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ABSTRACT 

As the Internet of Things is becoming the new normal in electronics, one of the core issues is 

low power consumption. The direct solution is to reduce the operation voltage towards the 

threshold voltage of Metal Oxide Silicon Field Effect Transistors (MOSFETs); however, this 

reduces noise toleration. The focus of this research is Random Telegraph Noise (RTN), which 

is one of the dominant noises in MOSFETs. It is well known that the impacts of RTN are 

inversely proportional to the size of the transistors. As the size of the transistor goes down, the 

impact of RTN increases and this affects the performance of circuits, such as causing jitters.  

RTN is a stochastic and step-like fluctuation of drain or gate current of a device under given 

voltages. It occurs when an electron/hole is captured or emitted from or into a trap in the oxide 

layer. RTN has received attention widely, but understanding of it is incomplete, and its 

modelling remains a challenge. At present, there is no trustworthy RTN model of acceptable 

accuracy for circuit designers to use to optimize the performance of their circuits. One of the 

key weaknesses of early models is that they were developed based on test data gained from a 

short time window and their ability to predict future long-term RTN was not verified. The aim 

of this work is to develop a statistical model that can be used to predict the long-term impact 

of RTN on the device.  

To develop RTN models, early works followed a bottom-up approach by extracting the 

properties of individual traps, including RTN amplitude per trap, capture and emission times. 

This requires selecting devices where the fluctuation can be clearly separated into the 

contributions of individual traps. In reality, however, there are many devices where such 

separation cannot be achieved. Excluding these devices when developing RTN models makes 

it questionable whether the data used for developing the model represents the statistical 

properties of real devices. Also, this is time consuming and does not provide direct information 

for circuit designers to evaluate their circuit stability. The needed direct information includes 

shifts in threshold voltage, Δ𝑉𝑡ℎ, and in drain current, Δ𝐼𝐷/𝐼𝐷. An open question is: what is the 

probability that RTN can cause Δ𝑉𝑡ℎ in mV or Δ𝐼𝐷/𝐼𝐷 in % to go beyond a certain level? A 

top-down modelling approach is proposed and used in this work. This approach does not select 

devices and extracts the cumulative distribution function (CDF) of RTN by measuring the 

impacts of all traps and integrating data from multiple devices into one dataset. This new 

approach will be referred to hereafter as the integral approach. 
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RTN has been widely characterized under a fixed voltage (DC); for example, in this project, 

Vg=0.5V and 0.9V have been applied as the gate voltage. The integral approach removes the 

burden of determining capture and emission time constants of individual traps by introducing 

the concept of ‘Effectively Charged Traps’ (ECT). A time-dependent number of ECTs is 

introduced to replace the time constant distribution and the kinetics of ECT against time are 

extracted, which can be extrapolated to predict the long-term RTN. The predictive ability of 

the integral approach is verified. 

Rather than DC RTN, the majority of commercial circuits operate under AC conditions. It has 

been reported that AC RTN behaves differently from DC RTN. Early work has been carried 

out for AC RTN on characterizing the single trap properties, such as time constants and 

amplitude under different frequencies. In this work, the integral approach has been applied to 

analyse and model AC RTN. It is shown that the model developed by the integral approach can 

also be used to predict future RTN. The relationship is assessed between capture, emission time 

constants of a single trap and the number of ECTs against frequency. 

A 6T SRAM circuit in read operation requires transistors to operate in either a linear or a 

saturation region. Early works have worked on saturation measurement but knowledge in the 

area is limited: no CDF information has been provided. To optimize circuit performance, RTN 

under saturation conditions must be measured, analysed, and modelled. Furthermore, both 

driving current and threshold voltage shift are needed in real circuit operation. Without them, 

the simulation of RTN for real circuit operation cannot be completed. RTN measurement under 

saturation is carried out and analysed by using the integral approach. Δ𝑉𝑡ℎ and Δ𝐼𝐷/𝐼𝐷 have 

been found to follow different statistical distributions.  

In summary, to optimize circuit performance and yield against RTN, designers need to know 

the probability of the RTN-induced Δ𝑉𝑡ℎ and Δ𝐼𝐷/𝐼𝐷 reaching a certain level within a specific 

time window. This work tackles this challenge by developing an integral approach to extract 

an RTN model which can not only model short-term RTN, but also predict future RTN. It is 

hoped that the new model can eventually be embedded into an industrial standard simulator for 

circuit optimization.   
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CHAPTER 1: INTRODUCTION 

1.1 Background  

The high-performance demands and growth of consumer products have driven significant 

progress and advancement in technology using complementary metal-oxide semiconductors 

(CMOS). At the same time, metal oxide semiconductor field effect transistors (MOSFETs) are 

facing instability issues. The most direct way to increase the performance of the circuit is 

downscaling the size of MOSFETs, allowing more devices to be fitted into the same area and 

increasing operation speed. In addition, the arrival of the Internet of Things (IoT) era requires 

power consumption to be minimized. As the aggressive scaling of transistor size continues, 

instability issues have become more severe [1-11]. Key instability issues include random 

telegraph noise (RTN), bias temperature instability (BTI), hot carrier injection (HCI), etc. 

These instabilities affect the MOSFET parameters, such as mobility degradation, current 

fluctuation, and threshold voltage shifting. For this reason, they cause degradation of device 

performance [1-11]. 

This research work focuses on the instability caused by RTN. RTN is a stochastic noise caused 

by trapping and de-trapping of charge carriers from/to the conduction channel [1-3], [6], [12-

17]. RTN becomes increasingly important as MOSFETs become smaller; the impact of single-

trap charge increases, affecting the operation of electronic circuits [1-3], [6], [12-17].   

1.2 Key Issues  

Efforts have been made in early works [7], [9-10], [18-19] to improve understanding and 

provide solutions for instabilities, especially on BTI. The understanding and impact of RTN 

instabilities in devices are also widely investigated [1-3], [6], [12-17], [20]. Although progress 

has been made, the understanding of RTN instabilities remains incomplete and many issues are 

unresolved. As IoT requires low power consumption, the easiest approach to achieve low 

power consumption is to lower the voltage applied. This approach allows effective power 

reduction. However, it leads to a significant issue where the gate voltage (Vg) is very close to 

the threshold voltage, Vth. This small difference between Vg and Vth reduces the tolerance of 

instability in Vth [3], [12], [21]. For instance, with a single RTN step-like voltage shift, the 

effective gate bias can be lower than Vth, which pushes the device into sub-threshold condition.  
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One of the shortcomings of early works on RTN is the relatively short time window used to 

measure RTN. Commercial devices are expected to work at the rated operation bias for 10 

years. The experimental RTN measurement time used by early works [22-23], however, is far 

shorter than 10 years; the measurement time used by many works is 1 sec or less [24-26], 

although there are a few works that used longer times [22-23], [27-28]. With the RTN signal 

measured within this short time range, the accuracy and authenticity of the analysed results or 

statistical distribution are questionable. Long measurements of 20 sec or more are needed. One 

difficulty is the huge amount of data to be handled for simulators and laboratory instruments. 

For example, 1 s data at 1 MSa/s occupies roughly 4.5 MB (Megabytes) of memory in storage: 

a 1-hour RTN measurement (3600 sec) requires around 16.2 GB of memory for 1 device. 

Early works often only measured devices that showed clear RTN, but this criterion is not 

realistic for devices that are commercially designed, as many devices do not have clear RTN 

signals. This means that the analysed results are based on only a subset of devices and are not 

true representative of the whole population. This can be solved by analysing the results from 

all measured devices and not deselecting devices that do not show clear RTN within the 

measurement window. This allows the true statistical properties of the RTN to be extracted. By 

doing this, trustworthy results can be obtained in real conditions.  

Several statistical distributions have been proposed for the amplitude and time constants of 

RTN. The main issue of these results is the small number of data points used for extracting 

statistical distributions; they are typically less than 200 data points [29]. This reduces the 

accuracy of the statistical distribution as the larger the number of data points, the more accurate 

the statistical distribution will be [30]. As the gate voltage must be higher than the threshold 

voltage to turn on the MOSFETs, the question is how close a circuit designer can bring Vg to 

Vth. The answer largely depends on the impact of RTN. RTN causes random shifting, which 

can go beyond the overdrive voltage, Vg-Vth. This may accidentally shut down the MOSFETs, 

so that the circuit will not be operating as it should.  

A typical RTN measurement in terms of Δ𝐼𝑑 or Δ𝑉𝑡ℎ can fluctuate in either a positive or 

negative direction. RTN in early works are typically analysed for Δ𝐼𝐷 or Δ𝑉𝑡ℎ >

0 [3], [19], [31]. To model RTN as close as possible to real circuit operation, Δ𝐼𝐷 or Δ𝑉𝑡ℎ <

0 cannot be ignored as they occur often. However, there has been little investigation in the past 

for the shift in both directions. This leads to a question: can the same statistical distributions be 
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applied to both negative and positive fluctuations or must they be modelled separately? The 

question of how to model both positive and negative fluctuations is unanswered by early works. 

RTN modelling in early works followed a bottom-up approach. It was modelled by 

characterizing the individual trap properties [3], [19], [31-33], such as the amplitude and time 

constant of single traps. These traps were then grouped together into a set of data and fitted by 

a Cumulative Distribution Function (CDF) to determine the statistical distributions of 

amplitude and time constants. This approach is time-consuming and can run into difficulties, 

since extracting time constants of individual traps becomes difficult when multiple traps are 

present within a single device or when there are very few RTN events within the limited 

measurement window. 

1.3 Motivation  

The motivation of this project is to develop a model that provides the probability of RTN 

occurrence at any level of Δ𝐼𝐷 or Δ𝑉𝑡ℎ. At present, there is no well-accepted or trustable RTN 

model available for circuit designers to optimize their design in a digital circuit. RTN has been 

analysed in a few ways in the past; for example, Hidden Markov Model (HMM), Weighted 

Time Lag Plot (WTLP), etc. However, these approaches have their own limitations: HMM has 

a limitation on the number of traps and it requires clear RTN switching data to process; WTLP 

is an enhanced time lag plot (TLP) approach, but TLP only allows the extraction of a 2-level 

single trap. WTLP allows multiple-trap RTN to be extracted, but it can lead to confusing results 

on multi-cluster outputs. In addition, if the thermal noise or system noise is close to the RTN 

shift, TLP cannot be applied.  

Since RTN fluctuates in both positive and negative directions, this work will tackle modelling 

of RTN in both directions. A model should not only fit the data well, but also be able to predict 

the RTN where test data is not available. The impact of RTN is expected to become greater as 

time increases. This project focuses on filling this knowledge gap. Beginning with a clear and 

in-depth understanding of RTN, experimental measurement conditions that maximize the RTN 

phenomenon will be identified, since it allows the extraction of trustworthy statistical results 

for long-term prediction with high accuracy. Based on these results, an industry-standard model 

will be developed to enable long term prediction of RTN.  



Chapter 1: Introduction 

4 
 

1.4 Aim and Objectives 

Based on the motivations mentioned above, the aims and objectives are summarized below: 

Aim: 

To develop an industry standard RTN model that provides the probability of RTN occurrence 

and to verify that the extracted model can predict long-term RTN. 

Objectives: 

1. In-depth understanding of RTN. 

2. RTN Measurements without specific device selection. 

3. Characterizing the impact of all traps on a device. 

4. Combine RTN of multiple devices into one dataset (CDF) to enable statistical 

analysis. 

5. Assess the accuracy of different types of statistical distributions. 

6. Evaluate and verify the ability of the extracted model to predict long-term RTN 

without further test data available. 

1.5 Contribution to Knowledge 

The main contributions of this research work are: 

1. A new RTN characterization method is developed using integral methodology. The 

method is constructed by measuring the impact of all traps within a device and grouping 

the RTN of multiple devices into one data set to extract the CDF. The developed 

methodology removes the burden of determining capture and emission time constants 

of individual traps by introducing the concept of ‘Effectively Charged Traps’ (ECTs). 

Importantly, the prediction of long-term RTN is tackled. A time-dependent number of 

ECTs is introduced to replace the time constant distribution. The experimental results 

confirm that the developed methodology has clear advantages in terms of overall fitting 

and error evaluation of multiple distributions. The ability to predict long-term RTN is 

verified by comparing the predicted CDF with actual measurements.  
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2. Alternating current (AC) RTN measurement is carried out and the properties of the 

measured RTN are extracted by the developed integral methodology. Single-trap RTN 

properties are evaluated against frequency. The statistical properties of the number and 

kinetics of ECT are investigated. Three distributions (Exponential, Lognormal and 

Generalized Extreme Value (GEV)) are assessed for the RTN amplitude. The 

experimental results prove that the integral methodology can be applied to AC RTN. 

Furthermore, the relationship is assessed between capture, emission time constants of 

single traps and the number of ECTs against frequency.  

3. The impact of RTN is assessed on real circuits, such as SRAM, where transistors can 

operate under either linear or saturation conditions. As a result, RTN measurement 

under saturation is carried out and analysed by using the integral methodology. 

Moreover, in real circuit operation, both driving current and threshold voltage shift are 

needed. Δ𝑉𝑡ℎ extraction methods are evaluated, and the results confirm that conversion 

by transconductance (𝑔𝑚) overestimates the impact of RTN. The results show the CDF 

per trap or Δ𝐼𝐷/𝐼𝐷 and Δ𝑉𝑡ℎ follows different distributions. Once again, the predictive 

ability is verified, and the integral methodology can be applied under different Vg 

conditions.  

1.6 Thesis Overview 

This thesis consists of eight chapters and is organized as follows. Chapter 1 covers the 

background, key issues, and motivation of the research work. Aims and objectives are clearly 

defined. The contribution of knowledge achieved in this research work is described. 

Chapter 2 gives a literature review on RTN modelling. Proposed distributions of RTN 

properties on amplitude and time constant are discussed.  

Chapter 3 describes the devices and test facilities used in this research work. It includes the 𝐼𝐷-

Vg characterisation and threshold voltage extraction methodology. 

Chapter 4 covers the programme flow and details of the proposed integral methodology in this 

research work. The methodology is provided in steps and justifications are given for the chosen 

method.  

In chapter 5, the integral methodology is used to extract the CDF of RTN properties. New 

concepts are introduced for removing the requirement of selecting individual RTN traps in 
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devices and the burden of determining capture and emission times of single traps. Also, the 

accuracy of RTN amplitude distribution per trap proposed by early works is assessed. For the 

first time, the ability to predict long-term RTN by the integral methodology is verified against 

test data.  

Chapter 6 covers the assessment of AC RTN up to 3𝑥104 seconds. The dependence of AC 

RTN on time window and frequency is studied. The ability of the integral methodology to 

predict long-term AC RTN is assessed. 

Chapter 7 studies the key parameters needed to model RTN for real circuit operation. Both 

driving current and threshold voltage, as well as transistors under linear and saturation region 

are assessed by using the integral methodology. The accuracy of Δ𝑉𝑡ℎ extraction by 𝑔𝑚 is 

investigated. The number of ECTs under linear and saturation regions is discussed. The ability 

of the integral methodology to predict long-term RTN in linear driving current is assessed. 

Finally, Chapter 8 concludes the contributions of this research work and recommends future 

work.
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CHAPTER 2: LITERATURE REVIEW 

In this chapter, the literature of early works on RTN modelling is reviewed to outline the 

approaches that they have followed and what has been achieved. The chapter is divided into 

two main sections. The first section covers the historical background and the parameters of 

RTN. The second section discusses the proposed RTN modelling techniques and what they can 

achieve, as well as the limitations of each technique. 

2.1 RTN Properties 

2.1.1 Origin of RTN  

RTN is a stochastic noise which occurs when traps are capturing and emitting electrons or holes 

within the gate oxide [23], [34-37]. RTN behaviour was first observed by using a junction field 

effect transistor (JFET) in 1978 [38]. In 1984, RTN was identified in MOSFETs, originating 

in interface and bulk traps within the gate oxide [32]. Typical RTN behaviour is represented 

by drain current, Δ𝐼𝑑, with capture and emission by a single trap in gate oxide which induces 

a two-level step-like fluctuation shown in Fig. 2.1(a-c) [33]. Fig. 2.1(b) shows electron trapping 

in an nMOSFET and Fig. 2.1(c) shows hole trapping in a pMOSFET. Apart from its effect on 

drain current, 𝐼𝐷, RTN is known to affect the threshold voltage of the transistor [39-40]. RTN 

trapping affects the transfer characteristic of the device (𝐼𝐷 − 𝑉𝐺), as shown in Fig. 2.2, 

resulting in a fluctuation in the threshold voltage, ΔVth. 

RTN has gained much attention as smaller devices are now widely used and a single trapped 

charge has a larger impact on smaller devices [34], [41], [42-46]. The randomness of capturing 

and emitting by traps has become an instability issue that affects the performance of circuits in 

terms of reliability and stability. For example, they can cause write/read failure in scaled 

memory cells like SRAM [47-53]. Increasing attention has been paid to the impact of RTN on 

SRAM. With the advancement of technology, SRAM has become one of the essential 

components in consumer electronic products, where it is commonly used for caches, due to the 

speed at which it can access stored data [54-55] and its low-power operation. Downscaling 

device sizes helps to meet the requirement to have more SRAM cells in one chip. However, 

RTN was mentioned as a key reliability factor for SRAM in 2009 in The International 

Technology Roadmap for Semiconductors (ITRS) [56]. It increases 𝑉𝑡ℎ variability, leading to 

a narrower noise margin [51-53], [56]. 
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Fig. 2.1 (a) Illustration of capture and emission of single trap in gate oxide [33]. Typical RTN behaviour for 

nMOSFET (b) and pMOSFET (c). 

 

Fig. 2.2 An example of the 𝛥𝑉𝑡ℎ shift caused by RTN trap in 𝐼𝐷-Vg plot. 

The characteristic properties of a two-level RTN trap can be summarized below: 

1. The step-like amplitude shifting the 𝐼𝐷 between the two levels of fluctuation, Δ𝐼𝐷, as 

shown in Fig. 2.1. The amplitude can also be represented by ΔVth, as shown in Fig. 2.2. 

2. The average time constants: the time for filling a trap is known as capture time, 𝜏𝑐,  and 

the time for neutralizing a trap is known as emission time, 𝜏𝑒. 

2.1.2 Time Constant 

The time constant of a two-level RTN from a single trap can be easily extracted by taking the 

average of the characteristic capture time, tc, and emission time, te; these are commonly 

represented by 𝜏𝑐 and 𝜏𝑒. It is to be noted that capturing an electron trap in nMOSFET causes 

a decrease in 𝐼𝐷 as shown in Fig. 2.1(b), while for pMOSFET, capturing a hole trap leads to 
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smaller |𝐼𝐷 | as shown in Fig. 2.1(c). Hence, it is common to refer to capture time when a trap is 

filled and emission time when a trap is neutralized. The probability of a two-level single trap 

RTN being captured or emitted can be evaluated as in Equation (2.1): 

𝑃𝑐,𝑒(𝑡) =
1

𝜏𝑐,𝑒
exp (−

𝑡

𝜏𝑐,𝑒
)     (2.1) 

where 𝑃𝑐,𝑒 represents the probability of a trap being filled or neutralized. The average time 

constant is 𝜏𝑐,𝑒 and t is the interval time, considering an individual trap follows an exponential 

distribution [1]. 𝜏𝑐/𝜏𝑒 is related to the difference between trap energy, 𝐸𝑇 and Fermi level 𝐸𝐹 

as in Equation (2.2) [6], [57-59], 

𝜏𝑐

𝜏𝑒
= exp (

𝐸𝑇−𝐸𝐹

𝑘𝑇
)     (2.2) 

where k is Boltzmann constant, and T is temperature. RTN properties are well known to have 

a strong relationship with measurement conditions, such as gate voltage (Vg), drain voltage 

(Vd) and temperature. It has been shown that trap parameters, such as trap energy and its 

distance from the Si/SiO2 interface can be extracted from these relations [1]. Fig. 2.3 shows the 

energy band diagram of a transistor. Based on Fig. 2.3, black circles represent the filled traps 

below 𝐸𝐹, grey circles represent the switching traps and white circles represent the neutral trap.  

 

Fig. 2.3 An energy band diagram of nMOSFET [60]. 
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To obtain accurate values of 𝜏𝑐 and 𝜏𝑒, a sufficient number of transitions between two levels 

are needed. It has been stated that a minimum of 200 transitions within at least 20K data points 

are required to have an error less than 10% [1]. Moreover, this relates to the sampling rate of 

RTN measurements. A high sampling rate is needed to remove the chance of transition between 

levels being missed. However, a high sampling rate leads to another concern in RTN 

measurement, which is the amount of data to be collected. As a rule of thumb, the time window 

must be shortened to record the same amount of data with a higher sampling rate. This limits 

the time window of RTN measurements.  

 

Fig. 2.4 Time constant distribution fitted by Lognormal distribution on 36 samples [29]. 

The trustworthiness of the extracted probability distribution of time constants is one of the main 

concerns. Two probability distributions for time constants have been proposed in the past, i.e., 

Log-uniform [1], [3] and Lognormal [29], [61]. However, the number of data points used to 

extract the statistical distribution has not been verified to be sufficient to determine the true 

distribution. For example, 36 samples were used as shown in Fig. 2.4, and it is not clear how 

accurate the cumulative distribution extracted from them is. As a result, modelling and 

predictions based on these extracted time constant distributions is questionable. An ‘envelope 

approach’ has been proposed, where the step-like changes in envelopes are characterized by 

the maximum and minimum of the data as shown in Fig. 2.5. The envelopes will remain the 

same if the following data does not have a new maximum or minimum. 

The results of multiple traps from multiple devices are combined and analysed as a set of data 

to extract the statistical distribution of time constant as shown in Fig. 2.6 [21]. However, as 
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emission is minimized in this approach, it does not give the statistical distribution of emission 

time constants.  

 

Fig. 2.5 Extraction of RTN Envelope from experimental data (black lines). The green trace represents a device 

of limited step-like change in 𝛥𝑉𝑡ℎ [21]. 

 

Fig. 2.6 Log-uniform distribution fitted on ‘Envelope approach’ for time constant distribution [21]. 
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2.1.3 Amplitude Distribution 

To model RTN, amplitude distribution is an essential parameter. The relative amplitude of 

RTN has grown rapidly due to downscaling of device sizes, which affects circuit stability. Also, 

the difference between gate and threshold voltage has been reduced steadily with the demand 

of low-power-operation circuits, making circuits more vulnerable to RTN impacts [30]. In 

addition, the number of traps in a device can vary hugely, so that the amplitude of RTN can 

have large device-to-device variations. It is, therefore, important to characterize the statistical 

distribution of RTN amplitude.  

There are two mechanisms that contribute to RTN amplitude: a change in the number of carriers 

and a change in their mobility [1]. The normalized fluctuations in drain current can be evaluated 

in correlation to numbers and mobility fluctuations by [13], 

Δ𝐼𝐷

𝐼𝐷
=

1

𝐿 𝑥 𝑊
(

1

𝑁

𝜕𝑁

𝜕𝑁𝑡
±

1

𝜇0

𝜕𝜇0

𝜕𝑁𝑡
 )     (2.3) 

where L and W are the channel length and width, N is the number of carriers per unit area, 𝑁𝑡 

is the number of occupied oxide traps, and 𝜇0 is the carrier mobility. RTN amplitude can be 

obtained by taking the difference between the levels of RTN. RTN amplitude can be expressed 

in normalized drain current fluctuation , Δ𝐼𝐷/𝐼𝐷 , or threshold voltage shift, Δ𝑉𝑡ℎ. Δ𝑉𝑡ℎ is 

commonly converted from Δ𝐼𝑑  over transconductance, 𝑔𝑚  [27], [62]. Furthermore, gate 

voltage, Vg, can affect RTN amplitude; it is widely reported that the RTN amplitude increases 

with lower Vg [3], [62-63].  

One of the concerns in RTN amplitude distribution is the accuracy of extracted single-trap RTN 

amplitude due to the random number of traps from one device to another. A complex RTN is 

formed by multiple traps, which greatly increases the difficulty of extracting the amplitude of 

each single trap. Several statistical distributions have been proposed by early works on the 

amplitude distribution of RTN, including Exponential [3], [64], [65], Lognormal [1], [3], [31], 

[65], and Gumbel [14], [29], [67] distributions. A comparison between exponential and 

lognormal has been carried out with RMS error calculated [66], which concluded that 

lognormal has a better fit [22]. Aside from monomodal distribution fitting, bimodal exponential 

and bimodal lognormal distributions have also been proposed [66], [68]. In 2021, Generalized 

Extreme Value (GEV) distribution was proposed as a better RTN amplitude distribution when 

compared with monomodal and bimodal exponential and lognormal distributions [30], [66], 
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[68]. Mehedi et al. [30] further claimed that GEV can fit the long statistical distribution tail 

well, which is important for SRAM design. In addition, Wang et al. reported that increasing 

Vg changes the RTN amplitude distribution [3]. 

Moreover, RTN amplitude is often modelled as positive Δ𝐼𝐷/𝐼𝐷 or Δ𝑉𝑡ℎ (acceptor-like trap), 

representing electron traps for nMOSFET and hole traps for pMOSFET. However, in a typical 

RTN measurement, fluctuation occurs in both positive and negative directions, indicating that 

RTN traps can have either positive or negative charges. As a result, a correct distribution model 

should not only model positive fluctuation, but also model negative fluctuation. Yet, any 

correlation between positive and negative fluctuation has not been explored by early works. It 

is not known if positive and negative fluctuations can share the same distribution and 

parameters, or they must be modelled separately. This knowledge gap will be filled in this 

project. 

2.2 Existing RTN Analysis Techniques  

This section discusses the existing RTN analysis techniques for property extraction, detailing 

their advantages and limitations.  

2.2.1 Voltage Histogram Method 

One of the easiest approaches to extract the RTN amplitudes from a two-level RTN signal is 

plotting a histogram of the RTN signal [69-72]. This is known as voltage histogram method. 

The RTN amplitude of the two-level RTN is defined as the difference between the two normal 

distributions in the histogram in Fig. 2.7. It is also proven that it is able to extract multi-level 

RTN. A 4-level RTN data is shown in Fig. 2.8. After applying the voltage histogram 

methodology, 4 clear discrete levels of normal distribution can be observed as shown in Fig. 

2.9 [73]. However, this method is unapplicable when RTN amplitude is close to system or 

thermal noise and also when multi-level RTN signals are relatively close to each other. This 

leads to unclear histogram plotting. Hence, this method is not reliable in many cases and a 

better tool for RTN property extraction is needed. 
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Fig. 2.7 RTN Amplitude extracted by voltage histogram method [69]. 

 

Fig. 2.8 RTN Amplitude extracted by voltage histogram method [69]. 

 

Fig. 2.9 4 level normal distribution fitting by voltage histogram method [73]. 
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2.2.2 Time Lag Plot (TLP)  

A clear two-level RTN signal is shown in Fig. 2.10(a) and the main task is to extract the 

properties of the RTN, despite system noise and thermal noise being included in the data. Early 

works [73-78] use a Time Lag Plot (TLP), which is also known as a lag plot, to analyse a two-

level RTN signal in the time domain. TLP is used to check whether a set of data is randomly 

distributed or deterministic. It can be done by plotting the x-axis as the current 𝑖𝑡ℎ data at time 

interval, 𝑡𝑖 , against the y-axis as the 𝑖𝑡ℎ + 1  at time interval, 𝑡𝑖+1  [79-80]. Fig. 2.10(b) 

represents the TLP graphical results of the two-level RTN signal in Fig. 2.10(a).   

 

Fig. 2.10 (a) shows a two-level RTN signal. (b) TLP of the RTN data in (a) [73]. 

Based on Fig. 2.10(b), the amplitude of the RTN signal can be extracted from the difference 

between the centre point of each cluster, L1 and L2. TLP can be used only for RTN amplitude 

extraction, but not for time constant distribution. TLP only works for clear two-level traps. For 

a long-term window RTN measurement with complex RTN signals in Fig. 2.11, Fig. 2.12(a) 

shows that the cluster of TLP will overlap or no clear 2-level cluster is discernible, making 

TLP analysis impossible [79], [81]. Similarly, if an RTN amplitude is similar or close to the 

system and thermal noise level, the cluster of TLP will be overlapping. Hence, the accuracy of 

TLP is dependent on the number of traps and a trap amplitude that is much larger than the 

system noise and thermal noise level for a clear cluster. 
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Fig. 2.11 An example of multi-levels RTN data [81]. 

 

Fig. 2.12 RTN data in Figure 2.10 by TLP (a) and WTLP (b) [81]. 

 

2.2.3 Weighted Time Lag Plot (WTLP) 

WTLP is proposed as an enhanced version of TLP to improve accuracy. It is designed to 

overcome the limitations of TLP by including the density of the cluster. This density helps to 

minimize the effects of other noises in the RTN signal, which in turn helps to identify clearer 

RTN levels in the cluster. It has been widely used in the past due to its easy implementation 

and noise allowance [76], [82-83]. Applied when multi-level RTN is spotted or an unclear 

signal is presented, WTLP can be used to identify whether any part of the signal has any shifting 

patterns. WTLP can be plotted the same as TLP with data, 𝑖𝑡ℎ at time, 𝑡𝑖 and data, 𝑖𝑡ℎ + 1 at 

time, 𝑡𝑖+1. An example of a two-trap RTN signal is shown in Fig. 2.13(a) where TLP is applied 

in Fig. 2.13(b) and WTLP in Fig. 2.13(d). 4 different levels of current can be seen in the 

histogram of Fig. 2.13(c) and a density cluster by WTLP plotted in Fig. 2.13(d) gives the 

possibility to extract multi-level RTN traps.   
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Fig. 2.13 (a) Time series generated by the hidden Markov routine in Matlab and containing a small and a large 

amplitude RTS; (b) corresponding simple TLP, showing only two clouds of data points; (c) amplitude histogram 

derived from the time domain signal and (d) coloured TLP, showing the presence of the two RTSs [83]. 

One of the limitations of WTLP is that the accuracy is highly dependent on the selection of 

centre point from the density cluster. WTLP can present confusing results on multi-cluster 

outputs. For example, in Fig. 2.12(b), the inter-correlated traps are hard to be separated and 

results can be controversial.  

2.2.4 Hidden Markov Model (HMM)  

HMM is the most popular and robust model used for RTN property extraction. HMM is a 

powerful tool in pattern recognition and statistical analysis where the input is modelled as a 

Markov Chain with hidden levels mixed in a noise signal [84]. In short, HMM is used to 

replicate the data or to generate an ideal RTN transition from noisy experimental data [15]. Fig. 

2.14 shows a sample 2-level RTN trap with other noises included and fitted with an HMM 

waveform. The HMM waveforms represent the extracted RTN parameters in comparison to 

the test data. HMM can extract the amplitude and time constants of the single trap by the 

modelled waveform [66], [85]. The amplitude of the RTN trap is the difference between the 

fitted two levels. It is expected that the capture and emission time extracted from a single trap 

follow an exponential distribution.  

However, HMM has limitations when dealing with multi-level RTN data [86] or noisy data 

such as when the noise levels are close to the RTN amplitude. This leads to a result in which 

some levels of RTN can be missed [87-88]. Another limitation of HMM is the input 
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requirement of the number of levels to be extracted. An incorrect assumption of the number of 

levels inputted into HMM leads to an incorrect HMM output. 

 

Fig. 2.14 2-levels RTN signal extracted by using HMM method. 

 

2.2.5 Factorial Hidden Markov Model (FHMM)  

FHMM is proposed as an improved version of HMM to tackle the limitations of HMM. FHMM 

decomposes multi-level RTN into multiple independent two-level RTN signals [89-91]. These 

multiple independent two-level RTN signals will be modelled with the HMM method to extract 

trap amplitude and time constants for each 2-level RTN. Fig. 2.15(a) shows a multiple-level 

RTN signal modelled by FHMM, resulting in the 3 individual two-level RTN signals in Fig. 

2.15(b-d) [84]. It has been reported that HMM and FHMM provide greater accuracy compared 

to other analysing techniques [73]. 
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Fig. 2.15 (a) An eight-level RTN generated by three traps with superimposed additive gaussian noise (blue 

curve) and FHMM fitting (red curve). Accuracy is excellent. (b, c, d) Decomposed chains amplitudes and 

sequences are easily found, and trap characteristics can be inferred. [84] 

HMM and FHMM share a similar limitation, which is the maximum number of data points of 

RTN measurement that can be used. A huge number of data points can cause FHMM and HMM 

processes to be too slow to obtain statistical results. Also, FHMM requires a pre-determined 

number of levels as an input to the model, which is not ideal for a noisy signal, where it can be 

difficult to pre-determine the number of levels. Despite being able to extract multi-level RTN, 

the accuracy of the extracted RTN properties decreases when the number of levels increases.  

2.3 Summary 

Although each of the proposed techniques has its advantages and a lot has been learnt from 

them, they have not led to a reliable and trustworthy RTN model. These techniques share a 

similarity: a Bottom-Up approach where single trap properties are modelled separately and 

then grouped as a set of data for statistical analysis. As RTN measurement data do not 

constantly show clear levels of RTN and the number of RTN traps in a transistor remains 

unknown, the limitations of the proposed techniques are summarised as follows: 

1. Selection of only devices with clear RTN signals for extraction of properties, which is 

not a true statistical representation of real devices. 

2. HMM provides high accuracy but a predefined number of levels is required as an input. 

3. There are difficulties in extracting the time constant distribution. 
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These limitations lead to severe uncertainty over the accuracy of any RTN model derived from 

these techniques. To tackle these limitations, a top-down modelling technique is proposed and 

will be discussed in this project. 
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CHAPTER 3: DEVICES AND TEST FACILITIES 

This chapter focuses on the devices, test facilities, and basic electrical characterisation 

methodology used in this work. The first section covers the laboratory instruments used and 

the process used for RTN measurements. The second gives the details of the wafer used for 

device measurement. The third describes the characterisation methodology. Lastly, the details 

of each measurement technique are given. 

3.1 Laboratory Instruments and Flows of Measurement 

An overview of the system setup is illustrated in Fig. 3.1. The instruments used in this work 

include a personal computer (PC) for software programming to control other instruments, a 

pulse generator (Agilent 81160A), an amplifier by Femto (DHPCA-100), a Parametric 

measurement mainframe unit (Agilent E5270A) with 4 source measure unit (SMU) slots, a 

home-made circuit for constant voltage supply, and a 4-channel oscilloscope (Agilent Infiniium 

MSO8104A). The probe station used in this research work is Cascade Summit with a 

controllable heating plate for desired temperature.  

The measurement can be started by using a control program written in Visual Basic (VB) in 

the PC to send commands to instruments. The pulse generator, Agilent 81160A is used for gate 

voltage supply which is connected to the gate terminal of the Device Under Test (DUT). Drain 

voltage is set at a constant value, provided from the home-made circuit powered by a DC power 

supply. The drain current (𝐼𝐷) is amplified and converted to voltage that is recorded by the 

oscilloscope, Agilent MSO8104A. Then, the data is saved and transferred to the PC. Before 

RTN measurement is started, a transfer characteristic (𝐼𝐷-Vg) is recorded to make sure the 

connections and devices are working normally.  

 

Fig. 3.1 Overview of the system setup. 
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3.1.1 Samples Used in this Research Work 

The sample used for this research is a wafer from CSR plc (formerly Cambridge Silicon Radio), 

which was acquired by Qualcomm in August 2015. It is fabricated by Taiwan Semiconductor 

Manufacturing Company (TSMC) using its 28nm CMOS process with planar structure. It is a 

commercial process with proven quality and trustworthiness of the devices. The wafer has both 

array and individual device structures to optimise testing and analysis of ageing. Both 

nMOSFETs and pMOSFETs are used for this research work and it has metal gate and high-

k/SiON stack. The device size used in this work is 90x27 nm in length and width. The average 

threshold voltage, Vth, is 0.45 V. The equivalent oxide thickness is 1.2 nm. The temperature 

applied for RTN measurement is 125⁰C. An illustration of the CSR wafer is given in Fig. 3.2. 

 

Fig. 3.2 CSR Wafer Sample [92]. 

For array devices, each die consists of several sizes, with 16 devices per size, where an 

individual device is at the centre of the die, as shown in Fig. 3.3. The array devices can be 

accessed by 4 SMUs from Agilent E5270A which act as a decoder of 4 bits from ‘0000’ to 

‘1111’. The decoder is activated by assigning 0.9 V; thus, ‘1’ in the bit combination represents 

0.9 V and ‘0’ represents 0 V. An external supply of 0.9 V and a ground connection are needed 

to power up the decoder. This allows a large number of required devices to be measured for an 

accurate statistical analysis. 
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Fig. 3.3 The schematic representation of Decoder Enable lines connecting to transistors (numbered 0-15) and a 

centre transistor (circled) [93]. 

The connection of array must go through a probe card 78662 (Cantilever Probe Card) which is 

custom designed to probe these devices. In Fig. 3.4(b), the green printed circuit board (PCB) 

of the probe card with BNC connectors is designed to select a device size by connecting the 

corresponding gate, source, and drain on the connections of the die. Fig. 3.4 (a) shows the probe 

card for the probe pin connections to each die. Additionally, Table 3.1 gives the sizes of array 

transistors that are available in the CSR wafer and the connections to the PCB in Fig. 3.4(b). 

 

Fig. 3.4 The design of the probe card used in this research work [92]. 
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Table 3.1 Sizes of array transistors in the CSR Wafer. 

Device Sizes Pin Connections 

Length (nm) Width (nm) Gate Drain Source 

 

 

 

nMOS 

pMOS 

27 90 23 1 2 

27 135 23 3 2 

27 180 23 4 5 

27 900 23 6 5 

36 900 23 8 9 

81 900 23 10 9 

225 900 23 11 12 

900 900 23 13 12 

 

Additionally, the nMOS of the array devices can be switched on by directly applying the 

desired gate voltage, Vg, and drain voltage, Vd, as shown in Fig. 3.5(a). However, access to 

the pMOS is different in that the voltage drops between each terminal must be considered. It is 

due to the circuit designed for pMOS access of the array devices do not allow negative voltage 

to flow through. Hence, a special treatment is required to access the pMOS in the array. As 

shown in Fig. 3.5(b), to have -0.9 V and -0.1 V on the gate and drain respectively, 0.8 V needs 

to be applied to the drain, 0 V to the gate and 0.9 V to the source. This represents a voltage 

drop on the gate of -0.9 V, while the voltage drop on the drain is -0.1 V.  

 

Fig. 3.5 An illustration of supply voltage to nMOS and pMOS for CSR devices. 
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3.2 Electrical Characterization of Transistors 

This section discusses the measurements applied in this work such as 𝐼𝐷-Vg measurement and 

Vth extraction. It is important to measure the basic characteristics of a transistor correctly 

before proceeding to further tests.  

3.2.1 Conventional 𝑰𝑫-Vg (IV) Characterization 

IV measurement is an evaluation procedure for a device where bias voltages are applied to the 

terminals of the device while simultaneously measuring the current flowing through the 

terminals, commonly performed by using a commercial Source Measure Unit (SMU) [94]. An 

IV sweep is commonly performed by applying a varying Vg voltage under a constant drain 

bias, Vd. The typical waveform of a stepped IV sweep is given in Fig. 3.6. The typical 

measurement speed for a full IV sweep is approximately 1 to 10 seconds, depending on the 

step size applied. Hence, this method is commonly known as quasi-static or slow DC 

measurement. 

 

Fig. 3.6 Typical IV test waveform [95]. 

Pulse-IV measurement is a high-speed measurement (down to 3 µs) that enables full 

monitoring of the drain current, 𝐼𝐷 , during a pulse on the gate of a transistor. A typical 

waveform of a Pulse IV measurement is shown in Fig. 3.7 [95]. The key advantage of pulse IV 

measurement is the very fast measurement speed. The high speed of the measurement is 

essential for cases where important aging or recovery mechanisms occur in the time frame that 

a traditional IV measurement would take to complete. The rapid speed of the pulse-IV 
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measurement allows for the assumption that no significant aging or recovery has occurred 

during the IV measurement, which would otherwise distort the results of after-stress 

measurements.   

 

Fig. 3.7 Typical waveform of a Pulse IV measurement [95]. 

A single pulse IV is measured in 3 μs in this work. To have a sufficient number of points for a 

high accuracy of 𝐼𝐷-Vg extraction, 100 MSa/s is used. Within 3 µs, Vg is swept from 0 V to 

0.95 V and the current, 𝐼𝐷, is recorded by an oscilloscope. The 𝐼𝐷-Vg data collected by the 

oscilloscope will be 300 data points, allocated uniformly from 0 to 0.95V Vg. To reduce the 

impact of system noise in the 𝐼𝐷-Vg measurement, the 𝐼𝐷-Vg measurement is measured 50 

times [4], then the average of the 50 measurements is used as the reference/fresh 𝐼𝐷-Vg for the 

device. This will significantly reduce the impact of system noise to ~1 mV [4]. 

3.2.2 Threshold Voltage Extraction 

One of the properties that can be extracted from an IV curve is the threshold voltage of the 

measured device. This should be compared with the datasheet given to verify that the 

measurement is correct. Many methods have been proposed [96] to extract the threshold 

voltage, Vth. Here, two widely used methods are discussed: the maximum transconductance 

(𝑀𝑎𝑥 − 𝑔𝑚) method, and the constant current, Idcc, method. Max-𝑔𝑚 method is used in this 

research work for Vth extraction.  

The Max-𝑔𝑚 method is a popular way to extract 𝑉𝑡ℎ from an IV sweep measurement [97]. The 

procedure to extract Vth by the maximum 𝑔𝑚 is shown below: 

1. Transconductance, 𝑔𝑚, is calculated by applying the first derivative to the slope of IV. 
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2. At the maximum of the 𝑔𝑚, the corresponding current is noted as 𝐼𝐷(max-𝑔𝑚).  

3. At 𝐼𝐷(max-𝑔𝑚), a tangent line is drawn and the intercept point of the tangent line across 

the Vg (x-axis) is the threshold voltage, Vth of the device.  

A typical waveform of Vth extraction is shown in Fig. 3.8 [95]. Apart from the max-𝑔𝑚 method, 

Idcc can be used to extract the threshold voltage, Vth. Idcc is widely recognized as 100𝑛𝐴 ∗

𝑊/𝐿, where W and L are the channel width and length respectively [98]. The interception point 

from Idcc against the 𝐼𝐷-Vg curve at Vg is the extracted threshold voltage, Vth. 

  

Fig. 3.8 Illustration of max-𝑔𝑚 and Idcc method for Vth extraction [95]. 

3.3 RTN Measurements 

3.3.1 DC RTN Measurements 

DC RTN measurement is carried out by recording the 𝐼𝐷 of the device under constant gate and 

drain voltage. DC RTN allows extraction of the time constant, 𝜏𝑐 and 𝜏𝑒, and the amplitude of 

a trap. The measurement pattern of a DC RTN measurement is given in Fig. 3.9. During the 

measurement, Vg is supplied by a pulse generator unit and Vd is supplied by a home-made 

circuit powered by a power supply unit. Vd is adjustable and 0.1 V is applied throughout all 

linear measurement. In an extension of this work, saturation measurement has been carried out 

under Vd = 0.9 V. 𝐼𝐷 is observed by using an oscilloscope after amplification. The sampling 

rate used in this research work is 1 MSa/s which allows the detection of RTN traps with time 

constants down to the microseconds range.  
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+ 

Fig. 3.9 Measurement Pattern of DC RTN Measurement. 

The minimal time window measured is 10s and overnight measurement up to 64000 s is carried 

out by the methodology proposed by Mehedi et al. [30]. To overcome the hardware limitation 

of limited oscilloscope memory, the proposed overnight measurement is carried out by having 

a different storage rate of data point, compared to the sampling rate, in this case, Mehedi et al. 

stored every 𝐼𝐷 at 0.1 s, upper (UE) and lower (LE) envelope at every 20 s while the sampling 

rate is 1 MSa/s, to overcome the oscilloscope reaching the memory limit, as shown in Fig. 3.10.   

An improvement to instrumentation was made in this work, by replacing one of the 

oscilloscopes with a Digital Acquisition (DAQ) card, specifically a model manufactured by 

National Instruments (NI), NI – USB 6366. It can be programmed for data collection using the 

software supplied by NI.  

The measurement starts by carrying out a pulse-IV and IV data is recorded. This is followed 

by preparing the oscilloscope for data recording and pulse generator for gate terminal bias 

changes on RTN measurement. The first 10 sec data is recorded and saved at 1 MSa/s by 

oscilloscope. Then, the RTN raw data after 10 sec are recorded and saved by DAQ at every 

5 ms under 1 MSa/s until the measurement time hits 64k sec. 5 ms is selected because this is 

the minimum delay time for which the DAQ can save 1 data point from the display data before 

the data are updated; a time below 5 ms will lead to the possibility that overlapping data points 

will be saved.  
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The oscilloscope is used to detect the maximum and minimum points of the data displayed in 

the time screen of 2 sec at 1 MSa/s. Every 2 sec of data requires 5 sec of loading time before 

the data can be displayed in the oscilloscope’s screen; hence, the max (UE) and the min (LE) 

are updated every 5 sec. If no higher or lower value of max and min is detected in the next 

2 sec data, the max and min values will remain the same until there are values beyond the 

current saved values. The flow of modified overnight tests is given in Fig. 3.11. 

In this work, an overall improvement on overnight RTN measurement is made by having the 

storage rate of raw 𝐼𝐷  improved from 0.1 s to 5 ms and max, min from 20 s to 5 s. This 

improves the accuracy of continuous RTN data measurement with more data points available 

in the same measurement time. 

 

Fig. 3.10 Flowchart for the overall overnight test by Mehedi [92]. 
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Fig. 3.11 Flowchart for the modified overnight test. 

 

3.3.2 AC RTN Measurement 

AC RTN measurement is carried out by alternating Vg between a high (VgH) and low (VgL) 

voltage under a constant Vd. The purpose of this measurement is to analyse RTN under 

conditions closer to realistic digital circuit operation, as these digital circuits are typically 

operated under AC conditions. A typical waveform of this measurement is given in Fig. 3.12. 

VgH values applied are 0.5 V and 0.9 V, where 0.5 V was chosen to be close to the threshold 

voltage, Vth, of 0.45 V for low-power applications and 0.9 V was chosen because it is the rated 

operating voltage for this technology. VgL is 0 V and Vd is 0.1 V throughout all the 

measurements. Frequencies selected on Vg in this work are 10 kHz, 100 kHz and 1 MHz.  
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Fig. 3.12 Measurement Waveform of AC RTN Measurement. 

𝐼𝐷 was recorded throughout the time window; however, the duration of VgL (0 V) is removed 

during data processing, as shown in Fig. 3.13. Hence, the time window for 𝐼𝐷 under VgH is 

dependent on the duty factor of the frequency selected on Vg. In this work, 50% duty factor is 

selected, so that the time window for 𝐼𝐷 under VgH is half of the total measurement time. The 

𝐼𝐷 current is amplified then measured using an oscilloscope. The sampling rate used in this 

research work is 1 MSa/s. The overnight measurement and data saving method is the same as 

DC RTN as shown in Fig. 3.11, except that the Vg bias in the AC RTN test is continuously 

switching. 

 

Fig. 3.13 𝐼𝐷 data processing on AC RTN Measurement. 
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3.4 𝜟𝑽𝒕𝒉 extraction by Pulse IV for 𝜟𝑽𝒕𝒉 (𝑽𝒈 = 𝑽𝒕𝒉) 

It has been proposed that the error of Δ𝑉𝑡ℎ estimated by Δ𝐼𝐷/𝑔𝑚 can be substantial if Vg is 

well above Vth [4]. For measurement under Vg = 0.9V, Δ𝑉𝑡ℎ can be estimated from a stress 

pulse IV at stress time. The Vg waveform for measuring Δ𝑉𝑡ℎ is given in Fig. 3.14. Vg is 

stepped down from 0.9 V to 0.3 V, which acts as an IV sweep. To minimize de-trapping, the 

p-IV is sweeping at 0.9 V to 0.3 V instead of 0 V. Only 1 measurement of 𝐼𝐷-Vg is taken, 

unlike the reference 𝐼𝐷-Vg where 50 measurements are used. This is because the impact of 

thermal noise on ΔVth will be corrected through modelling. 

  

Fig. 3.14 Vg waveform for measuring 𝛥𝑉𝑡ℎ after stress. 

The extraction of RTN-induced Δ𝑉𝑡ℎ under Vg = 0.9V is summarized below: 

1. The Max-𝑔𝑚 method is used to extract the threshold voltage, Vth, of the device on the 

measured Fresh pulse-IV. 

2. From the extracted Vth, the Idcc is determined by intercepting Vth across the IV curve 

towards the 𝐼𝐷 (Y-axis). 

3. The difference in Vg is determined between Fresh (Reference) and the I-V after RTN 

at Idcc (at Vth), as shown in Fig. 3.15. 

4. This difference in Vg is the RTN-induced Δ𝑉𝑡ℎ at that time point.  
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Fig. 3.15 𝛥𝑉𝑡ℎ extraction with charged traps. 

The technique represented in Fig. 3.15 contains two pulse-IV measurements for each iteration. 

First, the falling edge, 0.9 V to 0.3 V is observed, followed by the rising edge, 0.3 V to 0.9 V. 

The results are then compared to verify the method. The falling edge and rising edge can be 

compared to see if any trapping or de-trapping happens during the shifting down of Vg. 

Theoretically, both results should be very similar to each other. Two examples of the falling 

and rising edges are compared. As can be seen from Table 3.2, the difference between falling 

and rising edges is negligible. This indicates that de-trapping is negligible during a pulse-IV 

measurement. 

Table 3.2 Comparison of 𝛥𝑉𝑡ℎ estimated by Falling and Rising Edge. 

Comparison in Δ𝑉𝑡ℎ Falling Edge (mV) Rising Edge (mV) 

Example 1 1.86 1.8 

Example 2 3.79 3.84 

3.5 Summary 

In this chapter, the test instruments and test samples used in this research work are covered. An 

overview of the measurement setup is given. Next, the basic electrical characterization 

methodology is discussed, and a fast pulse-IV measurement is introduced. The methods for 

Δ𝑉𝑡ℎ extraction are also discussed.  

Two methods are introduced for RTN measurement, DC RTN and AC RTN measurements, 

and experimental conditions are given. Additionally, an improvement is discussed for proposed 
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methods of overnight measurement. Lastly, the procedure for Δ𝑉𝑡ℎ extraction at 𝑉𝑔 = 𝑉𝑡ℎ is 

described.
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CHAPTER 4: RTN MODEL BY INTEGRAL METHODOLOGY 

This chapter focuses on the integral methodology. The first section covers the background of 

RTN modelling by early works. The second gives the structure of the integral methodology, 

including the inputs, outputs, and key function of the model. Lastly, the optimization of 

computation time and justification is also included.  

4.1 Introduction 

In early works, RTN modelling attempts were mainly focused on the characteristics of 

individual traps [3], [19], [31-33]; for example, the capture time, emission time and amplitude. 

This approach, however, has not led to a trustworthy model that can be used by circuit designers 

to analyse RTN for optimizing circuit performance. The main concern from a circuit designer’s 

point of view is the total impact of RTN on current and threshold voltage, instead of the capture 

time, emission time and amplitude of each trap. Hence, this chapter focuses on developing a 

new methodology that can directly give the probability of a certain Δ𝑉𝑡ℎ to circuit designers 

or end users. 

4.2 The Integral Methodology 

This section covers the details of the integral methodology, starting with an overview, followed 

by a detailed flowchart of the procedure. Details such as the structure of the method, the inputs, 

key functions, and the outputs are discussed. The method for optimizing the computation time 

is presented. The integral method is implemented by a Matlab-based program.  

4.2.1 Structure of the Integral Methodology 

In the early works, individual traps were characterized by 3 important parameters, 

• The impact of traps, i.e., the amplitude of parameter shift induced by individual traps, 

• The time constants of individual traps, 

• Number of traps per device. 

The main aim of this RTN model is to estimate the total impact of multiple traps combined at 

any given time point. To facilitate the statistical analysis of RTN without obtaining these 

properties of individual traps, the concept of Effective Charged Traps (ECT) is introduced. At 

a given time point, the RTN-induced ΔVth measured from multiple devices will form a dataset 

that has a statistical distribution. It is assumed that this statistical distribution originates from a 
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group of traps that are always charged. In another words, ECT is the equivalent set of fixed 

charges that give the same statistical distribution of ΔVth as measured from multiple real 

devices where traps dynamically capture and emit charges. Although the ΔVth of one device 

at a given time can be stochastic, the statistical distribution of the set of ΔVth obtained from 

multiple devices will be stable when the number of devices is sufficiently large, as shown by 

Fig. 4.1 below. As a result, one can assume that this statistical distribution originates from a 

set of ECTs that are always charged. 

 

Fig. 4.1 𝛥𝑉𝑡ℎ is measured twice and there is little difference between the two set of data. 

By assuming there are both acceptor-like and donor-like traps in a device, the RTN-induced 

ΔVth becomes, 

 Δ𝑉𝑡ℎ𝑅𝑇𝑁 = Δ𝑉𝑡ℎ𝐴 + Δ𝑉𝑡ℎ𝐷 (4.1) 

where Δ𝑉𝑡ℎ𝐴  represents the contribution of acceptor-like traps and Δ𝑉𝑡ℎ𝐷  represents the 

contribution of donor-like traps. For nMOSFETs, Δ𝑉𝑡ℎ > 0 is used for acceptor-like traps and 

Δ𝑉𝑡ℎ < 0 for donor-like traps. As ECTs are always charged, it enables modelling RTN without 

obtaining the capture and emission times for each trap. The model based on ECT requires the 

number of traps per device, 𝑛, and the statistical distribution of impact per trap, i.e., 𝛿𝑉𝑡ℎ.  

Early works [1], [3], [19], [25], [31-33], [96], [99] proposed 3 types of distributions for 𝛿𝑉𝑡ℎ: 
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1. Exponential Distribution 

2. Lognormal Distribution 

3. Generalized Extreme Value (GEV) Distribution 

These 3 distributions will be implemented into the integral methodology and compared 

between each other for the selection of distributions. These probability distribution functions 

(pdf) for Acceptor-like traps can be generally represented by  

 𝑝𝑑𝑓𝐴(𝛿𝑉𝑡ℎ𝐴) (4.2) 

As mentioned earlier, the total impact of RTN on a device at a time point, Δ𝑉𝑡ℎ𝐴, is the key 

information needed. When there are nA acceptor-like traps in a device, Δ𝑉𝑡ℎ𝐴 can be evaluated 

from 

 Δ𝑉𝑡ℎ𝐴 = 𝛿𝑉𝑡ℎ1 + 𝛿𝑉𝑡ℎ2+ . . . . +𝛿𝑉𝑡ℎ𝑛𝐴
 (4.3) 

Mathematically, if Z = X + Y and X and Y are two independent random variables with pdfX 

and pdfY, respectively, the pdf of Z is the convolution of pdfX and pdfY [100]: 

 
𝑝𝑑𝑓(𝑧) =  ∫ 𝑝𝑑𝑓𝑋(𝑥)𝑝𝑑𝑓𝑌(𝑧 − 𝑥)𝑑𝑥

∞

−∞

 (4.4) 

As a result, if there are two acceptor-like traps in a device, we have 

 
𝑝𝑑𝑓𝐴2(Δ𝑉𝑡ℎ𝐴2) =  ∫ 𝑝𝑑𝑓(𝛿𝑉𝑡ℎ1)𝑝𝑑𝑓(Δ𝑉𝑡ℎ𝐴2 − 𝛿𝑉𝑡ℎ1)𝑑(

∞

−∞

𝛿𝑉𝑡ℎ1) (4.5) 

If there are 3 traps, the pdf of ΔVthA3 should be a convolution of pdfA2(ΔVthA2) with pdf(δVth3):  

 
𝑝𝑑𝑓𝐴3(Δ𝑉𝑡ℎ𝐴3) =  ∫ 𝑝𝑑𝑓𝐴2(𝛥𝑉𝑡ℎ𝐴2)𝑝𝑑𝑓(Δ𝑉𝑡ℎ𝐴3 − 𝛥𝑉𝑡ℎ𝐴2)𝑑

∞

−∞

(𝛥𝑉𝑡ℎ𝐴2) (4.6) 

Similarly, if we have nA acceptor-like traps, we can convolute one trap at a time until all traps 

are included. The pdf of ΔVthA from nA traps can be represented by 

 𝑝𝑑𝑓𝐴(Δ𝑉𝑡ℎ𝐴) = 𝐶𝑜𝑛𝑣[𝑝𝑑𝑓(𝛿𝑉𝑡ℎ1), 𝑝𝑑𝑓(𝛿𝑉𝑡ℎ2) … 𝑝𝑑𝑓(𝛿𝑉𝑡ℎ𝑛𝐴
)] (4.7) 

As shown in Equation (4.1), there are two types of traps to be modelled: acceptor-like and 

donor-like. Equation (4.7) gives the pdf acceptor-like traps, Δ𝑉𝑡ℎ𝐴.  For donor-like traps, 

Δ𝑉𝑡ℎ𝐷  is negative, but both the Exponential and Lognormal distribution require their 
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parameters to be positive. To overcome this difficulty, the absolute value of 𝛿𝑉𝑡ℎ𝐷 will be 

used, 

 |Δ𝑉𝑡ℎ𝐷| = |𝛿𝑉𝑡ℎ1| + |𝛿𝑉𝑡ℎ2|+ . . . . +|𝛿𝑉𝑡ℎ𝑛𝐷
|. (4.8) 

The pdf of |ΔVthD| can be evaluated similarly: 

 𝑝𝑑𝑓𝐷(|Δ𝑉𝑡ℎ𝐷|) = 𝐶𝑜𝑛𝑣[𝑝𝑑𝑓(|𝛿𝑉𝑡ℎ1|), 𝑝𝑑𝑓(|𝛿𝑉𝑡ℎ2|) … 𝑝𝑑𝑓(|𝛿𝑉𝑡ℎ𝑛𝐷
|)] (4.9) 

Acceptor-like traps reflect positive fluctuation and donor-like traps reflect negative fluctuation 

in Δ𝑉𝑡ℎ. Thus, the total impact of all traps in a device can be evaluated by: 

 Δ𝑉𝑡ℎ𝑅𝑇𝑁 = Δ𝑉𝑡ℎ𝐴 − |Δ𝑉𝑡ℎ𝐷|  

(4.10) 

Also, the pdf of Δ𝑉𝑡ℎ𝑅𝑇𝑁 can be expressed as: 

𝑝𝑑𝑓[Δ𝑉𝑡ℎ𝑅𝑇𝑁(𝑛𝐴, 𝑛𝐷)] 

=  ∫ 𝑝𝑑𝑓𝐴[(Δ𝑉𝑡ℎ𝑅𝑇𝑁(𝑛𝐴, 𝑛𝐷) + 𝛿𝑉𝑡ℎ𝑛𝐷
]𝑝𝑑𝑓𝐷(𝛿𝑉𝑡ℎ𝑛𝐷

)𝑑(𝛿𝑉𝑡ℎ𝑛𝐷
)

∞

−∞

 

(4.11) 

Equation (4.11) gives the probability that a device will have Δ𝑉𝑡ℎ𝑅𝑇𝑁, if every device has nA 

acceptor-like traps and nD donor-like traps. In reality, different devices will have different 

numbers of traps and it is well accepted that the number of traps per device follows a Poisson 

distribution. This leads to: 

𝑝𝑑𝑓(Δ𝑉𝑡ℎ) =  ∑ ∑
𝑒−𝑁𝐴𝑁𝐴

𝑛𝐴

𝑛𝐴!

𝑒−𝑁𝐷𝑁𝐷
𝑛𝐷

𝑛𝐷!
𝑝𝑑𝑓(𝛥𝑉𝑡ℎ𝑅𝑇𝑁(𝑛𝐴, 𝑛𝐷))∞

𝑛𝐷=0
∞
𝑛𝐴=0 , (4.12) 

where NA and ND are the average number of acceptor-like and donor-like traps per device, 

respectively.  

If only one type of trap is considered, for example, acceptor-like traps, the equivalent equation 

can be transformed into:  

𝑝𝑑𝑓(Δ𝑉𝑡ℎ) =  ∑
𝑒−𝑁𝐴𝑁𝐴

𝑛𝐴

𝑛𝐴!
𝑝𝑑𝑓 (Δ𝑉𝑡ℎ𝑅𝑇𝑁𝐴

(𝑛𝐴))

∞

𝑛𝐴=0

 (4.13) 
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Equation (4.13) shows a summation symbol of the Poisson distribution multiplied by 

𝑝𝑑𝑓 (Δ𝑉𝑡ℎ𝑅𝑇𝑁𝐴
(𝑛𝐴)). It equals 

 
𝑆𝑢𝑚 (

𝑒−𝑁𝐴𝑁𝐴
0

0!
𝑝𝑑𝑓(Δ𝑉𝑡ℎ(0)) +

𝑒−𝑁𝐴𝑁𝐴
1

1!
(𝑝𝑑𝑓(Δ𝑉𝑡ℎ(1))

+
𝑒−𝑁𝐴𝑁𝐴

2

2!
𝑝𝑑𝑓(Δ𝑉𝑡ℎ(2))+. . +

𝑒−𝑁𝐴𝑁𝐴
𝑛𝐴

𝑛𝐴!
𝑝𝑑𝑓(Δ𝑉𝑡ℎ(𝑛𝐴)) + ⋯ ) 

(4.14) 

Examples of Matlab commands for the methodology can be found in the Appendix. A Tutorial 

example is also given at the end of this chapter. Table 4.1 gives the lower and upper boundaries 

applied in the numerical integration in Equation 4.5 and Equation 4.11. Derivation of Equation 

4.4 and justification of these boundaries can be found in the Appendix. 

Furthermore, thermal noise is a common noise source in circuits, and it must be taken into 

account. Thermal noise is commonly known to follow a Normal distribution with a zero 

average value. Its effect can be added into Equation (4.11) by carrying out a convolution,  

𝑝𝑑𝑓(Δ𝑉𝑡ℎ) =  𝐶𝑜𝑛𝑣[𝑝𝑑𝑓(Δ𝑉𝑡ℎ𝑅𝑇𝑁), 𝑝𝑑𝑓(Δ𝑉𝑡ℎ𝑇ℎ𝑒𝑟𝑚𝑎𝑙)]. (4.15) 

Fig. 4.2 shows the flow chart of the integral methodology. Fig. 4.3 illustrates how to apply the 

integral methodology to a dataset with required inputs and the detailed working operation of 

the model. 

Table 4.1 The lower and upper boundaries of each distribution for convolution. 

 

Distributions 

Boundaries for Numerical Integration 

Acceptor Acceptor + Donor 

Lower-

Boundary 

Upper-

Boundary 

Lower-Boundary Upper-Boundary 

Exponential 0 Δ𝑉𝑡ℎ𝐴 Δ𝑉𝑡ℎ < 0 Δ𝑉𝑡ℎ > 0 Δ𝑉𝑡ℎ < 0 Δ𝑉𝑡ℎ > 0 

0 Δ𝑉𝑡ℎ Inf Inf 

Lognormal 0 Δ𝑉𝑡ℎ𝐴 Δ𝑉𝑡ℎ < 0 Δ𝑉𝑡ℎ > 0 Δ𝑉𝑡ℎ < 0 Δ𝑉𝑡ℎ > 0 

0 Δ𝑉𝑡ℎ Inf Inf 

GEV 𝑡𝐴 

𝑡𝐴 = 𝛼𝐴 −
𝛽𝐴

𝜉𝐴

 

Δ𝑉𝑡ℎ𝐴

− 𝑡𝐴 

Δ𝑉𝑡ℎ

< (𝑡𝐴 − 𝑡𝐷) 

Δ𝑉𝑡ℎ

> (𝑡𝐴 − 𝑡𝐷) 

Δ𝑉𝑡ℎ

< (𝑡𝐴 − 𝑡𝐷) 

Δ𝑉𝑡ℎ

> (𝑡𝐴 − 𝑡𝐷) 

𝑡𝐴 Δ𝑉𝑡ℎ + 𝑡𝐷 Inf Inf 
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Once the statistical distribution per trap is selected, its parameters will be fitted with the 

measured dataset. Maximum Likelihood Estimation (MLE) is used for the fitting [30, 101-102]. 

The parameters to be extracted are: 

1) Average number of effective Acceptor-like traps per device, 𝑁𝐴 

2) Average number of effective Donor-like traps per device, 𝑁𝐷 

3) Parameters for 𝛿𝑉𝑡ℎ distribution: 

a. Exponential distribution 

i. 𝜂𝐴 𝑎𝑛𝑑 𝜂𝐷 

b. Lognormal distribution 

i. 𝜖𝐴, 𝜃𝐴 𝑎𝑛𝑑 𝜖𝐷, 𝜃𝐷  

c. Generalized Extreme Value distribution. 

i. 𝜉𝐴, 𝛼𝐴, 𝛽𝐴 and 𝜉𝐷 , 𝛼𝐷 , 𝛽𝐷 

4) The standard deviation of thermal noise, 𝜎. 
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Fig. 4.2 A flow chart of the integral methodology. 
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Fig. 4.3 A detailed illustration of the Matlab program with required inputs. 
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The analytical formulas for the pdf of the three distributions are given in Table 4.2: 

Table 4.2 The PDF of 𝛿𝑉𝑡ℎ and parameters to be fitted for each PDF. 

 PDF of 𝛿𝑉𝑡ℎ Parameters to be fitted 

Exponential 1

𝜂
𝑒

−
𝛿𝑉𝑡ℎ

𝜂      𝛿𝑉𝑡ℎ > 0 

 

0 𝛿𝑉𝑡ℎ < 0 

𝛿𝑉𝑡ℎ ∈ [ 0, ∞ ]   

𝜂𝐴 𝜂𝐷 

Lognormal 
        

1

𝛿𝑉𝑡ℎ𝜃√2𝜋
𝑒

(−
(ln(𝛿𝑉𝑡ℎ)−𝜖)2

2𝜃2 )
   𝛿𝑉𝑡ℎ > 0 

 

         0                                                𝛿𝑉𝑡ℎ < 0 

 𝛿𝑉𝑡ℎ ∈ [ 0, ∞ ]   

𝜖𝐴 

𝜃𝐴 

𝜖𝐷 

𝜃𝐷 

GEV 1

𝛽
(𝑘)𝜉+1𝑒−𝑘          𝛿𝑉𝑡ℎ > 𝑡 

 

0                             𝛿𝑉𝑡ℎ < 𝑡 

where,  

𝑘 = (1 + 𝜉 (
𝛿𝑉𝑡ℎ − 𝛼

𝛽
))

−
1
𝜉

, 

𝑡 = 𝛼 −
𝛽

𝜉
. 

𝛿𝑉𝑡ℎ ∈ [ 𝑡, ∞ ]   

𝜉𝐴 

𝛼𝐴 

𝛽𝐴 

𝜉𝐷 

𝛼𝐷 

𝛽𝐷 

Thermal 1

𝜎√2𝜋
𝑒−

1
2

(
Δ𝑉𝑡ℎ

𝜎
)

2

      Δ𝑉𝑡ℎ = 𝑅𝑒𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 

𝛿𝑉𝑡ℎ ∈ [ −∞, ∞ ]   

 

𝜎 

 

The numerical convolutions are performed in pdf. They are then integrated to give the CDF, 

which is then fitted with the measured CDF.   
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4.2.2 Inputs for the Model 

First, an RTN dataset presented in CDF form is needed, as shown in Fig. 4.4. Every single 

point of the dataset represents a Δ𝑉𝑡ℎ measured from a device, which includes the impacts of 

all traps. By combining these Δ𝑉𝑡ℎ from multiple devices in ascending order into one dataset, 

they can be presented as an empirical CDF plot by calculating the probability as [103] 

 𝐶𝐷𝐹(Δ𝑉𝑡ℎ, 𝑖) = (𝑖 − 0.5)/𝑁  (4.16) 

where i = 1 has the lowest Δ𝑉𝑡ℎ and i = N (= 402, in this work) has the highest Δ𝑉𝑡ℎ. To 

illustrate the tail region clearly, the same dataset can be plotted in Z-score in Fig. 4.5. The Z-

score can be obtained by looking at a Z-Score table or using a normal inverse cumulative 

calculator based on the CDF values from Equation (4.16). 

To prevent the Z-score approaching infinity when CDF approaches 1, The ‘-0.5’ is used in 

Equation (4.16), so that CDF does not reach 1, when i=N. It should be pointed out that the 

accuracy of the Z-score calculated in this way becomes poor, as i approaches N, as ‘-0.5’ was 

artificially added. 

 

Fig. 4.4 A CDF of RTN dataset from multiple devices in 𝛥𝑉𝑡ℎ. 
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Fig. 4.5 A RTN dataset from multiple devices in 𝛥𝑉𝑡ℎ plotted in Z-Score. 

The required inputs are shown in Fig. 4.6 and listed below: 

i. CDF of RTN Dataset to be fitted: the name of the file containing the dataset should be 

given.  

ii. Maximum number of Traps for Acceptor, 𝑛𝐴, 

iii. Maximum number of Traps for Donor, 𝑛𝐷, 

iv. Thermal Noise Enable Bit: 0 | 1, 

v. Distribution Selector: Exponential | Lognormal | GEV, 

vi. Maximum Likelihood Estimation | Probability Calculation Selector 

vii. Parameter Start values for Maximum Likelihood Estimation or Known parameters for 

probability calculation. 

 

Fig. 4.6 An example of required inputs in Matlab. 
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Fig. 4.6 gives an example for the inputs required in Matlab for the integral methodology.  

• Maximum number of Traps for Acceptor (𝑛𝐴) / Donor (𝑛𝐷) decides the number of 

items to be calculated for each Δ𝑉𝑡ℎ in Equation 4.12. In principle, they should be 

infinite, but they must be finite in practice. It is found that they must at least double the 

average number of traps per device, as justified in Section 4.2.5. In Fig. 4.6, the 

maximum number of traps is 4 for both Acceptors (𝑛𝐴) and Donors (𝑛𝐷).  

• The flexibility of including thermal noise has been included. Thermal noise fitting can 

be enabled or disabled by giving ‘1’ or ‘0’, respectively, to input (iv). 

•  The impact per trap distributions in this model include Exponential, Lognormal and 

GEV distributions, which can be selected by giving ‘1’, ‘2’ or ‘3’, respectively, to input 

(v).  

• For input (vi), one can select between parameter fitting by MLE or the probability 

calculation with a known set of parameters.  

• In input (vii),  

o For an MLE extraction, start values of the parameters are required to initialize 

the MLE process.  

o For probability calculation, the parameters input by users will be directly 

applied to the equation to calculate the probability. 

In Fig. 4.6, Exponential distribution and MLE estimation are selected. The start values of the 

Exponential distribution for the MLE estimation are, 

I. 𝜂𝐴 = 0.65, 

II. 𝜂𝐷 = 0.65, 

III. 𝑁𝐴 = 1, 

IV. 𝑁𝐷 = 1.2. 

The 𝜂𝐴 𝑎𝑛𝑑 𝜂𝐷 are the average δVth per acceptor-like and donor-like trap, respectively, as 

given in Table 4.2. The parameters needed for the Lognormal and GEV distributions are also 

given in Table 4.2. The 𝑁𝐴 𝑎𝑛𝑑 𝑁𝐷 are the start values of the average number of acceptor-like 

and donor-like traps per device, respectively. 
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4.2.3 Outputs of the Model 

For any model it is important to verify that it is working as expected. This can be done by using 

the RTN model to fit a known parameter set of data which is generated by Monte Carlo 

simulation. The hypothetical dataset in Fig. 4.7 is generated by using, 

1. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟 − 𝑙𝑖𝑘𝑒 𝑡𝑟𝑎𝑝𝑠, 𝑁𝐴 = 2.5 

2. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑛𝑜𝑟 − 𝑙𝑖𝑘𝑒 𝑡𝑟𝑎𝑝𝑠, 𝑁𝐷 = 1.5 

3. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝛿𝑉𝑡ℎ 𝑝𝑒𝑟 𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟 − 𝑙𝑖𝑘𝑒 𝑡𝑟𝑎𝑝 = 1 mV 

4. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝛿𝑉𝑡ℎ 𝑝𝑒𝑟 𝑑𝑜𝑛𝑜𝑟 − 𝑙𝑖𝑘𝑒 𝑡𝑟𝑎𝑝 = 0.5 mV 

The exponential distribution was used for the impact per trap. With the start values for 

parameters in Fig. 4.6 directly fed into the integral model, the fitted probability by MLE is 

plotted as the red line in Fig. 4.7. The calculated probability fits the data very well. The 

extracted parameters by MLE are:  

1. 𝐹𝑖𝑡𝑡𝑒𝑑: 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟 − 𝑙𝑖𝑘𝑒 𝑡𝑟𝑎𝑝𝑠, 𝑁𝐴 = 2.5 

2. 𝐹𝑖𝑡𝑡𝑒𝑑: 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑛𝑜𝑟 − 𝑙𝑖𝑘𝑒 𝑡𝑟𝑎𝑝𝑠, 𝑁𝐷 = 1.4 

3. 𝐹𝑖𝑡𝑡𝑒𝑑: 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝛿𝑉𝑡ℎ 𝑝𝑒𝑟 𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟 − 𝑙𝑖𝑘𝑒 𝑡𝑟𝑎𝑝 = 0.9 𝑚𝑉 

4. 𝐹𝑖𝑡𝑡𝑒𝑑: 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝛿𝑉𝑡ℎ 𝑝𝑒𝑟 𝑑𝑜𝑛𝑜𝑟 − 𝑙𝑖𝑘𝑒 𝑡𝑟𝑎𝑝 = 0.6 mV 

These values agree well with the real values for generating the dataset and validate that the 

proposed integral methodology can be used to extract the model parameters. 
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Fig. 4.7 Verification of the RTN integral model by using a Monte Carlo generated set of data. 

From the extracted parameters, the arithmetic mean, and standard deviation of each distribution 

can be evaluated from [104-106], 

1) Exponential 

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑀𝑒𝑎𝑛 = 𝜂 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜂 

2) Lognormal 

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑀𝑒𝑎𝑛 = exp (𝜖 +
𝜃2

2
) 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑒𝜖+
1
2

𝜃2
√𝑒𝜃2
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3) GEV 

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑀𝑒𝑎𝑛 = 𝛼 +
𝛽[Γ(1 − 𝜉)]

𝜉
 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √
(Γ(1 − 2𝜉) − (Γ(1 − 𝜉))

2
) 𝛽2
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4.2.4 Key Functions of the Model 

The main task of the integral methodology is to extract the average number of acceptor and 

donor-like traps, 𝑁𝐴 and 𝑁𝐷, and the parameters for the statistical distributions in Table 4.2 for 

a measured RTN dataset at a specific time point. By extracting their values for datasets 

measured at different time points, the 𝑁𝐴 and 𝑁𝐷 can be plotted against time to establish their 

kinetics. This mimics aging modelling and effectively transforms modelling traps of different 

time constants into modelling the kinetics of ECT.  

Simulation results with an exponentially distributed impact per trap are used as an example. 

An illustration of how to transform this distribution into a time-dependent number of ECTs is 

given in the steps below: 

1. Apply integral method to the CDF of the RTN dataset at different time points, as shown 

in Fig. 4.7. 

2. Plot Fitted Average Number of Traps (ECT) per device, 𝑁𝐴 and 𝑁𝐷 , against Time as 

shown in Fig. 4.8. 

3. Fit 𝑁𝐴  and 𝑁𝐷 with different kinetics: Power Law, Lognormal, and Log-uniform 

between 10−4 to 101 sec as shown in Fig. 4.9. 

4. The fitted kinetics are then extrapolated to predict the future RTN as shown in Fig. 4.10. 

The prediction by different kinetics is compared with the 𝑁𝐴 and 𝑁𝐷 extracted from test 

data at a longer time window to select the kinetics that give the best prediction. 

The prediction capability is verified and discussed in Chapters 5, 6 and 7. As can be seen in 

Fig. 4.7, Δ𝑉𝑡ℎ can be either negative or positive and it can be fitted accurately by the integral 

method.  

Another powerful feature of this integral method is that it can calculate the probability of a 

particular Δ𝑉𝑡ℎ if 𝑁𝐴 and 𝑁𝐷 and parameters for the statistical distributions in Table 4.2 are 

given. This removes the need for performing time-consuming Monte Carlo simulations. 
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Fig. 4.8 The 𝑁𝐴 𝑎𝑛𝑑 𝑁𝐷 extracted from a set of RTN measurements at different time points. 

 

Fig. 4.9 𝑁𝐴 and 𝑁𝐷 from 10−4 to 101 sec are fitted by 3 kinetics; Power-Law, Lognormal, and Log-uniform. 
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Fig. 4.10 The kinetics fitted between 10−4 to 101 sec are extrapolated to a longer time window to predict RTN in 

longer time windows. 

4.2.5 Optimization of Computation Time and Justification 

For an MLE extraction, start values are required for the parameters to be fitted. As there are 

many mathematical calculations per fitting, this can become very time consuming. To reduce 

the overall fitting time, lower and upper boundaries can be set for the start values of parameters. 

For example, if start values are 1, lower and upper boundaries can be set at 0.5 and 1.5. The 

MLE extraction parameters will not go below or beyond the lower and upper boundaries. It is 

to be noted that, by fitting the equation through the MLE method, there is only one set of unique 

parameters to be extracted if the parameter estimation is convergent. The closer the start values 

are, the faster the MLE estimation will be. Thus, an exact computing time cannot be given, but 

the typical time will vary between 7 hours and 11 hours, approximately. 

If the parameters’ boundaries do not cover the parameters’ values, the MLE will not converge. 

Another reason that can cause MLE not to converge is the number of iteration of MLE. If the 

start values are too far from the unique values, the number of iterations may not be enough. A 

common practice for start value selection is to first extract parameters at the shortest time of 

the available RTN datasets; in this case, the time is 10−4 sec. Fitting the data at 10−4 sec with 

wide boundaries will take a long time; however, once the parameters for 10−4 sec are obtained, 

the values of fitted impact per trap, 𝛿𝑉𝑡ℎ, can be used as the start value for 𝛿𝑉𝑡ℎ at the next 
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time point, since the average impact per trap should be time insensitive. The average number 

of traps per device should increase with time; hence, the start values can be set higher than the 

fitted values at a previous timepoint. For example, if MLE output for 𝑁𝐴 𝑎𝑡 10−4 𝑠𝑒𝑐 is 0.5, 

the start value for a timepoint later than 10−4 sec must be higher than 0.5, which helps in 

reducing the fitting time. By applying this practice, only the first set of data needs to use the 

wide boundary conditions which require a long fitting time (11 hours), and the following 

datasets can use narrower boundary conditions which only need approximately 7.5 hours. 

The summation in Equation (4.14) must be terminated at a sufficiently high 𝑛𝐴 and 𝑛𝐷 to give 

an acceptable accuracy. In this work, the highest number of 𝑛𝐴 and 𝑛𝐷 is set at 12 and it is 

found that this allows accurate computation of devices with an average of 4 traps, as will be 

shown later. However, not every dataset has an average number of traps up to 4. The higher 

the 𝑛𝐴 or 𝑛𝐷, the greater the number of convolutions and computation time needed.  

To reduce the fitting time, the maximum number of traps is made adjustable. The higher the 

number, the larger the convolution needs to be. If they are far beyond the average number of 

traps, the probability calculated at a high number of traps contributes little and can be ignored. 

Hence, the relationship between the maximum number of traps and the average number of traps 

must be found. By using flexible 𝑛𝐴 𝑎𝑛𝑑 𝑛𝐷, the fitting time for 𝑁𝐴 and 𝑁𝐷 = 3 is given in Fig. 

4.11 by using different maximum 𝑛𝐴 𝑎𝑛𝑑 𝑛𝐷.  

 

Fig. 4.11 The relationship between the maximum 𝑛𝐴, 𝑛𝐷 and fitting time. 
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To further improve the fitting time, a look-up table based on each distribution is established to 

be used as an approximation of numerical integration. The CDFs in the look-up table are 

calculated based on the methodology discussed above (numerical integration) for Acceptor or 

Donor-like traps and saved as a reference for every specified value of parameters of 

distributions from Δ𝑉𝑡ℎ = -10 mV to 10 mV. This range of ΔVth is selected because it covers 

the spread of measured ΔVth. 

Exponential: The look-up table for exponential distribution is stored up to 𝜂 = 0.8 mV with 

0.05 mV interval steps. 0.8 mV is selected as the highest value because this is the highest value 

fitted from experimental data in this work. 

Lognormal and GEV: The look-up table for Lognormal distribution is a table for 2 parameters, 

𝜖 and 𝜃. GEV has 3 parameters, 𝜉, 𝛼 𝑎𝑛𝑑 𝛽. GEV requires multiple look-up tables. For each 

given 𝜉, a table is established with 𝛼 and 𝛽 changing from 0.1 to 1 with 0.1 interval steps. As 

illustrated in Fig. 4.12, for each specified 𝜉, 𝛼 𝑎𝑛𝑑 𝛽,  the probability that a given ΔVth will 

occur when there is nA number of acceptor-like traps in a device is pre-calculated and stored in 

the table for future use.   

During Maximum Likelihood Estimation, the numerical convolutions in Equations (4.4)-(4.7) 

have to be repeatedly carried out for each set of estimated parameters, which is time consuming. 

The look-up table is used to avoid this repeated computation, as it allows the required results 

to be extracted from the table.  

The look-up table uses the maximum number of acceptor-like traps of 𝑛𝐴 = 15. The maximum 

𝑛𝐴 = 15 is selected because the current experimental data has the maximum average of 4 traps 

per device, which requires at least 𝑛𝐴 = 12. This relationship between average number of traps 

per device and maximum 𝑛𝐴 will be discussed later. To be conservative, 𝑛𝐴 = 15 is applied. 

Acceptor-like and Donor-like traps share the same look-up table.  

With the probabilities of 𝑛𝐴  and 𝑛𝐷  known from 0 to 15, the convolution of Acceptor and 

Donor-like traps in Equation (4.11) can be calculated reasonably quickly. Fitting time between 

numerical integration and look-up table is compared in Fig. 4.13. The fitting time is 

significantly reduced from 240 minutes to 16 minutes by applying the look-up table. These 

times, however, should be seen as a rule-of-thumb, as they can vary with the specifications of 

the users’ computers.  
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For parameter values or Δ𝑉𝑡ℎ that are not in the look-up table, interpolation between two 

closest values available is applied as an estimation. A comparison of fitted CDF between 

numerical integration and look-up table is given in Fig. 4.14(a). Fig. 4.14(b) gives an error 

comparison between each fitted CDF and test data item to justify the interpolation with the 

look-up table: the error is similar. The normalized difference between two fitted CDFs in Fig. 

4.14(a) is 1.47×10-5, which further justifies the use of interpolation for estimation.  

 

Fig. 4.12 Illustration of GEV Look-Up Table with 3 fitting parameters. 
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Fig. 4.13 Fitting time comparison between Numerical Integration and Look-Up Table. 

A major advantage of this integral method is that it enables the direct and rapid calculation of 

the probability for a particular Δ𝑉𝑡ℎ to occur for a given set of statistical parameters. The 

computation time is insensitive to the Δ𝑉𝑡ℎ value. A large ΔVth will occur rarely and 

correspond to a large multiple of the standard deviation, 𝜎. A computation time comparison 

between Static Monte Carlo Simulation and Integral Method against multiple 𝜎 is made in Fig. 

4.15. The higher the 𝜎 multiples, the longer the time required for the Monte Carlo Simulation, 

as more hypothetical cases have to be generated. At 6𝜎, the computation time of static Monte 

Carlo simulation is 4 orders higher than that of the integral method.  

 

Fig. 4.14 (a) Fitted CDFs of Numerical Integration and Look-up Table. (b) Error comparison between two 

fitted CDFs and test data. 
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Fig. 4.15 Computation time comparison between Static Monte Carlo Simulation and Integral Method against 𝜎. 

To justify the setting of the maximum number of acceptor or donor-like traps per device, the 

dependence of fitting errors on them is examined. For a dataset with the average number of 

acceptor-like traps of 2 (𝑁𝐴 = 2) per device, Fig. 4.16 shows that errors reduce initially, but 

further reduction is small when the maximum number of traps is set at 4. The result clearly 

showed that the maximum number of traps should be at least double (i.e., a factor of 2) the 

average number of traps. To be conservative, a factor of 3 is applied throughout the model in 

this work. 

 

Fig. 4.16 The relationship between the maximum 𝑛𝐴 and 𝑛𝐷 against the normalized MSE on a dataset with 

average 2 traps per device. 
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4.3 Conclusion 

In this chapter, the process of RTN modeling has been described, including how this 

methodology can be applied and step-by-step guide for creating the RTN model. The method 

for parameter extraction based on the RTN modeling equation has been given. This model has 

been justified by fitting to a theoretically generated statistical set of data with a known average 

number of traps per device, 𝑁𝐴  and statistical distribution of 𝛿𝑉𝑡ℎ . For the first time, a 

methodology is proposed that provides the capability of estimating the probability for a certain 

Δ𝑉𝑡ℎ to occur, which provides a powerful new tool for circuit designers to optimize circuit 

designs. 
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CHAPTER 5: AN INTEGRAL METHODOLOGY FOR PREDICTING 

LONG TERM DC RTN 

This chapter discusses the application of integral methodology on RTN measurement data and 

long-term RTN prediction. The first section gives the motivation for developing a trustworthy 

RTN model. The second gives the methodology and measurement method on RTN 

measurement and data processing. Follows by discussion on the concept of integral 

methodology and how it can be used on RTN data. Lastly, the CDF prediction of long-term 

RTN has been applied and verified. 

5.1 Introduction 

As discussed in Chapter 1, noise in MOSFETs adversely affects the performance of circuits [1-

3], [12], [19], [21], [29], [31], [64], [102], [107-108]. IoT edge units are particularly vulnerable 

to it because the requirement of low power drives the operation voltage towards threshold level 

and reduces noise tolerance [12], [21]. 

Efforts have been made to optimize circuit design and performance [1-3], [12], [19], [21], [29], 

[31], [64], [102], [107-108]. When devices are relatively large, there are many traps, and they 

collectively form 1/f noise. Thus, the impact of a single trap is typically too small to be clearly 

observed, and modelling was mainly in the frequency domain [105]. However, as the 

downscaling of device size reached the nanometre scale, there are only a few traps in a device. 

The relative impact of a single trap increases and can be observed as Random Telegraph Noise 

(RTN) [1-3], [12], [19], [21], [29], [31], [64], [102], [107-108], where drain current exhibits 

step-like changes. The stochastic nature of trap distribution results in large device-to-device 

variation (DDV) of RTN [1-3], [19], [64]. When compared with the time-independent DDV 

from other sources, such as discrete random dopants and line edge roughness [2], whose 

outliers can be screened out by pre-shipping tests of chips, the time-dependent DDV by RTN 

is difficult to screen out, as trapping may not occur within the limited test time window. 

It has been reported that capturing one charge carrier by a trap can induce a shift of threshold 

voltage up to tens of millivolts [19] and a fluctuation of current up to 10% [24]. This level of 

instability is comparable with that typically used to define the ageing-induced device lifetime 

[109]. It adversely impacts circuit performance by causing, for example, jitters and 

malfunctioning of SRAM operation [3]. For future quantum computing at low temperature, 

this fluctuation can reach 50% [110]. 
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To tackle these RTN-induced challenges, many recent efforts have been made to model RTN 

in the time domain [1], [3], [27], [30], [61], [111-113]. To assess the impact of RTN on a circuit, 

a circuit designer needs the probability of device parameters at a given level within a time 

window. This can be accomplished through simulation, if one knows the number of traps in a 

device, their capture/emission times, and the shift induced by each trap [1], [3], [27], [30], [61], 

[112-113]. 

To determine the statistical distributions of these parameters, a bottom-up approach was often 

followed: individual traps were characterized first and then grouped together to fit an assumed 

cumulative distribution function (CDF) [3], [19], [27], [30], [61]. Most attention has been paid 

to the CDF of RTN amplitude. The proposed CDFs include Exponential [3], [19], [99], [102], 

Log-normal [1], [3], [31], and Generalized Extreme Value (GEV) [30]. These early efforts laid 

the foundation for current work.  

For the average capture/emission times of a trap, the proposed CDFs include log-normal [19], 

[61] and log-uniform [1], [21], [114]. When compared with the amplitude, there is less data 

available on the capture /emission times [27], [61]. The number of capture/emission times 

obtained by the bottom-up approach is often less than 100 [27], [61], which is not large enough 

to reliably determine the CDFs. Without the CDFs of time constants, one could not predict 

RTN for different time windows. Some early works [24], [27] measured RTN with a time 

window of tens of seconds, while it is well known that RTN-induced fluctuation increases with 

a longer time window. In addition, most circuits are not designed to operate for a short time, 

such as a few seconds. A number of compact models [111-113] were proposed assuming that 

RTN magnitude and time constants follow certain statistical distributions. However, it is not 

verified that these models can be used to predict long-term RTN.  

5.2 Motivation for the Trustworthy RTN Model 

On top of these reliability issues, the traditional method of extracting the properties of 

individual traps requires the selection of specific devices with clear RTN behaviour. The issue 

with this approach is that there is a significant chance that a device does not have RTN and 

device selection results in an overestimation of the RTN impact by excluding devices with no 

RTN. Since bottom-up approaches have been widely attempted in the past and did not establish 

a trustworthy RTN model, a top-down modelling approach is proposed and discussed in this 

work.   
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The aim of this work is two-fold: to develop an integral methodology for extracting the CDF 

of RTN and, for the first time, to verify that the extracted model can predict long-term RTN. 

This will be achieved through: 

• Characterizing the impact of all traps on a device collectively, rather than individually. 

This removes the need in some early works to select devices with individually 

analysable traps [35], [38]. 

• Integrating the RTN of multiple devices into one dataset to enable statistical analysis. 

• Using the concept of “effective charged traps (ECT)”, which removes the formidable 

burden of determining the capture and emission time constants of individual traps. 

• Replacing the fixed number of traps per device, used by early works, with the time-

dependent number of ECT. This mimics the modelling of ageing, where trap number 

increases with stress time through generation [109]. It transforms the distribution of 

time constants into the kinetics of ECT, simplifying the prediction of long term RTN. 

• Introducing acceptor-like and donor-like traps to enable modelling of both positive and 

negative parameter shift, which is widely observed experimentally but rarely modelled.  

5.3 Methodology and Measurement 

Drain current, 𝐼𝐷, was measured against time under a gate bias, Vg, of 0.5 V and drain bias, 

Vd, of 0.1 V, as reported in [21], and one example is given in Fig. 5.1 (a). The Vg was chosen 

to be close to the threshold voltage, Vth, of 0.45 V for low-power applications. The devices 

used are nMOSFETs with a channel length of 27 nm and channel width of 90 nm, fabricated 

by a 28 nm commercial CMOS technology. To catch fast traps, a sampling rate of 

1 MSample/sec was used and all tests were carried out at 125ºC.  

The reference 𝐼𝐷, Iref, for each device was obtained from the average value of the first 10 

measurement points. The more points used to calculate Iref, the less the thermal noise effect. 

However, the more points used to calculate Iref, the later the RTN characterization can be 

started: 10 points were selected as a balanced trade-off between these assumptions. The impact 

of the number of points used to calculate Iref on the measured statistical distribution is shown 

in Fig. 5.2, where the distribution with one point is compared with that with 10 points. The 

difference in their average Δ𝑉𝑡ℎ is less than 2%. 
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Fig. 5.1 (a) An example of measured data on one device, where Δ𝐼𝐷>0 represents a reduction of Id from its 

reference value. The black lines are the Δ𝐼𝐷/𝐼𝐷 values, which can be either positive or negative. The red lines 

represent the upper and lower envelopes of the fluctuation. (b) The CDF of ∆Vth=∆𝐼𝐷/𝑔𝑚 at different times 

taken from 402 devices. For each device at a given time, the Δ𝐼𝐷 value was taken from a measurement like the 

one in (a). The distribution is not symmetric in ΔVth>0 and ΔVth<0. 

The relative shift of 𝐼𝐷  was evaluated from ∆𝐼𝐷/𝐼𝐷=(Iref-𝐼𝐷)/Iref, so that a reduction of 𝐼𝐷 

magnitude gives a positive ∆𝐼𝐷/𝐼𝐷. The corresponding threshold voltage shift is estimated from 

∆Vth=∆𝐼𝐷/𝑔𝑚, where 𝑔𝑚 is transconductance and measured for each device from the slope of 

a pulse (3 μs) 𝐼𝐷-Vg at Vg=0.5 V [4], which was taken before the RTN test. The impact of 

RTN trapping-detrapping during the IV measurement on 𝑔𝑚 was not taken into account here. 

As the RTN induced ∆𝐼𝐷/𝐼𝐷 is in the order of a few percent, the corresponding uncertainty in 

𝑔𝑚 should also be a few percent. This leads to an uncertainty of a few percent in ∆Vth=∆𝐼𝐷/𝑔𝑚, 

which is considered as insignificant, when compared with the large statistical device-to-device 

variation studied in this work, as shown in Fig. 5.1(b).  

Based on the 𝐼𝐷 versus time measurement, early works [24], [27] often selected the devices 

that have analysable RTN signals for extracting the amplitude and time constants of individual 

traps and discarded devices where the fluctuation was too complex for such analysis. In this 

work, however, we focus on the collective impact of all traps on 𝐼𝐷 and do not experimentally 

decompose the 𝐼𝐷 fluctuation into contributions of individual traps. This removes the need for 

device selection and increases test efficiency. 



Chapter 5: An Integral Methodology for Predicting Long Term DC RTN 
 

63 
 

 

Fig. 5.2 The number of points used to calculate Iref has little impact on the measured statistical distribution. 

The test in Fig. 5.1(a) was repeated on 402 devices and their ∆Vth at a given time was integrated 

into one dataset for statistical analysis, as shown in Fig. 5.1(b). As time increases, the amplitude 

of fluctuation rises in Fig. 5.1(a), so that the |∆Vth| at a fixed CDF becomes larger in Fig. 5.1(b). 

Knowing this distribution will allow one to determine the probability of Vth at a specified level 

and in turn assess its impact on circuits. The challenge is how to model this distribution and 

how to predict it for longer times when test data are not available. 

5.3.1 The concept of Effective Charged Traps (ECT) 

The concept of Effective Charged Traps was proposed in Chapter 4 and will be further 

elaborated here. The probability that a trap will be charged depends on the ratio of its average 

emission and capture time [64]. However, the statistical distribution of time constants is 

difficult to determine experimentally, and this difficulty increases along with the time window. 

To simplify tests, attempts were made to focus on either the capture [21], [115] or emission 

[19].  

Fig. 5.1(a) shows how to extract the envelope of the fluctuation, which is reached when 

multiple traps were simultaneously charged. Fig. 5.3 shows the average of the envelopes, which 

can be used to estimate the number of active traps for a given time window. As different devices 

hit their envelopes at different times, Fig. 5.3 shows that the average of measured ∆Vth is 
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substantially smaller than their average envelopes. In Section 5.5.1 estimation of the percentage 

of traps that are charged is investigated.  

  

Fig. 5.3 A comparison of the average ΔVth>0 and ΔVth<0 of 402 devices (blue lines) with their average upper 

and lower envelopes. Using the envelopes will overestimate the impact of RTN. 

The envelopes have been used to estimate the worst impact of RTN [21], [115-116], but they 

clearly overestimate this impact. To optimize circuit design, however, one needs to model the 

probability of ∆Vth at any level between the two envelopes, which is the objective of this work. 

To effectively take emission into account without evaluating the emission time of individual 

traps, the concept of ‘effective charged traps (ECT)’ is proposed in Chapter 4. The inspiration 

for this concept comes from the use of effective trap density for assessing the impact of ageing 

on devices [109], [117]. When the local current density beneath a trapped charge in the gate 

dielectric is the same, its impact on the current depends on its distance from the 

dielectric/substrate interface. It is, however, difficult to determine this distance. To overcome 

this difficulty, one can assume all traps being at the interface so long as they produce the same 

∆Vth. The equivalent density of traps at the interface is referred to as effective trap density 

[117]. 

Similarly, to simulate the impact of RTN on devices and circuits, what is needed is the CDF in 

Fig. 5.1(b), rather than the detailed physical processes that this CDF originates from. For a 
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given RTN-induced ∆Vth at a time in Fig. 5.1(b), one can assume that it originates from a set 

of traps that are always charged. These ‘effective charged traps’ ignore emission, but will 

produce the same CDF as, i.e., be statistically equivalent to, that measured experimentally 

where emission occurs. By using the collective impact of a set of ECT to model CDF, as 

detailed in Section 5.4  this integral approach does not require characterization of the capture 

and emission time of individual traps, greatly reducing modelling and testing time.   

5.3.2 Acceptor-like and Donor-like Traps 

Fig. 5.1(a) shows that ∆ 𝐼𝐷 =(Iref- 𝐼𝐷 ) can be either positive or negative, resulting in the 

corresponding positive and negative ∆Vth in Fig. 5.1(b). Early works [3], [19], [27], [102] 

typically only modelled ∆Vth>0, since the popular Exponential and Log-normal distributions 

require ∆Vth>0. As the distribution of ∆Vth in both ∆Vth>0 and ∆Vth<0 is considerable and 

they are asymmetric, it is essential to model the RTN in both directions. Fig. 5.4 plots the upper 

envelope against the lower envelope at 10 sec, as defined in Fig. 5.1(a). There is little 

correlation between them, so that it is essential to model the fluctuation in both positive and 

negative directions, as the fluctuation in one direction cannot be used to infer that in the other 

direction. 

  

Fig. 5.4 The lower-envelope is plotted against the upper-envelope at 10 sec for 402 devices. There is little 

correlation between these two. 
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The shift in a positive direction, i.e., ΔVth>0, for nMOSFETs is widely interpreted as traps 

capturing electrons from the conduction channel. Such traps can be either neutral or negatively 

charged and will be referred to as acceptor-like traps [117]. There can be different explanations 

for ΔVth<0. One of them is that some traps were pre-filled with electrons when Iref was 

measured. These pre-filled electrons could be emitted during measurement, resulting in 

ΔVth<0 [99]. Another is that there are donor-like traps, which can be either neutral or positive 

[117], and positive charges can result in ΔVth<0.   

The measured data in this work cannot determine which explanation is correct and such 

determination is not required for achieving the aim of this work: proposing an integral method 

for predicting the long term RTN. For the convenience of presentation, we will hereafter use 

acceptor-like traps for ΔVth>0 and donor-like traps for ΔVth<0 [117]. This allows ∆Vth to be 

modelled in both directions through 

 Δ𝑉𝑡ℎ = Δ𝑉𝑡ℎ𝐴 + Δ𝑉𝑡ℎ𝐷 ,     (5.1) 

where ∆VthA > 0 and ∆VthD < 0 represent the contribution from acceptor-like and donor-like 

traps, respectively.   

5.4 Modelling Procedure at a given time 

To model the RTN-induced CDF in Fig. 5.1(b) by a set of ECTs at a given time, one needs to 

determine the number of traps per device, n, and the statistical distribution of threshold voltage 

shift caused by one trap, δVth. It should be noted that δVth is the shift per trap, which is different 

from the shift per device, ∆Vth.  

Statistically, it is well accepted that n follows a Poisson’s distribution [3], [102]. Agreement has 

not been reached on the distribution of δVth and the popular assumptions include Exponential [3], 

[19], [99], [102] and Log-normal [1], [3], [31]. In addition, Generalized Extreme Value (GEV) 

distribution has been proposed recently [30]. All three distributions will be used in this work. 

For a given δVth probability distribution function (pdf), the pdf of nA number of acceptor-like traps 

can be evaluated from: 

 𝑝𝑑𝑓𝐴(Δ𝑉𝑡ℎ𝐴) = 𝐶𝑜𝑛𝑣[𝑝𝑑𝑓(𝛿𝑉𝑡ℎ1), 𝑝𝑑𝑓(𝛿𝑉𝑡ℎ2) … 𝑝𝑑𝑓(𝛿𝑉𝑡ℎ𝑛𝐴
)], (5.2) 

where ∆VthA is the combined shift caused by nA acceptor-like traps. When an analytic formula is 

not available, the Convolution (Conv) in Equation (5.2) can be carried out numerically trap-by-trap: 
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first between pdf(δVth1) and pdf(δVth2), and the result is then convoluted with pdf(δVth3). This 

continues until 𝑝𝑑𝑓(𝛿𝑉𝑡ℎ𝑛𝐴
) is convoluted.   

To overcome the difficulty that Exponential and Log-normal pdf requires δVth > 0, Equation (5.3) 

evaluates the magnitude of δVth for nD donor-like traps by 

 𝑝𝑑𝑓𝐷(|Δ𝑉𝑡ℎ𝐷|) = 𝐶𝑜𝑛𝑣[𝑝𝑑𝑓(𝛿𝑉𝑡ℎ1), 𝑝𝑑𝑓(|𝛿𝑉𝑡ℎ2|) … 𝑝𝑑𝑓(|𝛿𝑉𝑡ℎ𝑛𝐷
|)] (5.3) 

The pdf[∆Vth=∆VthA-|∆VthD|] can be evaluated from 

 𝑝𝑑𝑓[Δ𝑉𝑡ℎ(𝑛𝐴, 𝑛𝐷)] =  

 
∫ 𝑝𝑑𝑓𝐴[Δ𝑉𝑡ℎ(𝑛𝐴, 𝑛𝐷) + 𝑥]𝑝𝑑𝑓𝐷(𝑥)𝑑𝑥.

∞

−∞

 
(5.4) 

   

The pdf[∆Vth(nA,nD)]) in equation (5.4) is the probability that a device will have a ∆Vth, if every 

device has nA acceptor-like and nD donor-like traps. After taking into account that both acceptor-

like and donor-like traps follow Poisson distributions, the pdf(∆Vth) becomes: 

 
𝑝𝑑𝑓(Δ𝑉𝑡ℎ𝑅𝑇𝑁) =  ∑ ∑

𝑒−𝑁𝐴𝑁𝐴
𝑛𝐴

𝑛𝐴!

𝑒−𝑁𝐷𝑁𝐷
𝑛𝐷

𝑛𝐷!
𝑝𝑑𝑓[Δ𝑉𝑡ℎ(𝑛𝐴, 𝑛𝐷)],

∞

𝑛𝐷=0

∞

𝑛𝐴=0

 
(5.5) 

where NA and ND are the average number of effective acceptor-like and donor-like traps per device, 

respectively.  

Finally, the measured ∆Vth contains both RTN and thermal noise, which follows a Normal 

distribution. The thermal noise is taken into account by using: 

 𝑝𝑑𝑓(Δ𝑉𝑡ℎ) = 𝐶𝑜𝑛𝑣[𝑝𝑑𝑓(Δ𝑉𝑡ℎ𝑅𝑇𝑁), 𝑝𝑑𝑓(Δ𝑉𝑡ℎ𝑇ℎ𝑒𝑟𝑚𝑎𝑙)]. (5.6) 

 

5.5 Results: Extracting Model Parameters 

Based on the equations (5.1) – (5.6), the model parameters are extracted by the Maximum 

Likelihood Estimation (MLE) [30]. They include the statistical distribution parameters of δVth in 

Table 5.1, the average number of acceptor-like and donor-like traps per device, NA and ND, and 

the standard deviation of thermal noise. 
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As an example, Fig. 5.5(a) shows that the fitted CDFs with test data at 10 sec by assuming 

Exponential, Log-normal and GEV distributions, respectively, with thermal noise fitted. To 

quantify the discrepancy between the data and the fitted CDF, Fig. 5.5(b) gives the sum of 

square error (SSE) per device. The SSE reduces in the order of Exponential, Log-normal, and 

GEV. 

   

Fig. 5.5 (a) The CDF fitted based on the effective charged traps at 10 sec. The symbols are test data, and the 

lines are fitted. (b) compares the sum of squared errors (SSE) per device for the three statistical distributions. 

Similar to Fig. 5.5 at 10 sec, the test data at other times are also fitted. Fig. 5.6(a) and Fig. 5.6(b) 

show the extracted average number of acceptor-like (NA) and donor-like (ND) traps, 

respectively, per device against time. As expected, 𝑁𝐴 and 𝑁𝐷 increase with time, as longer 

time activates slower traps. There are more acceptor-like traps than donor-like traps, resulting 

from the skewed distribution towards positive ∆Vth in Fig. 5.1(b). GEV gives the highest 

numbers, while Exponential has the lowest. At 10 sec, GEV has 𝑁𝐴 =2.3 and 𝑁𝐷 = 2. 

The extracted average δVth induced by one trap, µ, is given in Fig. 5.6(c) and Fig. 5.6(d) for 

acceptor-like and donor-like traps, respectively. In agreement with early work [27], [114], µ is 

independent of the time. The acceptor-like traps have larger µ than the donor-like traps. GEV 

gives the largest µ and Exponential gives the lowest. It should be noted that the average µ is in 

a range of 0.5 ⁓ 0.8 mV, indicating that there are small δVth that can be difficult to measure 

directly. 

The other parameters for δVth distributions are not sensitive to time, either, since δVth is the 

shift per trap. Their values are given in Table 5.1. 
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Table 5.1 The pdf formula and their average parameter values extracted between 10-4 and 10 sec. The 

parameters η, α, β, and σ have the unit of mV. 

 PDF of 𝛿𝑉𝑡ℎ Acceptor Donor 

Exponential 1

𝜂
𝑒

−
𝛿𝑉𝑡ℎ

𝜂  
𝜂 = 0.56 𝜂 = 0.48 

Lognormal 1

𝛿𝑉𝑡ℎ𝜃√2𝜋
𝑒

(−
(ln(𝛿𝑉𝑡ℎ)−𝜖)2

2𝜃2 )
  

𝜖 =  −0.43 

𝜃 = 0.12 

𝜖 = −0.71 

𝜃 = 0.16 

GEV 1

𝛽
(𝑘)𝜉+1𝑒−𝑘 

𝑘 = (1 + 𝜉 (
𝛿𝑉𝑡ℎ − 𝛼

𝛽
))

−
1
𝜉

 

𝜉 = 0.35 

𝛼 = 0.43 

𝛽 = 0.34 

𝜉 = 0.42 

𝛼 = 0.59 

𝛽 = 0.19 

Thermal 1

𝜎√2𝜋
𝑒−

1
2

(
Δ𝑉𝑡ℎ

𝜎
)

2

 
𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙, 𝜎 = 0.11 

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙, 𝜎 = 0.13 

𝐺𝐸𝑉, 𝜎 = 0.13 

.  

5.5.1 Prediction of Effective Charged Traps (ECT) 

The RTN signal induced by a trap has two key properties: the amplitude and time constants. 

They are independent and both of them are randomly distributed. This gives two sets of 

independent statistical distributions: one for amplitude and the other for time constants.   

As discussed earlier, capture and emission time is difficult to determine, but using the concept 

of ECT for modelling RTN converts the distribution of traps’ time constants into a time-

dependent number of ECTs, as shown in Fig. 5.6(a) and Fig. 5.6(b). This transforms the 

prediction of long-term RTN to finding the kinetics of ECTs, similar to predicting device 

ageing [107]. For ageing, power law is the well-known kinetics [107]. For the time constant 

distribution of RTN, two distributions were proposed: a uniform distribution against 

logarithmic time (Log-uniform) [1], [21] and a Log-normal distribution [29], [61]. These three 

forms of kinetics will be tested against the experimental data next. 
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Fig. 5.6 The extracted average number of acceptor-like (a) and donor-like (b) traps per device at different 

times, based on different δVth distributions. The lines in (a) and (b) are the fitted kinetics. The extracted average 

δVth per trap, μ, is given in (c) for acceptor-like traps and in (d) for donor-like traps. The lines in (c) and (d) 

are the mean values. 

Fig. 5.6 shows that all three kinetics can fit test data reasonably well over five orders of 

magnitude in time between 10-4 and 10 sec with the Root-Mean-Square-Error (RSME) of a few 

percent as shown in Fig. 5.7. As a result, good fitting with test data is not sufficient to justify a 

model. If a model is correct, it should be able to not only fit test data, but also predict the long-

term RTN where test data is not used for fitting.  

To further verify these kinetics, the RTN tests were extended from 10 to 6×104 sec. In Fig. 5.8, 

the symbols are extracted from test data. The data scattering beyond 10 sec is larger, since 402 

devices were used between 10-4 and 10 sec and only 51 devices were used for the time-

consuming tests of 6×104 sec.  
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Fig. 5.7 RMSE for each fitted curve in Fig. 5.6 and the RMSE is within a few percent. 

The solid lines in Fig. 5.8 were the kinetics fitted with data between 10-4 and 10 sec and the 

data beyond 10 sec were not used for the fitting. These fitted kinetics were then extrapolated 

from 10 to 6×104 sec, as represented by the dashed lines. Although the differences between the 

fitted solid lines appear small, they become substantial for the extrapolated dashed lines as time 

increases. The sum of squared errors is summarized in Fig. 5.9(a) and Fig. 5.9(b) and discussed 

next.    

For the Exponential δVth distribution, the Log-normal kinetics gives the lowest error for NA in 

Fig. 5.8(a) and Fig. 5.9(a), but ND agrees better with the power law, as shown in Fig. 5.8(d) 

and Fig. 5.9(b). It should be noted, however, that even though the power law gives the lowest 

error for ND with Exponential δVth, i.e., the first blue bar on the left in Fig. 5.9(b), this blue 

bar is higher than the errors of Lognormal and GEV δVth.       

For NA with Log-normal δVth distribution, Fig. 5.9(a) shows that power law has the highest 

error and errors are similar for Log-normal and Log-uniform kinetics. For ND, Fig. 5.8(e) and 

Fig. 5.9(b) show that Log-normal kinetics has the lowest error. For GEV δVth distribution. Fig. 

5.8(c), Fig. 5.8(f), Fig. 5.9(a) and Fig. 5.9(b) show that Log-uniform has the lowest error for 

both NA and ND.   
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The Log-normal kinetics should lead to an eventual saturation of NA and ND as time increases 

[30]. It can, however, fit the test data within the measurement window without approaching 

saturation. Based on the result in Fig. 5.8, it is not clear enough to rule out the log-normal 

kinetics. 

  

Fig. 5.8 Predicting the average number of acceptor-like traps, 𝑁𝐴, in the top row (a, b, c) and donor-like traps, 

𝑁𝐷, in the bottom row (d, e, f). Symbols are extracted by fitting with the δVth distribution of Exponential in the 

left column (a, d), Log-normal in the middle column (b, e), and GEV in the right column (c, f). The solid lines 

were fitted with symbols between 10-4 and 10 sec for different kinetics. The dashed lines were extrapolated to 

6×104 sec. The symbols beyond 10 sec were not used for fitting. 

Based on Fig. 5.8 and Fig. 5.9, the power law gives poor prediction of RTN overall. The RTN 

and ageing follows different kinetics, therefore. RTN interacts with device ageing. On one hand, 

the traps responsible for the RTN can also contribute to the charge build-up during ageing tests, 

such as bias temperature instability (BTI) [118-119]. On the other hand, it has been reported 

that, after stress, some RTN signals can disappear for some time and then reappear [118]. One 

may speculate that stress releases some hydrogenous species, which interact with the RTN trap 

through temporary bonding, deactivate the RTN, and then migrate away. The detailed physical 

process is beyond the scope of this work [109], [118].    
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Fig. 5.9 The sum of squared errors for the prediction in Fig. 5.7 for acceptor-like (a) and donor-like (b) average 

number of traps per device. The lowest errors were obtained for Log-uniform kinetics with GEV δVth 

distribution. 

The percentage of ECTs against the active traps available for a given time window is estimated.  

The average number of active acceptor-like (NEA) and donor-like (NED) traps per device can be 

estimated from the Upper- and Lower-Envelopes in Fig. 5.3 by dividing their average δVth per 

trap, i.e., µ, given in Fig. 5.6(c) and Fig. 5.6(d), respectively. Fig. 5.10 gives the ratio of ECT, 

NA and ND extracted for the GEV distribution in Fig. 5.8(c) and Fig. 5.8(f) against NEA and 

NED, respectively. In a short time, over 50% of traps are effectively charged. This ratio 

decreases for a longer time window and settles around 1/3.   

 

Fig. 5.10 The ratio of Effective Charged Traps, 𝑁𝐴 and 𝑁𝐷, against the active traps available estimated from the 

Upper envelope, 𝑁𝐸𝐴, and Lower Envelope, 𝑁𝐸𝐷, respectively. 
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5.6 The CDF Prediction of Long-term RTN 

As discussed in the introduction, the probability distribution function is what a designer needs 

for assessing the impact of RTN within a given time window. The question is how well one 

can predict the long-term CDF of RTN, based on the parameters extracted over a short time. 

For the first time, we attempt to predict the CDF of RTN at 6×104 sec by the model extracted 

from the data between 10-4 and 10 sec. 

For each δVth distribution, the number of acceptor-like and donor-like traps at 6×104 sec is 

predicted by the kinetics of the lowest errors, as given in Table 5.2. The statistical parameters 

of δVth distribution and thermal noise are assumed to be independent of time, and their values 

given in Table 5.1 were used. With these parameters, the probability that one device will have 

a given ∆Vth can be calculated directly, making the RTN simulation more efficient than the 

Monte Carlo simulation. 

Fig. 5.11(a) and Fig. 5.11(b) compare the measured and predicted CDF at 6×104 sec for the 

Exponential, Log-normal and GEV δVth distributions. For the Exponential, the kinetics used 

were Log-normal for acceptor-like traps and power law for donor-like traps. For the Log-

normal δVth distribution, Log-normal kinetics were used for both acceptor-like and donor-like 

traps. For the GEV, Log-uniform kinetics were used for both acceptor-like and donor-like traps.  

The two distributions selected for Δ𝑉𝑡ℎ (Vg = 0.5V and Vd = 0.1V) are,  

1. Impact per trap: GEV Distribution 

2. Long-Term RTN Kinetic: Log-uniform Distribution. 

Fig. 5.11(c) shows that the errors reduce in the order of Exponential, Log-normal, and GEV. A 

reasonable agreement is obtained with test data, as shown in Fig. 5.10(a) and Fig. 5.10(b). This 

verifies the integral methodology proposed and its ability to predict the RTN at 6×104 sec based 

on data measured between 10-4 and 10 sec, a factor of 6×103 ahead. If one uses the data between 

10-4 and 6×104 sec to make the prediction, it is reasonable to expect that one can predict a factor 

of 6×103 beyond this time. This will take the time to 3.6×108 sec, which is more than 10 years. 

It should be pointed out that, in addition to RTN, ageing also shifts device parameters, which 

must be included to predict the overall shift in the long term [118-119].  
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Table 5.2 The kinetics fitted with data between 10-4 and 10 sec. 

PDF ECT Kinetics 

Exponential 𝑁𝐴 1

2
𝑒𝑟𝑓𝑐 (−

ln(𝑡) − 21.5

19.1√2
) 

𝑁𝐷 1.2152 ∗ 𝑡0.0716 

Lognormal 𝑁𝐴 1

2
𝑒𝑟𝑓𝑐 (−

ln(𝑡) − 24.8

22.5√2
) 

𝑁𝐷 1

2
𝑒𝑟𝑓𝑐 (−

ln(𝑡) − 29.04

24.2√2
) 

GEV 𝑁𝐴 0.091 ∗ ln(𝑡) + 2.1 

𝑁𝐷 0.076 ∗ ln(𝑡) + 1.83 

 

 

Fig. 5.11 Predicting the CDF of RTN at 6×104 sec based on the models extracted from the data between 10−4 

and 10 sec. The symbols were measured data and the lines were the CDF predicted by using the 𝑁𝐴 and 𝑁𝐷 

predicted in Fig. 5.8 and the average μ in Figs. 5.6(c) and 5.6(d). The CDF is plotted linearly in (a) and in Z-score 

in (b). The lines in (a) and (b) are the CDF fitted with different δVth distributions. (c) shows that the lowest error 

was obtained with GEV δVth distribution and Log-uniform kinetics. 
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5.7 Conclusion 

In conclusion, the capability to predict the long-term RTN by the models developed in early 

works has not been verified, while this work both proposes an integral methodology and 

verifies its capability to make this prediction. Instead of characterizing the contribution of 

individual traps to RTN, the impact of traps in a device was measured collectively, with no 

need to select devices. Through integrating RTN measured on multiple devices into one dataset 

and using the concept of effective charged traps (ECT), the statistical distribution of device 

parameters at a given time is modelled, removing the formidable burden of characterizing the 

time constants of individual traps. This transforms the distribution of time constants to the 

kinetics of ECT, making the prediction of long term RTN similar to predicting ageing.  

Furthermore, the accuracy of RTN amplitude distribution per trap proposed by early works was 

assessed, including Exponential, Log-normal, and Generalized Extreme Value (GEV). The 

three kinetics examined are power law, Log-normal, and Log-uniform. The power law gives 

poor prediction and RTN follows different kinetics from ageing. Based on the results, the 

lowest error was obtained with GEV 𝛿𝑉𝑡ℎ distribution and Log-uniform kinetic. Fluctuations 

in both positive and negative directions are modelled through using acceptor-like and donor-

like traps. The work shows that this integral methodology can predict RTN by a factor of 6×103 

ahead, opening the way for predicting RTN to 10 years based on measurements in a time 

window of one day.
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CHAPTER 6: AC RTN INVESTIGATION 

This chapter investigates RTN under AC biases. The first section gives the methodology and 

measurement method on AC RTN measurement and data processing. The second covers the 

results and discussion of AC RTN based on integral methodology. Analysis of AC RTN on the 

time constant of single trap against frequency is also studied. Lastly, the CDF prediction of 

long-term AC RTN has been applied and verified. 

6.1 Introduction 

As discussed in Chapter 2, random telegraph noise (RTN) in MOSFETs is caused by capturing 

a charge carrier from the conduction channel and then giving it back [1-4], [6], [12-17]. The 

need for low power consumption is driving operating voltage towards threshold, Vth, where a 

single trapped charge can have a large impact has led to an increment of attention on RTN [1-

2], [19], [64], [120]. 

Many efforts were made on both characterizing and modelling RTN [1-4], [6], [12-17]. On 

characterization, many early works were carried out under DC conditions, where the gate and 

drain biases were fixed at a constant level [1], [21], [29], [31], although digital circuits typically 

operate under AC conditions. It has been reported that AC RTN is considerably different from 

DC RTN [3], [49], [121-122]. On modelling, works were carried out in both time [2-3], [21], 

[27], [30], [121-122] and frequency [107] domains. In the time domain, Monte Carlo 

simulation has been carried out for both DC and AC RTN by assuming that RTN transitions 

are memoryless random Markov process [19], [49], [113], [121-122]. For AC RTN, τC and τE 

under both high (‘H’) gate bias Vg=Vdd and low (‘L’) Vg=0 is needed, which hereafter are 

represented by τCH, τEH, τCL, and τEL. 

It is widely accepted that the number of traps per device follows a Poisson distribution [102]. 

It has been proposed that trap amplitude can follow Exponential [3], [19], [102], Log-normal 

[1], [3], [31], or Generalized Extreme Value (GEV) distribution [30]. The time constants have 

been assumed to follow either Log-normal [29], [61] or Log-uniform [1], [21], [114] 

distributions. When compared with the amplitude distribution, there are fewer data available 

to underpin the τC and τE distribution, as they are difficult to collect in large numbers, even for 

DC RTN. For AC RTN, there are more challenges, as the transistor is switched off under Vg=0, 

so that τCL and τEL cannot be measured directly.  
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Several methods were used to overcome the challenge and to obtain τCL and τEL. One of these 

is to assume that τCL/τCH and τEH/τEL constants, so that τCL and τEL can be estimated from the 

measured τCH and τEH, but the simulation results based on this assumption did not agree well 

with test data [29]. Another method uses compact models and τC and τE are assumed to be 

exponentially related to Ef-Et, where Ef is the Fermi-level at the dielectric/substrate interface 

and Et is the trap energy level [1], [49], [64], [112], [120]. Ef-Et under Vg=0 can be calculated, 

and it can then be used to evaluate τCL and τEL. The problem is that the time constants obtained 

in this way are not verified by test data, so that the accuracy of these compact models for AC 

RTN simulation is typically unknown.   

To provide experimental data for AC RTN, the measured data under Vg=Vdd were joined 

together by removing the time of Vg=0 [121]. On one hand, it has been reported that the τC 

measured in this way changes little from its DC value. As τCL is typically much larger than τCH, 

the duration of Vg=0 contributes little to trap capture and its removal has little effect on capture. 

On the other hand, τEL is typically smaller than τEH, so that the time under Vg=0 can reduce the 

measured τE. By measuring both τC and τE under Vg=Vdd and removing the Vg=0 duration, 

the AC RTN of individual traps has been modelled successfully [3], [49], [121-122]. At present, 

however, there is a lack of reliable statistical distribution of τC and τE measured in this way. As 

a result, the statistical accuracy of Monte Carlo modelling for AC RTN remains to be verified 

for multiple traps and devices in real circuits, especially in term of its capability to predict the 

AC RTN beyond the test time window.  

The objectives of this Chapter are threefold:  

• to provide statistical AC RTN data at device level, rather than a single trap; 

• to develop a model for AC RTN, that can not only fit test data, but also predict the long-

term AC RTN; 

• to analyse test data and simulation results, leading to an improved understanding of AC 

RTN.  

Unlike the early works that focus on individual traps [8], [80-81], in this work, AC RTN data 

with a time window up to 3×104 sec will be collected at a device level that can have multiple 

traps. This can be used to verify the capability and accuracy of the long-term prediction by a 

model extracted from short-time test data.  
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In Chapter 5, an integral methodology is proposed for long-term RTN prediction and used to 

model DC RTN. The applicability of this methodology to AC RTN will be tested in this 

Chapter. Moreover, the dependence of AC RTN on frequency and time window will be 

analysed. Lastly, both acceptor-like and donor-like traps are modelled and their differences in 

carrier tunnelling will be studied.  

6.2 Devices and Experiments  

6.2.1 Devices used in this work 

nMOSFETs fabricated by a 28 nm CMOS process were used in this work. The channel width 

and length are 90 nm and 27 nm, respectively. The gate dielectric consists of a stack with a Hf-

high-k layer and an interfacial SiON layer with an equivalent oxide thickness of 1.2 nm. The 

devices are arranged in arrays and each of them is accessed through address codes. The average 

threshold voltage, Vth, is 0.45 V. 

 

Fig. 6.1 An example of measured data for a device with one acceptor-like trap. Vg is under DC (a) and 1 MHz 

(b). The duration of Vg=0 was removed in (b). 

6.2.2 Experiments 

The tests were carried out with Vg alternating between 0.5 V and 0 V under a constant drain 

bias of 0.1 V. The top Vg is chosen to be close to Vth to make the test relevant to low-power 

operation, where RTN can be significant [21], [30]. The frequencies of Vg are in a range of 

100 Hz to 1 MHz, with a duty cycle of 50%. Temperature is 125oC. To enable statistical 

analysis, 402 devices were tested for a relatively short time window of 7.8 sec. This window is 

the total time after the removal of the duration when Vg = 0. To verify that the AC RTN model 
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extracted from data in this short window can be used to predict long-term RTN, tests were also 

carried out with a time window up to 3×104 sec for 60 devices.   

A pulse (3 μs) 𝐼𝐷-Vg was measured on a fresh device before RTN measurement. During RTN 

tests, the drain current, 𝐼𝐷 , was monitored continuously at a sampling rate of 1 Mpoint/sec 

[123]. The reference 𝐼𝐷 , Iref, was obtained from the average of the first 10 points and the 

threshold voltage shift was evaluated from ΔVth=(Iref- 𝐼𝐷 )/ 𝑔𝑚 , where 𝑔𝑚  is the 

transconductance obtained from the pulse 𝐼𝐷-Vg for each device at Vg=0.5 V. 

6.3 Results and Discussions 

6.3.1 AC RTN data at device level 

Fig. 6.1(a) and Fig. 6.1(b) compare DC and AC RTN when there is only one trap in a device. 

Following earlier works [49], [121-122], the duration of Vg=0 was removed in Fig. 6.1(b). The 

term ‘time’ or ‘time window’ is applied hereafter for the cumulative time under Vg=0.5 V. For a 

duty cycle of 50%, the Vg at high level shares the exact same time with Vg at low level. Hence, 

the actual AC RTN test time doubles the ‘time window’.  

Under AC, the trap in Fig. 6.1 spends more time at the low level of ΔVth and there are more 

transitions between the two levels, in agreement with early work [121]. The result supports that this 

trap is acceptor-like, capturing an electron and inducing a positive ΔVth. Because emission under 

Vg = 0 is more efficient, the trap can only hold the electron for a short time at the high level of 

ΔVth in Fig. 6.1(b).  

 

Fig. 6.2 An example of measured data for a device with one donor-like trap. Vg is under DC (a) and 1 MHz (b). 

The duration of Vg=0 was removed in (b). 
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Fig. 6.3 An example of complex RTN over a long time window. 

The positive ΔVth in Fig. 6.1(a) and Fig. 6.1(b) corresponds to a reduction of drain current, 𝐼𝐷. An 

increase of 𝐼𝐷 was also often observed, which led to a negative ΔVth, as shown in Fig. 6.2(a) and 

Fig. 6.2(b). This negative ΔVth can come from either charging a donor-like trap positively or 

emitting an electron from a prefilled acceptor-like trap. Following the discussion in Chapter 5, the 

term ‘donor-like trap’ is used hereafter to represent ΔVth < 0. For AC RTN, Fig. 6.2(b) confirms 

that the emission of positive charge, i.e., capturing an electron and becoming neutral, is also more 

efficient under Vg = 0.  

The devices in Fig. 6.1 and Fig. 6.2 have only one active trap within the measurement window. 

The trap time constant in this case can be readily extracted and used for Monte Carlo simulation. 

Many devices, however, do not have such a clear RTN signal. As the time window increases, the 

number of active traps in a device increases, resulting in complex fluctuation: an example is given 

in Fig. 6.3. This makes it difficult to extract the time constants of individual traps in this case. An 

integral methodology has been proposed in Chapters 4 and 5 to overcome this challenge and will 

be briefly described below. 

6.3.2 Integral Methodology 

This integral method uses the ΔVth measured at device level as inputs and does not require 

experimental separation of ΔVth into the contributions of individual traps. As a result, it removes 

the requirement of one device having only one trap and is applicable to devices with any number 

of traps. At a given time, ΔVth measured from multiple devices is grouped together to form a 
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dataset and their cumulative distribution function (CDF) is given in Fig. 6.4. The concept of 

‘Effective Charged Traps (ECT)” is introduced, which assumes that this CD comes from a set 

of traps that are always charged. In this way, the burden of finding the statistical distribution 

of trap time constants is removed, greatly simplifying the testing and analysis.  

The next step is to extract the number of ECTs that can reproduce a given CD of ΔVth. By 

assuming the number of traps per device follows the Poisson distribution and selecting an RTN 

amplitude distribution, such as Exponential, Log-normal, or GEV, the average number of ECTs 

per device can be extracted by the maximum likelihood estimation for both acceptor-like (NA) 

and donor-like (ND) traps. The detail of the integral methodology is given in Chapter 4. 

 

  2  

Fig. 6.4 (a) The Cumulative Distribution (CD) of test data (symbols). The lines are fitted function with GEV for 

DC (black) and 1 MHz (blue). (b) Dependence of standard deviation (σ) and mean ΔVth on frequency. (c) A 

comparison of the sum of squared error (SSE) per device of the CDF extracted for DC and 1 MHz RTN. The 

RTN amplitude distribution per trap is assumed to follow Exponential, Log-normal, and GEV, in turn. The time 

window is 7.8 s. 

The process described above for extracting NA and ND is repeated for different time windows. 
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It is widely accepted that a longer time window covers slower traps and increases |ΔVth|, which 

in turn results in larger NA and ND. The NA and ND versus time obtained in this way can be 

used to extract their kinetics. For DC RTN, it has been shown in Chapter 5 that these kinetics 

can be used to predict NA and ND at longer times. Once NA and ND are known, the probability 

that a device will have a specific ΔVth can be calculated. 

Table 6.1 The pdf formula and their extracted parameter values. δVth is the threshold voltage shift per trap. 

 PDF of δVth Acceptor Donor 

Exponential 1

𝜂
𝑒

−
𝛿𝑉𝑡ℎ

𝜂  
𝜂 = 0.54 

 

𝜂 = 0.49 

Lognormal 1

𝛿𝑉𝑡ℎθ√2𝜋
𝑒

(−
(ln(𝛿𝑉𝑡ℎ)−𝜖)2

2θ2 )
 

𝜖 =  −0.37 

θ = 0.14 

 

𝜖 =  −0.64 

θ =  0.16 

GEV 1

𝛽
(𝑘)𝜉+1 𝑒−𝑘 

𝑘 =  (1 + 𝜉 (
𝛿𝑉𝑡ℎ − 𝛼

𝛽
))

−
1
𝜉

 

𝜉 = 0.32 

𝛼 = 0.41 

𝛽 = 0.36 

 

𝜉 =  0.36 

𝛼 =  0.29 

𝛽 =  0.23 

Thermal 1

𝜎√2𝜋
𝑒−

1
2

(
∆𝑉𝑡ℎ

𝜎
)

2

 
𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙, 𝜎 = 0.09 

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙, 𝜎 = 0.13 

𝐺𝐸𝑉, 𝜎 = 0.11 

 

 

6.3.3 Applicability of Integral Methodology to AC RTN 

ΔVth under different frequencies is compared in Fig. 6.4(a) and Fig. 6.4(b). The ΔVth, its mean 

value, and standard deviation is smaller for AC RTN compared to DC RTN, because of the 

enhanced emission during Vg=0. As a result, the RTN under AC operation cannot be modelled 

from DC RTN data and separate AC RTN measurements must be carried out. Since ΔVth can 

be either positive or negative, its mean value (<1 mV) is much smaller than the standard 

deviation.  
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The lines in Fig. 6.4(a) are the fitted cumulative distribution function (CDF) by the integral 

method. Their corresponding probability distribution function (PDF) and the extracted model 

parameters are given in Table 6.1. Fig. 6.4(c) shows that the error for AC is not larger than that 

of DC. Hence, it is concluded that the integral method is equally applicable for AC RTN. This 

is understandable: AC mainly impacts emission, but the integral methodology assumes CDF 

originating from ECTs that are always charged and a detailed emission process is not needed 

here. 

The results in Fig. 6.4 were obtained for a time window of 7.8 s. The same procedure was 

applied at other time points between 10-4 s and 7.8 sec and the extracted NA and ND are given 

in Fig. 6.5 for Exponential, Log-normal, and GEV RTN amplitude distributions. As expected, 

both NA and ND increased with increasing time windows, but decreased for higher frequencies 

due to reduced trap occupancy. As shown in Fig. 6.5(a-f), the 𝑁𝐴 and 𝑁𝐷 decrease accordingly 

with increasing frequency in the order of DC, 10kHz, 100kHz and 1MHz. 

Fig. 6.6 gives the extracted average threshold voltage shift per trap, µ. Unlike the NA and ND 

in Fig. 6.5, µ is insensitive to frequency. This can be explained as the same traps are responsible 

for AC and DC RTN. Although AC enhances emission, it does not change the RTN amplitude, 

as shown in Fig. 6.1 and Fig. 6.2.  

The NA and ND versus time in Fig. 6.5 can be used to extract their kinetics. Three different 

kinetics were tested: power law, scaled Log-normal CDF, and Log-uniform. Fig. 6.5 shows 

that all three can fit the data reasonably well within the short time window of 7.8 s. One 

powerful feature of the integral methodology is that these kinetics can be extrapolated to a 

longer time window to predict the long-term DC RTN, making RTN prediction similar to 

predicting ageing induced by bias temperature instabilities [109], [119] and hot carriers [124]. 

The prediction capability for AC RTN will be tested and discussed next. 

Fig. 6.7 gives the NA and ND for AC RTN measured in a time window of up to 3×104 sec. The 

three kinetics extracted from the data within 7.8 s are extrapolated and compared with the test 

data. The differences between the predictions by the three kinetics can be considerable and 

some kinetics clearly agree better with the test data based on Fig. 6.7. To make a quantitative 

comparison, Fig. 6.8 gives the errors between predictions and test data. When RTN amplitude 

is assumed to follow Exponential or Log-normal distribution, the scaled Log-normal CDF 

kinetics give lower errors. The lowest error, i.e., the best fit, however, is obtained from GEV 
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with Log-uniform kinetics. The two distributions selected for Δ𝑉𝑡ℎ (Vg (AC) = 0.5V and Vd 

= 0.1V) are, 

1. Impact per trap: GEV Distribution 

      2. Long-Term RTN Kinetic: Log-uniform Distribution. 

 

Fig. 6.5 Dependence of average number of ECTs per device on time window (symbols) at different frequencies. 

𝑁𝐴 in the top row (a,b,c) is for acceptor-like traps with Exponential, Log-normal, and GEV distributions 

respectively. 𝑁𝐷 in the bottom row (d,e,f) is for donor-like traps. The lines are fitted kinetics with Power law 

(blue), scaled Log-normal CDF (red), and Log-uniform (black). 
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Fig. 6.6 The extracted average δVth per trap, μ, for DC and AC RTN at different frequencies. Solid lines are the 

mean values of all data. (a, b, c) are acceptor-like traps and (d, e, f) are donor-like traps. 

We now investigate how well the NA and ND predicted in Fig. 6.7 can be used to evaluate the 

CDF at an AC time window of 3×104 sec. Fig. 6.9(a) and Fig. 6.9(b) compare the CDF 

calculated from the predicted NA and ND with the measured value and find good agreement. 

Fig. 6.9(c) shows that the prediction error for AC RTN is similar to that for DC RTN. Hence, 

the integral methodology can be used to extract a model from 7.8 s tests that is able to predict 

AC RTN at 3×104 sec, over three orders of magnitude ahead in time.   
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Fig. 6.7 Prediction of the average number of acceptor-like traps, 𝑁𝐴, in the top row (a, b, c) and donor-like 

traps, 𝑁𝐷, in the bottom row (d, e, f) for AC RTN at 100 kHz. Symbols are extracted by fitting the δVth 

distributions (Exponential, Lognormal, and GEV). The solid lines within 7.8 s are the fitted kinetics with Power 

law (blue), Log-normal (red), and Log-uniform (black). The dashed lines beyond 7.8 s are extrapolated from the 

solid lines. The symbols beyond 7.8 s were not used for fitting. 

  

Fig. 6.8 The sum of squared errors per device of the prediction in Fig. 6.7 for acceptor-like (a) and donor-like 

(b) average number of traps per device. The lowest errors were obtained for Log-uniform kinetics with GEV 

δVth distribution. 

A comparison of Fig. 6.4(a) with Fig. 6.9(a) shows that their ΔVth has similar range. Fig. 6.4(a) 

and Fig. 6.9(a) were obtained for time windows of 7.8 s and 3×104 s, respectively. One would 
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expect Fig. 6.9(a) to have a larger ΔVth range, as a larger time window allows slower traps to 

be included. This apparent discrepancy originates from two differences: (i) The number of 

devices used is 402 for the 7.8 sec test in Fig. 6.4(a) and only 60 for the 3𝑥104 sec test in Fig. 

6.9(a); (ii) All data were saved for the 7.8 sec test, to give a total 7.8 M data points, while only 

200 data points were saved per second to give a total 6 M data points for the 3𝑥104 sec test. 

This is further explained below.  

A larger number of samples has more chances of capturing rare events and, in turn, increases 

the statistical range. To demonstrate the impact of sample number on the statistical range, the 

graph of measured data against time window is given in Fig. 6.10(a). The two blue lines 

represent the envelope of Δ𝑉𝑡ℎ  where multiple traps were simultaneously charged. The 

envelope increases with the time window, as a larger window allows slower traps to be charged. 

However, there are only a few points that hit the envelope, as it is rare for multiple traps to be 

charged simultaneously. Within 7.8 sec, both the RTN data and envelope were sampled and 

saved at 1 MSample/sec. After 7.8 sec, the data was still measured at 1 MPoint/s, but the data 

was saved at only 200 Samples/sec to reduce the size of the dataset. The lower saving rate 

reduces the probability of catching a multiple trapping event; hence, the data range immediately 

after 7.8 s appears reduced, although the envelope is increasing. Fig. 6.10(b) shows the 

comparison between 400 points at 7.8 sec and 60 points at 3𝑥104 sec and, based on this result, 

they appear similar. This similarity, however, is an artefact, as the high number of samples at 

7.8 s compensates the effect of the smaller time window.  

6.3.4 Analysis of AC RTN 

Fig. 6.11 shows NA(AC)/NA(DC) and ND(AC)/ND(DC) against the time window. The main 

feature is that the ratios initially decrease relatively fast with time and then more slowly for a longer 

time window. For a given trap, its emission time follows [1], [49], [64], [112], [120], 

 
 𝜏𝐸 ∝ exp (

𝐸𝑓 − 𝐸𝑡

𝑘𝑇
)  (6.1) 

At a given distance from the interface, a trap with its energy level Et further below Ef will have 

larger τE. When Vg is switched from Vdd to zero for AC RTN, it shifts (Ef-Et) by the same 

amount for traps of different Et. This reflects that τEL/τEH should be the same for fast and slow 

traps, so that one may expect NA(AC)/NA(DC) to be independent of the time window, against 
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the observed reduction in Fig. 6.11. To understand the reduction in Fig. 6.11, the impact of 

frequency on τE is examined next. 

 

  

Fig. 6.9 AC (100 kHz) RTN prediction for the CDF of ΔVth at the time window of 3×104 s by the model 

extracted from test data within 7.8 s. Symbols are the measured data and the lines are the calculated CDF by 

using the predicted 𝑁𝐴 and 𝑁𝐷 in Fig. 6.7 and the average 𝜇 in Fig. 6.6, based on different 𝛿𝑉𝑡ℎ distributions. 

The CDF is plotted in Z-score in (a) and linearly in (b). (c) compares the errors of DC and AC predictions and 

shows that the smallest error was obtained for Log-uniform kinetic with GEV 𝛿𝑉𝑡ℎ distribution. 
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Fig. 6.10 (a) The impact of data saving rate on the range. At 7.8 sec, the saving rate is reduced from 

1 MSample/sec to 200 Sample/sec. (b) A comparison of the CDF of 400 data points taken at 7.8 sec with that of 

60 points taken at  3𝑥104. 

When there is only one active trap in a device, such as in Fig. 6.1 and Fig. 6.2, its τC and τE can 

be readily extracted and one example each for acceptor-like and donor-like traps is given in 

Fig. 6.12(a) and Fig. 6.12(b), respectively. In agreement with some of these early works [3], 

[49], [121-122], τC is independent of frequency, f, because τCL>>τCH and removing the Vg = 0 

durations has little impact on capture.  

On the other hand, it has been claimed that τC can be frequency dependent where the capture 

probability decreases, and capture time increases with increasing frequency [125-126]. The 

marginal increment of τC can be more than one order of magnitude depending on the selection 

of defect to be investigated [125-126]. However, based on Fig. 6.12, it is frequency independent 

up to 1Mhz. Results beyond 1Mhz is not available to further support it is frequency independent 

due to the limitation of instrument and requires further works. 

Although τEH and τEL are determined by (Ef-Et) and should be independent of frequency, the 

τE measured at Vdd in Fig. 6.1(b) and Fig. 6.2(b) is neither τEH nor τEL and Fig. 6.12 shows that 

it can depend on frequency, in agreement with early work [3], [49], [121-122]. The dependence 

of τE on frequency can be divided into three regions. In the low-frequency Region 1 (R1) in 

Fig. 6.12, τE is insensitive to frequency. In Region 2 (R2), τE reduces for higher frequency. 

Finally, in high-frequency Region 3 (R3), τE becomes insensitive to frequency again. A 

physical interpretation of this dependence is given below. 

In the inset of Fig. 6.12(a), tH=1/(2f) is half of the AC period under Vg=0.5 V. The number of 

RTN transitions during tH, n, is 
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𝑛 =

2𝑡𝐻

𝜏𝐶𝐻 + 𝜏𝐸𝐻
     

(6.2) 

In R1, f is low enough to make tH>>(τCH+τEH). There are many RTN transitions (both capture 

and emission events) within tH, i.e., n>>1. During Vg=0, tL>>τEL, but when tL is removed by 

joining the two dots in Fig. 6.12(a) together, the number of emissions will be increased by a 

maximum of 1 to (n+1)≈n where n is hardly affected, so that the measured τE≈τEH, which is 

hardly affected by Vg = 0 duration and independent of frequency.  

As frequency increases and tH reduces in R2, n, reduces and approaches 1. If Vg = 0 duration, 

tL>> τEL, trapped charge will be emitted during tL and the number of emissions during one AC 

period is (n+1)>n. The emission during tL reduces the measured τE. When frequency is further 

increased and induced n<<1, (n+1)≈1 by removing tL, the measured τE now is controlled and 

capped by frequency and is not equal to τEH. An increase in frequency reduces the duration of 

Vg = 0, tL and, in turn, τE. 

 

Fig. 6.11 AC (100 kHz) RTN against DC RTN ratio from 10−4 to 3𝑥104s for acceptor-like traps, 𝑁𝐴, in the top 

row (a, b, c) and donor-like traps, 𝑁𝐷, in the bottom row (d, e, f). The red lines are eye guides, showing that the 

reduction trend slows down at longer times. 
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Finally, when the frequency is high enough to make the time period of Vg = 0 short enough 

and fall in tL<<τEL< τEH while n ≈ 0, it enters R3, where emission happens during both tH and 

tL to give 

 𝜏𝐸 =
𝜏𝐸𝐻𝜏𝐸𝐿

𝜏𝐸𝐻 + 𝜏𝐸𝐿
     (6.3) 

τE now is independent of frequency again. If τEL<< τEH , the trapped charged will be emitted at  

τEL instead of τEH hence, the measured τE ≈ τEL, i.e., although the measurement is at Vg=Vdd, 

the measured τE is actually the emission time at Vg=0. In short, the measured τE is roughly 

equals to τEH in R1, and τE is roughly equals to τEL in R3 while τE will be controlled by 

frequency in R2. 

 

Fig. 6.12 Time constants, τ, versus frequency for a single acceptor-like trap (a) and donor-like trap (b). The red 

and black symbols are emission (𝜏𝑒) and capture (𝜏𝑐) time, respectively. R1, R2, and R3 are the three regions 

for the emission time. 

Fig. 6.12 can be used to explain the results in Fig. 6.11. When the time window is small, active 

traps are fast and they can be either in R1 or close to the top of R2, where AC reduces τE 
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modestly, resulting in a relatively large NA(AC)/NA(DC) in Fig. 6.11. As time increases, slower 

traps become active and they are in R2, where AC causes an increasingly larger reduction of τE, 

leading to the reduction of NA(AC)/NA(DC). As time increases further, the new active traps are 

slow enough to be in R3, where the impact of AC on τE stabilizes, so that NA(AC)/NA(DC) only 

decreases slowly with time here.    

The test facilities used in this work only allow reliable measurement to be made up to 1 MHz. 

There are traps that are too fast to make tL<<τEL even at 1 MHz, so that the results do not enter 

R3. Examples of this case are given in Fig. 6.13(a) and Fig. 6.13(b) for acceptor-like and donor-

like traps, respectively. This explains the continuous reduction of NA and ND with frequency in 

Fig. 6.14.  

AC RTN can be used to study the difference in tunnelling process between acceptor-like and 

donor-like traps. For acceptor-like traps, emission will be more efficient under Vg=0, if 

electrons are emitted to the substrate, as illustrated in Fig. 6.15(a). Thus, the enhanced emission 

of AC RTN supports that tunnelling occurs between traps and substrate. 

 

Fig. 6.13 Time constant, τ, versus frequencies for single acceptor-like trap (a) and donor-like trap (b). In 

contrast with Fig. 6.12, the emission time does not enter into region R3 even at 1 MHz here. 
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Fig. 6.14 Dependence of the extracted 𝑁𝐴 (black) and 𝑁𝐷 (red) at 7.8 s on frequency. (a,b,c) uses Exponential, 

Log-normal, and GEV δVth distribution, respectively. 

For donor-like traps, AC also enhances the emission, as shown in Fig. 6.2(b), Fig. 6.12(b) and 

Fig. 6.13(b). To neutralize the positive charge or to restore the pre-trapped electron, an electron 

must tunnel to the trap. If this electron comes from the substrate, it should be less efficient 

under Vg = 0 than under Vg = +0.5 V, which disagrees with enhanced emission under AC. On 

the other hand, electron tunnelling to the trap is more efficient under Vg = 0, if it is from the 

gate, as illustrated in Fig. 6.15(b). As a result, acceptor-like and donor-like traps should be 

dominated by tunnelling from the substrate and the gate, respectively. For a given time window, 

one may also expect that active donor-like traps are closer to the gate. This is supported by the 

smaller average impact per donor-like trap in Fig. 6.6. On the relative tunnelling from the gate 

against that from the substrate, Fig. 6.15(c) and Fig. 6.15(d) shows ND/NA is around 0.8 and 

insensitive to either time or frequency.  
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Fig. 6.15 A schematic illustration of carrier tunnelling for acceptor-like trap (a) and donor-like trap (b) to 

explain AC-enhanced emission. ND/NA is independent of time for both DC (c) and AC (d) RTN. ●, -, +, and □ 

represent electron, trapped negative, trapped positive charges, and neutral traps, respectively. 

6.4 Conclusion 

In summary, unlike early works that focused on individual traps, this work reports statistical 

experimental data for AC RTN at device level with a time window of up to 3×104 sec. The 

ΔVth values measured from multiple devices were grouped together to form a dataset and the 

integral methodology was found to be equally applicable to AC RTN as to DC RTN. At a given 

time, the CDF of ΔVth is used to extract the number of effective charged acceptor-like and 

donor-like traps through the maximum likelihood estimation. The NA and ND obtained from 

data within a time window of 7.8 s are used to extract their kinetics.  

For the first time, it is shown that these kinetics can predict the NA and ND at 3×104 sec, a factor 

of 3,846 ahead in time. The CDF evaluated from the predicted NA and ND agrees well with test 

data. If one assumes that NA and ND kinetics extracted from a test time of one day can predict 

the AC RTN by the same factor of 3,846 ahead, it will cover a time range of more than 10 

years.  
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The dependence of AC RTN on time window and frequency is analysed and RTN still reduces 

with frequency at 1 MHz, indicating there are traps with an emission time under Vg = 0 less 

than 1 µs. The AC RTN data support that there are substantial tunnelling activities between 

traps and both gate and substrate. 
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CHAPTER 7: CHARACTERIZING AND MODELING RTN UNDER REAL 

CIRCUIT BIAS CONDITIONS 

This chapter studies the key parameters needed to model RTN for real circuit operation. In the 

discussion, both driving current and threshold voltage, as well as transistors under linear and 

saturation region are assessed by using the integral methodology. Follows by the accuracy of 

Δ𝑉𝑡ℎ extraction by 𝑔𝑚 is investigated and the number of ECTs under linear and saturation 

regions is discussed. Lastly, the prediction of long-term RTN in linear driving current is 

assessed. 

7.1 Introduction 

To optimize circuit design, one needs to assess the challenges, a major challenge for designing 

modern CMOS circuits being device-to-device variation (DDV) [2-4], [19], [29], [31], [49]. 

There are two types of DDV: time-invariant DDV, such as line-edge roughness [127], and time-

dependent variation (TDV), such as age-induced DDV [11]. As transistor sizes downscale, 

random telegraph noise (RTN) has attracted much attention and become one of the main 

sources of TDV [2-4], [29], [31], [49]. A single trap in gate dielectric can cause substantial 

fluctuation of both driving current, ΔID, and threshold voltage, ΔVth, by capturing/emitting a 

charge carrier from/to the conduction channel [2-4], [19], [29], [31], [49]. Moreover, the 

number of traps in a device follows a Poisson distribution and RTN induces substantial 

stochastic TDV [2-4], [29], [31], [49]. 

Despite the efforts made by early works on RTN [2-4], [29], [31], [49], accurately modelling 

and predicting RTN for circuit optimization remains a challenge for modern CMOS 

technologies and there are knowledge gaps that prevent this optimization being achieved. One 

such gap arises because early works focused on ΔID/ID under linear operating condition, i.e. 

(Vg-Vth)>Vd, while real circuits can operate under not only linear, but also saturation modes. 

For example, Fig. 7.1 shows that the transistors M1 and M5 in a standard SRAM cell can 

operate in linear and saturation mode, respectively, during a read operation. The limited early 

works on RTN under saturation [128-131] mainly investigated the impact of drain bias on 

individual traps and the key information, such as the CDF per trap for ΔID,SAT/ID,SAT and 

ΔVth,SAT, is still missing. Without it, the simulation of RTN for real circuit operation cannot 

be completed. 
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In addition to driving current, circuit simulation also requires threshold voltage. Under linear 

mode, one common practice of early works [31], [41], [132-133] is to evaluate the RTN in 

Vth,LIN by ΔVth,LIN = ΔID,LIN/𝑔𝑚  , where ΔID,LIN is the fluctuation of linear ID and 𝑔𝑚  the 

transconductance. When both ΔID,LIN and 𝑔𝑚 were measured at Vg ≈ Vth, ΔVth,LIN=ΔID,LIN/𝑔𝑚 

was a good estimation of the real ΔVth [4]. Most designed circuits and early works, however, 

use an operating voltage of Vg>Vth. Under Vg>Vth, it has been reported that ΔVth,LIN = 

ΔID,LIN/𝑔𝑚 substantially overestimates the real ΔVth,LIN directly measured from the pulse ID-

Vg at Vg ≈ Vth [4].  

The impact of a trapped charge on a device depends on the local charge carrier density beneath 

it [2-4], [49]. Under Vg ≈ Vth, current flows through narrow paths and traps located away from 

these paths have little impact [4], [30], as shown in Fig. 7.2. In contrast, under Vg>Vth, current 

distribution is more uniform, and more traps can be charged and make a substantial contribution 

to RTN. This explains why ΔVth,LIN = ΔID,LIN/𝑔𝑚 measured under Vg > Vth is larger than the 

ΔVth,LIN measured at Vg≈Vth. At present, there are insufficient data to establish the CDF of 

real ΔVth,LIN and there are even fewer data on the directly measured ΔVth,SAT. As the current 

flow pattern under Vg ≈ Vth is different from that under Vg > Vth, one open question is whether 

the RTN in driving current and Vth follows the same CDF.  

Hence, the objectives of this Chapter are: 

• To provide experimental data for RTN under saturation condition; 

• To directly measure ΔVth at Vh ≈ Vth and obtain its statistical data; 

• To extract the CDF per trap of the four parameters needed for circuit simulation: 

ΔID,LIN/ID,LIN, ΔID,SAT/ID,SAT, ΔVth,LIN, and ΔVth,SAT. 

In addition, based on the RTN measured at Vg ≈ Vth, an integral methodology for modelling 

RTN has been proposed in Chapters 4, 5 and 6 and this can be used to predict the long-term 

RTN. The predicative capability of this integral method for ΔID,LIN/ID,LIN measured under Vg > 

Vth will be tested in this Chapter. 
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Fig. 7.1 Schematic 6-transistor SRAM cell under Read Operation. M1 and M5 operates under linear and 

saturation conditions, respectively. 

 

Fig. 7.2 A schematic illustration of the impact of traps (circles) on current path near threshold condition [30]. 

7.2 Devices and Experiments  

7.2.1 Devices 

The nMOSFETs used in this Chapter were fabricated by a commercial 28 nm CMOS process. 

The channel length and width are 27 and 90 nm, respectively. The gate stack consists of a metal 

layer, a Hf-high-k layer, and an interfacial SiON layer. The equivalent oxide thickness is 

1.2 nm. The average threshold voltage, VTH, is 0.45 V. 
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Fig. 7.3 The raw ID recorded against log(time) under linear (a) and saturation (b) modes, respectively. The 

solid blue lines represent the 𝐼𝐷,𝑅𝐸𝐹. The insets show the two-level RTN within a relatively short time window. 

The red lines in the insets were fitted RTN by the hidden Markov model (HMM). 

7.2.2 Experiments 

The tests were carried out under either linear or saturation conditions. Linear condition has a 

constant gate bias, Vg, of 0.9 V and a constant drain bias, Vd, of 0.1 V. The saturation condition 

has Vg = Vd = 0.9 V. Under these biases, the hot carrier and PBTI ageing are insignificant 

when compared with RTN fluctuation.   

All tests were carried out under 125oC. This is the temperature of thermal chuck, and the self-

heating effect is not included, since the test devices are bulk MOSFETs, rather than FinFETs. 

To assess RTN at different temperatures, more tests are needed, which is out of the scope of 

this work. 

The test was repeated on 402 devices with a time window of 10 sec for statistical analysis. To 

verify that the RTN model extracted from data in this short window can be used to predict long-

term RTN, tests with a time window up to 6×104 sec were also carried out for 60 devices.   

During RTN tests, drain current, ID, was monitored continuously at a sampling rate of 

1 MSa/sec [30] and an example of the raw ID is given in Fig. 7.3(a) and Fig. 7.3(b) for linear 

and saturation modes, respectively. The reference ID, Iref, was obtained from the average of 

the first 10 points, as represented by the blue lines; it was used for evaluating the relative shift 

of ID, ΔID/ID=(Iref-ID)/ID so that a positive ΔID/ID represents a reduction of ID. The insets in Fig. 

7.3(a) and Fig. 7.3(b) show that ID can follow the two-level RTN within a relatively short time 

window; as time increases, slower traps start contributing, leading to increased fluctuation.  
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The test was periodically interrupted by ramping 𝑉𝑔 down from 0.9 V to 0.3 V to obtain the 

pulse 𝐼𝐷 − 𝑉𝑔 at that time point. The Vd used for the pulse ID-Vg is 0.1 or 0.9 V as a constant 

for the linear or saturation tests, respectively. The Vg waveform for measuring ΔVth is given 

in Fig. 7.4(a). The reference Vth, Vth,REF, is first extracted by the maximum 𝑔𝑚 method from 

a reference pulse (3 μs) ID-Vg, taken before starting the RTN test for each device and an 

example is given in Fig. 7.4(b). The current at Vg = Vth,REF, IDTH, is recorded. The recorded ID-

Vg pulse at each time point can be used to compare with the IDTH. The instabilities in Vth were 

extracted from the Vg shift at ID=IDTH, i.e., ΔVth= Vg (ID =IDTH)-Vth,REF, as shown by the inset 

of Fig. 7.4(b).  

 

 

Fig. 7.4 (a) The Vg waveform for measuring ΔVth. (b) The ΔVth was extracted from the shift of Vg at ID=IDTH 

when comparing the pulse ID-Vg during RTN test with the reference ID-Vg measured before starting the RTN 

test. 
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Fig. 7.5 A comparison between ΔVth measured at Vg=Vth and ΔID/𝑔𝑚. (a) The CDF of ΔVth and ΔID/𝑔𝑚 at 10 

sec. (b) Standard deviation at different time. 

7.3 Results and Discussions 

7.3.1 Linear Mode: CDF of 𝜟𝑽𝒕𝒉,𝑳𝑰𝑵 and 𝜟𝑰𝑫,𝑳𝑰𝑵/𝑰𝑫,𝑳𝑰𝑵 

Integral methodology: The details of integral methodology were given in Chapters 4, 5 and 6, 

and a brief description of its principle is included here for self-completeness. Early works [3], 

[19], [24], [27], [29], [31], [61], [64], measured the impact of individual traps separately and 

collected a number of traps to build the CDF per trap. In contrast, the integral method measures 

the total RTN in a device, which can come from the cumulative contribution of multiple traps. 

One advantage of the integral method is that it does not require separating the measured 

fluctuation, such as that in Fig. 7.3(a) and Fig. 7.3(b), into the contributions of individual traps 

experimentally. This separation is carried out numerically based on the maximum likelihood 

estimation as applied in Chapters 5 and 6. At a given time, each device will give one data point 

in Fig. 7.5(a) and 402 devices form the dataset for the CDF.  

 

Fig. 7.6 Poor correlation between ΔId/gm at Vdd and ΔVth at Vg = Vth. Each point was taken from a different 

device. The dotted lines mark the mean values [4]. 
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Fig. 7.7 The sum of squared errors (SSE) per device of the fitted CDFs on the ΔVth(Vg=Vth). Blue bars are for 

ΔVth,LIN in Fig. 7.5(a). Red bars are for ΔVthSAT in Fig. 7.12(b). 

It should be pointed out that the CDF in Fig. 7.5 is for ΔVth,LIN per device, which is different 

from the CDF per trap, as one device can have multiple traps. By assuming that the number of 

traps per device follows the Poisson distribution and the CDF per trap follows one of three 

distributions - Exponential, Log-normal, or General Extreme Value (GEV) - the parameters in 

these distributions can be extracted through the Maximum Likelihood method [39]. In this way, 

the integral method decomposes ΔVth,LIN into the contribution of individual traps numerically 

and statistically, rather than experimentally. 

A comparison between ΔVth,LIN and ΔID,LIN /𝑔𝑚: Fig. 7.5(a) and Fig. 7.5(b) compare the CDF 

and standard deviations, respectively, of these two. In agreement with early work [4], 

ΔID,LIN/𝑔𝑚 has substantially larger deviation and longer distribution tails. It has been found out 

that the difference between ΔID,LIN/𝑔𝑚 and ΔVth,LIN can be more than half, as shown in Fig. 

7.6 [4]. Consequently, using ΔID,LIN/𝑔𝑚 will overestimate the RTN in threshold voltage due to 

the current is more uniformly distributed and led to more traps can be charged under Vg > Vth. 

ΔVth,LIN should be directly measured at Vg = Vth, as shown in Fig. 7.4(b). Hereafter, the 

directly measured ΔVth,LIN is applied in this work. 

Selection of CDF per trap for ΔVth,LIN: By assuming the impact per trap following a specific 

CDF - Exponential, Log-normal, or GEV - the parameters in these CDFs can be extracted 

through the maximum likelihood estimation as applied in Chapters 5 and 6. To find which CDF 
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best matches the test data, the sum of squared error is calculated (SSE) per device between the 

extracted CDF and the test data. The blue bars in Fig. 7.7 show that GEV has the least SSE.  

One possible explanation for GEV showing the lowest errors is that it has three fitting 

parameters, while Log-normal has two and Exponential has one. To further support the 

selection of GEV, we examine the dependence of SSE on the number of devices, N. If the data 

truly follows a CDF, SSE should reduce with increasing N. As N approaches infinite, SSE per 

data/device should approach zero [30].  

 

Fig. 7.8 Dependence of SSE per device on the number of devices used to extract the CDFs. The solid lines are 

fitted with test data. The dashed lines are results of hypothetical devices generated from theoretical Lognormal 

or GEV CDFs. (a) ΔVth,LIN: GEV (blue) agrees best with the theoretical line. (b) ΔID,LIN/ID,LIN: Log-normal (red) 

agrees best with theoretical line.  

For the red dashed line in Fig. 7.8(a), a theoretical Log-normal CDF was applied to generate 

different numbers of hypothetical devices. These devices were then fitted with Log-normal 

CDF and the SSE per device was calculated from the difference between the fitted and the 

theoretical Log-normal CDFs. As expected, the SSE indeed reduced for a higher number of 

devices. Repeating the same procedure for GEV gives the blue dashed line. When comparing 

the theoretical dashed lines with the corresponding solid lines of test data, GEV (blue) is the 

closest, supporting its selection for ΔVth,LIN.  

Selection of CDF per trap for ΔID,LIN/ID,LIN: The CDF of measured ΔID,LIN/ID,LIN at Vg = 0.9 

and Vd = 0.1 V at 10 sec is given in Fig. 7.9(a). By repeating the same procedure as that for 

ΔVth,LIN, the SSE of extracted CDF per device is given in Fig. 7.9(b) as the blue bars. The 

Log-normal has the lowest error here, although it has less fitting parameters than GEV. Fig. 

7.8(b) also shows that differences in the SSE dependence on device number between the 
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theoretical and test data are smallest for Log-normal (the red lines). Hence, Log-normal should 

be selected for ΔID,LIN/ID,LIN. 

 

Fig. 7.9 ΔID,LIN/ID,LIN fitted with three different CDF per trap: Exponential, Log-normal, and GEV. (b) The 

errors. Blue bars are errors for ΔID,LIN/ID,LIN in (a) and red bars are errors for ΔID,SAT/ID,SAT in Fig. 7.12(a). In 

both cases, Log-normal gives the lowest errors. 

The results show that different types of CDF per trap should be used for ΔID,LIN/ID,LIN and 

ΔVth,LIN: Log-normal for ΔID,LIN/ID,LIN and GEV for ΔVth,LIN. To explain this difference, it is 

noted that GEV generally has a wider statistical spread than Log-normal, when fitting the same 

set of data [30]. As mentioned earlier, the current follows a narrow percolation path under 

Vg=Vth, but is more uniformly distributed under Vg>Vth. The trapped charges above the 

narrow current path will have profound impacts on the device under Vg=Vth, generating 

outliers and a wide statistical spread, as shown in Fig. 7.2. GEV describes these outliers better.  

Impact of Vg on RTN: This work measures RTN at Vg=0.9 V, since this is the operating 

voltage specified for this CMOS technology by the foundry. The desire to minimize power 

consumption may push Vg toward Vth = 0.45 V in future, so that it is of interest to compare 

the RTN at Vg = 0.9 V with that at Vg = 0.5 V. Fig. 7.10 shows that RTN has a higher standard 

deviation, σ, at Vg = 0.9 V. When compared with ID at Vg = 0.5 V, ID at Vg = 0.9 V is higher 

and more uniformly distributed. This allows more traps to be charged, resulting in a higher 

RTN.  
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Fig. 7.10 A comparison of the RTN standard deviation under Vg = 0.9 V with that under Vg = 0.5 V. (a) ΔVth 

and (b) ΔID,LIN/ID,LIN. 

7.3.2 Saturation Mode: CDF of 𝜟𝑰𝑫,𝑺𝑨𝑻/𝑰𝑫,𝑺𝑨𝑻 and 𝜟𝑽𝒕𝒉,𝑺𝑨𝑻 

The CDF per trap for ΔID,SAT/ID,SAT: The measured ID,SAT and ΔID,SAT on 402 devices are given 

in Fig. 7.11(a) and Fig. 7.11(b), respectively. When compared with ID,LIN, the mean ID,SAT is a 

factor of 4.8 higher. The ΔID,SAT in Fig. 7.11(b) has a wider statistical spread than the ΔID,LIN. 

This is mainly caused by the higher transconductance in saturation, so that the same shift in 

overdrive voltage (Vg-Vth) results in a larger shift in ID. 

  

Fig. 7.11 A Comparison between linear (black) and saturation (red) measurements on 402 devices: (a) ID and 

(b) ΔID. 
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Fig. 7.12 A Comparison between linear and saturation measurements: (a) ΔID/ID and (b) ΔVth. The lines are 

fitted results. 

Fig. 7.12(a) compares ΔID,SAT/ID,SAT with ΔID,LIN/ID,LIN. The normalization brings these two 

much closer, but ΔID,SAT/ID,SAT is clearly higher and has a wider statistical spread than 

ΔID,LIN/ID,LIN. The integral methodology is again used to extract the CDF per trap for 

ΔID,SAT/ID,SAT. As reported in Section 7.3.1 , GEV best describes the RTN with a narrow 

percolation current path, while Log-normal CDF better describes the RTN under a relatively 

uniform current flow. Under saturation, current flow should be relatively uniform near the 

source, but can be less uniform near the pinch-off point, where it is close to threshold condition. 

Fig. 7.9(b), however, shows that Log-normal CDF has the lowest error for ΔID,SAT/ID,SAT. This 

indicates that the inversion channel region has a larger impact on ΔID,SAT/ID,SAT distribution.  

To further compare ΔID,SAT/ID,SAT with ΔID,LIN/ID,LIN quantitatively, the statistical properties are 

extracted at different time windows. Fig. 7.13 shows that the number of average effective 

charged acceptor-like (NA) and donor-like (ND) traps is clearly larger for ΔID,SAT/ID,SAT. The 

procedure and formula used to extract the NA and ND for ΔID/ID are the same as those used for 

ΔVth in Chapter 5 and 6, but the unit for average impact per trap, µ, is % for ΔID/ID and mV 

for ΔVth. Fig. 7.14 shows that µ is insensitive to time and in a range of 0.48 ~ 0.75% for 𝑁𝐴, 

and 0.46 ~ 0.6% for 𝑁𝐷, depending on the CDF per trap used.    
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Fig. 7.13 ΔID/ID at different time windows: The extracted average number of acceptor-like (a)-(c) and donor-like 

(d)-(f) traps per device. The red and black symbols are for ΔID,SAT/ID,SAT and ΔID,LIN/ID,LIN, respectively. 
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Fig. 7.14 ΔID/ID at different time windows: The extracted average impact per acceptor-like, 𝜇𝐴, (a)-(c) and 

donor-like, 𝜇𝐷, (d)-(f) trap. The red and black symbols are for ΔID,SAT/ID,SAT and ΔID,LIN/ID,LIN, respectively. 

Based on the extracted Log-normal CDF, the projected ΔID,SAT/ID,SAT and ΔID,LIN/ID,LIN at 

different multiples of standard deviation, σ, are given in Fig. 7.15(a). At 6σ, ΔID,SAT/ID,SAT = 

35.7% and ΔID,LIN/ID,LIN = 27.5%. Typically, ΔID/ID = 10% has been used to define ageing-

induced device lifetime [134]. At 10%, Fig. 7.16(a) shows that the failure rates for 

ΔID,SAT/ID,SAT and ΔID,LIN/ID,LIN are 90 and 30 parts-per-million (ppm), respectively. At 25%, 

they become 0.17 for ΔID,SAT/ID,SAT and 0.008 for ΔID,LIN/ID,LIN. These differences confirm the 

need to model ΔID,SAT/ID,SAT and ΔID,LIN/ID,LIN separately. 

Selection of CDF per trap for ΔVth,SAT: Similar to ΔVth,LIN, ΔVth,SAT was measured from the 

shift of pulse ID-Vg, but under Vd = 0.9 V. Their distributions are compared in Fig. 7.12(b). 

Like ΔID/ID, ΔVth,SAT is higher and has higher statistical spread than ΔVth,LIN. As both of them 

were measured under the condition where current follows narrow percolation paths, it is not 

surprising to find that GEV also best describes the CDF per trap for ΔVth,SAT.  

The larger RTN in saturation mode should be explained. The occupancy of a trap in the gate 

dielectric should increase with  
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i. a higher number of mobile charge carriers beneath it in the substrate, and 

ii. the higher energy of these charge carriers.  

When an electron in silicon has higher energy, the potential barrier for its tunnelling will be 

lower. As a result, hot carriers are more efficient to fill a trap and increase the trap occupancy.  

  

Fig. 7.15 A comparison of linear and saturation ΔID/ID (a) and ΔVth (b) at different multiples of standard 

deviation, evaluated from Log-normal for (a) and GEV for (b). 

Under the same Vg = 0.9 V, raising Vd from 0.1 to 0.9 V increases the non-uniform 

electrostatic field distribution. This reduces the electrical field between gate and the substrate 

channel away from the source, leading to a reduction of the charge carrier density towards the 

drain, which in turn reduces the trap occupancy. Hence, the reduced field between the gate and 

the channel does not support a high ΔVth,SAT. On the other hand, the lateral field increases with 

rising Vd, which makes carriers ‘hot’ and increases trap filling. The experimental results show 

that the rise in carrier energy overcompensates the reduction in carrier density, resulting in 

higher ΔVth,SAT.  
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Fig. 7.16 The failure rates against failure criteria evaluated by log-normal CDF for ΔID/ID (a) and GEV for 

ΔVth (b) 

Table 7.1 The CDF formula and their average parameter values extracted between 10-4 and 10 sec. The ‘δ’ is 

used in the formula to emphasize that it is the impact per trap, rather than per device. 

 CDF Acceptor Donor 

Lognormal 

Δ𝐼𝐷,𝐿𝐼𝑁

𝐼𝐷,𝐿𝐼𝑁
 

1

2
+

1

2
erf (

ln(𝛿𝐼𝐷,𝐿𝐼𝑁/𝐼𝐷,𝐿𝐼𝑁) − 𝜖

√2θ
) 

𝜖 =  −0.53 

θ = 0.13 

 

𝜖 =  −0.68 

θ =  0.11 

Lognormal 

Δ𝐼𝐷,𝑆𝐴𝑇

𝐼𝐷,𝑆𝐴𝑇
 

1

2
+

1

2
erf (

ln(δ𝐼𝐷,𝑆𝐴𝑇/𝐼𝐷,𝑆𝐴𝑇) − 𝜖

√2θ
) 

𝜖 =  −0.47 

θ = 0.15 

 

𝜖 =  −0.61 

θ =  0.16 

GEV 

Δ𝑉𝑡ℎ𝐿𝐼𝑁 𝑒
−((1+𝜉(

𝛿𝑉𝑡ℎ,𝐿𝐼𝑁−𝛼
𝛽

))

− 
1
𝜉

)

  

𝜉 = 0.54 

𝛼 = 0.46 

𝛽 = 0.13 

 

𝜉 =  0.4 

𝛼 =  0.37 

𝛽 =  0.14 

GEV 

Δ𝑉𝑡ℎ𝑆𝐴𝑇 𝑒
−((1+𝜉(

𝛿𝑉𝑡ℎ,𝑆𝐴𝑇−𝛼
𝛽

))

− 
1
𝜉

)

 

𝜉 = 0.51 

𝛼 = 0.49 

𝛽 = 0.14 

𝜉 =  0.38 

𝛼 =  0.4 

𝛽 =  0.15 
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To have a quantitative comparison, the number of effective charged traps per device is given 

in Fig. 7.17 for different time windows. The NA and ND are clearly higher for ΔVth,SAT. Fig. 

7.18 shows that the mean impact per trap, however, is similar for ΔVth,SAT and ΔVth,LIN. Based 

on the extracted GEV per trap, Fig. 7.15(b) gives the predicted ΔVth at multiple σ at 10 sec. 

At 6σ, ΔVth,SAT and ΔVth,LIN reach 40.3 mV and 32.7 mV, respectively. Fig. 7.16(b) shows 

that the failure rates for ΔVth,SAT and ΔVth,LIN are 2×10-6 and 0.11×10-6 ppm at 50 mV. 

Therefore, they should also be modelled separately. 

 

Fig. 7.17 ΔVth at different time windows: The extracted average number of acceptor-like (a)-(c) and donor-like 

(d)-(f) traps per device. The red and black symbols are for ΔVth,SAT and ΔVth,LIN, respectively. 
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Fig. 7.18 ΔVth at different time windows: The extracted average impact per acceptor-like (a)-(c) and donor-like 

(d)-(f) trap. The red and black symbols are for ΔVth,SAT and ΔVth,LIN, respectively. 

 

7.3.3 Predicting long-term 𝜟𝑰𝑫,𝑳𝑰𝑵/𝑰𝑫,𝑳𝑰𝑵 

The principle: One advantage of the integral methodology is that it does not require the 

statistical distribution of capture and emission times, which are difficult to establish [21], [24], 

[27]. At a given time window, the statistical distribution of ΔVth such as that in Fig. 7.12(b) is 

assumed to originate from a set of ‘effectively charged traps (ECT)’. As ECTs are always 

charged, there is no need to specify their capture and emission times. As the time window 

increases, slower traps become active, leading to higher NA and ND in Fig. 7.13 and Fig. 7.17. 

In this way, the impact of the trap’s time constants on ΔVth is transformed to the dependence 

of NA and ND on time. If the kinetics of NA and ND can be established based on short-time test 

data, their long-term values can be estimated through extrapolation, similar to predicting the 

ageing-induced device lifetime. Once NA and ND are known, the long-term CDF of ΔVth can 

be directly evaluated, without using the time-consuming Monte Carlo simulation. 
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Fig. 7.19 ΔID,LIN/ID,LIN: Prediction of the average number of acceptor-like traps per device, 𝑁𝐴, in (a)-(c) and 

donor-like traps per device, 𝑁𝐷, in (d)-(f). Symbols are extracted from three different distributions: Exponential, 

Lognormal and GEV. Solid lines within 10 s represent the fitted kinetics with power law, lognormal and log-

uniform. Dashed lines beyond 10 s represent the extrapolated kinetics. The test data beyond 10 s were not used 

for fitting. 

 

 

Fig. 7.20 The sum of squared errors of the prediction in Fig. 7.19: (a) for acceptor-like and (b) for donor-like 

traps. The lowest errors were obtained for Log-uniform kinetics with Lognormal CDF. 
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Fig. 7.21 A comparison of the measured and predicted CDF of ΔID,LIN/ID,LIN at 6×104 sec. The CDF is plotted in 

linear (a) and Z-score (b) scales. (c) shows that the lowest error was obtained with Lognormal CDF per trap. 

Applicability to ΔID,LIN/ID,LIN: Chapters 5 and 6 showed that the integral method was 

successfully used to predict the long-term CDF of ΔVth. Its applicability to predicting the long-

term ΔID,LIN/ID,LIN measured at Vg>Vth is investigated here. Two statistical distributions have 

been proposed for the trap’s time constants by early works: Log-uniform or Log-normal [3], 

[21], [29], [61]. Their applicability to the kinetics of NA and ND will be tested. In addition, 

power law has been widely used as the kinetics for ageing [109], [135] and will also be tested. 

In Fig. 7.19, the data obtained within 10 sec are used to fit the kinetics. The extracted kinetics 

are then extrapolated to 6×104 sec and compared with the test data. Fig. 7.20 shows that, for 
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both NA and ND, the power law gives the highest errors, and the Log-uniform kinetics gives 

the lowest errors within this time window. If extrapolated further into the future, Log-uniform 

kinetics will not saturate, but Lognormal kinetics will. Further work is needed to determine 

which one is more accurate over a typical device lifetime (e.g., 10 years).  

With the predicted NA and ND at 6×104 sec and the mean impact per trap given in Fig. 7.14, 

the CDF of ΔID,LIN/ID,LIN is evaluated based on the Poisson distribution of the number of traps 

per device and log-normal CDF of the impact per trap. The predicted CDF of ΔID,LIN/ID,LIN is 

compared with test data in Fig. 7.21 and good agreement is obtained for the Log-normal CDF 

per trap. Hence, the integral methodology can be applied to predict long-term ΔID,LIN/ID,LIN. 

The two distributions selected for Δ𝐼𝐷,𝐿𝐼𝑁/𝐼𝐷,𝐿𝐼𝑁 (Vg = 0.9V and Vd = 0.1V) are, 

1. Impact per trap: Lognormal Distribution 

2. Long-Term RTN Kinetic: Log-uniform Distribution. 

7.4 Conclusions 

The key parameters required for circuit simulation include driving current and threshold 

voltage under both linear and saturation modes. For the first time, this work used the integral 

methodology to assess their RTN-induced statistical distributions per trap based on test data. 

Unlike early works that overestimated ΔVth by using ΔID/𝑔𝑚, ΔVth is directly measured from 

the pulse ID-Vg at Vg=Vth in this study. It is shown that ΔID/ID and ΔVth follow different CDF: 

Log-normal best describes ΔID/ID, while GEV is the best for ΔVth, under both linear and 

saturation conditions.  

Despite the reduced field between gate and conduction channel under saturation, both 

ΔID,SAT/ID,SAT and ΔVth,SAT are actually higher than their linear counterparts, indicating hot 

carriers assisting trap-filling. The results show that the RTN in each of the key parameters 

should be modelled separately. The work also shows that the integral methodology can be used 

to predict the long-term ΔID,LIN/ID,LIN, based on the CDF extracted from a short time window 

and Log-uniform kinetics.  
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK FOR RTN 

MODELING 

The main goal of this research work is to develop new RTN modelling techniques with a 

verified capability for long-term prediction and to improve the existing understanding of RTN. 

The new model developed is generically applicable for evaluating the probability of a certain 

Δ𝑉𝑡ℎ or Δ𝐼𝐷/𝐼𝐷 occurring in devices in circuits. Prediction is essential as commercial devices 

are expected to operate for 10 years. This chapter summarizes the achievement of this project. 

Potential future work will be discussed in Section 8.2   

8.1 Contributions to RTN modelling 

A key limiting factor for industry is the lack of an RTN model that generates the probability of 

a given Δ𝐼𝐷/𝐼𝐷 or Δ𝑉𝑡ℎ occurring. In Chapter 4, a new integral methodology was proposed 

which significantly advances RTN modelling. Early works applied a bottom-up approach to 

characterize the properties of individual traps, such as time constants, amplitude, and the 

number of traps per device. Such an approach has been shown to have major limitations. Based 

on the integral method proposed here, the burden of extracting the properties of individual traps 

is removed by: 

i. Characterizing the combined impact of all traps on a device, 

ii. Integrating the RTN of multiple devices into one dataset for statistical analysis. 

Although the ΔVth of one device can fluctuate, the collective dataset gives a stable statistical 

distribution at a given time point when the number of devices is sufficiently high. This stable 

distribution can be assumed to originate from a set of effective charged traps (ECTs), which 

are always charged. For a longer time window, the number of ECTs will be higher. The 

dynamic charging and discharging of traps are transformed into modelling the kinetics of ECT 

and the need to characterize the capture and emission time of individual traps is removed. Based 

on Maximum Likelihood Estimation (MLE), the following key information can be extracted 

from the test data:  

i. the statistical distribution of impact per trap,  

ii. the time-dependent kinetics of ECTs,  

iii. the probability of Δ𝑉𝑡ℎ hitting a certain mV.  
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Early works typically validate a model by showing that it can fit test data well. A good fitting, 

however, does not warrant that the model can predict future RTN. There is little information 

available on whether the existing RTN models can predict future RTN. In this project, long-

term RTN measurement has been predicted up to 6𝑥104 sec and the capability to predict RTN 

based on the model extracted from short-time RTN data is verified. The results from DC 

measurement under Vg and Vd of 0.5 V and 0.1 V respectively show that the lowest error is 

obtained for log-uniform kinetics with GEV 𝛿𝑉𝑡ℎ distribution.  

RTN fluctuations can be either positive or negative, which are referred to in this project as 

acceptor-like and donor-like trap, respectively. Early works mainly focused on Δ𝑉𝑡ℎ  or 

Δ𝐼𝐷/𝐼𝐷 > 0. Based on the RTN measurements, however, Δ𝑉𝑡ℎ can be either > 0 or < 0. It was 

found that there is little correlation between Δ𝑉𝑡ℎ > 0 and Δ𝑉𝑡ℎ < 0. One advance made by 

this project is to model RTN in both positive and negative directions simultaneously, as detailed 

in Chapter 5.  

Another major advance of this work is in AC RTN modeling. As is widely known, commercial 

devices mostly operate under a kind of AC waveform, instead of DC waveform. A detailed AC 

biased RTN measurement and analysis is performed to improve the knowledge in this area. It 

has been found that DC RTN properties can be different from AC RTN properties. The results 

of AC RTN short- and long-term measurement are given in Chapter 6. First, the frequency 

impact of applied Vg on individual traps is explored and the differences between acceptor-like 

and donor-like traps responses to frequency are investigated. The emission time of individual 

traps of both types is sharply reduced with an increase in frequency. However, the amplitude 

of single traps is insensitive to frequency. Our study found that the time-dependent kinetics and 

𝛿𝑉𝑡ℎ per trap distribution are the same as those for DC RTN, i.e., log-uniform for time-

dependent kinetics and GEV for 𝛿𝑉𝑡ℎ distribution. Good prediction by the model extracted 

from a short-time range of experimental data has been proven. These results demonstrate the 

applicability of the integral methodology to AC RTN analysis. 

Next, the accurate extraction of Δ𝑉𝑡ℎ is important, as error in ΔVth can lead to severe over- or 

under-estimation of future ΔVth. The two most common Δ𝑉𝑡ℎ  extraction methods are 

evaluated: one uses ΔVth=Δ𝐼𝐷/𝑔𝑚 and the other measures ΔVth at Vg = Vth. It is found that 

ΔVth = Δ𝐼𝐷/𝑔𝑚 substantially overestimates ΔVth, if Δ𝐼𝐷 is measured under a Vg substantially 

higher than Vth. 
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Lastly, in addition to experiments and analysis within the linear region of transistor operation, 

many real-world circuits have devices operating in the saturation region. One commonly used 

circuit where this is demonstrated is a 6T-SRAM circuit. To explore this important area of 

operation, measurement, and analysis of devices under the saturation condition of Vd = Vg = 

0.9𝑉 was carried out. Δ𝑉𝑡ℎ and Δ𝐼𝐷/𝐼𝐷 were evaluated to compare and explore the differences 

between linear and saturation modes of operation. It was found that the mean 𝐼𝐷,𝑆𝐴𝑇 is a factor 

of 4.8 higher than 𝐼𝐷,𝐿𝐼𝑁 and Δ𝐼𝐷,𝑆𝐴𝑇 has a wider statistical spread along the x-axis. Δ𝐼𝐷/𝐼𝐷 and 

Δ𝑉𝑡ℎ under linear and saturation were projected to multiple 𝜎 based on extracted impact per 

trap. The impact of linear and saturation operation on Δ𝐼𝐷/𝐼𝐷 and Δ𝑉𝑡ℎ at different standard 

deviations was compared their differences were shown to be substantial at 5𝜎. It is concluded 

that linear and saturation mode measurements must be modelled separately, as the properties 

of RTN under saturation conditions cannot be inferred from the properties of RTN under linear 

conditions. Furthermore, based on the results presented in this work, the impact per trap 

distribution for Δ𝐼𝐷/𝐼𝐷  is found to follow a Log-normal distribution, unlike Δ𝑉𝑡ℎ , which 

follows a GEV distribution. However, both Δ𝐼𝐷/𝐼𝐷 and Δ𝑉𝑡ℎ kinetics follow a Log-uniform 

distribution. 

8.2 Future Works 
The new methodologies presented in this work have opened up many areas of potential further 

work for RTN and degradation modelling. One basic improvement that can be made is to 

increase the sampling rate of RTN datapoint collection. The current measurement setup uses 

1 MSample/s for RTN current fluctuation, 𝐼𝐷, sampling for a 10-sec time window. This limits 

the fastest trap the measurement setup can detect. 1 µs per data point means that the fastest 

capture or emission event that can be detected is ~1 µs, but it is well known that the switching 

behaviour of fast traps can be less than 1 µs. However, the trade-off of measuring with a faster 

sampling rate is a large number of data points; having very large amounts of output data results 

in impractically slow analysis. 

The accuracy of the RTN integral model can be further improved by applying RTN data from 

various unexplored measurement conditions. RTN parameters at different conditions, such as 

different bias voltages and temperatures, can be collected to find the relevant dependencies. 

These findings can then be included in the model to improve prediction accuracy across the 

bias and temperature space.  
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The capability of the integral model can be further tested, especially on arbitrary periodic 

workload data, which were not measured in this project. It can be done by performing RTN 

measurements under arbitrary workload, followed by modelling the collected data with the 

integral model, to find out if the integral model is applicable to the RTN under arbitrary 

periodic workloads. 

Fully implementing a model of RTN impact into circuit simulation would be a major milestone, 

which the work presented here has made significant progress towards. A 6T SRAM circuit 

would be a prime example of a real circuit where this modelling could be demonstrated, since 

a 6T SRAM is formed by both nMOSFET and pMOSFET and the transistors can operate under 

both saturation and linear operation regions. Measurements of RTN should be taken following 

the integral methodology to extract the key parameters under saturation and linear operation, 

then applied to each of the transistors in 6T SRAM. The RTN impact can be explored in a few 

aspects, such as Static Read/Write Margin or Dynamic Read/Write Margin.  

The ideal extension of this work would be to integrate the RTN integral methodology with both 

as-fabricated device-to-device variation (time-zero DDV) models and other time-dependent 

variation models. The time-zero DDV can originate from a number of sources, such as line-

edge roughness and gate-work function variation. Time-dependent variation can originate from 

device ageing, including NBTI, PBTI, and HCA, etc. A fully integrated degradation model up 

to industrial standards could provide circuit designers with an estimation of different 

degradation mechanisms to evaluate designed circuits in terms of reliability and performance.
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APPENDIX: 

Matlab Commands used in the methodology: 

Commands Function 

input() Request User Input 

mle() Maximum Likelihood Estimation: mle(data, pdf equation, start 

value, Lower Boundary, Upper Boundary) 

integral() integral(Equation, Lower Boundary, Upper Boundary, 

Absolute Tolerance, Relative Tolerance)  

poissppdf() Poisson Distribution 

lognpdf / logncdf Lognormal Distribution: PDF / CDF 

gevpdf / gevcdf GEV Distribution: PDF / CDF 

Inputs 

Variables Function 

verify User’s inputs will be saved in ‘Verify’ automatically and 

carried forward to distribution script.  

custpdf / custcdf Corresponding PDF and CDF file for probability distribution. 

lower / upper Lower and upper boundaries of MLE Fitting. 

startval Start value that user has inputted. 

param MLE estimation function with return of MLE fitted parameters. 

parameters Parameters for Probability Calculation (User Inputs) 

output Output: calculated CDF values 
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Appendix A1 Matlab-Coding for the Inputs. 

 

 

Appendix A2 Matlab-Coding for the Distribution Selections. 
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Probability Calculation: Eaxponential | Lognormal | GEV 

Variables Function 

derlang / derlang_CDF Erlang Distribution (Convolution of Exponential Distribution) 

donorS0 / donorL0 Difference of Exponential Distribution  

ANOF Numerical Integration Equation for Acceptor and Donors 

A Table for Numerical Equation  

AA Transform ‘A’ into a single array  

fsum Summation of array ‘AA’ 

ADT Convolution of Δ𝑉𝑡ℎ𝑅𝑇𝑁 and Δ𝑉𝑡ℎ𝑇ℎ𝑒𝑟𝑚𝑎𝑙 

A’n’ Numerical Equation for Acceptor Traps (A1, A2…A12) 

D’n’ Numerical Equation for Donor Traps (D1, D2 … D12) 

A’n’D’n’ Numerical Equation for Acceptor & Donor Traps (A1D1, 

A1D2...A12D12) 

 

The current version has the numerical equation up to 12 acceptor and 12 donor traps (A12D12), 

which can estimate up to the average number of traps, 𝑁𝐴 & 𝑁𝐷 of 4 traps. For a higher average 

number of traps, numerical equation for ‘n’ numbers of acceptor and donor traps must be added 

manually by user.  

Derivation of Equation (4.4): 

x and y are two independent random variables with probability distribution functions of pdfX 

and pdfY, respectively. If z = x + y, to have a z for a given x requires y to be y = z - x. As the 

probability for x and y = z - x to occur are pdfx(x) and pdfy(z - x), respectively, the probability 

for them to occur simultaneously will be the product of pdfx(x) and pdfy(z - x). Since z requires 

their simultaneous occurrence, the probability for z to occur once, pdf1(z), will be,    

𝑝𝑑𝑓1(𝑧) = 𝑝𝑑𝑓𝑥(𝑥)𝑝𝑑𝑓𝑦(𝑧 − 𝑥)  

We can have the same z for different x, so long as y = z - x. As a result, z can occur multiple 

times for different x and y combinations. If x can vary from -∞ to ∞, the summation of 

probability for z to occur in this range of x will be,  
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𝑝𝑑𝑓(𝑧) = ∫ 𝑝𝑑𝑓𝑥(𝑥)𝑝𝑑𝑓𝑦(𝑧 − 𝑥)𝑑𝑥
∞

−∞

 

By definition [100], this is the convolution of x and y. 

Justification of Lower and Upper Boundary for Convolution 

Acceptor:   

𝑝𝑑𝑓(𝑧) = ∫ 𝑝𝑑𝑓𝑥(𝑥)𝑝𝑑𝑓𝑦(𝑧 − 𝑥)𝑑𝑥
∞

−∞
  

Acceptor + Donor:  

𝑝𝑑𝑓(𝑧) = ∫ 𝑝𝑑𝑓𝑥(𝑥)𝑝𝑑𝑓𝑦(𝑥 − 𝑧)𝑑𝑥
∞

−∞
  

Exponential & Lognormal: 𝑝𝑑𝑓𝑥(𝑥) = 0, 𝑖𝑓 𝑥 < 0  

Acceptor:  

𝑧 − 𝑥 > 0 → 𝑧 > 𝑥 

𝑝𝑑𝑓𝑥(𝑥 < 0) = 0 

Let z = Δ𝑉𝑡ℎ and x = 𝛿𝑉𝑡ℎ. 

Lower Boundary: 0, Upper Boundary = Δ𝑉𝑡ℎ. 

Acceptor + Donor: 

𝑥 − 𝑧 > 0 → 𝑥 > 𝑧 

𝑖𝑓 Δ𝑉𝑡ℎ > 0, Lower Boundary = Δ𝑉𝑡ℎ, Upper Boundary = ∞. 

𝑝𝑑𝑓𝑥(𝑥 < 0) = 0 

𝑖𝑓 Δ𝑉𝑡ℎ < 0, Lower Boundary = 0, Upper Boundary = ∞. 

GEV: 𝑝𝑑𝑓𝑥(𝑥) = 0, 𝑖𝑓 𝑥 < 𝑡𝐴 
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Acceptor: 

𝑧 − 𝑥 > 𝑡𝑎 → 𝑧 − 𝑡𝐴 > 𝑥 

𝑝𝑑𝑓𝑥(𝑥 < 𝑡𝐴) = 0 

Lower Boundary = 𝑡𝐴, Upper Boundary = Δ𝑉𝑡ℎ − 𝑡𝐴. 

Acceptor + Donor: 

𝑝𝑑𝑓𝑥(𝑥 < 𝑡𝐴) = 0  

𝑖𝑓 Δ𝑉𝑡ℎ < (𝑡𝐴 − 𝑡𝐷), Lower Boundary = 𝑡𝐴, Upper Boundary = ∞. 

𝑝𝑑𝑓𝑥[(𝑥 − 𝑧) < 𝑡𝐷] = 0 𝑥 − 𝑧 > 𝑡𝐷 → 𝑥 > 𝑧 + 𝑡𝐷 

𝑖𝑓 Δ𝑉𝑡ℎ > (𝑡𝐴 − 𝑡𝐷), Lower Boundary = Δ𝑉𝑡ℎ + 𝑡𝐷, Upper Boundary = ∞. 

Tutorial: 

MLE: 400 devices 

 

Appendix A3 400 Devices: MLE Inputs Example. 

MLE Extracted Parameters: [mu(A) = 0.9, mu(D) = 0.6, N(A) = 2.5, N(D) =1.4] 

Probability Calculation (Parameters from MLE Example Above) 

 

Appendix A4 400 Devices: Probability Calculation Inputs Example. 
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Appendix A5 400 Devices: MLE and Probability Calculation Fitting. 

MLE: 60 devices 

 

Appendix A6 60 Devices: MLE Inputs Example. 

MLE Extracted Parameters: [mu(A) = 0.66, mu(D) = 0.55, N(A) = 0.91, N(D) = 1.1] 

Probability Calculation (Parameters from MLE Example Above) 

 

Appendix A7 60 Devices: Probability Calculation Inputs Example. 
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Appendix A8 60 Devices: MLE and Probability Calculation Fitting. 


