑣𝑅).

Example 4. Let ⊳𝑎𝑏(𝑞, 𝑎)𝑏⊲ be a configuration of a TM and let us simulate transition 𝛿(𝑞, 𝑎) = (𝑝, 𝑎, 𝑅). The subsequent configuration
is ⊳𝑎𝑏𝑎(𝑞, 𝑏)⊲. The transition of the TM and the changes in the coefficients in the encoding are depicted in Fig. 1.

Let us present a few observations next. Firstly, the mapping 𝛾 is into ℕ3×3. Secondly, all matrices 𝑀(𝑞,𝑎),𝑐 are rational, regardless
of whether they correspond to the head moving left or right. If a configuration matrix is multiplied by the “correct” matrix, then
resulting matrix is also integral, and even in ℕ3×3. On the other hand, multiplying by an “incorrect” matrix does not guarantee that
the resulting matrix is not integral. Let us consider this in details:

For the right transitions, let 𝜓(𝑢(𝑞, 𝑎), #(𝑐𝑣)𝑅) be a configuration and 𝜓(𝑀(𝑞′,𝑎′),𝑑) correspond to a transition 𝛿(𝑞′, 𝑎′) = (𝑝, 𝑏, 𝑅).
The resulting vector is(

𝑛|𝑢(𝑞,𝑎)|, 𝜎(𝑢(𝑞, 𝑎)), 𝑛|#𝑐𝑣|, 𝜎(#(𝑐𝑣)𝑅)) ⋅ (𝑛,−𝑛𝜎((𝑞′, 𝑎′)) + 𝜎(𝑏(𝑝, 𝑑)), 𝑛−1,−𝑛−1𝜎(𝑑))
=
(
𝑛|𝑢(𝑞,𝑎)+1|, 𝑛𝜎(𝑢(𝑞, 𝑎)) − 𝑛𝜎((𝑞′, 𝑎′)) + 𝜎(𝑏(𝑝, 𝑑)), 𝑛|#𝑣|, 𝑛−1𝜎(#(𝑐𝑣)𝑅) − 𝑛−1𝜎(𝑑)) (6)

and it is integral as long as 𝑐 = 𝑑 by the last element. In other words, the pair (𝑞′, 𝑎′) does not have to match the pair (𝑞, 𝑎) of the
configuration to ensure that the product is integral. In this case, 𝜎((𝑞, 𝑎)) − 𝜎((𝑞′, 𝑎′)) ≠ 0 will be in the coefficient of 𝑛 in the second
component of the 𝜓 mapping. It remains to show that this remainder cannot be removed by further applications of “incorrect”
6

matrices. This is proven in the upcoming Lemma 5.

Theoretical Computer Science 1005 (2024) 114637V. Halava and R. Niskanen

Next we consider left transitions as this case is significantly simpler. Indeed, when 𝜓(𝑢𝑐(𝑞, 𝑎), #𝑣𝑅) is multiplied by 𝜓(𝑀(𝑞′ ,𝑎′),𝑑)
corresponding to 𝛿(𝑞′, 𝑎′) = (𝑝, 𝑏, 𝐿), we have(

𝑛|𝑢𝑐(𝑞,𝑎)|, 𝜎(𝑢𝑐(𝑞, 𝑎)), 𝑛|#𝑣|, 𝜎(#𝑣𝑅)) ⋅ (𝑛−1,−𝑛−1𝜎(𝑑(𝑞′, 𝑎′)) + 𝜎((𝑝, 𝑑)), 𝑛, 𝜎(𝑏))
=
(
𝑛|𝑢(𝑝,𝑑)|, 𝑛−1𝜎(𝑢𝑐(𝑞, 𝑎)) − 𝑛−1𝜎(𝑑(𝑞′, 𝑎′)) + 𝜎((𝑝, 𝑑)), 𝑛|#𝑏𝑣|, 𝑛𝜎(#𝑣𝑅) + 𝜎(𝑏)) , (7)

where the second component is

𝑛𝜎(𝑢) + 𝜎(𝑐) + 𝜎((𝑝, 𝑑)) − 𝜎(𝑑) + 𝑛−1(𝜎((𝑞, 𝑎)) − 𝜎((𝑞′, 𝑎′))). (8)

The component remains integral only if (𝑞, 𝑎) = (𝑞′, 𝑎′). Note that at this step, there is no requirement that 𝑑 = 𝑐 and, in fact, 𝑑 = 𝑐
implies that the correct matrix was applied. So the matrix may remain integral, with incorrect matrices, if (𝑞, 𝑎) = (𝑞′, 𝑎′) and 𝑑 ≠ 𝑐.

Let us consider the above case of multiplying by a wrong matrix with transition to the left a bit further. It turns out that the
matrix with 𝑑 ≠ 𝑐 was used, then the next matrix in the product has to correspond to a move of the head to the right. Indeed, assume
that we are in the case (7) with the second component integral and according to (8) it equals to 𝑛𝜎(𝑢) + 𝜎(𝑐) + 𝜎((𝑝, 𝑑)) − 𝜎(𝑑) =
𝜎(𝑢(𝑝, 𝑑)) + 𝜎(𝑐) − 𝜎(𝑑). Assume further that the vector is multiplied by a vector corresponding to a transition 𝛿(𝑟, 𝑒) = (𝑝′, 𝑏′, 𝐿), i.e.,
by the vector ((𝑛−1, −𝑛−1𝜎(𝑓 (𝑟, 𝑒)) + 𝜎((𝑝′, 𝑑′)), 𝑛, 𝜎(𝑏′)). As previously, the second component becomes

𝑛−1(𝜎(𝑢(𝑝, 𝑑)) + 𝜎(𝑐) − 𝜎(𝑑)) − 𝑛−1𝜎(𝑓 (𝑟, 𝑒)) + 𝜎((𝑝′, 𝑑′))

and this is an integer for some (𝑟, 𝑒) ∈𝑄 × Γ if and only if 𝜎(𝑐) + 𝜎((𝑝, 𝑑)) − 𝜎(𝑑) − 𝜎((𝑟, 𝑒)) = 0. This is not possible due to the way
embedding 𝜑 is defined. Denote 𝜎(𝑐) = 𝜑(𝑎𝑖), 𝜎((𝑝, 𝑑)) = 𝜑(𝑎𝑗), 𝜎(𝑑) = 𝜑(𝑎𝑘) and 𝜎((𝑟, 𝑒)) = 𝜑(𝑎𝓁), where 𝑖, 𝑗, 𝑘 and 𝓁 are distinct.
(Recall, that if 𝑗 = 𝓁, then (𝑝, 𝑑) = (𝑟, 𝑒) and the sum is non-zero as 𝑑 ≠ 𝑐.) Now,

𝜑(𝑎𝑖) +𝜑(𝑎𝑗) = 𝜑(𝑎𝑘) +𝜑(𝑎𝓁)

⇔
𝑚∏
𝑥=1
𝑥≠𝑖

𝑝𝑥 +
𝑚∏
𝑥=1
𝑥≠𝑗

𝑝𝑥 =
𝑚∏
𝑥=1
𝑥≠𝑘

𝑝𝑥 +
𝑚∏
𝑥=1
𝑥≠𝓁

𝑝𝑥

⇔
𝑝1⋯𝑝𝑚

𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝓁
(𝑝𝑗𝑝𝑘𝑝𝓁) +

𝑝1⋯𝑝𝑚

𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝓁
(𝑝𝑖𝑝𝑘𝑝𝓁) =

𝑝1⋯𝑝𝑚

𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝓁
(𝑝𝑖𝑝𝑗𝑝𝓁) +

𝑝1⋯𝑝𝑚

𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝓁
(𝑝𝑖𝑝𝑗𝑝𝑘)

⇔ 𝑝𝑗𝑝𝑘𝑝𝓁 + 𝑝𝑖𝑝𝑘𝑝𝓁 = 𝑝𝑖𝑝𝑗𝑝𝓁 + 𝑝𝑖𝑝𝑗𝑝𝑘

⇔ 𝑝𝑘𝑝𝓁(𝑝𝑖 + 𝑝𝑗) = 𝑝𝑖𝑝𝑗 (𝑝𝑘 + 𝑝𝓁),

and thus 𝑝𝑘𝑝𝓁 = (𝑝𝑘 + 𝑝𝓁) and 𝑝𝑖𝑝𝑗 = (𝑝𝑖 + 𝑝𝑗). It is trivial that 𝑝𝑘𝑝𝓁 ≠ (𝑝𝑘 + 𝑝𝓁). Indeed, 𝑝𝑘𝑝𝓁 is odd, being a product of two odd
primes, while 𝑝𝑘 + 𝑝𝓁 is even, being a sum of two odd primes. Alternatively, the equation does not hold as it is a special case of
Lemma 1.

So we have showed that in both directions it is possible to get an integral matrix with an incorrect transition matrix, but if an
incorrect matrix with transition to the left is applied, then the next matrix in the product has to be to the right to keep the matrix
integral.

Next we shall show that if the configuration matrix is multiplied by a wrong matrix, it creates an integer that cannot be removed
and thus leads to a rational number if the head is moved beyond this point. This means that, in a way, a multiplication by an incorrect
matrix results in a coefficient that cannot be removed. Thus, this makes the tape content on the other side inaccessible.

Before formally proving the above, let us define a useful notation. We say that matrix 𝑀 ∈ℕ3×3 is valid if 𝑀 = 𝛾(𝑢(𝑞, 𝑎), #𝑣𝑅) for
some configuration (𝑢(𝑞, 𝑎), 𝑣) of the TM . This means that the words 𝑢 and 𝑣 do not contain symbols from the set 𝑄 ×Γ. Note that
this does not imply that (𝑢(𝑞, 𝑎), 𝑣) can be reached by the TM. Analogously, we say that 𝜓(𝑢(𝑞, 𝑎), #𝑣𝑅) is valid if it corresponds to a
valid configuration of .

Let us consider the step where the matrix becomes invalid as in our previous considerations. For that assume that 𝜓(𝑀) is valid
and 𝜓(𝑀𝑁) is invalid for some matrix 𝑁 ∈𝑀𝛿 , but 𝜓(𝑀𝑁) ∈ ℕ4. Since by our assumption 𝜓(𝑀𝑁) ∈ ℕ4, the component that
invalidates the vector is in the second component by our considerations in (7) and (6). Namely, if 𝑁 simulates a move to the right,
then we have the case in (6) with 𝑐 = 𝑑, where the element in the second component is

𝜎(𝑢(𝑞, 𝑎))𝑛− 𝜎((𝑞′, 𝑎′))𝑛+ 𝜎(𝑏(𝑝, 𝑐))

for some (𝑞, 𝑎), (𝑞′, 𝑎′), 𝑏, (𝑝, 𝑐) ∈ 𝐶 and 𝜎((𝑞, 𝑎))𝑛 − 𝜎((𝑞′, 𝑎′))𝑛 + 𝜎(𝑏(𝑝, 𝑐)) ≠ 𝜎(𝑓 (𝑟, 𝑒)) for all 𝑓, (𝑟, 𝑒) ∈ 𝐶 . Necessarily, (𝑞, 𝑎) ≠ (𝑞′, 𝑎′),
and actually, the condition is that

𝜎((𝑞, 𝑎)) − 𝜎((𝑞′, 𝑎′)) + 𝜎(𝑏) ≠ 𝜎(𝑓)

for all 𝑓 ∈ Γ.

Similarly, if 𝑁 simulates a move to the left as in (7), then the element in the second component is as in (8) for some
𝑑, 𝑐, (𝑞, 𝑎), (𝑞′, 𝑎′), (𝑝, 𝑑) ∈ 𝐶 and 𝑢 ∈ 𝐶+. As 𝜓(𝑀𝑁) ∈ ℕ4 holds, then (𝑞, 𝑎) = (𝑞′, 𝑎′) which implies that 𝜎(𝑐) − 𝜎(𝑑) + 𝜎((𝑝, 𝑑)) ≠
7

𝜎((𝑟, 𝑒)) for all (𝑟, 𝑒) ∈ 𝐶 .

Theoretical Computer Science 1005 (2024) 114637V. Halava and R. Niskanen

The following lemma shows that once a matrix product becomes invalid it cannot be transformed into a valid one with matrices
in 𝑀𝛿 .

Lemma 5. Let 𝜓(𝑀) be valid, i.e., 𝑀 = 𝛾(𝑢(𝑞, 𝑎), #𝑣𝑅) for some configuration. Let 𝑁 ∈𝛿 such that 𝜓(𝑀𝑁) ∈ ℕ4 is no longer valid.
Then there is no sequence 𝑀𝑖1

, 𝑀𝑖2
, … , 𝑀𝑖𝑠

∈𝛿 such that 𝜓(𝑀𝑁𝑀𝑖1
𝑀𝑖2

⋯ 𝑀𝑖𝑠
) is valid.

Proof. Let us assume that there exists a sequence 𝑀𝑖1
, 𝑀𝑖2

, … , 𝑀𝑖𝑠
∈𝛿 such that 𝜓(𝑀𝑁𝑀𝑖1

𝑀𝑖2
⋯ 𝑀𝑖𝑠

) is valid and moreover
that 𝑠 is the smallest index such that the product is valid. Assume first that the final matrix, 𝑀𝑖𝑠

, corresponds to the head moving to
the right

𝜓(𝑀𝑖𝑠
) =

(
𝑛,−𝑛𝜎((𝑞′′, 𝑎′′)) + 𝜎(𝑏′′(𝑝′′, 𝑐′′)), 𝑛−1,−𝑛−1𝜎(𝑐′′)

)
and

𝜓(𝑀𝑁𝑀𝑖1
𝑀𝑖2

⋯𝑀𝑖𝑠−1
) =

(
𝑛|𝑢|, |𝑢|∑

𝑗=0
𝛼𝑗𝑛

𝑗 , 𝑛|#𝑣|, 𝜎(#𝑣𝑅)
)
,

where each 𝛼𝑗 is a sum of images of letters under 𝜎 with both positive and negative coefficients. Note that by our assumption on the
minimality of the sequence, at least one 𝛼𝑗 is not an image of a letter in Γ under 𝜎 for 𝑗 = 1, … , 𝑛 or 𝛼0 is not an image of a letter in
𝑄 × Γ. After multiplying 𝜓(𝑀𝑁𝑀𝑖1

𝑀𝑖2
⋯ 𝑀𝑖𝑠−1

) with the final matrix 𝑀𝑠, we have(
𝑛|𝑢|, |𝑢|∑

𝑗=0
𝛼𝑗𝑛

𝑗 , 𝑛|#𝑣|, 𝜎(#𝑣𝑅)
)

⋅
(
𝑛,−𝑛𝜎((𝑞′′, 𝑎′′)) + 𝜎(𝑏′′(𝑝′′, 𝑐′′)), 𝑛−1,−𝑛−1𝜎(𝑐′′)

)
=

(
𝑛|𝑢𝑥|+1, |𝑢|∑

𝑗=0
𝛼𝑗𝑛

𝑗+1 − 𝑛𝜎((𝑞′′, 𝑎′′)) + 𝜎(𝑏′′(𝑝′′, 𝑐′′)), 𝑛|#𝑣|−1, 𝑛−1(𝜎(#𝑣𝑅) − 𝜎(𝑐′′))
)
.

(9)

Since the product matrix is valid, we observe that, for 𝑗 = 2, … , |𝑢|, each 𝛼𝑗 = 𝜎(𝑎𝓁𝑗) for some 𝑎𝓁𝑗 ∈ Γ. The multiplication can only
affect 𝛼0 directly and 𝛼1 indirectly via carries.

There are two cases to consider. In the first case 𝛼0 is 𝜎(𝑒) for some 𝑒 ∈𝑄 ×Γ which implies that 𝛼1 is not an image of a letter. In
this case, for the product to be valid,

𝜎(𝑒) − 𝜎((𝑞′′, 𝑎′′)) + 𝜎(𝑏′′) = 𝜎(𝑓) + 𝑦𝑛

for some 𝑓 ∈ Γ and 𝑦 ∈ℤ is such that 𝛼1 + 𝑦 = 𝜎(𝑔) for some 𝑔 ∈ Γ, must hold. This is not true due to the definition of 𝑛. Indeed, the
largest image under 𝜑 is at most 𝑛3 . Hence 𝑦 = 0 and there are no carries. Thus 𝛼1 prevents the result from being a valid matrix.

In the second case, 𝛼0 does not correspond to an image of a letter from 𝑄 × Γ under 𝜎. Our goal is to show that there does not
exist some 𝑑 ∈ Γ such that

𝛼0 − 𝜎((𝑞′′, 𝑎′′)) + 𝜎(𝑏′′) = 𝜎(𝑑).

We prove this as a separate lemma, Lemma 6, after this proof.

The case where matrix 𝑀𝑖𝑠
corresponds to the head moving to the left is proven in analogous way. Let 𝑀𝑖𝑠

correspond to the
head moving to the left, i.e.,

𝜓(𝑀𝑖𝑠
) =

(
𝑛−1,−𝑛−1𝜎(𝑐′′(𝑞′′, 𝑎′′)) + 𝜎((𝑝′′, 𝑐′′)), 𝑛, 𝜎(𝑏′′)

)
and

𝜓(𝑀𝑁𝑀𝑖1
𝑀𝑖2

⋯𝑀𝑖𝑠−1
) =

(
𝑛|𝑢|, |𝑢|∑

𝑗=0
𝛼𝑗𝑛

𝑗 , 𝑛|#𝑣|, 𝜎(#𝑣𝑅)
)
,

where each 𝛼𝑗 is a sum images of letters under 𝜎 with both positive and negative coefficients. Again, we multiply the latter matrix
by the former and obtain(

𝑛|𝑢|−1, |𝑢|∑
𝑗=0
𝛼𝑗𝑛

𝑗−1 − 𝑛−1𝜎(𝑐′′(𝑞′′, 𝑎′′)) + 𝜎((𝑝′′, 𝑐′′)), 𝑛|#𝑣|+1, 𝜎(#(𝑏′′𝑣)𝑅)
)
.

There are two subcases to consider. Either 𝛼0 = 𝜎((𝑞′′, 𝑎′′)) or 𝛼0 is not an image of a letter under 𝜎. The first subcase implies that
𝛼𝑗 is not an image of a letter under 𝜎 for some 𝑗 = 1, 2, … , |𝑢|. That is, the analogous considerations as above show that these two
coefficients do not become images of some letter under 𝜎.
8

Hence there is no sequence 𝑀𝑖1
, 𝑀𝑖2

, … , 𝑀𝑖𝑠
such that 𝑀𝑁𝑀𝑖1

𝑀𝑖2
⋯ 𝑀𝑖𝑠

is a valid configuration. □

Theoretical Computer Science 1005 (2024) 114637V. Halava and R. Niskanen

Lemma 6. Let 𝛼 =
∑𝑟

𝑖=1 𝑧𝑖𝜎(𝑠𝑖), where 𝑧𝑖 ∈ℤ and 𝑠𝑖 ∈ 𝐶 . Let (𝑞, 𝑎) ∈𝑄 × Γ and let 𝑏, 𝑐 ∈ Γ. The equation

𝛼 − 𝜎((𝑞, 𝑎)) + 𝜎(𝑏) = 𝜎(𝑐)

does not hold.

Proof. Assume the contrary. That is,

𝛼 − 𝜎((𝑞, 𝑎)) + 𝜎(𝑏) = 𝜎(𝑐) (10)

holds. Let ⊆ 𝐶 be the set of all letters that appear in 𝛼, and let us partition 𝛼 into two sets, 𝛼+ and 𝛼−, where the coefficients of
letters are positive or negative, respectively. That is,

𝛼+ = {(𝑎𝑖, 𝑧𝑖) ∣ 𝑎𝑖 ∈ and 𝑧𝑖 ∈ℤ, 𝑧𝑖 > 0};

𝛼− = {(𝑎𝑖, 𝑧𝑖) ∣ 𝑎𝑖 ∈ and 𝑧𝑖 ∈ℤ, 𝑧𝑖 < 0}.

It is clear that if (𝑎𝑖, 𝑧𝑖) ∈ 𝛼+, then (𝑎𝑖, 𝑧) ∉ 𝛼− (for any 𝑧 ∈ ℤ) and vice versa. Now 𝛼 =
∑

(𝑠,𝑥)∈𝛼+ 𝑥 ⋅ 𝜎(𝑠) +
∑

(𝑡,𝑦)∈𝛼− 𝑦 ⋅ 𝜎(𝑡). We can
rewrite (10) as∑

(𝑠,𝑥)∈𝛼+
𝑥 ⋅ 𝜎(𝑠) + 𝜎(𝑏) = −

∑
(𝑡,𝑦)∈𝛼−

𝑦 ⋅ 𝜎(𝑡) + 𝜎(𝑐) + 𝜎((𝑞, 𝑎)). (11)

Let 𝜎((𝑞, 𝑎)) =
∏𝑚

𝑗=1
𝑗≠𝑘1

𝑝𝑗 , 𝜎(𝑏) =
∏𝑚

𝑗=1
𝑗≠𝑘2

𝑝𝑗 and 𝜎(𝑐) =
∏𝑚

𝑗=1
𝑗≠𝑘1

𝑝𝑗 . Without loss of generality, we assume that 𝑘1, 𝑘2, 𝑘3 ∉ . If this is not

the case, then some coefficients of terms of 𝛼 are different but the same reasoning applies. Let us next define the sets of indexes
of letters appearing in 𝛼+ and 𝛼−, together with 𝑘1, 𝑘2 and 𝑘3. That is, 𝑃+ = {𝑖𝑗 ∣ (𝑠𝑖𝑗 , 𝑧𝑖𝑗) ∈ 𝛼

+} ∪ {𝑘1} and 𝑃− = {𝑖𝑗 ∣ (𝑡𝑖𝑗 , 𝑦𝑖𝑗) ∈
𝛼−} ∪ {𝑘2, 𝑘3}. Equation (11) is equivalent to

𝑥𝑖1

𝑚∏
𝑗=1
𝑗≠𝑖1

𝑝𝑗 + 𝑥𝑖2

𝑚∏
𝑗=1
𝑗≠𝑖2

𝑝𝑗 +⋯+ 𝑥𝑖𝑞

𝑚∏
𝑗=1
𝑗≠𝑖𝑞

𝑝𝑗 +
𝑚∏
𝑗=1
𝑗≠𝑘1

𝑝𝑗

= −𝑦𝓁1

𝑚∏
𝑗=1
𝑗≠𝓁1

𝑝𝑗 − 𝑦𝓁2

𝑚∏
𝑗=1
𝑗≠𝓁2

𝑝𝑗 −⋯− 𝑦𝓁𝑟

𝑚∏
𝑗=1
𝑗≠𝓁𝑟

𝑝𝑗 +
𝑚∏
𝑗=1
𝑗≠𝑘2

𝑝𝑗 +
𝑚∏
𝑗=1
𝑗≠𝑘3

𝑝𝑗 ,

where (𝑠𝑖𝑗 , 𝑥𝑖𝑗) ∈ 𝛼
+ and (𝑡𝑖𝑗 , 𝑦𝑖𝑗) ∈ 𝛼

−. We can divide both sides of the equation by primes not corresponding to indexes of 𝑃+ and
𝑃− as every product contains those primes:

𝑥𝑖1

𝑚∏
𝑗∈𝑃+∪𝑃−

𝑗≠𝑖1

𝑝𝑗 + 𝑥𝑖2

𝑚∏
𝑗∈𝑃+∪𝑃−

𝑗≠𝑖2

𝑝𝑗 +⋯+ 𝑥𝑖𝑞

𝑚∏
𝑗∈𝑃+∪𝑃−

𝑗≠𝑖𝑞

𝑝𝑗 +
𝑚∏

𝑗∈𝑃+∪𝑃−

𝑗≠𝑘1

𝑝𝑗

= −𝑦𝓁1

𝑚∏
𝑗∈𝑃+∪𝑃−

𝑗≠𝓁1

𝑝𝑗 − 𝑦𝓁2

𝑚∏
𝑗∈𝑃+∪𝑃−

𝑗≠𝓁2

𝑝𝑗 −⋯− 𝑦𝓁𝑟

𝑚∏
𝑗∈𝑃+∪𝑃−

𝑗≠𝓁𝑟

𝑝𝑗

+
𝑚∏

𝑗∈𝑃+∪𝑃−

𝑗≠𝑘2

𝑝𝑗 +
𝑚∏

𝑗∈𝑃+∪𝑃−

𝑗≠𝑘3

𝑝𝑗 .

Next, we take the common factors on both sides. Namely, those primes corresponding to indexes in 𝑃− on the left-hand side and to
indexes in 𝑃+ on the right-hand side.

𝑝𝓁1
𝑝𝓁2

⋯𝑝𝓁𝑟
𝑝𝑘2
𝑝𝑘3

⎛⎜⎜⎜⎜⎝
𝑥𝑖1

𝑚∏
𝑗∈𝑃+

𝑗≠𝑖1

𝑝𝑗 +⋯+ 𝑥𝑖𝑞

𝑚∏
𝑗∈𝑃+

𝑗≠𝑖𝑞

𝑝𝑗 +
𝑚∏

𝑗∈𝑃+

𝑗≠𝑘1

𝑝𝑗

⎞⎟⎟⎟⎟⎠
= 𝑝𝑖1𝑝𝑥2 ⋯𝑝𝑖𝑞

𝑝𝑘1

⎛⎜⎜⎜−𝑦𝓁1
𝑚∏

𝑗∈𝑃−
𝑝𝑗 −⋯− 𝑦𝓁𝑟

𝑚∏
𝑗∈𝑃−

𝑝𝑗 +
𝑚∏

𝑗∈𝑃−
𝑝𝑗 +

𝑚∏
𝑗∈𝑃−

𝑝𝑗

⎞⎟⎟⎟ .

9

⎝ 𝑗≠𝓁1 𝑗≠𝓁𝑟 𝑗≠𝑘2 𝑗≠𝑘3 ⎠

Theoretical Computer Science 1005 (2024) 114637V. Halava and R. Niskanen

Now the left-hand side is equal to the right-hand side if and only if both

𝑝𝑖1
𝑝𝑖2

⋯𝑝𝑖𝑞
𝑝𝑘1

= 𝑥𝑖1

𝑚∏
𝑗∈𝑃+

𝑗≠𝑖1

𝑝𝑗 +⋯+ 𝑥𝑖𝑞

𝑚∏
𝑗∈𝑃+

𝑗≠𝑖𝑞

𝑝𝑗 +
𝑚∏

𝑗∈𝑃+

𝑗≠𝑘1

𝑝𝑗 and

𝑝𝓁1
𝑝𝓁2

⋯𝑝𝓁𝑟
𝑝𝑘2
𝑝𝑘3

= −𝑦𝓁1

𝑚∏
𝑗∈𝑃−

𝑗≠𝓁1

𝑝𝑗 −⋯− 𝑦𝓁𝑟

𝑚∏
𝑗∈𝑃−

𝑗≠𝓁𝑟

𝑝𝑗 +
𝑚∏

𝑗∈𝑃−

𝑗≠𝑘2

𝑝𝑗 +
𝑚∏

𝑗∈𝑃−

𝑗≠𝑘3

𝑝𝑗

hold at the same time. But neither equation holds by Lemma 1. □

We have proved that the computation of a TM can be simulated with matrix semigroup with integrality test. We state this as a
theorem.

Theorem 7. Let be a TM and let 𝐺 = {𝑀(𝑞,𝑎),𝑐 ∣ 𝛿(𝑞, 𝑎) is defined and 𝑐 ∈ Γ}, and assume that 𝑢(𝑞, 𝑎)𝑣 is a valid configuration of .
Then ⊳(𝑞0, ⋆)⊲ ⊢∗

𝑢(𝑞, 𝑎)𝑣 if and only if there exist matrices 𝑀1, … , 𝑀𝑘 ∈𝐺 such that

𝛾(⊳(𝑞0,⋆),#⊲) ⋅𝑀1 ⋅𝑀2⋯𝑀𝑘 = 𝛾(𝑢(𝑞, 𝑎),#𝑣𝑅)

and

𝛾(⊳(𝑞0,⋆),#⊲) ⋅𝑀1 ⋅𝑀2⋯𝑀𝑗 ∈ℤ3×3

for all 𝑗 = 1, … , 𝑘.

Our first undecidability result follows from the halting problem.

Theorem 8. Let 𝐺 ⊆ ℚ3×3 be a finite set of matrices and 𝑀 ∈ ℤ3×3. Let 𝑆 be the matrix semigroup generated by 𝐺. It is undecidable
whether or not there exists a nonempty sequence of matrices 𝑀𝑖1

, 𝑀𝑖2
, … , 𝑀𝑖𝑘

∈ 𝑆 such that

𝑀 ⋅𝑀𝑖1
⋅𝑀𝑖2

⋅… ⋅𝑀𝑖𝑘
=𝑀

and

𝑀 ⋅𝑀𝑖1
⋅𝑀𝑖2

⋅… ⋅𝑀𝑖𝑗
∈ℤ3×3

for all 𝑗 = 1, … , 𝑘.

Proof. Let 𝐺 be as in the previous theorem and let 𝑀 = 𝛾(⊳(𝑞0, ⋆), #⊲), where ⊳(𝑞0, ⋆)⊲ is the initial configuration of Turing
machine with undecidable halting problem. It is clear, with help of Lemma 5, that 𝐺 simulates and that the two properties of
the claim hold if and only if halts. □

5. The identity problem for rational matrix semigroups with integrality tests

In this section, we apply Theorem 8 to show that the identity problem is undecidable in this setting. Let us first define the identity
problem for a generating set 𝐺 of a 𝑑-dimensional matrix semigroup with entries from 𝕂 ∈ {ℤ, ℚ, ℝ, ℂ}, i.e., 𝐺 ⊆𝕂𝑑×𝑑 .

Problem 9 (Identity problem). Given a finite set of matrices 𝐺 ⊆𝕂𝑑×𝑑 . Does the identity matrix 𝑰𝑑 belong to the semigroup ⟨𝐺⟩?
Recall that it is known that the identity problem is decidable for 𝕂 = ℤ and 𝑑 = 2 [3], undecidable for 𝕂 =ℍ (rational quaternions)

and 𝑑 = 2 [2], and 𝕂 =ℤ and 𝑑 = 4 [5]. We are studying the identity problem for three-dimensional matrices, which is a well-known
open problem.

Let us introduce a variant of the identity problem, where there is an additional integrality test. Let 𝐺 ⊆ ℚ𝑑×𝑑 be a finite set of
rational matrices. Consider 𝑀 ∈ ⟨𝐺⟩ but 𝑀 ∉ℤ𝑑×𝑑 . Then 𝑀 ∉ ⟨𝐺⟩ℤ.

Problem 10 (Identity problem with integrality test). Given a finite set of matrices 𝐺 ⊆ 𝕂𝑑×𝑑 . Does the identity matrix 𝑰𝑑 belong to ⟨𝐺⟩ℤ?
That is, does there exist a sequence of matrices 𝑀𝑖 ∈𝐺 such that

𝑀1𝑀2⋯𝑀𝑟 = 𝑰 ,

and
10

𝑀1𝑀2⋯𝑀𝑗 ∈ℤ𝑑×𝑑

Theoretical Computer Science 1005 (2024) 114637V. Halava and R. Niskanen

for all 𝑗 ∈ {1, … , 𝑟}.

Naturally, we can also ask the other standard matrix semigroup questions for our scenario. But apart from the identity problem,
hardly any new results can be derived as most of the problems are undecidable already for integral matrices (i.e., with no integrality
tests required).

Theorem 11. The identity problem with integrality test is undecidable for 𝐺 ⊆ℚ3×3.

Proof. Let 𝐺 be the set 𝛿 constructed in the previous section together with additional matrices 𝑁1, 𝑁2 used to embed the initial
configuration and 𝑁3 to remove the final configuration. More precisely, the matrices are

𝑁1 =
⎛⎜⎜⎝

𝑛2 0 0
0 𝑛2 0

𝜎(⊳(𝑞0,⋆)) 𝜎(#⊲) 𝑛

⎞⎟⎟⎠ ,
𝑁2 =

⎛⎜⎜⎝
𝑛 0 0
0 𝑛−1 0

−𝜎((𝑞0,⋆)) + 𝑛−1𝜎(𝑏(𝑝,⊲)) −𝑛−2𝜎(⊲) 𝑛−1,

⎞⎟⎟⎠ ,
and 𝑁3 =

⎛⎜⎜⎝
𝑛−2 0 0
0 𝑛−2 0

−𝑛−2𝜎(⊳(𝑞0,⋆)) −𝑛−2𝜎(#⊲) 1

⎞⎟⎟⎠ ,
where ⊳(𝑞0, ⋆)⊲ is the initial configuration and the second configuration is ⊳𝑏(𝑝, ⊲).

It is straightforward to see that a non-empty product resulting in the identity matrix has to start with 𝑁1 or with a matrix of form
(5). Indeed, these are the only matrices in ℤ3×3. Let us first consider the case where 𝑁1 is the first matrix. We can further observe
that multiplying 𝑁1 with any other matrix beside 𝑁1 or 𝑁2 or of form (5) result in a matrix that violates integrality. Indeed, for

example, when 𝑀 =
(

𝑛 0 0
0 𝑛−1 0

−𝑛𝜎((𝑞,𝑎))+𝜎(𝑏(𝑝,𝑐)) −𝑛−1𝜎(𝑐) 1

)
∈𝛿 . Then

𝑁1𝑀 =
⎛⎜⎜⎝

𝑛2 0 0
0 𝑛2 0

𝜎(⊳(𝑞0,⋆)) 𝜎(#⊲) 𝑛

⎞⎟⎟⎠
⎛⎜⎜⎝

𝑛 0 0
0 𝑛−1 0

−𝑛𝜎((𝑞, 𝑎)) + 𝜎(𝑏(𝑝, 𝑐)) −𝑛−1𝜎(𝑐) 1

⎞⎟⎟⎠
=
⎛⎜⎜⎝

𝑛3 0 0
0 1 0

𝑛𝜎(⊳(𝑞0,⋆)) − 𝑛2𝜎((𝑞, 𝑎)) + 𝑛𝜎(𝑏(𝑝, 𝑐)) 𝑛−1𝜎(#⊲) − 𝜎(𝑐) 𝑛

⎞⎟⎟⎠ .
Normally, 𝑛−1𝜎(⊲) would be removed by the correct choice of a matrix with 𝑐 = ⊲, but as the bottom right corner is not 1, this does
not happen.

In any product resulting in the identity matrix, there must be an equal number of matrices 𝑁1 and 𝑁2 as multiplying by 𝑁2 is
the only way to produce a matrix with 1 in the bottom right corner.

Let 𝑀 ∈ {𝑁1, 𝑁2}∗. 𝑀 is valid if and only if 𝑀 =𝑁1𝑁2. If 𝑀 is not valid, then analogously to the proof of Lemma 5, it can be
proven that a valid matrix cannot be obtained using matrices from 𝛿 ∪ {𝑁1, 𝑁2, 𝑁3}.

Assume then that the first matrix is of form (5), i.e., is
(

𝑛 0 0
0 1 0

−𝑛𝜎((𝑝,⊲))+𝜎(𝑏(𝑞,⊲) 0 1

)
for some 𝑝, 𝑞 ∈𝑄 and 𝑏 ∈ Γ. It is straightforward

to see that matrices 𝑁2, 𝑁3 and those corresponding to moving the head to the right cannot be applied as the element (2, 2) would
become rational. If 𝑁1, a matrix corresponding to moving the head to the left or of the form (5) is applied, then the resulting matrix
is not valid and by Lemma 5 cannot be made valid.

Finally, observe that, similarly to how 𝑁1 had to be the first matrix, 𝑁3 has to be the last matrix and, more specifically, can only
multiply 𝛾(⊳(𝑞0, ⋆), ⊲). The resulting matrix is the identity matrix. The matrix 𝛾(⊳(𝑞0, ⋆), ⊲) is in the semigroup if and only if the
TM halts. Thus the identity problem is undecidable. □

6. Future work

In the previous sections, we constructed a generator set 𝐺 that allow us to simulate a Turing machine when the partial products
are tested to be integers. It would be interesting to see if it is possible to simulate a TM with a matrix semigroup where the integrality
test is not performed after every multiplication. That is, there is a set 𝑍 ⊆ 𝐺 such that the integrality is tested only after a matrix
from 𝑍 appears in the product. In other words, the model has fewer integrality checks or even a fixed number of integrality checks.
This can be achieved by constructing a universal TM with special properties that ensure that a computation consists of some special
transitions. These special transitions would then be transformed into matrices with integrality checks. This would require a careful
11

analysis similar to Lemma 5 of “incorrect” simulations to make sure that a valid configuration cannot be obtained.

Theoretical Computer Science 1005 (2024) 114637V. Halava and R. Niskanen

CRediT authorship contribution statement

Vesa Halava: Writing – review & editing, Writing – original draft, Methodology, Investigation. Reino Niskanen: Writing – review
& editing, Writing – original draft, Methodology, Investigation.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Vesa Halava reports financial support was provided by emmy.network foundation. If there are other authors, they declare
that they have no known competing financial interests or personal relationships that could have appeared to influence the work
reported in this paper.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments and suggestions.

References

[1] Paul Bell, Vesa Halava, Tero Harju, Juhani Karhumäki, Igor Potapov, Matrix equations and Hilbert’s tenth problem, Int. J. Algebra Comput. 18 (8) (2008)
1231–1241, https://doi .org /10 .1142 /S0218196708004925.

[2] Paul Bell, Igor Potapov, Reachability problems in quaternion matrix and rotation semigroups, Inf. Comput. 206 (11) (2008) 1353–1361, https://doi .org /10 .
1016 /j .ic .2008 .06 .004.

[3] Paul C. Bell, Mika Hirvensalo, Igor Potapov, The identity problem for matrix semigroups in SL(2, ℤ) is NP-complete, in: Proceedings of Symposium on Discrete
Algorithms 2017, 2017.

[4] Paul C. Bell, Igor Potapov, On undecidability bounds for matrix decision problems, Theor. Comput. Sci. 391 (1–2) (2008) 3–13, https://doi .org /10 .1016 /j .tcs .
2007 .10 .025.

[5] Paul C. Bell, Igor Potapov, On the undecidability of the identity correspondence problem and its applications for word and matrix semigroups, Int. J. Found.
Comput. Sci. 21 (6) (2010) 963–978, https://doi .org /10 .1142 /S0129054110007660.

[6] Michael Blondin, Christoph Haase, Filip Mazowiecki, Mikhail A. Raskin, Affine extensions of integer vector addition systems with states, Log. Methods Comput.
Sci. 17 (3) (2021), https://doi .org /10 .46298 /LMCS -17(3 :1)2021.

[7] Michael Blondin, Mikhail A. Raskin, The complexity of reachability in affine vector addition systems with states, Log. Methods Comput. Sci. 17 (3) (2021),
https://doi .org /10 .46298 /LMCS -17(3 :3)2021.

[8] Mark Braverman, Termination of integer linear programs, in: Proceedings of Computer Aided Verification 2006, in: LNCS, vol. 4144, Springer, 2006, pp. 372–385.

[9] Volker Claus, Some remarks on PCP(k) and related problems, Bull. Eur. Assoc. Theor. Comput. Sci. 12 (1980) 54–61.

[10] John H. Conway, FRACTRAN: A Simple Universal Programming Language for Arithmetic, Springer New York, New York, NY, 1987, pp. 4–26.

[11] Ruiwen Dong, The identity problem in the special affine group of Z2, in: Proceedings of LICS 2023, 2023, pp. 1–13.

[12] Ruiwen Dong, The identity problem in nilpotent groups of bounded class, in: SODA 2024, 2024, https://doi .org /10 .1137 /1 .9781611977912 .138, in press,
arXiv :2208 .02164.

[13] Alain Finkel, Jérôme Leroux, How to compose Presburger-accelerations: applications to broadcast protocols, in: Proceedings of FST 2002, in: LNCS, vol. 2556,
Springer, 2002, pp. 145–156.

[14] Vesa Halava, Tero Harju, Mika Hirvensalo, Undecidability bounds for integer matrices using Claus instances, Int. J. Found. Comput. Sci. 18 (5) (2007) 931–948,
https://doi .org /10 .1142 /S0129054107005066.

[15] John E. Hopcroft, Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, Mass., 1979.

[16] Mehran Hosseini, Joël Ouaknine, James Worrell, Termination of linear loops over the integers, in: Proceedings of ICALP 2019, in: LIPIcs, vol. 132, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 118:1–118:13.

[17] Radu Iosif, Arnaud Sangnier, How hard is it to verify flat affine counter systems with the finite monoid property?, in: Proceedings of ATVA 2016, in: LNCS,
vol. 9938, Springer, 2016, pp. 89–105.

[18] Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, David Purser, Anton Varonka, Markus A. Whiteland, James Worrell, What’s decidable about linear loops?,
Proc. ACM Program. Lang. 6 (POPL) (2022) 1–25, https://doi .org /10 .1145 /3498727.

[19] Sang-Ki Ko, Reino Niskanen, Igor Potapov, On the identity problem for the special linear group and the Heisenberg group, in: Proceedings of ICALP 2018, 2018.

[20] Laura Kovács, Anton Varonka, What else is undecidable about loops?, in: Proceedings of RAMiCS 2023, in: LNCS, vol. 13896, Springer, 2023, pp. 176–193.

[21] Zohar Manna, Mathematical Theory of Computation, McGraw-Hill Book Co, 1974.

[22] Marvin L. Minsky, Recursive unsolvability of post’s problem of “tag” and other topics in theory of Turing machines, Ann. Math. 74 (3) (1961) 437–455, http://

www .jstor .org /stable /1970290.

[23] Turlough Neary, Undecidability in binary tag systems and the post correspondence problem for five pairs of words, in: 32nd International Symposium on
Theoretical Aspects of Computer Science, in: LIPIcs. Leibniz Int. Proc. Inform., vol. 30, Schloss Dagstuhl. Leibniz-Zent. Inform, Wadern, 2015, pp. 649–661.

[24] Michael S. Paterson, Unsolvability in 3 × 3 matrices, Stud. Appl. Math. 49 (1) (1970) 105, https://doi .org /10 .1002 /sapm1970491105.

[25] Emil Leon Post, A variant of a recursively unsolvable problem, Bull. Am. Math. Soc. 52 (1946) 264–268, https://doi .org /10 .1090 /S0002 -9904 -1946 -08555 -9.
12

[26] Ashish Tiwari, Termination of linear programs, in: Proceedings of Computer Aided Verification 2004, in: LNCS, vol. 3114, Springer, 2004, pp. 70–82.

https://doi.org/10.1142/S0218196708004925
https://doi.org/10.1016/j.ic.2008.06.004
https://doi.org/10.1016/j.ic.2008.06.004
http://refhub.elsevier.com/S0304-3975(24)00252-4/bib8D51F3356455B24CA3AA80C37DAA004As1
http://refhub.elsevier.com/S0304-3975(24)00252-4/bib8D51F3356455B24CA3AA80C37DAA004As1
https://doi.org/10.1016/j.tcs.2007.10.025
https://doi.org/10.1016/j.tcs.2007.10.025
https://doi.org/10.1142/S0129054110007660
https://doi.org/10.46298/LMCS-17(3:1)2021
https://doi.org/10.46298/LMCS-17(3:3)2021
http://refhub.elsevier.com/S0304-3975(24)00252-4/bibB27B5AA10A17AA5961DBC8236DB3D671s1
http://refhub.elsevier.com/S0304-3975(24)00252-4/bib3C2887689860DF0ADDEA436005C23196s1
http://refhub.elsevier.com/S0304-3975(24)00252-4/bib4803C7B5995CEC9703B00EDB4A3DE4D2s1
http://refhub.elsevier.com/S0304-3975(24)00252-4/bib005859131817DF19BA1C0295AEE994DAs1
https://doi.org/10.1137/1.9781611977912.138
http://refhub.elsevier.com/S0304-3975(24)00252-4/bib5A25212DFCD2E66429B1D167991280AAs1
http://refhub.elsevier.com/S0304-3975(24)00252-4/bib5A25212DFCD2E66429B1D167991280AAs1
https://doi.org/10.1142/S0129054107005066
http://refhub.elsevier.com/S0304-3975(24)00252-4/bib5769E82D3101450BC5CEABF9DDD950A9s1
http://refhub.elsevier.com/S0304-3975(24)00252-4/bibD57D6A1FF7996F104636FA9C58F02B52s1
http://refhub.elsevier.com/S0304-3975(24)00252-4/bibD57D6A1FF7996F104636FA9C58F02B52s1
http://refhub.elsevier.com/S0304-3975(24)00252-4/bibF1FAF87B1C8B9F53C456CF2242A41D4As1
http://refhub.elsevier.com/S0304-3975(24)00252-4/bibF1FAF87B1C8B9F53C456CF2242A41D4As1
https://doi.org/10.1145/3498727
http://refhub.elsevier.com/S0304-3975(24)00252-4/bib98300C8C4A38B7129D6E68CA04FAA681s1
http://refhub.elsevier.com/S0304-3975(24)00252-4/bibDF945C74A297A2B9215D15C99A586BC7s1
http://refhub.elsevier.com/S0304-3975(24)00252-4/bib69B2CF3779326FB9E455DC286F3BCC73s1
http://www.jstor.org/stable/1970290
http://www.jstor.org/stable/1970290
http://refhub.elsevier.com/S0304-3975(24)00252-4/bibA3023422DC0BE5A106C63B1E9E603319s1
http://refhub.elsevier.com/S0304-3975(24)00252-4/bibA3023422DC0BE5A106C63B1E9E603319s1
https://doi.org/10.1002/sapm1970491105
https://doi.org/10.1090/S0002-9904-1946-08555-9
http://refhub.elsevier.com/S0304-3975(24)00252-4/bibB1F3D0503D916284AC04A6FF1034F1A2s1

	On simulating Turing machines with matrix semigroups with integrality tests
	1 Introduction
	2 Preliminaries
	3 Halting problem
	4 Matrix reachability from Turing machines
	5 The identity problem for rational matrix semigroups with integrality tests
	6 Future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

