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Abstract. Tumour hypoxia confers poor prognosis in a wide 
range of solid tumours, due to an increased malignancy, 
increased likelihood of metastasis and treatment resistance. 
Poorly oxygenated tumours are resistant to both radiation 
therapy and chemotherapy. However, although the link 
between radiation therapy and hypoxia is well established 
in a range of clinical studies, evidence of its influence on 
chemotherapy response is lacking. In this study, a panel of 
human tumour-derived xenografts that have been characterised 
previously for in vivo response to a large series of anti-cancer 
agents, and have been found to show chemosensitivities that 
correlate strongly with the parent tumour, were used to address 
this issue. Immunohistochemistry was carried out on formalin-
fixed, paraffin-embedded sections of xenograft samples to 
detect expression of the intrinsic hypoxia marker Glut-1 and 
adducts of the bioreductive hypoxia marker pimonidazole. 
Glut-1 scores correlated significantly with T/C values for 
CCNU sensitivity (r=0.439, P=0.036, n=23) and showed a 
borderline significant correlation with dacarbazine T/C 
(r=0.405, P=0.076, n=20). However, there was no correlation 
between both Glut-1 and pimonidazole scores and T/C obtained 
for the bioreductive drug mitomycin C. The use of human 
tumour-derived xenografts offers a potentially useful way 

Correspondence to: Dr Rachel Airley, School of Pharmacy and 
Chemistry, Liverpool John Moores University, Byrom Street, 
Liverpool, L3 3AF, UK 
E-mail: r.airley@livjm.ac.uk 

'Contributed equally 

Key words: hypoxia, Glut-1, xenografts, chemotherapy 

of using archival material to determine the influence of 
hypoxia and other tumour-microenvironmental factors on 
chemosensitivity without the direct use of human subjects. 

Introduction 

The tumour microenvironment is extremely hostile, being 
deprived of oxygen, glucose and more acidic than normal 
tissue. Many tumours contain regions of low oxygen tension 
generally thought to arise as a consequence of poor and 
disorganised blood supply, and rapid tumour cell proliferation 
(1). It is well established both experimentally and clinically 
that hypoxia leads to radiation resistance, and ultimately, 
poor local control and disease-specific survival in patients 
treated with radiation therapy. For example, measurements 
of 0 2 tension in tumours prior to radiation therapy revealed 
hypoxia to be an independent prognostic indicator in head 
and neck cancer (2), soft tissue sarcomas (3) and advanced 
carcinoma of the cervix (4,5). Hypoxic tumours are also 
more malignant and more likely to metastasise, which may 
be due to the promotion of genomic instability associated 
with carcinogenesis and malignant progression (6,7). 

The influence of tumour hypoxia on the sensitivity of 
tumours to many chemotherapeut ic drugs may depend 
upon several factors. Firstly, hypoxia may increase the G0 

fraction, which will decrease sensitivity to phase-specific 
drugs. Secondly, whereas hypoxia-induced radiation resistance 
arises from the need for molecular oxygen to 'fix' radiation-
induced DNA damage (8) certain conventional anti-cancer 
agents depend upon the presence of oxygen for activation. 
Finally, the lack of structurally and functionally normal tumour 
blood vessels may inhibit the delivery of chemotherapy (9). 
However, so far, although the connection between hypoxia 
and chemotherapy resistance is logical, there is a lack of 
experimental or clinical evidence supporting this hypothesis. 
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To draw any conclusions relating to the level of tumour 
hypoxia, it is necessary to use a reliable marker of hypoxia. 
Although oxygen electrodes may be used to obtain direct 
oxygen measurements, this is expensive, invasive and some 
tumours are inaccessible. This problem may be partially 
overcome by the use of the 2-nitroimidazole bioreductive 
hypoxia marker pimonidazole, which, when administered 
approximately 16 h prior to biopsy, is activated in hypoxic 
areas of the tumour, forming intracellular adducts that may 
be detected immunohistochemically (10,11). Pimonidazole is 
used routinely in experimental approaches, and has been 
evaluated as a clinical marker of hypoxia in advanced 
carcinoma of the cervix and head and neck cancers (12,13). 
However, because the drug must be administered pro­
spectively, if studies necessitate the use of archival material, 
the administration of pimonidazole is not possible. 

To adapt and flourish in hypoxia, several classes of 
hypoxia-inducible genes may be upregulated. This gene 
expression is mediated via the transcription factor HIF-1 
(hypoxia-inducible factor), although there may also be 
interaction with the recently discovered HIF-2a and HIF-3a 
(14,15). These genes include the hypoxia-regulated facilitative 
glucose transporter Glut-1, which mediates a switch to 
anaerobic glycolysis as the major energy source of the tumour 
cell, and which may be partially or wholly responsible for 
the increased glucose uptake observed in tumours. Glut-1 is 
overexpressed in a wide range of tumours (16), and predicts 
poor survival and poor metastasis-free survival after treatment 
with surgery or chemoradiotherapy (17-24). Glut-1 has been 
clinically validated as an intrinsic marker of hypoxia in 
advanced carcinoma of the cervix, and shows a significant 
statistical correlation with hypoxia as defined by oxygen 
electrodes (17) and pimonidazole binding (25). The major 
advantage of intrinsic markers of hypoxia is that whereas 
they are also detectable in biopsy material using immuno-
histochemical techniques; they require no invasive procedure 
other than routine diagnostic biopsy, which is highly desirable 
in a clinical setting. However, another advantage of intrinsic 
markers that does not apply to the use of oxygen electrodes 
or pimonidazole is that they may be used in archival material, 
which has applications in retrospective translational studies 
using clinical or xenograft material. A chemical marker such 
as pimonidazole may be used to reinforce data provided by 
intrinsic markers, but offers the advantage of being independent 
from the genetic changes associated with malignancy. These 
include the expression of the genes c-Myc or h-Ras, which 
mediate HIF-1-regulated genes in normoxic conditions, and 
may therefore confound any evaluation of tumour hypoxia 
(26,27). However, it must be considered that different hypoxia 
markers may reflect different populations of hypoxic cells, 
ranging from the acutely to chronically hypoxic. For example, 
whereas the extent of pimonidazole binding depends upon 
pharmacokinetic parameters such as the rate of accumulation 
in a tumour, and the enzymatic activation of bioreductive drugs 
by NADPH: cytochrome P450 reductase (P450R) (28), the 
hypoxia-induced upregulation of Glut-1 protein synthesis only 
occurs after activation and translocation of pre-existing glucose 
transporters (29). Therefore, in our experience, although 
pimonidazole and Glut-1 immunostaining may show similar 
spatial patterns, the area and intensity of staining may vary. 

The Freiburg group have established a large panel of human 
tumour xenografts and around 250 of these human tumours at 
early passage have been well characterised for growth and 
shown typical features in tenns of histology and differentiation 
consistent with the original tumour taken from patients. A 
subset of these tumours has also been characterised for their 
response to conventionally used cancer chemotherapeutic 
agents used either alone or in combination. When compared 
with patient response, a significant correlation was observed, 
with the xenografts giving a 96% prediction of resistance and 
a 90% prediction for tumour responsiveness. Drug sensitivity 
expressed as T/C (ratio of volumes of treated tumour to 
untreated tumour) for each drug have been characterised 
and described previously (30). Therefore, the examination of 
material from these xenografts allows important links to be 
drawn between the properties of this archival material and 
in vivo chemotherapy response, which can be in turn extra­
polated back to the chemotherapy response of the respective 
human tumours. In this study, we have evaluated the extent of 
tumour hypoxia using pimonidazole and Glut-1 immunohisto-
chemistry, in order to capture different hypoxic populations. In 
doing so, we aim to establish the effect of hypoxia on response 
to these commonly used anti-cancer agents. In lieu of a large-
scale clinical study, which for the wide range of agents used 
in this study would present multiple problems; the use of this 
experimental model presents an attractive alternative. 

Materials and methods 

Tissue collection. Sixty tumours were selected from the 
Freiburg panel of human tumour-derived xenografts that 
were representative of the common human malignancies, and 
included lung, breast and colon tumours. For this study, 
tumours were previously characterised for chemosensitivity/ 
resistance to a range of anti-cancer agents, where T/C values 
(ratio of treated tumour volume to untreated tumour volume), 
where determined, and are shown in Table I. Xenografts 
were generated from tumour pieces obtained from early 
passage stock implanted subcutaneously into the flanks of 
female nu/nu mice and allowed to grow to an approximate 
volume of 200 mm3. The mice could then treated with the 
chosen agents, and at an appropriate time after treatment, the 
mice sacrificed, tumours excised and sliced into two pieces. 
Of these, one piece was immediately frozen in liquid N2 to 
enable analysis of bioreductive enzymes, and the other was 
formalin-fixed for subsequent immunohistochemical analysis 
of markers of hypoxia. 

Measurement of tumour hypoxia. Tumour hypoxia was 
assessed by immunohistochemical methods, which were used 
to detect hypoxia markers in formalin-fixed, paraffin-embedded 
xenograft material. These included the 2-nitroimadazole 
bioreductive hypoxia marker, pimonidazole (31) and the 
HIF-1-regulated 'intrinsic' marker of hypoxia Glut-1 (17,25). 

Pimonidazole binding. Pimonidazole HC1 (Hypoxyprobe-1, 
Natural Pharmacia International Inc.) was administered to 
mice at a single dose of 100 mg/kg followed by sacrifice and 
excision of tumours 6 h later. Immunostaining for pimo­
nidazole adducts was carried out as described by Raleigh 
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Table I. Spearmans rank correlations between T/C (ratio of volumes of treated to untreated tumour) and hypoxia marker scores 
correlations derived from mean and separate scores are shown. 

Drug 

Adriamycin 

Bleomycin 

Mitomycin C 

Mitoxantrone 

Vincrististine 

Vinblastine 

Vindesine 

Etoposide 

CCNU 

Cyclophosphamide 

Dacarbazine 

HECNU 

Ifosfamide 

Cisplatin 

Fluorouracil 

Methotrexate 

Pimonidazole 
(mean score 

of duplicates) 

r=0.166 
P=0.371 
n=31 

1-0.000 
P=1.000 
n=10 

r=-0.141 
P=0.493 
n=26 

r=0.021 
P=0.965 
n=7 

r=0.018 
P=0.944 
n=18 

1-0.087 
P=0.778 
n=13 

1-0.072 
P=0.691 
n=33 

r=0.094 
P=0.749 
n=14 

1-0.069 
P=0.761 
n=22 

1--O.I88 
P=0.338 
n=28 

r=0.285 
P=0.237 
n=19 

r=0.519 
P=0.153 
n=9 

r=0.104 
P=0.724 
n=14 

r=0.036 
P=0.865 
n=25 

r=0.121 
P=0.633 
n=18 

r=0.816 
P=0.184 
n=4 

Pimonidazole 
(duplicates as 

separate values) 

r=-0.65 
P=0.587 
n=72 

1--0.328 
P=0.199 
n=17 

r=-0.080 
P=0.531 
n=64 

1--0.265 
P=0.210 
n=24 

1-0.056 
P=0.730 
n=40 

1--0.290 
P=0.159 
n=25 

1-0.065 
P=0.577 
n=77 

r=-0.262 
P=0.128 
n=35 

1-0.347 
P=0.014 
n=50 

r=-0.125 
P=0.304 
n=70 

1-0.277 
P=0.079 
n=41 

r =0.448 a 

P=0.048 
n=20 

1-0.215 
P=0.273 
n=28 

r=-0.014 
P=0.915 
n=63 

1-0.002 
P=0.992 
n=38 

1-0.200 
P=0.493 
n=14 

Glut-1 
(mean score 

of duplicates) 

1-0.100 
P=0.585 
n=32 

1-0.025 
P=0.945 
n=10 

1-0.315 
P=0.116 
n=26 

1--0.039 
P=0.934 
n=7 

1-0.436 
P=0.071 
n=18 

1-0.228 
P=0.454 
n=13 

1-0.157 
P=0.384 
n=33 

1-0.314 
P=0.275 
n=14 

1-0.4393 

P=0.036 
n=23 

1-0.213 
P=0.267 
n=29 

1-0.405 
P=0.076 
n=20 

1-0.604 
P=0.085 
n=9 

1-0.418 
P=0.137 
n=14 

1-0.208 
P=0.319 
n=25 

1--0.121 
P=0.634 
n=18 

r=-0.8l6 
P=0.184 
n=4 

"Correlation is significant at the 0.05 level (two-tailed). bCorrelation is significant at the 0.01 level (two-tailed). 

Glut-1 
(duplicates as 

separate values) 

r=-0.020 
P=0.862 
n=75 

r=-0.048 
P=0.849 
n=18 

r=0.183 
P=0.144 
n=65 

r=-0.220 
P=0.292 
n=25 

r=0.218 
P=0.165 
n=42 

r=-0.101 
P=0.623 
n=26 

r=0.018 
P=0.872 
n=79 

r=-0.158 
P=0.351 
n=37 

r=0.414b 

P=0.002 
n=52 

1-0.127 
P=0.288 
n=72 

r=0.615b 

P<0.001 
n=44 

r=0.687b 

P<0.001 
n=22 

r=0.436a 

P=0.018 
n=29 

r=0.160 
P=0.199 
n=66 

r=-0.148 
P=0.368 
n=39 

r=-0.156 
P=0.595 
n=14 
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Figure 1. Hypoxia marker staining in formalin-fixed, paraffin-embedded sections from xenograft material. (A) and (C) show Glut-1 expression and (B) and (D), 
pimonidazole adduct binding is peri-necrotic, i.e. in areas likely to be hypoxic. Although there was considerable spatial co-localisation, the intensity of staining 
often varied between the two markers. Magnification, xlOO. 

et al (11). Briefly, immunohistochemical staining was per­
formed, according to protocol, using an Envision kit (Dako) 
containing an anti-mouse secondary antibody labelled polymer 
conjugate. An additional antigen retrieval step was carried 
out after blocking of endogenous peroxidases, where sections 
were incubated in 0.05% pronase (Dako) in TBS (pH 7.2) for 
5 min at room temperature. The primary antibody step 
consisted of incubation for 30 min, at room temperature, in 
the presence of a 1/100 dilution of mouse monoclonal anti­
body raised against intracellular pimonidazole protein adducts 
(Natural Pharmacia International Inc.). 

Glut-1 protein expression. Immunostaining for Glut-1 
expression was carried out as described previously (25), 
according to protocol using Envision kits containing rabbit 
secondary antibodies (Dako). Primary antibody step was 
carried out for 1 h at 37°C with a 1/100 dilution of affinity 
purified anti-rabbit Glut-1 (Alpha Diagnostic International, 
TX, USA). For each subsequent run, two batch controls were 
used to rule out any inter-batch variation. 

Scoring system. Semi-quantitative scoring was carried out as 
previously, where the extent of staining was designated as 0, 
no staining; 1, light staining; 2, moderate staining; and 3, 
heavy staining. Areas of stroma, necrosis and normal tissue 
were excluded. To exclude the effects of intra- and inter-
observer variation, a series of 30 sections stained with Glut-1 

was scored on two occasions by the same observer, a minimum 
of 6 weeks apart, and by two different observers. 

Results 

Xenografts derived from 38 human tumours were generated, 
consisting of 5 melanomas, 1 hepatoma, which was of mixed 
histology, 2 lung adenocarcinomas, 3 non-small cell lung, 3 
epidermoid lung, 2 pancreatic, 5 renal, 3 colon, 7 breast, 1 
CNS, 1 prostate, 1 bladder and 2 gastric tumours. For each 
tumour designation, between 1 and 9 xenografts were 
generated (mean 2.59, median 1) so that analysis of hypoxia 
marker staining could be carried out in duplicate to give 
either a mean score or several scores derived from the same 
tumour designation. 

Hypoxia markers. Examples of typical patterns of Glut-1 and 
pimonidazole staining are shown in Fig. 1. Glut-1 staining 
was membranous and typically expressed peri-necrotically, 
whereas pimonidazole, although showing substantial co-
localisation with Glut-1, was cytoplasmic. The pattern of 
staining was spatially similar, although the total area of 
staining varied between the two markers. However, there were 
significant correlations between Glut-1 and pimonidazole 
scores, where either mean scores (r=0.416, P=0.012, n=36) or 
separate scores from duplicate tumour designations (r=0.336, 
P=0.002, n=79) were used (Fig. 2). To rule out inter-observer 
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Figure 2. Correlation between pimonidazole/Glut-1 and the alkylating agents CCNU and dacarbazine (compiled using mean scores from several xenografts of the 
same tumour designation). 

error, series of samples were scored for Glut-1 by two 
independent observers (RA and AE) (r=0.882, P<0.001, 
n=28). To rule out intra-observer error, RA scored a series 
of samples stained for pimonidazole on two occasions 
approximately 6 weeks apart (r=0.841, P<0.001, n=20). 

Expression of hypoxia markers according to tumour type. 
Pimonidazole staining was determined in 36/38 xenografts. Of 
these, using mean scores, there was an absence of pimonidazole 
binding (0) in 2 cases, whereas 4 (11.1%) showed light staining 
(1); 21 (58.3%) were moderately stained (2) and 9 (25%) 
were heavily stained (3) for pimonidazole adducts. Glut-1 
expression was determined in 37/38 xenografts. Of these, 4 
(10.8%) showed no Glut-1 staining, 12 (32.4%) light staining, 
a further 12 (32.4%) moderate levels of staining and 9 (24.3%) 
cases stained heavily for Glut-1. 

Correlations between hypoxia markers and T/C. Spearman's 
rank correlations of Glut-1 and pimonidazole with drug 
sensitivity using scores obtained from all samples and mean 
scores derived from duplicate xenografts were, in most cases, 

insignificant at the P=0.05 level (Table I). The use of scores 
from all available samples increased the statistical significance 
of the resulting correlations, although this was likely to be a 
consequence of this method of analysis. Using mean scores, 
there were no statistically significant correlations between 
hypoxia markers and sensitivity to either adriamycin or mito­
mycin C, which are known to be bioreductively activated. 
Interestingly, though, whereas negative correlations existed 
between T/C values obtained for mitomycin C and pimo­
nidazole (r=-0.141, P=0.493, n=26), the correlation with Glut-1 
was positive (r=0.315, P=0.116, n=26) (Fig. 3). Additionally, 
Glut-1 score correlated significantly with T/C obtained for 
CCNU (lomustine) (r=0.439, P=0.036, n=23), and showed 
borderline statistical significance with T/C values obtained for 
dacarbazine (r=0.405, P=0.076, n=20) and HECNU (r=0.604, 
P=0.085, n=9). However, there were no significant correlations 
between response to these drugs and pimonidazole score, 
unless scores from all available xenograft samples were used 
(Fig. 2). Thus, the data suggested a putative link between 
Glut-1 and resistance to nitrosourea alkylating agents, which 
may or may not be hypoxia-regulated. 
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Figure 3. There was no significant correlation between T/C obtained for mito­
mycin C and hypoxia markers, although there were non-significant trends 
where pimonidazole score corresponded to chemosensitivity, whereas Glut-1 
score corresponded to chemotherapy resistance, reflecting the possible 
hypoxia-independent effects associated with Glut-1 (correlations obtained 
from mean scores). 

Discussion 

The individualization of chemotherapy depends upon a reliable 
and clinically feasible means of detecting the heterogeneity 
that exists between tumours. In this study, we add to the 
understanding of the extent to which chemotherapy response 
in individual patients may be dependent upon inter-tumour 
variation of oxygenation. This study had a number of potential 
outcomes. Firstly, hypoxia or hypoxia-regulated genes would 
confer resistance to certain drugs. Oxygen is needed for the 
activation of bleomycin, and phase-specific drugs such as 
methotrexate depend upon the presence of cycling cells, 
therefore tumour hypoxia, indicated by high pimonidazole or 
Glut-1 scores would correlate with T/C values for these drugs 
(9). Secondly, hypoxia, along with expression of reducing 
enzymes such as DT-Diaphorase or P450R (32) might cause 

Figure 4. Correlation between Glut-1 and pimonidazole scores is significant 
(r=0.416, P=0.012, n=36 obtained from mean score values is shown here). 

activation of bioreductive drugs, in this case mitomycin C. 
Finally, Glut-1 may confer resistance or sensitivity in a 
mechanism that is independent of hypoxia. In this study, the 
key findings are that Glut-1 may correlate with resistance to 
alkylating agents, particularly CCNU and dacarbazine. Glut-1 
expression may mediate chemotherapy resistance via a range 
of mechanisms dependent on an increased rate of glucose 
uptake or the modified glucose metabolism taking place in 
tumours. One such change involves alterations in the relative 
rate of glycolysis and pentose phosphate pathway activation. 
It has been shown recently that a higher flux of glucose-derived 
carbon through the pentose phosphate pathway is prevalent in 
tumour cells, and that this is necessary to achieve the increased 
rate of DNA synthesis and therefore an increased proliferation 
rate (33). 

Glut-1 is known to be a glucose-regulated protein as well 
as a hypoxia-regulated glucose transporter (34,35), and its 
characterization has been paralleled to a large extent by 
studies relating to glucose regulated stress proteins GRP78 
and GRP94. The regulation of GRP78 and Glut-1 in particular 
have shown similarities in response to glucose deprivation 
and exposure to calcium ionophores (36). GRP78 and GRP94 
are expressed in response to hypoxia and glucose deprivation 
(37) and their induction leads to resistance to doxorubicin 
(38). GRP-inducing conditions also lead to resistance to 
the topoisomerase II inhibitor etoposide, most notably via 
decreased expression of target enzyme (39), and partial 
resistance to vincristine, actinomycin D and mitomycin C 
(40,41). GRP78 expression correlates with multi-drug 
resistance proteins such as lung resistance protein LRP56 in 
lung tumours and is overexpressed in resistant lung tumour 
cell lines (42). In this present study, there was no significant 
correlation between Glut-1 expression and resistance to 
etoposide or vincristine, although Glut-1, in contrast to pimo­
nidazole, showed a non-significant positive trend with T/C. 
Therefore, Glut-1 may reflect chemotherapy resistance 
independently of hypoxia via mechanisms common to both 
Glut-1 andGRP's. 
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While the adverse effect of Glut-1 on prognosis is widely 
known, little work has been carried out to examine the link 
between glucose transporter expression and chemoresistance. 
One study carried out by Cantuaria et al (43) in a series of 
patients with ovarian carcinoma, whilst showing Glut-1 to be 
a predictor of poor survival, also revealed counter intuitively 
that high Glut-1 expression predicts complete clinical response. 
However, any resistance mechanisms conferred by deregulated 
glucose transport and metabolism may be heavily dependent 
upon the type of agent used. In this present study, Glut-1 
expression correlated with resistance to the nitrosourea 
alkylating agents dacarbazine and, to a certain extent, CCNU. 
However, expression of GRP78 is associated with hyper­
sensitivity to these alkylating agents and also cisplatin, an effect 
which is believed to be due to impaired DNA cross-link repair 
(44,45), and is exacerbated by deficient poly (ADP-ribose) 
[p(ADPR)] metabolism (46). Recent work has also shown a 
link between the expression of GRP58 and mitomycin C-
induced cross linking (47). Important to consider, though, is 
that the functions of Glut-1 and GRP78 are different: whereas 
Glut-1 leads directly to cellular glucose uptake and therefore 
a local increase in glucose metabolism, GRP78 functions as a 
molecular chaperone that is inactivated once the inducing 
conditions are removed (37). Also, the extent and duration of 
oxygen and glucose deprivation to induce GRP's and glucose 
transporters may differ, and in turn, the response to GRP-
inducing stress by a tumour may be different to that observed 
in vitro. 

The preferential activation of anti-cancer agents by hypoxia 
was most likely to occur with mitomycin C. To overcome the 
problems presented by the hypoxia-independent regulation of 
an intrinsic hypoxia marker such as Glut-1, it was essential to 
include a chemical marker of hypoxia in any assessment of 
the influence of hypoxia on the activation of this drug. In this 
study, there was no significant negative correlation between 
hypoxia marker staining and mitomycin C T/C i.e. hypoxia 
was not likely to reflect chemosensitivity. However, any 
activation by hypoxia would be dependent upon the level of 
bioreductive enzymes, therefore low pimonidazole binding or 
low expression of intrinsic markers of hypoxia may not have 
been sufficient to indicate chemosensitivity unless combined 
with considerable levels of bioreductive enzymes. Current 
investigations within our laboratories aim to uncover the 
combined effects of bioreductive enzymes and hypoxia on 
mitomycin C sensitivity using these models. 

We have shown previously that each hypoxia marker may 
detect populations of cells within a tumour that have a 
varying depth and duration of hypoxia. This is reflected by 
the significant, but not strong, correlations between pimo­
nidazole, Glut-1, and CAIX scores in a series of patients with 
advanced carcinoma of the cervix (25). However, this study 
was carried out using xenografts derived from a wide variety 
of tumour types, and was therefore subject to the statistical 
limitations of using a small and heterogeneous sample size. 
Despite these limitations, the correlations between the hypoxia 
markers used in this study persisted, strengthening the assertion 
that intrinsic markers of hypoxia are a reliable means of 
evaluating tumour hypoxia that will continue to be useful in 
future investigations involving archival material from a range 
of sources. 
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