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Abstract 

Cardiovascular disease (CVD) is one of the leading burdens on modern healthcare globally in 

terms of mortality, loss of health and healthcare costs. CVD covers all conditions that affect the 

heart and circulatory systems. Artificial intelligence (AI) and machine learning (ML) are being 

increasingly leveraged to help improve diagnosis, prognosis, treatment, and management of 

CVDs. This thesis aims to develop ML approaches that can generate novel, meaningful insights 

into several aspects of cardiovascular research. First, in Chapter 3 we use convolutional neural 

networks (CNN) to quantify the effect ECG data format has on ML predictive performance, 

through the clinical task of detecting myocardial infarction, providing the first results in 

determining the optimal ECG data format for ML modelling.  

The remaining analysis leverages the unsupervised, probabilistic ML technique generative 

topographic mapping (GTM). The analysis aims to generate 2-dimensional representations of data 

and propose different approaches that can identify large macro-clusters within the reduced 

dimension. Doing this gives an understanding of which patients/participants within a data set are 

clinically similar, along with interpretable visualisations that explain the rationale behind each 

cluster. Chapter 4 contains the first outline of this methodology, developed on a non-

cardiovascular dataset, to demonstrate the generalisability of such a methodology. Through this 

approach, we propose a novel freedom of expression index that provides an understanding of the 

level of restrictions placed on the population of a country. This index is defined by macro clusters 

generated through aggregating the normalised information contained in the GTM reference vector 

outputs. Chapter 5 applies this methodology to generate clinically relevant AF phenotypes for 

specific patient cohorts, from the general and the critical care populations. We propose a new 

methodological approach to achieve this that implements hierarchical clustering, again on the 

GTM reference vector outputs, to generate the phenotypes.  

Finally, Chapters 6 and 7 investigate the athlete’s heart, defined as the physiological changes that 

the heart undergoes due to exercising for prolonged periods. Chapter 6 contains an in-depth 

scoping review, evaluating the current ML applications in athlete’s heart and identifying the gaps 

for future research. Chapter 7 investigates features automatically extracted from ECG recordings 

from elite footballers, cyclists, rugby league players, and ultra runners to further the understanding 

of healthy athlete’s hearts. The methodology in Chapter 5 was further developed here to define a 

novel approach that uses magnification factors to define neighbourhoods in the 2-dimensional 

data representation, to carry out constrained hierarchical clustering on the reference vectors. 
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1. Chapter 1: Background & Introduction 

1.1. Introduction 

Cardiovascular disease (CVD) is a hypernym for conditions that affect the heart and circulatory 

system, for example, congestive heart failure. CVD, in its many forms, is one of the largest 

burdens on modern healthcare globally [1] in terms of mortality, contributions to loss of health 

and healthcare costs [2]. Globally, as of 2021, it is estimated that 32% of all global deaths relate 

to CVD [3], putting the economic burden of CVD across the 27 European Union countries at €282 

billion annually [4], with the projected 2035 figure for the USA being around $1.1 trillion [5]. 

CVD is not just a singular issue however, as people with CVD are more likely to suffer with one 

or more additional chronic diseases, referred to as comorbidities [6,7]. This again poses additional 

challenges as comorbidities can lead to lower quality of life and increased mortality [7]. 

Furthermore, comorbidities may also affect CVD treatment, as the presence of a certain disease 

may limit the effectiveness of treatment plans and clinical practical guidelines [8]. It is therefore 

imperative to diagnose CVD conditions early to maximise the possibility the disease can be 

properly managed with appropriate treatments [3]. Currently, the most effective methods for 

diagnosing CVD involve using invasive methods such as blood tests, and non-invasive methods 

such as electrocardiograms (ECGs), echocardiograms and cardiac magnetic resonance imaging 

(CMRI) [9] individually or as part of a series of tests. Diagnosing CVD is not straightforward 

however due to factors such as the heterogeneity of the diseases [10,11]. 

1.1.1. Machine Learning in Cardiovascular Research 

In the pursuit of improving the speed and accuracy of CVD diagnoses and to further the 

understanding of CVD, the use of artificial intelligence (AI) and machine learning (ML) 

techniques has grown rapidly, as shown in Figure 1. With the constant developments and 

advancements of AI/ML models showing no signs of slowing down, the performance and 

capabilities of these approaches will continue to improve which has led to the sentiment that the 

use of AI in cardiology will not only be beneficial, but inevitable [12,13]. The popular belief for 

future AI usage within a clinical setting will be one that serves to aid medical experts through 

computer-aided decision-making systems, rather than serve as direct replacements [12]. 
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The reach of AI models into the various cardiovascular research areas is widespread. Models 

have been developed using the full spectrum of data available, from routinely collected electronic 

health record data [14] to image and signal data generated from tests such as CMRI [15] and ECG 

recordings [16]. A plethora of techniques have also been employed to model this data from within 

both the supervised and unsupervised learning groups. Several studies also refer to using deep 

learning (DL) techniques.  Techniques that fall under the umbrella of DL can be classified as either 

supervised or unsupervised, with the term deep referring to a model architecture that has many 

layers/parameters [17]. 

Supervised learning techniques are generally employed to tackle problems relating to 

prediction, which in the context of cardiovascular research, relates to tasks such as predicting the 

presence of a particular disease. These techniques have been successfully applied to predicting 

acute myocardial infarction [18],  stroke risk prediction [19], and the prediction and identification 

of risk factors for congenital heart failure [20], to name a few examples. Several projects have 

also passed from theory to practical real-world applications, with a common example being the 

atrial fibrillation (AF) detection algorithms built into many of the current smart watches [21]. This 

is a key step as it is difficult to implement AI in real-world scenarios, especially within healthcare 

[22], so examples like this further emphasise the drive to utilise the power of AI applications. 

Unsupervised learning techniques differ in that they are more generally applied to 

dimensionality reduction and clustering tasks. In the context of cardiovascular research, clustering 

techniques help further the understanding of diseases by providing information about key 

similarities and differences within the data. A common way this is implemented is to identify 
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Figure 1. Growth in the number of AI in CVD publications between 2003 and 2023 
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clinically relevant subgroups within a population of patients with a condition of interest, and then 

highlight the key characteristics of each group, hence providing a deeper understanding of the 

different ways a condition may present itself. This was implemented successfully to characterise 

patients with known coronary artery disease undergoing myocardial perfusion imaging [23] and 

identify novel subgroups in heart failure patients [24]. 

For all the identified benefits that AI and ML bring to cardiovascular research, several 

challenges must be acknowledged and overcome to facilitate successful integration. First, as is 

the case with all ML modelling, is the concern about model overfitting. Overfitting refers to the 

situation whereby an ML model learns too much from the noise present within a data set rather 

than the key underlying relationships. This can result in the model not generalising well to new 

unseen data and lead to a higher-than-expected number of incorrect predictions [25]. This can 

arise in scenarios where a large, complex ML model is trained on a small dataset [26]. Even though 

a concern in every field, there is a particular sensitivity to it within healthcare applications as the 

cost of misclassifications is high, both monetarily and, more importantly, for the clinical outcome 

of the patient. Another key issue ML models face regarding widespread adoption lies in model 

interpretability. Being able to understand how and why a model made a particular decision is vital 

to not only ensuring optimal patient care, but also to building trust in such systems [27]. Linear 

models, such as logistic and linear regression, provide a fully interpretable result as to the rationale 

behind the final decision. As models become more complex, eventually reaching the high level of 

complexity of modern DL models, the sheer number of parameters makes interpreting the result 

extremely difficult. These models are commonly referred to as “black box models”. However, 

more complex models have been shown to perform better in many scenarios and be much more 

versatile as they can be applied to many more varied data formats. This leads to a situation 

whereby when developing ML there is a trade-off between model performance and interpretability 

and the correct decision can be difficult to determine [28]. Therefore, pursuing methodologies that 

provide interpretability is important and should be actively considered during the modelling phase 

of any analysis. Several methods have been proposed to achieve this, such as activation maps that 

highlight relevant areas of the input based on its effect on the output.  

1.1.2. Thesis Scope and Motivation for Clinical Problems 

The key goal of this thesis is to develop and implement ML approaches that can generate 

novel, meaningful insights into several aspects of cardiovascular research. Covering all areas of 

cardiovascular research within one thesis would neither be practical nor very informative, we 

therefore decided to address three specific areas: ECG ML modelling, AF, and athlete’s heart. 

Starting with the ECG ML modelling, as briefly mentioned above ECGs are commonly used in a 
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medical setting to aid in diagnosing CVD. They are also commonly used in ML analysis, with the 

ECG data format used for the analysis commonly being dictated by what was available. We 

consequently aimed to evaluate quantitatively which ECG data format was optimal for ML 

modelling performance. In keeping with wanting to address model interpretability, we also 

qualitatively assess each ECG format using activation maps to provide an understanding of how 

each model learns from the data, along with the pure overall performance. Addressing this will 

provide vital insight to help direct future ML development using ECG data.  

The next clinical area addressed was AF, which has highly benefited from the use of AI and 

the development of AI applications [29]. The prediction of AF, and complications related to AF, 

is generally performed using clinical risk scores however their predictive accuracy is generally 

limited due to several factors such as the inherent complexity of the disease. There has been a 

growth in applications of unsupervised ML approaches that instead aim to understand the inherent 

key characteristics in the data to form clusters of similar patients. AF patients are conventionally 

classified based on the disease sub-types or arrhythmia patterns, which may not be adequate in 

certain situations. Unsupervised ML has therefore been applied to generate more in-depth sub-

groups of AF, known as phenotypes, that can facilitate the development of more personalised 

treatments. The methodologies currently employed to achieve this though are not generally suited 

to modelling complex, non-linear relationships in the data along with other limitations such as 

being less interpretable. We therefore aimed to develop a more robust methodology, based upon 

generative topographic mapping (GTM) (discussed further in Chapter 2), to derive these AF 

phenotypes. This approach would provide advantages such as the ability to handle uncertainty and 

be less sensitive to noise within the data which would lead to more specific patient profiles.  

The final clinical focus of the thesis is the athlete’s heart. The athlete’s heart differs slightly as it 

is not a disease, however the name given to the physiological changes a heart undergoes during 

extreme training regimes, like the ones followed by elite athletes. The problem lies in that the 

physiological changes can mask changes made due to cardiovascular disease, which if left 

undiagnosed can lead to increased risk of adverse cardiac outcomes. Therefore, having reliable 

ways to identify these is crucial to avoid scenes such as those seen in recent years in top sporting 

events, such as the Euro 2020 Football Tournament. The application of ML in the area continues 

to grow, with many approaches leveraging supervised ML. However, these current applications 

are limited in that access to high-quality labelled data is difficult as well as the low prevalence of 

adverse cardiac outcomes being difficult to model. Like with the AF phenotypes, we aimed to 

implement a similar unsupervised approach to instead generate specific groups within a healthy 

athlete’s population to provide a deeper understanding of what different healthy hearts look like. 



 

 

15 

 

1.2. Research Novelty 

This thesis builds upon existing ideas and provides several areas of novelty. This relates to 

both the ML methodologies as well as the application of said methodologies. These novelties are 

listed briefly below: 

• Compared three common ECG data formats and provided the first quantitative answer 

as to what data format is optimal for ML modelling. Additionally, we proved the 

viability of digitising ECGs and using the extracted signals for ML modelling. 

• Produced the “index index”, a novel index that ranks countries based upon the degree 

of censorship their populus faces. Results from this work resulted in a journal 

publication. 

• Outlined a methodological approach to identify and characterise clinically significant 

phenotypes within AF populations, which was successfully applied to two cohorts of 

patients that represented AF in the general and critical care populations. 

• Developed and implemented an end-to-end methodological approach to model 

different clinically relevant groups within a healthy athlete’s heart population.   

1.3. Thesis Overview 

The research conducted as part of this thesis serves to contribute to the overarching theme of 

developing ML models to aid in cardiovascular research. There are many areas and nuances within 

the cardiovascular research field, and as such is reflected by the range of work and specific clinical 

problems addressed as part of the overall analysis. Following on from the introduction, Chapter 

2 outlines the methodologies used or referenced throughout the thesis, ranging from statistical 

tests to complex ML techniques. Chapter 3 then presents the first analysis of the thesis, where 

the optimal data format for ECG modelling is explored. This chapter aims to identify the optimal 

data format choice for predictive modelling, in this case in the context of myocardial infarction 

(MI) prediction, along with providing guidance as to situations where non-optimal data formats 

may be more appropriate. This chapter is the only one of the thesis to leverage supervised ML, 

with the remainder of the analysis using unsupervised ML techniques starting with Chapter 4. 

This chapter presents analysis that investigates the global free expression landscape to create a 

novel index that ranks the level of censorship and restrictions a country places on its populus. 

Even though this topic falls outside the umbrella of cardiovascular research and may appear out 

of place within this thesis, this analysis facilitated the development and validation of a clustering 

methodology and workflow capable of generating novel, impactful outputs. Having this validated 

approach proved crucial as it provided a solid methodological baseline that served as a blueprint 

upon which the methodology for the other analyses was developed from. 
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The research conducted in Chapter 5 shifts its focus back to cardiovascular research, more 

specifically AF. Using the blueprint outlined in Chapter 4, this chapter aims to propose a new 

methodology for identifying clinically relevant AF phenotypes (think of phenotypes as clusters 

for the purposes of intuition). Two AF cohorts were used in this development that represented the 

general and critical care populations. Chapters 6 and 7 focus on a more niche area of 

cardiovascular research in the athlete’s heart. Chapter 6 contains a full and detailed scoping 

review of the area in the context of ML applications. The review aims to present the current state 

of the ML applications in the area and highlight the limitations of the research and the gaps for 

future research. One of the review outcomes was that implementing unsupervised ML could 

provide novel insights into the understanding of the athlete’s heart. The research outlined in 

Chapter 7 therefore aims to achieve this very thing. Again, further extending the methodology 

from chapters 4 and 5, we explored generated athlete clusters based on ECG measurements 

automatically extracted from image ECGs. Lastly, Chapter 8 reflects on the methodologies, 

workflows and results presented throughout the thesis to review the work as a whole and identify 

any potential improvements or limitations.  
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2. Chapter 2: Methodological Approaches 

2.1. Introduction 

The terms AI and ML are used interchangeably, with both seemingly referring to the same 

thing. However, there is a difference: AI aims to create intelligent systems that can simulate human 

intelligence to solve complex problems, automate tasks, and assist in decision-making across 

various domains; whilst ML is a subgroup within AI focused on developing algorithms and 

techniques that can learn from data. ML algorithms consist of a blend of statistical and 

mathematical techniques, which when combined produce a toolbox of methodologies that can be 

applied to the simplest regression tasks or to solve complex non-linear problems. The different 

techniques within ML can be broadly categorised into 4 main categories: supervised, 

unsupervised, semi-supervised and reinforcement learning. These categories indicate how a 

particular methodology learns from data, with each category having its benefits and drawbacks.  

This chapter will cover the different methodologies, ML and otherwise, used within the thesis. 

These techniques were used to develop and evaluate novel approaches for the analysis presented. 

Only supervised and unsupervised learning techniques will be discussed in this chapter as semi-

supervised and reinforcement learning techniques were not used within the thesis. The chapter 

will be organised by first discussing the supervised learning techniques used in the thesis, followed 

by the unsupervised learning methods and finally, the performance and evaluation methods used, 

in addition to the traditional statistical tests implemented. Other methodologies that are mentioned 

in the thesis, even though they may not be used directly, may also be included here for the sake 

of parity, and will be identified accordingly. 

2.2. Supervised Learning Approaches 

2.2.1. Neural Networks 

The modern neural networks (NN) are an ML methodology that can trace its beginnings to the 

development of the perceptron in 1957 [30] which was inspired by the function and structure of 

biological processes that occur in the human brain. There are many types of NNs with varying 

types of architectures such as recurrent neural networks (RNN), convolutional neural networks 

(CNN) and large language models (LLM). These architectures differ in their complexity and 

depth; however, this wide range of model structures means NNs can be used to solve an extensive 

assortment of problems.  

The general form of NNs consists of an input layer, hidden layers, and an output layer, with 

each layer containing a pre-defined set of nodes (or neurons). These nodes take information in, 



 

 

18 

 

apply a mathematical operation to the input, and pass the data to an activation function (𝜑(𝑣)) 

that dictates the nodes’ output. These nodes are connected to each other by learnable weights that 

are updated as the model is trained using a process called backpropagation, allowing the NN to 

learn the key relationships within a given dataset. The input layer, usually fixed at the size of the 

input data, is used to pass data from a dataset to the NN and does not itself carry out any 

computations. The hidden layers of an NN are where the main bulk of the computation occurs. 

There can be as little as one hidden layer with there, in theory, being no limit to the number of 

hidden layers, with the term deep NN (DNN) being the term often used for NNs with many hidden 

layers [31]. However, if too many hidden layers are used this can cause problems such as 

overfitting and computational intractability [32]. The output layer converts the information that 

has been learned by the NN from the final layer to an output in the desired format using an 

appropriate activation function.  

2.2.1.1. Artificial Neural Network (ANN) 

Artificial neural networks (ANN), also referred to as fully connected feed-forward neural 

networks (FCNN) or multi-layer perceptron (MLP), are a simple NN architecture that consist of 

an input layer, that passes through one or more hidden layers and then is finally processed by an 

output layer, as shown in Figure 2. The information is transmitted through the network using the 

function in equation (1): 

𝑦𝑗 = 𝜑 (𝑏𝑗 + ∑ 𝑤𝑗𝑖𝑥𝑖

𝑛

𝑖=1

) (1) 

Where 𝑦𝑗 will be the input to node 𝑗 in the following layer, 𝜑 is the activation function 

(common functions used are sigmoid, tanh and ReLU), 𝑏𝑗 is the bias, 𝑤𝑗𝑖 is the weight of the edge 

connecting nodes 𝑖 (in the previous layer) and 𝑗 (in the following layer), and 𝑥𝑖 is the output of 

node 𝑖 (from the previous layer).  
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2.2.1.2. Convolutional Neural Network (CNN) 

CNNs are a NNs with a specific type of architecture that allow them to be applied to contextual 

datasets. 1-dimensional (1D) and 2-dimensional (2D) CNNs were used within the thesis that were 

applied to time series data (ECG signals) and image data (image ECGs) respectively. However, 

there are also 3-dimensional variants that can be applied to data such as videos. For the purposes 

of conciseness, CNNs will be explained through the lens of a 2D CNN, as the fundamentals apply 

to both 1D and 3D variants. The general CNN architecture consists of 3 main layer types [33] that 

can be grouped into two key parts: a feature learning stage and the prediction stage, as shown in 

Figure 3. The feature learning stage is used to capture the spatial and temporal dependencies 

within the input data. It achieves this by using two types of layer types called convolutional layers 

and the sub-sampling layers. In the convolutional layers, a mathematical operation called a 

convolution is used, which is a special type of linear function that explains the overlap between 

two functions as one function is shifted across another. This is applied in convolution layers by 

passing several learnable filters (also referred to as kernels) along the input to identify key 

elements, such as edges, with each filter output being passed through an activation function and 

combined to form the output of the convolutional layer in the form of feature maps. This is 

implemented using equation (2) [34,35]. 

𝑦𝑗 = 𝜑 (∑ 𝐾𝑖𝑗 ⊗ 𝑥𝑖 + 𝑏𝑗

𝑖

) (2) 

Figure 2. Example of an ANN architecture 
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Where 𝑦𝑗 is the output of the jth convolutional layer, 𝜑 is the activation function, 𝐾𝑖𝑗 ⊗ 𝑥𝑖 

represents the convolution of the filters with the ith input, with 𝑏𝑗 representing the bias. These 

convolution operations allow CNNs to achieve weight sharing [34], which is an inherent benefit 

of CNNs as it reduces the number of parameters in the network and can help improve the 

generalisability of the model by reducing the chance of overfitting [36]. 

The output from the convolutional layer is then passed to the sub-sampling layer, also known 

as the pooling layers, where a down sampling operation is performed. The down sampling 

operation does not affect the number of feature maps; however, it does reduce the dimensionality, 

with the size of the reduction dependant of the kernel that is passed over the feature maps. For 

example, if a 2x2 kernel is used, this will half the dimension of the feature map [33]. Common 

types of pooling operations are to take the max or average values of the section of the map covered 

by the kernel.  

The prediction stage consists of an ANN that takes the output from the feature extraction stage 

and generates the desired output (for instance, scores of the likelihood that the image is part of a 

certain class [33]). The data must first be converted into a suitable form for the NN. This is 

achieved by flattening the output of the feature extraction layer into a 1-dimensional column 

vector. 

 

Figure 3. Example of a CNN architecture 

2.2.1.3. Regularisation methods 

Regularisation is key when training complex networks as it is an efficient way of reducing 

overfitting and improving model performance [37]. Overfitting refers to the situation whereby a 

model learns to represent the training data too closely, resulting in worse performance on new 

data as it can greatly affect the generalisability of the trained model. An example of this is shown 
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in Figure 4. The green line represents a model that has fitted the general relationship in the data, 

whereas the blue line represents a polynomial that has been trained to model the data too closely. 

Whilst there are many methods for implementing regularisation within a NN (e.g. L1 and L2 

regularisation and early stopping), this section will discuss only the two methods implemented 

within models developed as part of the thesis. 

 

Batch Normalisation 

Batch normalisation (BN) refers to the process of normalising the input to each layer for each 

batch during training. This approach has several benefits such as higher learning rates, that speed 

up the training time of the model, and reduces internal covariate shift, which is when there are 

changes within the distributions of internal nodes throughout the course of training [38]. BN 

works by applying the transformation in equation (3) to the input of a layer: 

𝑦𝑖 =
𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2

𝛾 + 𝛽 (3) 

 

Where 𝑦𝑖 is the ith output, 𝑥𝑖 is the ith input, 𝜇𝐵 and 𝜎𝐵
2 are the batch mean and variance 

respectively, and 𝛾 and 𝛽 represent learnable parameters that scale and shift the normalised value 

to ensure the original layer representation remains. 

Figure 4. An example of overfitting. The green line represents the line of best between the 

given data and the blue line represents a high order polynomial fitted to the same data. 
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Dropout 

Dropout is a stochastic regularisation technique that refers to the process of temporarily 

dropping nodes within a NN whilst training randomly with a probability 𝑝. This equates to 

sampling many “thinned networks” from the original architecture, During the testing stage, the 

full NN is used, with the weights of each node being scaled down by the probability 𝑝 a node was 

retained with during training. This is implemented within a NN by modifying slightly the equation 

(1) such that the term 𝑥𝑖 is replaced by equation (4) [39]. 

𝑥�̅� = 𝑟𝑖 ∗ 𝑥𝑖 (4) 

Where 𝑟𝑖 is a vector of elements that have a probability 𝑝 of being 1. This vector is multiplied 

elementwise with 𝑥𝑖 to create the output 𝑥�̅�, which defines which nodes will be included in the 

thinned network. 

2.2.1.4. High-Resolution Class Activation Maps (HiResCAM) 

It is not uncommon for ML models to depend on spurious correlations, relationships between 

two variables erroneously determined to be causal. Gradient based visual techniques are popular 

in helping provide understanding as to how a CNN model makes its predictions to aid in 

developing less biased models [40]. This is achieved by highlighting areas of the input data, via a 

heatmap, that are considered “important”, providing context to the decision along with a visual 

method of evaluating if a model is learning from the correct area of the input. High resolution 

class activation mapping (HiResCAM) is an output level gradient-based method [40] that serves 

as a generalisation of the class activation mapping (CAM) technique [41]. HiResCAM addresses 

issues with other techniques, such as gradient-weighted class activation mapping (Grad-CAM) 

[42], whereby areas deemed as important to a model’s decision-making do not reflect the actual 

locations used for prediction [40]. HiResCAM is calculated using equation (5) which takes the 

form: 

�̃�𝑚
𝐻𝑖𝑅𝑒𝑠𝐶𝐴𝑀 = ∑

𝜕𝑠𝑚

𝜕𝑨𝑓
∗ 𝑨𝑓

𝐹

𝑓=1

 (4) 

Where �̃�𝑚
𝐻𝑖𝑅𝑒𝑠𝐶𝐴𝑀 represents the attention map, 𝑠𝑚 represents the score of the model for class 

𝑚 before it passes through the output activation function, 𝑨𝑓 represents the feature maps produced 

by the final convolutional layer in a CNN, * represents the element-wise multiplication between, 

and 𝐹 represents the feature map dimension. 
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2.3. Unsupervised Learning Approaches 

2.3.1. Clustering 

Clustering is a subbranch of unsupervised learning and refers to methodologies grouping 

together data based on how similar they are, with these groups being known as clusters. These 

methods achieve this by identifying underlying relationships in the data without the need for the 

data to be labelled [43]. Clustering techniques can be generally categorised as falling into one of 

two categories: partitional clustering and hierarchical clustering [44]. Hierarchal clustering 

focuses on creating a hierarchal structure that clusters data together at different levels of 

granularity based on distance between individual or a subset of data. Partitional clustering on the 

other hand refers to the process of splitting data into distinct groups based on minimising some 

criterion function. This can include methods that assign each data point to one cluster only, or 

fuzzy methods that assign each data point a certain association to every clusters [44].  

2.3.1.1.  Ward’s Minimum Variance Method for Agglomerative Hierarchical Clustering 

Agglomerative hierarchical clustering refers to how the hierarchical structure of the data is 

generated. Using this approach, clusters are developed from the bottom up, starting with the 

individual data points essentially being their own cluster. An iterative process is then carried out 

that combines the closest clusters, based on a pre-defined similarity criterion, into a single cluster 

until all data are contained within a singular cluster [44].  

Ward’s minimum variance method [45] is one approach for implementing agglomerative 

hierarchical clustering that combines data into new clusters to minimise the total within-cluster 

variation. For this thesis, the metric used to determine the similarity between clusters is taken to 

be the squared Euclidean distance. 

2.3.1.2.Generative Topographic Mapping (GTM) 

Generative topographic mapping (GTM) [46,47] is an ML algorithm designed for clustering, 

data stratification and visualisation, which has sound foundations in probability theory and 

provides a principled alternative to another popular methodology, the Self-Organising Map 

(SOM) algorithm [48]. Rather than predicting whether two data points should be allocated to the 

same cluster, the GTM predicts the probability of belonging to the same cluster. The GTM 

performs a soft assignment of data to clusters. This is a robust approach that considerably reduces 

the risk of countries being assigned to the wrong clusters. 

The GTM assumes that the observed data is generated through a nonlinear and topology-

preserving mapping from a low-dimensional latent space in ℜ𝔏 onto a manifold embedded in the 
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high-dimensional space, ℜ𝔇, where the observed data resides. The function used to generate this 

embedding takes the form: 

𝐲 = 𝐖Φ(𝐮) (1) 

where 𝐮 is a point in the L-dimensional latent space, 𝐖 is a matrix containing parameters that 

govern the mapping, and Φ consists of S basis functions Φ𝑆, which for the standard GTM are 

radially symmetric Gaussians. If a prior probability distribution of 𝑝(𝑢) is defined for the latent 

space, then the distribution of data 𝐱, for a given 𝐮 and 𝐖, is chosen to be a radially symmetric 

Gaussian centred on 𝐲 = 𝐖Φ(𝐮) having a variance of β−1 so that: 

𝒑(𝐱|𝐮, 𝐖, 𝜷) = (
β

2𝜋
)

𝑫
𝟐

𝑒𝑥𝑝 {−
β

2
‖𝐲 −  𝐱‖𝟐} (2) 

where 𝐲 is as defined in (1). The GTM latent space is constrained to form a uniform discrete 

grid of M centres, analogous to the distribution of SOM units, in the form: 

𝒑(𝑢) =
𝟏

𝑴
∑ δ(𝑢 −  𝑢𝒊) 

𝑴

𝒊=𝟏

 (3) 

Each of these centres is responsible for generating a spherical Gaussian density function in the 

D-dimensional data space. In this sense, the GTM can be understood as a special case of a 

Gaussian mixture model in which each component in the mixture defines the probability of an 

observable data point given a latent centre. Therefore, assuming the observed data points 𝑥𝑛 are 

independent and identically distributed (i.i.d.), the parameter matrix 𝐖 and the inverse variance 

β can be determined by maximising the log-likelihood given by: 

𝐋(𝐖, β|𝐗) = ∑ ln 𝑝(𝑥𝑛|𝐖, 𝜷) 

𝑵

𝒏=𝟏

= ∑ ln {
𝟏

𝑴
∑ 𝑝(𝑥𝑛|𝑢𝑖 , 𝐖, β) 

𝑴

𝒊=𝟏

} 

𝑵

𝒏=𝟏

 (4) 

where 

𝑝(𝑥𝑛|𝑢𝑖 , 𝐖, β) = (
β

2𝜋
)

𝑫
𝟐

𝑒𝑥𝑝 {−
β

2
‖𝑦𝐢  −  𝑥𝒊‖

𝟐} (5) 

In equation (5), 𝑦𝑖 is defined using equation (1) and is a D-dimensional point the manifold 

embedded in the data space for the point 𝑢𝑖 in the latent space. The adaptive parameters of the 

model are optimised using the expectation-maximisation (EM) algorithm. Matrix 𝐖 is updated as 

the solution to the following system of equations: 

Φ𝑇𝐺𝑜𝑙𝑑 Φ𝑊𝑛𝑒𝑤
𝑇  − Φ𝑇𝑅𝑜𝑙𝑑𝑋 =  0 (6) 
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where Φ is a 𝑀 × 𝑆 matrix with elements 𝜙𝑆(𝑢𝑖); 𝑋 is the observed data matrix  𝑁 × 𝐷 matrix 

with elements 𝑥𝑛𝑚; 𝐑 is the matrix of responsibilities that define the probability of the data point 

𝑥𝑛 being generated by the latent point 𝑢𝑖 defined as 𝑅𝑖𝑛 = 𝑝(𝑢𝑖|𝑥𝑛, 𝑊𝑜𝑙𝑑, 𝛽𝑜𝑙𝑑); and 𝐺 is a 

diagonal matrix with elements ∑ 𝑁𝑅𝑖𝑛𝑛=1 . Finally, the β parameter is updated according to the 

following: 

(βnew)−𝟏 =
1

𝑁𝐷
∑ ∑ 𝑅𝑖𝑛‖𝑦𝐢  − 𝑥𝒏‖𝟐

𝑴

𝒊=𝟏

𝑵

𝒏=𝟏

  (7) 

Note that the observed data 𝑋 requires to be normalised before training (e.g. by centring the 

data around zero and scaling the data so that the new standard deviation becomes 1). For further 

details on the calculations, please refer to the original publication [46]. 

The GTM can not only assign data points to clusters but also can visualise them in a cluster 

membership map by projecting the latent centres. The GTM latent space can serve for 

visualisation purposes if its number of dimensions is 1 or 2, to which the mode probability (i.e. 

the highest cluster probability) is used to decide a data’s cluster membership. 

For the trained GTM, each cluster centre 𝒚𝑖, henceforth named as a reference vector, is a 

prototype of the data. Reference maps associated with each of the variables were generated based 

on the reference vector components. These reference maps can be visualised in the form of 

heatmaps, where the high and low values can be used to interpret the relationship between each 

variable and each data cluster. This can provide further information/interpretation about the role 

that each variable used in the model had in defining each cluster. 

2.3.1.3. GTM Magnification Factors 

As GTM maps nodes that lie on a uniform discrete grid in a lower dimensional latent space 

into the higher dimensional data space, regions in the latent space may experience distortions 

when the mapping is optimised to fit the data. Due to the pre-defined uniformity of the latent 

space, the visualisation of the membership map may not exhibit the natural separations present 

within the data space. This problem has been addressed by the creators of GTM by leveraging the 

concept of magnification factors [49]. These magnification factors are evaluated in terms of the 

mapping defined in equation (1) via differential geometry. The full proof and derivation of 

magnification factors can be found in the original publication [49], however, key equations will 

be outlined here to provide an appropriate description for the reader. 
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For a latent space with 2 dimensions, GTM maps an infinitesimal rectangle with area  𝑑𝐴 =

∏ 𝑑𝑥𝑖
𝑖  from the latent space to another infinitesimal rectangle that resides in the data space, 

defined by equation (1), with area 𝑑𝐴′ [50]. The magnification factors are therefore calculated as 

the determinant of the Jacobian of this transformation [51], and is expressed in matrix form as: 

𝑑𝐴′

𝑑𝐴
= 𝑑𝑒𝑡

1
2(𝜳𝑻𝑾𝑻𝑾𝜳) (8) 

Where 𝜳 is a matrix, whose elements are comprised of the partial derivatives of the radial 

basis functions Φ with respect to the grid centres in the latent space, and 𝑾 is the matrix of 

parameters that governs the GTM mapping. Once calculated, the magnification factors can then 

be superimposed onto the membership map visualisation to generate a magnification factor plot. 

By using a grey-scale representation for such plots, it provides a visual representation to the 

amount degree of distortion occurring during the GTM mapping at different areas of the latent 

space, with the extreme shades indicating large or small distortions [50,51]. 

2.4. Performance Evaluation (Metrics and Validation Methods) 

2.4.1. Area Under the Receiver Operating Characteristic Curve (AUC) 

Being able to properly assess the performance of a ML model is crucial to determine the 

usefulness of its output. Model performance is measured using a metric, with different types of 

methods requiring different performance metrics. For example, regression style problems may use 

the mean squared error (MSE) to measure how accurate a prediction was to the actual value with 

the best model producing the lowest MSE. Classification style problems can use measures such 

as accuracy and F1 score. This thesis however employs the commonly used area under the receiver 

operating characteristic curve (AUC) as the metric to evaluate the performance of classification 

models. AUC values range from 0 to 1 where a model that can perfectly separate the classes in 

the data would have an AUC equal to 1 [52].  

2.4.2. K-fold Cross-validation 

Cross-validation is a method of validating the performance of an ML model without an 

external validation dataset. This type of analysis is crucial as it provides an estimation of how the 

model will generalise to new data. For K-fold cross-validation, the training dataset is first split 

into K equal groups (usually performed whereby K = 10). A model is then trained on K-1 groups, 

with the remaining group left out to be used for testing. This process is then iterated K times such 

that each of the K groups is used as a testing set. During each iteration, the performance metric 

used to evaluate the model, which in the context of this thesis would be AUC, is recorded such 
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that after the K iterations, there is a set of K performance metrics. These metrics are then averaged 

to provide an overall model performance [53]. 

2.5. Statistical Tests 

Statistical tests have been used in this thesis to provide an appropriate comparison between 

summary data for various variables. The idea behind using statistical tests is to determine whether 

two (or more) variables are independent from each other, or put another way, whether they are 

statistically different from one another. Several factors need to be accounted for when deciding 

which statistical tests to apply. Some of these factors are the type of data being considered, i.e. if 

the data is continuous or categorical, and the underlying distribution of the data [54].  

2.5.1. Chi-Squared Test 

Pearson’s Chi-Squared Test (𝜒2) is a nonparametric test used to determine the independence 

of two or more categorical variables. 𝜒2 is calculated using equation (7) and (8): 

∑ 𝜒2 =  
(𝑂 − 𝐸)2

𝐸
  (9) 

𝐸 =
𝑀𝑟𝑀𝑐

𝑛
  (10) 

Where 𝜒2 represents the Chi-Squared statistic, 𝑂 represents the observed counts in the data, 

𝐸 represents the expected value calculated by multiplying the row and column marginals, 𝑀𝑟 and  

𝑀𝑐 respectively, and dividing by the total data size 𝑛 [55]. 

2.5.2. Kruskal-Wallis test 

The Kruskal-Wallis test is also a non-parametric test that serves as an alternative to one-way 

analysis of variance, and is a more generalised form of the Mann-Whitney (Wilcoxon rank-sum 

test) that can be applied to two or more independent samples [56]. The Kruskal-Wallis test statistic 

is calculated using equation (9): 

𝑇 = (
12

𝑁(𝑁 + 1)
) + ∑

𝑅𝑖
2

𝑛𝑖
− 3(𝑁 + 1)

𝑘

𝑖=1

  (11) 

Where 𝑇 is the test statistic, 𝑁 is the total dataset size, 𝑛𝑖 represents the size of sample 𝑖, and 

𝑅𝑖 represents the sum of ranks assigned to sample 𝑖. 
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3. Chapter 3: ECG Data Format Comparison 

3.1.Introduction 

The ECG is a simple, non-invasive test used globally to detect numerous heart issues. ECGs 

measure the electrical activity of the heart using electrodes, known as leads, attached to different 

parts of the body. Older ECG machines directly record the electrical signals from each lead onto 

graph paper, which are then stored as physical copies and then manually scanned so they can be 

viewed electronically. With newer machines, signals can be directly recorded and stored 

electronically as portable document format (PDF) files [57]. In some instances, the electrical 

signals from each lead are recorded and stored digitally (as a signal, not as a PDF)[58], yet this is 

rare as the machines that provide the raw digital signals are more expensive and usually research-

based. 

There is an ever-increasing amount of ML research being completed whereby ECG data is 

used to develop models to address a variety of heart conditions [29,59–61]. Models have been 

developed using both digital ECG signals [62] and ECGs in an image format [63]. Image ECGs 

are records that were either physically recorded and scanned or were recorded electronically and 

stored in a PDF format. While it has been reported that analysing ECGs in a digital signal format 

is preferable [64], it is often the case that the choice of format is dictated by the data available. 

Several studies [64–68] focus on solving this problem, providing methods of digitising image 

ECGs by extracting the signals from the image and storing them as a multivariate time series. 

These extracted signals show promise for ML model development [64] but have not yet seen 

widespread adoption. Nevertheless, and to the best of our knowledge, there has been no research 

thus far that confirms a tangible benefit to developing ML models using one ECG data format 

over another. 

To that end, we collated a large dataset of ECGs represented in three different data formats: 

original digital ECG signal recordings (Signal ECGs); the ECGs in an image format (Image 

ECGs); and ECG signals extracted by digitising the Image ECGs (Extracted Signal ECGs). The 

main objective of this chapter therefore is to quantify the effect ECG data format choice has on 

ML model performance in the context of MI prediction, thereby identifying the optimal format. 

In addressing the main objective, we also address an auxiliary objective by validating the 

feasibility of using Extracted Signal ECGs for ML cardiac outcome modelling. 
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3.2.Methods 

3.2.1. Data source 

We selected the PTB-XL database [69] for use in this analysis for several reasons. First, it is, 

to date, the largest open-source ECG dataset available, hosted by PhysioNet [70]. The dataset 

consists of the digital signals for 21,837 ECG records from 18,885 patients, with most records 

being assigned at least one of five main diagnoses (or “superclasses”): Normal, Myocardial 

Infarction, ST/T wave Change, Conduction Disturbance, and Hypertrophy. Each diagnostic 

superclass was assigned based on the written notes in the original ECG report. Each class received 

a likelihood score between 0 and 100, which represented the cardiologist's certainty of the 

diagnosis. The signal data provided within the PTB-XL database represent a 10 second ECG 

recording sampled at two frequencies, 100Hz and 500Hz. For this analysis, the data sampled at 

100Hz was used as it falls within the common frequency range used by modern ECG machines 

[71]. 

3.2.2. Data extraction 

Since 5 diagnostic superclasses are represented in these ECGs, this dataset has led to diverse 

study designs [72,73]. For this analysis, we designed a two-class classification task using only the 

two largest classes within the dataset: normal ECG (NORM) and MI. In this way, we could limit 

any source of variability that would interfere with evaluating the impact the data format has on 

model performance.  

Another consideration was given to the diagnosis likelihoods. To ensure a thorough evaluation 

two subsets of the data were created: The 1st subset, referred to henceforth as the “conservative 

cohort”, only included ECGs where the likelihood score equalled 100; the 2nd subset, referred to 

henceforth as the “speculative cohort”, included all ECGs regardless of the likelihood score. 

Developing models on both data subsets allowed us to add a controlled amount of variability into 

our testing to provide a richer understanding of the optimal data format. 

To provide transparency within our analysis, and allow for straightforward external validation 

and comparable inter-model results, we followed the suggested data splitting as defined in the 

original PTB-XL study [69], which recommends using ECGs assigned to folds 1-8 for model 

training, fold 9 for validation and fold 10 for testing.  

3.2.3. Signal ECG data preparation 

As previously mentioned, each Signal ECG recording within the PTB-XL database contains 

12 signals, ten seconds in length, with each signal representing one of the 12 standard sets of leads 

used in ECG recordings (I, II, III, aVL, aVF, aVR, V1, V2, V3, V4, V5, V6). With the data being 
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sampled at 100Hz, each ten-second recording consists of 1,000 samples, giving a data dimension 

for each Signal ECG sample of 12x1000. 

3.2.4. Image ECG data preparation 

. The Image ECG data was generated manually using the Signal ECG recordings by leveraging 

the “wfdb” and “ecg-plot” Python packages. We formed the Image ECGs so they would resemble 

genuine, commonly found ECG recordings hence providing a realistic understanding of the 

performance ML models can achieve if deployed in a real-world application. To that end, we 

generated two sets of Image ECGs, with each set having different lead arrangements and 

displaying a different amount of the original signal. The first set of Image ECGs (arrangement A) 

arranged the 12 leads in a single column, with the full 10 seconds of data used for each lead (as 

shown in Figure 5b). One Image ECG was created for each set of the 12 lead ECG signals with 

dimensions 1200x1000. The second set (arrangement B) had the 12 leads arranged in a 3x4 grid, 

with 2.5 seconds of the full 10 seconds available used for each lead (see Figure 5c). The 2.5 

seconds used for each lead was also staggered based on the column in which the lead was present 

such that: 

• 0s - 2.5s used for leads I, II and III 

• 2.5s - 5s used for leads aVR, aVL and aVF 

• 5s - 7.5s used for leads V1, V2 and V3 

• 7.5s - 10s used for leads V4, V5 and V6 

One image ECG was created from each set of the 12 lead ECG signals with dimensions 

300x1000. However, to ensure computational tractability for the proposed experiments, the 

images for both formats were reduced prior to model development. The Image ECGs were 

therefore analysed using a dimension of 165x500 and 330x275 for arrangement A and 

arrangement B respectively. 
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3.2.5. Extracted Signal ECG data preparation 

 We followed Fortune et al [66] ECG digitisation algorithm to extract the signals from the 

Image ECGs.  They created an open-source application that allows a user to import an Image 

ECG, manually draw borders around each lead, then extract the ECG signal contained within each 

border and export the signals to a CSV file. The manual nature of this application meant it was 

not feasible for use in our analysis due to the volume of ECGs, as it would take too long and be 

prone to potential human errors. To overcome this, we extended their approach and implemented 

a semi-automatic signal extraction algorithm. Although our approach still requires the border 

positions to be manually set, this is performed only once as the Image ECGs are identical in layout 

and dimensionality. In addition, we added functionality that removed lead labels from the images, 

as they interfered with the extraction algorithm. The 10 second signal contained within the 

arrangement A Image ECGs were then extracted into a 12x1000 array, with the 2.5 second signal 

Figure 5. Displays the same ECG in each of the three different data formats being 

evaluated, for both Image ECG arrangements. (a) Signal ECG data format; (b) Image ECG 

data and Extracted ECG Signal data format for arrangement A; (c) Image ECG data and 

Extracted ECG Signal data format for arrangement B. 
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contained within the arrangement B Image ECGs being extracted into a 12x250 array, with both 

then being exported as a CSV file. Figure 6 provides a flow chart of the extraction process. 

 

3.2.6. ML modelling techniques 

CNNs were used for this analysis due to their ability to be applied to contextual datasets of 

varying forms. Specifically, we utilised different structures to allow for both the 2-D image and 

1-D signal inputs. Other ML methodologies (or even more complex versions of the selected 

methodology) could have been better suited for analysing the different formats being compared. 

However, the use of different methodologies would introduce a source of variation to the 

experiments, which would have detracted away from the direct comparison of the data formats, 

which was the aim of this chapter. Hyperparameter tuning was used to develop the models that 

will be applied to the different data formats. For completeness, each data format passed through 

three rounds of hyperparameter tuning, with each round using a different hyperparameter search 

space method: random search [74]; hyperband [75] and Bayesian optimisation [76]. Random 

search [74] works by selecting random combinations of hyperparameters from a pre-defined 

parameter space to train the model. This process is repeated for a set number of iterations, with 

each model being evaluated to find the combination that generates the best model. The hyperband 

[75] algorithm combines the ideas of random search and another algorithm known as Successive 

Halving [77]. It involves building and training multiple models with random hyperparameters and 

through principled early-stopping, poor-performing models are quickly identified and discarded. 

The remaining models are then trained longer, repeating the process of early stopping and 

discarding, until the single best-performing model remains. In contrast to random search and 

hyperband, Bayesian optimisation [76] works by using Bayesian inference to build a probabilistic 

Figure 6. Detailing the process used to extract the ECG signals from the image ECGs. 
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model of the objective function that is used to guide the hyperparameter search. After each model 

iteration, the Bayesian model is then updated based on the model performance and then 

subsequently used to choose the next set of hyperparameters. 

Two hyperparameter search spaces were defined: one to develop 2-D CNN models to be 

applied to the Image ECGs, and one to develop 1-D CNN models to be applied to both the Signal 

ECG and Extracted Signal ECG data. For the 2-D CNNs applied to the Image ECGs, a 

“convolutional block” was defined that consisted of a 2-D convolutional layer, a ReLU activation 

layer, a batch normalisation layer, and a max pooling layer with a 2x2 pool size. Hyperparameter 

tuning was used here to select the number of filters used within each convolutional layer as well 

as the total number of convolutional blocks contained within the architecture up to a maximum of 

6 (note: the filters selected for each convolutional layer in each convolutional block was done so 

individually). Then a flatten later was applied and hyperparameter tuning was used to select the 

number of hidden dense layers and their associated nodes before being passed to a dropout layer, 

where the dropout rate was also a tuned parameter, and finally to a sigmoid output classification 

layer. 

Like with the 2-D CNN, for the 1-D CNNs used on the Signal ECG and Extracted Signal ECG 

data, a “convolutional block” was defined with changes to make it appropriate for the data type. 

The 1-D convolutional block consisted of a 1-D convolutional layer, ReLU activation layer and a 

batch normalisation layer. Hyperparameter tuning was used here to the number of filters and the 

kernel size within each convolutional layer as well as the total number of convolutional blocks up 

to a maximum of 3. Then a global average pooling layer was used before being passed to hidden 

dense layers, the number and size of which again selected through hyperparameter tuning like in 

the 2-D case, before finally being passed to a dropout layer, where again the dropout rate was 

selected through tuning, and a final sigmoid classification layer. In both the 2-D and 1-D cases, 

the learning rate was also a parameter that was tuned using the hyperparameter tuning method. 

After we identified the best model for each data format, to help interpret the models generated 

we utilised the HiResCAM to visualise what areas of the inputs were considered most important 

by the CNN models when making their predictions. All models were evaluated using the results 

from the testing data split, with the performance metric used throughout being AUC. 

3.3. Results 

3.3.1. Dataset generation 

Applying the criterion set out in the Data Extraction section to the 21,837 ECGs, we were left 

with a total of 11,621 eligible ECGs: 9,083 of which were NORM and 2,538 were MI (21.7% 
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prevalence). The conservative and speculative cohort subsets were then created from the eligible 

ECGs. The conservative cohort contained a total of 8,358 ECGs: 7,017 of which were NORM and 

1,341 are MI (16% prevalence), whilst the speculative cohort contained the full 11,621 ECGs. 

The ECGs were then grouped according to the fold they were assigned in the original PTB-XL 

dataset to generate the training, validation, and testing data splits. The data pre-processing steps 

outlined for the Signal ECGs, Image ECG and Extracted Signal ECGs data formats were then 

applied to generate the final datasets that would be used for the ML model developments. The full 

process is outlined in Figure 7. 

 

3.3.2. Model Comparisons 

Following the aforementioned framework for model development, we trained and tested 

models for both arrangement A and B data. The results of the best-performing models for each 

data format within each cohort are listed in Table 1 and Table 2 for arrangement A and B data 

respectively. Each of the best-performing model architectures are displayed in Figures S1 to S12 

in the supplementary material. Starting with arrangement A, the Signal ECG and Extracted Signal 

ECG formats performed the best, with both also significantly outperforming the Image ECG 

format for both the conservative and speculative cohort tests. Additionally, the Signal ECG and 

Extracted ECG signal formats did not perform significantly differently from each other. Moving 

to the arrangement B data, here the Image ECG format performed the best, significantly 

outperforming the Signal and Extracted Signal ECG formats, in both the conservative and 

speculative cohort tests. Like with the arrangement A data, however, the Signal ECG and 

Figure 7. Flowchart showing how the criteria was applied to the full PTB-XL 

dataset to generate both data cohorts. Values in brackets indicate the prevalence. 
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Extracted ECG signals did not perform significantly differently from one another. Across both 

tests with the arrangement A and B data, we see a drop in performance across all the data formats 

when comparing the conservative cohort and speculative cohort test results. 

Table 1. Displays the modelling results using the arrangement A data. The AUCs of the best 

models trained using each ECG data format for both the conservative and speculative cohort are 

presented 

Arrangement A ECGs 

 Conservative Cohort (AUC [95% CI]) Speculative Cohort (AUC [95% CI]) 

Data 

Format 

Signal ECG 

Data 

Image ECG 

Data 

Extracted 

Signal ECG 

Data 

Signal ECG 

Data 

Image ECG 

Data 

Extracted 

Signal ECG 

Data 

Training 
0.999 

[0.998, 0.999] 

0.998 

[0.998, 0.999] 

0.995 

[0.993, 0.996] 

0.949 

[0.945, 0.953] 

0.918 

[0.913, 0.924] 

0.954 

[0.95, 0.958] 

Validation 
0.962 

[0.951, 0.974] 

0.944 

[0.929, 0.959] 

0.97 

[0.96, 0.981] 

0.921 

[0.906, 0.937] 

0.893 

[0.874, 0.911] 

0.911 

[0.895, 0.928] 

Testing 
0.971 

[0.961, 0.981] 

0.952 

[0.938, 0.966] 

0.974 

[0.965, 0.984] 

0.931 

[0.918, 0.945] 

0.89 

[0.871, 0.908] 

0.919 

[0.903, 0.934] 

 

Table 2. Displays the modelling results using the arrangement B data. The AUCs of the best 

models trained using each ECG data format for both the conservative and speculative cohorts are 

presented. ** The Signal ECG data used matches the same 2.5 seconds of signal used for the 

Extracted Signal ECG data to ensure a relevant comparison 

Arrangement B ECGs 

 Conservative Cohort (AUC [95% CI]) Speculative Cohort (AUC [95% CI]) 

Data 

Format 

Signal ECG 

Data** 

Image ECG 

Data 

Extracted 

Signal ECG 

Data 

Signal ECG 

Data 

Image ECG 

Data 

Extracted 

Signal ECG 

Data 

Training 
0.985 

[0.983, 0.988] 

0.978 

[0.975, 0.981] 

0.979 

[0.976, 0.982] 

0.966 

[0.963, 0.969] 

0.963 

[0.96, 0.967] 

0.951 

[0.947, 0.955] 

Validation 
0.946 

[0.931, 0.961] 

0.933 

[0.916, 0.951] 

0.949 

[0.933, 0.963] 

0.907 

[0.89, 0.924] 

0.900 

[0.882, 0.918] 

0.903 

[0.886, 0.910] 

Testing 
0.938 

[0.921, 0.954] 

0.960 

[0.948, 0.973] 

0.937 

[0.921, 0.953] 

0.886 

[0.867, 0.905] 

0.903 

[0.886, 0.92] 

0.864 

0.843, 0.884] 
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3.3.3. Class activation maps 

We applied HiResCAM to the outputs of the best-performing models for each data format. 

This provided a visual heat map that we overlaid onto the inputted data to analyse the areas 

important to the decision-making of the model. Figures 8 and 9 display the same ECG of a patient 

with MI, represented in the three different formats for both data arrangements, with their 

respective activation maps superimposed on top, for the conservative cohort data. Figures 10 and 

11 display the same ECG of a patient deemed normal, represented in the three different for both 

data arrangements, with the activation maps superimposed on top, this time for the speculative 

cohort data. For Figures 8, 9, 10, and 11, the red sections of the activation map represent regions 

of the input the model deemed most important, with the blue sections representing areas deemed 

less relevant to determining the outcome. 
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Figure 8. Displays the HiResCAM activation maps generated using the three best models 

for each of the data formats in the conservative cohort for arrangement A data. (a) Signal ECG 

data format; (b) Image ECG data format; (c) Extracted ECG data format. 
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Figure 9. Displays the HiResCAM activation maps generated using the three best models for 

each of the data formats in the conservative cohort for arrangement B data. (a) Signal ECG data 

format; (b) Image ECG data format; (c) Extracted ECG data format. 
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Figure 10. Displays the HiResCAM activation maps generated using the three best models for each 

of the data formats in the speculative cohort for arrangement A data. (a) Signal ECG data format; (b) 

Image ECG data format; (c) Extracted ECG data format. 
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3.4. Discussion 

The results highlight the very real presence of ML performance differences between the three 

different data formats, as well as how the data is represented within each format. As expected, 

Signal ECG should be the preferred choice for ML modelling, provided that such a format is 

available. If this is not the case, the decision would depend on the particular needs. Starting with 

arrangement A (10-second ECGs), the Extracted Signal ECG format seems to offer better 

performance results when using either the conservative or speculative cohort tests. Remarkably, 

the performance results of the Extracted Signal ECG were comparable to those of the Signal ECG 

format. This provides key quantifiable evidence that Extracted Signal ECGs are not only feasible 

Figure 11. Displays the HiResCAM activation maps generated using the three best models 

for each of the data formats in the speculative cohort for arrangement B data. (a) Signal ECG 

data format; (b) Image ECG data format; (c) Extracted ECG data format. 
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for ML modelling, but in some situations (such as with arrangement A data), it could be the 

preferred choice. 

However, a drop in performance was observed when arrangement B (2.5-second ECGs) was 

used either with conservative or speculative cohort tests. The performance drop was particularly 

significant when the Extracted Signal ECG format was used, which was outperformed by Image 

ECG models when this arrangement was used. Interestingly, a similar drop in performance was 

observed when the original Signal ECG data was modelled using the same 2.5 seconds. This 

suggests that the drop in performance seen by the Extracted Signal ECG format results from the 

shorter ECG duration, and not because of an inherent issue with the ECG digitisation. 

Overall, models developed using the conservative cohort subset performed better than the 

models developed using the speculative cohort subset. This is an expected result; the added 

uncertainty brought about by using noisier data in the speculative cohort was naturally harder to 

model than in the conservative cohort. Therefore, based on model performance alone, the 

Extracted Signal ECG format would be the preferred choice, should the Image ECG data contain 

10 seconds of data per lead. Should the Image ECG contain less data per lead, then this becomes 

the preferred format. However, there may arise conditions brought on by external factors whereby 

choosing a format with slightly lower performance could yield more meaningful results. 

One such example would be the interpretability of model output using techniques such as 

HiResCAM activation maps. Using the activation maps described in Figures 8 to 11 initially, the 

Image ECG maps highlight general regions of the signal that the model found important, making 

it difficult to precisely ascertain the key information. The maps for both the Signal ECG and 

Extracted Signal ECG data are much clearer, providing specific time points of interest on each 

digital signal that their respective models deemed important. For example, in Figure 8 the regions 

that have been deemed important relate primarily to the onset/upslope of the QRS signal alongside 

the known impact on the ST segment. The early part of the QRS signal is not routinely evaluated 

using conventional interpretation algorithms for MI. This also demonstrates the unique ability of 

the technique to identify new and novel patterns. Using a further example, Figures 12 and 13 

contain the activation maps for a participant where the correct prediction was made for every data 

format to demonstrate the difference in interpretability. All three maps show that similar areas of 

the signal are considered by both the Signal ECG, Extracted Signal ECG, and Image ECG data 

formats. However, the maps associated with the Image ECGs show that the model has considered 

areas in between two signals as very important, implying that the model learning is far less 

intuitive. In contrast, the maps for the Signal ECGs and Extracted Signal ECGs show the models 

focus primarily on the peaks, and more specifically, what sections of the peaks were more 
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important than others. This allows the user to understand clearly what led to the prediction and if 

the correct point of the signal is being considered. 

 

Figure 12. Displays the HiResCAM activation maps generated for an ECG that represents MI, 

whereby the best models for each format all correctly predicted MI. (a) Signal ECG data format; 

(b) Image ECG data format; (c) Extracted ECG data format. 
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Figure 13. Displays the HiResCAM activation maps generated for an ECG that represents MI, 

whereby the best models for each format all correctly predicted MI. (a) Signal ECG data format; 

(b) Image ECG data format; (c) Extracted ECG data format. 

Further examples of situations that would favour the Extracted ECG Signals would be if key 

features from the ECG, such as QRS duration and P wave duration, need to be extracted. 

Extracting these features from the images is difficult, however, previous studies have seen success 

by first digitising the image and then extracting the features [78]. There are also open-source 

Python packages such as “neurokit2” [79] that can automatically detect key points on a digital 

ECG signal. Also, as briefly mentioned in the results section, the dimension of the Image ECGs 

had to be manually reduced to allow for ML modelling to be carried out. This highlights an 

inherent benefit of the Extracted Signal ECGs again over the Image ECGs in that they are 

computationally more efficient to process and model when compared to the images when working 

with large datasets, as was the case in this chapter.  
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One instance which would favour the Image ECG format over the Extracted Signal ECG 

format would be in the event whereby the recorded ECG was noisy. The ECG digitisation 

algorithm used in this chapter works by removing background noise within the image, isolating 

the ECG recording within a desired window which will be converted to a digital signal. For this 

analysis, as the Image ECGs were generated manually using the Signal ECG data, we intentionally 

cultivated a perfect scenario whereby we had fully clean Image ECGs. An Image ECG could be 

considered noisy if there is a significant overlap between the recordings of different leads, or a on 

the image such as a coffee stain (should the Image ECG be a scanned version of a physical copy). 

The presence of these could lead to the digitisation algorithm failing to extract the signal and 

therefore excluding that ECG from any further analysis. This favours the Image ECG format as it 

allows for the ECG to be analysed regardless of the state of the original image, reducing the chance 

data is removed. 

The application of AI and ML in the utilisation of the 12-lead ECG has evolved in tandem 

with technological developments. Recent studies have demonstrated the role of AI on the ECG 

being able to predict disease that is not achievable through routine individual scrutiny [80] and 

hence there is a significant immediate and long-term clinical impact. The 12-lead ECG is the 

fundamental and primary cardiac investigation for patients presenting with symptoms and hence 

the ability of AI / ML technology to provide insight into structural and functional cardiac 

adaptation will improve patient diagnosis, management and reduce downstream costs secondary 

to a reduction in unnecessary investigations.  It is apparent from our analysis that to build up large 

datasets with sufficient accuracy the signal format is important and should be considered when 

developing ML studies going forward. That aside, as hospital environments continue a transition 

to a full digital set-up the likelihood of securing widespread Signal ECGs is unlikely. Our data 

highlights the importance of digitally storing PDFs and refining methodology to better handle 

these image files and subsequently allowing more robust predictive models. 

3.5. Chapter conclusion 

The analysis conducted in this chapter provides an evaluation of three different data formats 

that can feasibly be used to analyse ECGs. Signal ECGs, Image ECGs and Extracted Signal ECGs 

were all compared using two different ECG arrangements and two data subsets: the first contained 

best-case scenario data with a clear separation between the classes; the second had more noise 

and less confident diagnoses. The results of the analysis showed that should the Signal ECG data 

be available, then this should always be used for any ML modelling. In the absence of data in this 

format, we showed that the optimal data regarding model performance is dependent on the way 

the data is arranged within the ECG: If the Image ECG contains 10 seconds of data for each lead, 
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digitising the signal and using the Extracted Signal ECGs is optimal; if the Image ECG contains 

2.5 seconds of data per lead, then using the Image ECG data is optimal for ML performance. As 

highlighted in the discussion, the decision may become situational with certain criteria, such as 

noisy Image ECGs, meaning one is more effective than the other. What these results also speak to 

is the viability of extracting digital ECG signals from image ECGs and using those for ML model 

development. However, further analyses will be needed to investigate how factors such as changes 

in image resolution and in extraction algorithms influence model performance.  
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4. Chapter 4: GTM Methodology and Workflow Development – 

Mapping the global free expression landscape using machine 

learning 

The methodology outlined in this chapter plays a key role in the story of the thesis from a 

methodological standpoint, as it served as the blueprint upon which the analysis in later chapters 

was based. The reader may find it unusual that the methodology was developed on a non-clinical 

application, however its inclusion is justified in so far as the primary focus of this thesis is 

methodological development, with the described methodology being applied to address clinical 

problems within cardiovascular research. The research presented in this chapter was instrumental 

as it served as the main influencing factor in deciding the methodological development path taken 

for all subsequent unsupervised learning carried out as part of this PhD project. This means its 

inclusion is vital to ensure that this thesis demonstrates appropriately that the methodology is 

properly validated. The work presented in this chapter resulted in a publication [81], which serves 

as a demonstration of the versatility and generalisability of the proposed methodology and further 

speaks to the robustness of the approach. 

4.1. Introduction 

In an increasingly atomised, polarised world, the free expression of ideas is more important 

than ever. But while the need for free expression has increased, so have the forces which seek to 

suppress it and the technologies which enable its suppression. Freedom of expression is among 

the core human rights set out in the United Nations (UN) Universal Declaration of Human Rights 

[82], the International Covenant on Civil and Political Rights (1966; entered into force in 1976) 

and subsequent treaties, including those in Europe, the Americas and Africa, for example, the 

European Convention on Human Rights [83], entry into force in 1953; the American Convention 

on Human Rights [84], entry into force in 1978; and the African Charter on Human and Peoples’ 

Rights [85]; entry into force in 1986. 

These global mechanisms uphold the principle that "everyone has the right to freedom of 

expression." Unfortunately, in today’s world, this right is facing numerous challenges. Rapid 

advancements in technology have provided new avenues for those who wish to suppress freedom 

of expression. Censorship and surveillance tools are becoming more sophisticated and readily 

available, enabling governments and other entities to monitor and control the flow of information. 

Censorship continues to operate across the globe, using several diverse tactics and drivers, 

including state laws or practices that restrict expression beyond what is included in international 
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instruments [86]. Examples of this include the mixture of technological and legislative 

mechanisms deployed by the Chinese state to block access to online resources (colloquially called 

the Great Firewall of China - see for example [87]), the reduction of civil space for protests and 

other acts of civic participation, and the use of strategic lawsuits against public participation 

(SLAPPs)1 [88] to prevent journalists and other public watchdogs from being able to report in the 

public interest. 

With the entry into force of such standards, the UN and regional inter-governmental 

organisations established bodies or mechanisms to assess state adherence to the standards. This 

required techniques of assessment and measurement which had been developed by scholars 

starting in the 1930s with Greer’s study into the Reign of Terror in revolutionary France [89] and 

which have become increasingly sophisticated in terms of data sources and statistical techniques 

– see, for example, [90–92]. The purpose of measuring human rights is to assess the extent to 

which these rights are upheld in theory, manifested in reality, and advanced through effective 

policies [93]. By conducting such measurements, we aim to identify areas where human rights are 

being violated or neglected so that appropriate solutions to address these challenges can be 

developed. 

This research introduces the Index Index, an innovative analysis of global censorship 

practices, and proposes a novel methodological approach to calculate it. Specifically, the Index 

Index focuses on academic, digital, and media/press freedom. It uses Generative Topographic 

Mapping (GTM, [46,47]), an unsupervised Machine Learning algorithm, to cluster and visualise 

countries in terms of their levels of freedom of expression. By utilizing established and robust 

indices and metrics, this research offers a comprehensive and nuanced assessment of the 

international landscape of free expression. It sheds light on the various threats that impede, curtail, 

suppress, or manipulate the public’s right to access information, express themselves, and engage 

with others 2. Unlike recent studies that solely rely on data related to internet accessibility, such 

as [94–96], the Index Index integrates a wide range of existing analyses and expertise to provide 

a comprehensive ranking of the free expression environment in all countries or nations where 

sufficient data is available. 

 
1 SLAPPs are vexatious lawsuits targeting journalists and other whistleblowers whereby 

powerful individuals and institutions use civil lawsuits to intimidate and financially threaten 

critics [7]. 

2 For the purpose of measurement, the term 'country' refers to a state or political entity, 

including Kosovo, Palestine, and Taiwan, which are not recognized as states by the UN. 
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4.2. Methods 

4.2.1. Data and resources that informed the development of the Index Index 

As this is an index of indices, the raw data comprises existing indices and metrics developed 

by a range of different national and international bodies such as research institutes, as well as 

international non-governmental organisations. Each pre-existing index has been selected based on 

several criteria, including its usage and reference by the wider community of practitioners, the 

robustness of its methodology, and its geographic scope. Individually, they are the product of 

internal testing and iterative development and as a result are used in a range of public advocacy 

and campaigning initiatives, including being referenced by international bodies, such as European 

institutions and UN bodies. For instance, Varieties of Democracy (V-Dem) is funded by, among 

others, the European Commission, the Swedish Ministry of Foreign Affairs and the World Bank 

[97]; the World Press Freedom Index is cited by the European Parliament in its Normandy Index 

2023 [98]; and the Committee to Protect Journalists has submitted evidence to the UN Special 

Rapporteur on the promotion and protection of the right to freedom of opinion and expression 

[99]. 

We selected these indices on account of their robustness and completeness. The datasets were 

collated after in-depth conversations between the project team. Several other sources were 

explored and ultimately discounted. Overall, the Index Index models 178 variables, which are 

broken down into the following freedom categories: 

• Academic - 14 

• Digital - 50 

• Media/Press - 114 

Further details about the selected and discounted data sources are provided below, with the 

full list of variables used for modelling detailed in Table S1 in the Supplementary Materials. 

4.2.1.1. V-Dem (Varieties of Democracy) 

The Varieties of Democracy (V-Dem) Research Project [100] offers a nuanced and extensive 

analysis of democratisation, examining various dimensions and subcomponents. The data forming 

the foundation of V-Dem’s component variables are collected through surveys administered to a 

network of over 3,500 Country Experts. The project aims to ensure a minimum of five experts for 

each indicator per country, facilitating a robust and diverse perspective. By employing a wide 

range of indicators and involving a substantial number of experts, V-Dem strives to provide a 

comprehensive understanding of democracy’s complexities and variations across countries. 
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The V-Dem database offers a comprehensive range of democratic measures, surpassing the scope 

of the Index Index. Recognising this, the research team carefully extracted and isolated 171 

variables from the extensive dataset that held significance for the model. These variables 

encompassed not only the three freedoms emphasised in the Index Index (academic, digital, and 

media/press freedom) but also encompassed broader contextual concerns, such as corruption and 

accountability measures, alongside various civil liberties. 

4.2.1.2. World Press Freedom Index 

The World Press Freedom Index, compiled by Reporters Without Borders (RSF), serves the 

purpose of comparing the level of press freedom across 180 countries and territories [101]. It 

provides a snapshot of the press freedom situation in these locations during the preceding calendar 

year prior to its publication. The Index utilises a scoring system ranging from 0 to 100 to rank 

each country or territory. This score is derived from two key components: a quantitative 

assessment of abuses against journalists and media outlets, and a qualitative analysis of the overall 

situation within each country or territory. 

To obtain the qualitative analysis, RSF distributes a questionnaire in 23 languages to press 

freedom specialists, including journalists, researchers, academics, and human rights defenders. 

Following the calculation of scores, the countries and territories are arranged in an ordinal list 

from 1 to 180, with 1 indicating the highest level of press freedom. It is this raw score calculated 

for each country that we have utilised as a variable in our model’s development. 

4.2.1.3. Committee to Protect Journalists (CPJ) 

The Committee to Protect Journalists (CPJ) collects comprehensive data [102] on the 

imprisonment, killing, and disappearance of journalists. The CPJ's annual imprisonment census 

provides a snapshot of incarcerated journalists each year. However, this census does not account 

for the numerous journalists who are imprisoned and released throughout the year. Additionally, 

journalists who go missing or are abducted by non-state entities such as criminal gangs or militant 

groups are not included in the prison census. 

Since 1992, the CPJ has maintained detailed records of journalist fatalities. Their researchers 

independently investigate and verify the circumstances surrounding each death. The CPJ’s 

database encompasses both "confirmed" cases, where it is evident that a journalist was murdered 

as a direct reprisal for their work, during combat or crossfire, or while undertaking a hazardous 

assignment, as well as "unconfirmed" cases that involve unclear motives but may have a potential 

link to journalism. Ongoing research allows for the reclassification of cases. It is important to note 
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that while both "confirmed" and "unconfirmed" cases are included in the CPJ’s database, targeted 

statistical analyses only include the "confirmed" cases. 

For the development of our model, we extracted the following information from the CPJ 

database for each country: the number of journalists and media workers killed, the number of 

journalists imprisoned, and the number of missing journalists. These variables serve as valuable 

inputs in our model development process. 

4.2.1.4. UNESCO Observatory of Killed Journalists 

The Observatory of Killed Journalists, managed by UNESCO [103], serves as a visual 

representation of the institution’s strategic commitment to combating impunity and addressing 

crimes against journalists. This initiative aligns with the General Conference 36 C/Resolution 53 

(2011), which urges UNESCO to collaborate with other United Nations bodies in monitoring the 

state of press freedom and the safety of journalists. In order to provide comprehensive insights, 

the chapter analyses information supplied by the UN Member States, which is then categorised as 

either Resolved or Ongoing/Unresolved, shedding light on the progress of investigations into 

journalist deaths. To conduct this analysis, we extracted data from the Observatory, specifically 

the number of journalists killed in each country, which was used as a variable in our model. 

4.2.1.5. Cost of Shutdown (COST) 

COST [104], developed by NetBlocks, is an invaluable data-driven online service that 

empowers a wide range of users, including journalists, researchers, advocates, policymakers, 

businesses, and others, to swiftly and effortlessly generate approximate assessments of the 

economic impact caused by Internet disruptions. By leveraging established methodologies 

pioneered by esteemed institutions such as the Brookings Institution and the Collaboration on 

International ICT Policy for East and Southern Africa (CIPESA), COST accurately gauges the 

potential economic consequences of internet shutdowns, mobile data blackouts, and social media 

restrictions. This powerful tool utilises publicly available economic indicators that pertain to the 

global digital economy. We utilised the COST platform to construct an additional variable for 

model development, specifically capturing the hourly cost of shutdown in each country, expressed 

in USD. 

4.2.1.6. Global Cybersecurity Index 

The Global Cybersecurity Index (GCI) [105] is a reputable source that evaluates countries' 

dedication to cybersecurity on a global scale, with the aim of raising awareness about the 

significance and diverse aspects of the issue. Given that cybersecurity encompasses a wide range 

of applications spanning multiple industries and sectors, each country’s level of development and 
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engagement is assessed across five pillars: Legal Measures, Technical Measures, Organisational 

Measures, Capacity Development, and Cooperation. These pillars are then combined to form an 

overall score. 

The GCI adopts a multi-stakeholder approach and relies on the expertise and capabilities of 

various organisations. Its objectives include enhancing the survey’s quality, fostering international 

cooperation, and promoting knowledge exchange in the field of cybersecurity. The initiative is 

built upon the foundation and framework provided by the ITU Global Cybersecurity Agenda 

(GCA). To develop the model, the GCI score for each country were utilised as a variable. 

4.2.2. Data not included in the development of the Index Index 

The model does not include metrics which have no immediate bearing on, or a proxy indication 

of, issues relating to free expression. We nevertheless provide socio-economic data and broader 

contextual information that can be viewed when viewing data from a specific country on the 

online map that accompanies this project, in a hover-over box that appears while viewing specific 

country data. The interactive map is included in the Supplementary Materials. 

We included this information to provide broadly corollary metrics that immediately show 

texture and depth to the metrics featured. This first revived iteration of the Index Index is provided 

alongside contextual data on the UN Human Development Index (HDI), the Gross Domestic 

Product (GDP) per capita as compiled by the UN, and the Population data as compiled by the 

United Nations Population Fund (UNFPA), enabling the reader to explore links - if any - between 

this data and the core metrics. 

4.2.3. A note on the political entities included 

Our modelling and visualisation are influenced by the indices comprising the dataset. This 

influence becomes evident through the inclusion and exclusion of various countries and political 

entities in the Index Index. The Index Index incorporates both UN and non-UN member states, 

countries with observer status, and other nations or regions that may be autonomous parts of other 

states. For example, Kosovo and Taiwan are included in the Index Index despite not being 

recognized as UN member states, while Greenland, an autonomous part of Denmark, lacks 

available data. 

Moreover, the rankings of the British Overseas Territories, which are autonomous parts of the 

UK, and the overseas parts of France and the Netherlands, are attributed to their respective states. 

However, it is important to note that the nature of these overseas territories varies significantly. 

Unfortunately, due to gaps in the datasets, the Index Index lacks data for several countries, 

including (but not limited to) Liberia, Papua New Guinea, Federated States of Micronesia, 
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Kiribati, Palau, Tonga, Tuvalu, Samoa, Dominica, Saint Kitts and Nevis, Saint Lucia, Saint 

Vincent and the Grenadines, Grenada, Andorra, Liechtenstein, San Marino, and the Holy See. 

4.2.4. Index Index Ranking 

The data was modelled using GTM to generate data clusters whereby each cluster represented 

at least one country that shared similar characteristics. A ranking was then generated by leveraging 

aggregated, normalised information from the reference maps that represent the relevant extracted 

variables. In this sense, a country will be given a score, which is calculated using equation (10): 

𝑆𝑐𝑜𝑟𝑒𝑛 = ∑ 𝑅𝑖𝑛�̃�𝑖

𝑴

𝒊=𝟏

 (10) 

Where �̃�𝑖 is the normalised reference vector or centre 𝒚𝑖. Countries are ranked according to 

their calculated score. This ranking is not a direct ranking of countries, but instead, it is a ranking 

of the different country clusters that were automatically identified from the data using GTM. This 

means that in a single position of the ranking, we could have more than one country sharing such 

a position. It should be noted that this score will be directly affected by the value chosen for the 

𝑴 latent nodes. Selecting a value for 𝑴 that is too small may may lead to non-similar counties 

being cluster together, whereas if 𝑴 is too large then GTM may separate similar countries into 

separate clusters. In either case, this emphasises the need to choose an appropriate value for 𝑴 to 

optimise the ability of the GTM model to capture the underlying relationships in the data and 

generate meaningful country clusters. The developed ranking was then divided into 10 groups 

according to its distribution of scores to form the 10 deciles of the scale of free expression, where 

lower deciles represent higher levels of free expression and higher deciles represent lower levels. 

4.3. Results 

4.3.1. Country cluster visualisation 

The visualisation in Figure 14 (representing the cluster membership map in the GTM latent 

space of the developed model) shows a representation of a different kind of world map, where 

every circle represents a cluster, and each cluster represents one or more countries. Following the 

original GTM publication [46], we set the number of clusters to 100 (arranged in a grid of 

10 × 10) and the number of basis functions to 16 (arranged in a grid of 4 × 4). The GTM 

regularisation term was optimised, and the one resulting in the lowest error (negative log-

likelihood) was selected (Table S2, Supplementary Material). As discussed earlier, the GTM 

predicted the probability of countries belonging to the same clusters in the below visualisation. 

The top-left-hand side of the visualisation represents the highest deciles of free expression, while 

the top right represents the lowest. This visualisation of the data is intended to help identify 
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commonalities or differences and related factors to better understand the changing free expression 

landscape. Figure 14 shows the countries allocated to a selection of clusters. The full allocation 

of countries per cluster can be found in the Figures S14 and S15 in the supplementary material. 

 

Figure 14. Country clustering visualisation (cluster membership map) colour-coded by the 
cluster ranking. The countries allocated to a selection of clusters are displayed. Cluster 

separation indicates similarity (i.e. closer clusters are more similar than further clusters). 

4.3.2. Visualisation of the reference maps 

A selection of reference maps is presented in Figure 15, showing the distribution of the clusters 

(and therefore countries) against the selected variables. They are organised by IoC freedom index 

areas: academic, media and digital freedom. The reference maps corresponding to all the variables 

used can be found in the Supplementary Materials, Figures S15 to S20. 
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4.3.3. Global ranking of countries/nations – deciles 

The Index Index groups states’ free expression ranking into ten categories - deciles - intended 

to convey the complexity and nuance of the global practice of censorship, see Table 3. The deciles 

ensure the eventual ranking does not erase distinctions between countries/nations, but also 

presents a clear picture of the global free expression environment. A world map representation 

showing the global ranking of censorship by deciles is shown in Figure 16, with the highest deciles 

of free expression represented in green (lowest values), and the lowest levels in red (highest 

values). The rankings per area of freedom (academic, digital and media) can be found in Figures 

S21 to S23 and Table S3 to S5 in the Supplementary Materials. 

Figure 15. Selected reference maps for 15 of the variables used to produce the GTM model. 
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Table 3. Global ranking of free expression by deciles. Lower ranks represent higher levels of 

free expression while higher ranks represent lower levels of freedom. Note: The countries within 

each grouping are ranked alphabetically and do not present a ranking within the groupings.  

Countries and nations Global rank 

Austria, Belgium, Canada, Denmark, Estonia, Finland, Germany, Iceland, Ireland, Latvia, 

Lithuania, Luxembourg, Netherlands, New Zealand, Norway, Sweden, Switzerland 
1 

Australia, Barbados, Cape Verde, Chile, Costa Rica, Cyprus, Dominican Republic, 

France, Israel, Italy, Jamaica, Japan, Malta, Portugal, Slovakia, Spain, Trinidad and 

Tobago, Uruguay 

2 

Czechia, Greece, Moldova, Namibia, Panama, Romania, South Africa, South Korea, 

Suriname, Taiwan, Tunisia, United Kingdom, United States of America, Vanuatu 
3 

Argentina, Armenia, Benin, Botswana, Bulgaria, Croatia, Georgia, Ghana, Guyana, 

Hungary, Kosovo, Mongolia, Montenegro, Peru, Poland, Sao Tome and Principe, 

Senegal, Seychelles, Slovenia, Solomon Islands, Timor-Leste 

4 

Albania, Ecuador, Guatemala, Guinea-Bissau, Honduras, Madagascar, Malawi, Maldives, 

Mauritius, Mozambique, Niger, Nigeria, Paraguay, Sierra Leone, The Gambia 
5 

Angola, Bhutan, Bolivia, Bosnia and Herzegovina, Brazil, Indonesia, Ivory Coast, Jordan, 

Kenya, Kyrgyzstan, Lesotho, Mexico, Nepal, North Macedonia, Philippines, Serbia, 

Singapore 

6 

Burkina Faso, Central African Republic, Colombia, Comoros, Democratic Republic of 

the Congo, El Salvador, Fiji, Gabon, Haiti, India, Kuwait, Lebanon, Malaysia, Mali, 

Morocco, Pakistan, Sri Lanka, Tanzania, Togo, Ukraine, Zambia 

7 

Algeria, Bangladesh, Cameroon, Chad, Djibouti, Ethiopia, Guinea, Iraq, Kazakhstan, 

Libya, Mauritania, Rwanda, Thailand, Uganda, Zimbabwe 
8 

Afghanistan, Azerbaijan, Egypt, Hong Kong, Oman, Palestine, Qatar, Republic of the 

Congo, Russia, Somalia, Sudan, Türkiye, Uzbekistan, Venezuela, Vietnam 
9 

Bahrain, Belarus, Burma/Myanmar, Burundi, Cambodia, China, Cuba, Equatorial Guinea, 

Eritrea, Eswatini, Iran, Laos, Nicaragua, North Korea, Saudi Arabia, South Sudan, Syria, 

Tajikistan, Turkmenistan, United Arab Emirates, Yemen 

10 
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4.4. Discussion 

4.4.1. Creating meaningful representations using GTM 

Due to the challenges of data collection and data representation, there exist high levels of 

uncertainty that could potentially have a negative impact on the modelling process. GTM, being 

a robust probabilistic algorithm, calculates the probability of a cluster being responsible for a 

country while accounting for this uncertainty. In this analysis, the GTM cluster centres or 

prototypes serve as representations of freedom of expression, effectively stratifying the landscape 

of freedom of expression. A crucial property of GTM is the preservation of data topology, 

signifying that similar clusters will be positioned closer together in the latent space. Consequently, 

even if the most probable cluster assigned to a country does not precisely correspond to the actual 

one, it is expected to be closer to the correct one. In contrast, popular clustering techniques such 

as k-means, lacking probabilistic foundations, are not specifically designed to handle such levels 

of uncertainty. 

In addition, GTM is particularly useful for crafting meaningful data representations by 

transforming high-dimensional information into a lower-dimensional space while retaining the 

intrinsic structure of the data. Alternative visualisation algorithms such as t-SNE [106] and UMAP 

[107] have gained popularity for data visualisation through dimensionality reduction. However, 

these techniques do not possess the capability to extract data prototypes in the manner that GTM 

does, which poses a challenge when it comes to stratifying countries based on freedom of 

Figure 16. World map showing the global free expression ranking 
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expression. In contrast, GTM creates a visualisation (the membership map) that captures the 

underlying patterns, relationships, and clusters within the data by mapping data points to these 

prototypes. This process allows for a more comprehensible and interpretable depiction of complex 

data, aiding in knowledge extraction and facilitating insights that might otherwise remain hidden 

in the original high-dimensional space. GTM has found applications in various real-world 

scenarios across different domains. In bioinformatics, it has been used to model protein structures 

and understand their conformational spaces, providing insights into protein folding and function, 

which is crucial for drug design [108], disease understanding [109], and other biomedical 

applications [110–112]. It has also been used to model species distributions and understand 

ecological patterns, e.g., to understand the species composition of a forest to assess biodiversity 

[113], and to study the ecological status of streams [114]. It has also been used in the financial 

sector, e.g., for early identification of business opportunities [115]. These examples highlight the 

versatility of the GTM in addressing real-world challenges across diverse fields. However, to the 

best of our knowledge, GTM has not been used before to study censorship or freedom of 

expression, hence making this a positional article in the application of GTM within this field. 

4.4.2. Interpreting the visualisations (membership and reference maps) 

The country clustering visualisation (membership map) presented in Figure 14 provides 

another way to examine the data. It can then be used to show: i) the details of the individual 

countries within each cluster, indicating that they share very similar characteristics; ii) the location 

of the countries across all clusters, allowing for the representation of a certain degree of similarity 

if they are allocated to neighbouring clusters; and iii) the assigned colour-coded ranking to each 

of the clusters, and therefore to the countries that these clusters represent. 

The reference maps provide further information/interpretation about the role played by each 

variable in the development of the GTM model, with high values representing areas of the maps 

where the variables had a higher influence, and low values representing otherwise. When 

exploring the reference maps of the academic freedom variables from Figure 15, which include 

freedom of academic exchange and dissemination (Figure 15.A), freedom of discussion (Figure 

15.B), and freedom to research and teach (Figure 15.C); we can see that the higher values for 

those variables are on the left-hand side of the reference maps, which coincide with the areas with 

better rankings of freedom (see Figure 14). 

Regarding the media freedom variables, we can also see high values on the left-hand side of 

Figure 15.D and Figure 15.F which represent civil liberties and political civil liberties, 

respectively. In the case of the public sector corruption index (Figure 15.I), we see high values in 

the top right quadrant where the clusters represent countries such as Nicaragua, Yemen, Somalia, 
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and Eswatini, among others. Also in this area, we see high values in the reference map of regime 

corruption (Figure 15.J). 

In the case of the digital freedom variables, we can see high levels of online media 

fractionalisation (Figure 15.N) in the cluster of Eritrea, North Korea, and the United Arab 

Emirates, and high levels of internet censorship effort (Figure 15.M, which higher values meaning 

that the governments allow generally unrestricted Internet access) in countries represented by a 

higher level of freedom (left-hand side of Figure 14). These examples illustrate how the role of 

each of the variables used to produce the GTM model can be studied by visualising their respective 

reference maps. 

4.4.3. Insights from the global ranking of countries/nations 

A closer inspection of the global ranking in Table 2 and the rankings in the different areas of 

freedom (academic, digital, and media/press) show that Europe dominates the list of countries that 

were in the 1st decile (least censorship/greatest freedom) for all three freedoms. These include 

Austria, Belgium, Denmark, Estonia, Finland, Germany, Iceland, Ireland, Latvia, Lithuania, 

Luxembourg, Netherlands, Norway, Sweden and Switzerland. The G20 Member States are spread 

across the full Index Index. Using the global ranking, Australia, Canada and Germany are the 

highest place members (1st decile), with Saudi Arabia and China being the lowest (10th decile). 

For the global ranking, G7 Member States are placed: Canada = 1st, France = 2nd, Germany 

= 1st, Italy = 2nd, Japan = 2nd, United Kingdom = 3rd and USA = 3rd decile. 

Much like G20 Members, UN Security Council members, including both permanent and non-

permanent members, are spread across the full Index. Using the global ranking, Ireland and 

Norway are the highest place members (1st decile) and China and the United Arab Emirates are 

the lowest (10th decile). Out of the Permanent members, France (2nd decile) is the highest-ranking 

member, with Russia (9th decile) the lowest. Across the three freedoms, the United Kingdom is 

consistently found in the 3rd decile. This is similar to the United States of America. However, the 

latter is in the 4th decile for academic freedom. 

The countries that were in the 10th decile for all three freedoms are Bahrain, Belarus, 

Burma/Myanmar, Cuba, Equatorial Guinea, Eritrea, Iran, Laos, North Korea, Syria, 

Turkmenistan, United Arab Emirates and Yemen. 

4.4.4. Use and potential impact of the Index Index 

By making available indices that provide objectively verifiable, clearly ranked data about rates 

of freedom of expression, in contrast to or perhaps as linked to academic freedom, the Index Index 

seeks to provide legislators and other policymakers, activists and governments, and non-
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governmental and intergovernmental organisations, with tools to better inform policy or action 

decisions. Developing a wide range of campaigning and advocacy tools that can benefit from 

emergent and innovative technologies and research approaches to synthesize and present 

compelling and data-rich information is vital to ensure rights advocacy is underpinned by all 

available expertise that can be accessed easily and clearly. As seen in previous metrics, including 

those that are incorporated into the dataset for the Index Index, empirical data generated by this 

pilot project can be highly effective when communicated with policymakers to encourage more 

affirmative action when it relates to free expression, including more robust protection for 

journalists [116,117], the formulation of rights policies for educational institutions and ensuring 

all surveillance policies deployed for policing or national security purposes are rights-respecting. 

These are a few examples of how the Index Index can be used but should not be assumed to limit 

how it can be used by a wide range of stakeholders. 

While the Index Index abstracts from the particular experiences of writers, journalists and 

academics facing daily repression across the globe, the overall ranking hints at what is at stake. It 

constitutes a call, directing the attention of those with a voice to denounce it, to where free 

expression is at greatest risk and providing insights into the granular policy areas needing 

attention. The global nature of the proposed index also means it can become a vital resource and 

tool for engagement with international and supranational bodies such as the United Nations, as 

well as other regional mechanisms such as the European Union, Council of Europe, African Union 

and the Inter-American Commission on Human Rights, whose work requires country-by-country, 

regional and global data sources. 

As the Index Index is an index of existing respected and trusted indices and metrics it depends 

on robust and accurate data produced by the wider community of experts. The process of 

compiling and producing the Index has demonstrated its own use-case as it has identified the need 

for increased monitoring, verification and sharing of granular country-by-country level data on a 

wide range of markers against free expression more broadly, as well as academic, artistic, digital 

and media/press freedom. While also strengthening further iterations of this pilot project, this will 

also strengthen the global movement to protect free expression. 

In this, too, the analysis provides the basis for developing insights into the political economy 

of censorship and freedom which shine a light - not always flattering - on human conduct towards 

others in our midst. Objective data and analysis provided by the Index Index encourage us to ask, 

simply, what will it take for us to live less censored lives and what must we do to achieve greater 

respect towards human dignity. 
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4.5. Chapter Conclusion 

This project collected and collated pre-existing, robust data on the status of the free expression 

landscape on a global scale. We modelled the data using the GTM, an unsupervised, probabilistic 

machine learning method, to explore whether the model produced new insights into state conduct, 

human rights, and governance. The use of such a model removes an element of subjective 

interpretation from the modelling process and provides the resulting Index Index with a greater 

degree of rigour than previous rankings.  

On close examination, the reader can be expected to find unexpected outcomes that call into 

question, correlation, or causality. The Index Index provides a powerful policy tool for all those 

seeking a clear picture of the health of the free expression environment, as well as what needs to 

happen to change the rankings. 
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5. Chapter 5: Phenotypes of atrial fibrillation in the UK 

population 

Moving back towards cardiovascular research, this chapter outlines a novel methodological 

approach used to determine clinically relevant subgroups (referred to as phenotypes) within an 

AF population. The proposed methodology builds on the basic blueprint outlined in the previous 

chapter by implementing a more sophisticated approach to generating macro-clusters within the 

latent space generated by the GTM model. This is achieved by way of applying hierarchical 

clustering to the reference vectors. 

5.1. Introduction 

AF is the most common heart arrhythmia worldwide [118], affecting 2% of the European 

population (15 million patients). AF risk increases with age, with ~18 million AF patients 

estimated by 2060 [119]. AF is linked to a higher risk of mortality and morbidity from stroke, 

heart failure, dementia, and hospitalisations. Patients with AF are often associated with various 

cardiovascular and non-cardiovascular risk factors [119], and these often do not occur in isolation, 

co-existing in clusters of comorbidities, leading to multimorbidity, polypharmacy and frailty 

[120]. Such clinical complexity associated with AF patients has major implications for treatments 

and outcomes [121]. To predict AF and AF-related complications, clinical risk scores are 

commonly employed, but their predictive accuracy is generally limited, given the inherent 

complexity and heterogeneity of AF patients. 

AI, and more specifically ML, is increasingly used in clinical practice for disease prediction 

and detection, as well as events and treatment optimisation [122]. Most ML applications in AF 

leverage supervised ML learning (requiring labelled data), however in recent years, there has been 

a rise in the application of unsupervised ML approaches as they can be used for exploring and 

understanding the inherent structure and characteristics of the data without requiring labelled 

outcomes or targets. 

Conventional classification of patients with AF based solely on disease subtypes or arrhythmia 

patterns (e.g. paroxysmal, persistent, or permanent) may fall short of adequately characterising 

this diverse population [118]. The task of categorising patients into meaningful 

subgroups/phenotypes is inherently challenging and susceptible to misclassification. These 

phenotypes, in the context of medical research, are constructs based on clinical and physiological 

measurements that enable the characterisation of patient subgroups within a specific disease [123]. 

They comprise either individual disease attributes or combinations thereof, offering a 

comprehensive description of distinctions among affected individuals, including clinically 
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significant outcomes such as symptoms, exacerbations, treatment responses, disease progression 

rate, or mortality. By classifying different presentations of AF into coherent and manageable 

clinical phenotypes, the development of tailored prevention and treatment strategies can be 

facilitated. This is aligned with the current holistic approach to AF management [124], as 

recommended in guidelines [125]. 

Different approaches have been followed previously to identify AF phenotypes such as 

hierarchal clustering (namely Ward’s minimum variance method [126–128] and complete linkage 

using Gowers distance [129]) and k-prototype [118]. These methods are not particularly suited to 

model complex relationships in the data, they assume clusters are generally homogeneous, they 

tend to be less interpretable, they may be sensitive to initialisation, they may not handle cluster 

membership uncertainty, and they lack robustness across datasets. However, these studies all 

demonstrate the potential value of phenotyping, with each identifying between three and six 

clinically distinct AF phenogroups. The population groups studied also vary, including Japanese 

[118,127,130], European [126,128,131], and North American [126] populations.  

Our analysis proposes a novel methodological approach for generating clinically relevant AF 

phenotypes for specific patient cohorts, from the general and the critical care populations. To test 

the proposed approach, we generated phenotypes using two different AF cohorts: one derived 

from general population data from the UK-Biobank, and the other derived from critically ill 

patients admitted to the intensive care unit (ICU) from the MIMIC-IV database. These databases 

were chosen as they are both large and offer a rich pool of variables.  

Our novel approach employs GTM, a probabilistic ML method chosen for its ability to 

elucidate meaningful data representations from large datasets. AF phenotypes were derived from 

the GTM model, and the inherent clinical characteristics associated with each of them were 

explored for both cohorts. 

5.2. Methods 

5.2.1. Proposed AI-based methodology to generate reliable phenotypes 

5.2.1.1. Micro-cluster segmentation using GTM 

Our novel approach, which is a developed version of the process seen in Chapter 4, first uses 

GTM that calculates the probability of an observed data point, represented here by a 

patient/participant, belonging to each cluster, as shown in Figure 17. The cluster with the highest 

probability determines the final cluster assignment, resulting in a fine-grained, micro-

segmentation of the original data space. Since we have chosen to use a 2-dimensional latent space 
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(as was also used in Chapter 4), these data clusters can be visually represented on a 2-dimensional 

membership map.  

Alternative algorithms such as t-SNE [106] and UMAP [107] have become popular for 

reducing dimensionality and visualising data. Whilst they have different mathematical 

underpinnings, both methods aim to reflect the underlying structure of the data. However, as 

opposed to GTM, they are not probabilistic methods; t-SNE and UMAP are deterministic 

techniques that focus on preserving local and global structures without explicitly modelling 

probability distributions. This is a limitation of the latter two methods since we are interested in 

generating probabilistic representations and explicit cluster modelling for the AF phenotypes. A 

probabilistic approach would offer advantages such as uncertainty quantification, robustness to 

noise, more specific patient profiles, and the ability to uncover hidden subgroups, ultimately 

contributing to a more robust stratification of patients. 

 

Figure 17. Proposed AI-based methodology to generate reliable phenotypes. Data is modelled 

by the GTM algorithm, which projects the data into a 2-dimensional latent space, visualised in 

the membership map. The GTM also produces reference maps, which are used to indicate the 

influence of a variable over a micro-cluster. Hierarchical clustering is then applied to the 

reference vectors to group similar micro-clusters together into larger macro-clusters, which in 

turn are used to derive the phenotypes. 

As with any ML modelling, a crucial step in the development of ML models is the careful 

selection of appropriate hyperparameters. This is to ensure the model can learn the key 

relationships within the data whilst minimising the risk of overfitting and ensuring the model can 

generalise to unseen data. Although there are scenarios where hyperparameter tuning may be less 

critical with the GTM method, in this context, where the intended use of phenotypes is not purely 

prescriptive, the paramount objective was to ensure that the model could generalise effectively, 

and accurately project new, unseen patients into the most fitting phenotype. 

Consequently, we conducted a comprehensive search of a predefined parameter space to 

identify the most suitable hyperparameters for our model. The specific hyperparameters subjected 
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to tuning included the number of radial basis functions (RBFs) employed for projecting data from 

the latent space to the data space, and the penalisation term used to regulate the mapping process. 

Each combination of hyperparameters underwent rigorous evaluation through 10-fold cross-

validation. The primary performance metric for each test involved assessing the log-likelihood 

projections of the test data folds. The optimal hyperparameters were selected based on their ability 

to perform exceptionally well on the test data while also exhibiting minimal standard deviation 

across all results from each cross-validation fold. 

After obtaining a trained GTM model, the reference vectors were extracted and used to 

generate reference maps for each variable. As already mentioned, reference maps help to show 

each variables influence on each patient cluster through heatmap visualisations, i.e., the intensity 

of high and low values represents the extent to which each variable influences different areas of 

the membership map. An additional approach to interpreting the clusters involves superimposing 

other variables not seen by the model during the training, presented in the form of a heatmap onto 

the membership map visualisations. This provides users with an alternative method for 

comprehending the clusters through post-hoc analysis. 

A crucial property of GTM is the preservation of data topology, meaning that similar clusters 

will be positioned closer together in the latent space. Even if the most probable cluster assigned 

to a participant does not precisely correspond to the actual one, it is expected to be closer to the 

correct one. This makes GTM representations valuable for visualising complex high-dimensional 

data in a more interpretable lower-dimensional space. In contrast, common clustering techniques 

such as k-means, lacking probabilistic foundations, are not specifically designed to handle such 

levels of uncertainty. 

5.2.1.2. Macro-cluster analysis to generate AF phenotypes. 

Defining macro-clusters within the array of micro-clusters generated by GTM is crucial for 

the identification of AF phenotypes. The outcome of such analysis would shed light on regions in 

the latent space where micro-clusters with similar characteristics are concentrated, representing 

natural groupings and inherent common patterns in the data space. As defined in Chapter 2, 

equation (1), the centres in the latent space are projected into the data space to create a non-linear 

manifold using GTM. 

The approach outlined in this chapter (Figure 17) was inspired by an algorithm introduced by 

Vellido et al [50]. Instead of identifying macro-cluster regions in the latent space, we used 

agglomerative hierarchal clustering using Ward’s minimum variance method on the reference 

vectors, and the distances between the vectors were computed using the Euclidean metric. The 
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reference vectors corresponded to the Gaussian centres projected from the centres in the latent 

space, each residing in the data space. Subsequently, the cluster assignment of each reference 

vector was mapped to their respective centres in the latent space, effectively generating the desired 

macro-clusters comprising the latent space’s micro-cluster centres. 

5.2.2. Data used for deriving AF phenotypes 

5.2.2.1. Modelling variables extracted from the UK-Biobank database 

The first data used for this analysis was a subset extracted from the UK-Biobank, a large, 

population-based database [132] encompassing over 500,000 participants aged 40-69 from across 

the UK. To identify eligible AF participants, we searched ICD-10 codes related to AF diagnosis 

recorded in the participants’ conditions and causes of death variables. Eligible participants would 

have at least one of these codes recorded, with the full criteria described in Table 4. 

Table 4. Criteria used to identify eligible AF participants from the UK-Biobank 

Field ID Variable Value Field ID - Description 
Variable Value - 

Description 

20002 1471 Non-cancer illness code, self-reported atrial fibrillation 

20002 1483 Non-cancer illness code, self-reported atrial flutter 

41270 I48 Diagnoses - (main/secondary) ICD10 
Atrial fibrillation and 

flutter 

41270 I480 Diagnoses - (main/secondary) ICD10 
Paroxysmal atrial 

fibrillation 

41270 I481 Diagnoses - (main/secondary) ICD10 Persistent atrial fibrillation 

41270 I482 Diagnoses - (main/secondary) ICD10 Chronic atrial fibrillation 

41270 I483 Diagnoses - (main/secondary) ICD10 Typical atrial fibrillation 

41270 I484 Diagnoses - (main/secondary) ICD10 Atypical atrial flutter 

41270 I489 Diagnoses - (main/secondary) ICD10 
Atrial fibrillation and atrial 

flutter, unspecified 

40001 I48 Underlying (primary) cause of death: ICD10 
Atrial fibrillation and 

flutter 

40001 I480 Underlying (primary) cause of death: ICD10 
Paroxysmal atrial 

fibrillation 

40001 I489 Underlying (primary) cause of death: ICD10 
Atrial fibrillation and atrial 

flutter, unspecified 

40002 I48 
Contributory (secondary) causes of death: 

ICD10 

Atrial fibrillation and 

flutter 

40002 I480 
Contributory (secondary) causes of death: 

ICD10 

Paroxysmal atrial 

fibrillation 

40002 I482 
Contributory (secondary) causes of death: 

ICD10 
Chronic atrial fibrillation 

40002 I489 
Contributory (secondary) causes of death: 

ICD10 

Atrial fibrillation and atrial 

flutter, unspecified 

131350 * Any Date Date I48 First reported Present 

. 
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In total, 67 variables from the UK-Biobank were used for modelling, 40 genomic variables 

and 27 biological sample variables. We only included these variables to ensure that participants 

were clustered based on the similarity of their biological and genetic profiles, rather than being 

influenced by external demographic factors. The genomic variables are a set of 40 principal 

components generated using >100,000 single nucleotide polymorphisms (SNPs) [133]. The 27 

biological sample variables selected aim to represent key risk markers associated with AF: 

clotting, inflammation, renal function, liver function, cholesterol, diabetes, and sex-related 

markers [134]. 

5.2.2.2. Modelling variables extracted from the MIMIC-IV database 

Data was extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV 

[135]), a freely available database of de-identified electronic health records linked to patients 

admitted to the Beth Israel Deaconess Medical Centre in Boston, Massachusetts. We used version 

2.2 (January/2023), which includes 73,181 ICU stays. 

Patients were included in this analysis if they had at least one episode of AF during the ICU 

admission. The latter was extracted from the chartevent table, using the code for heart rhythm: 

220048, and identifying from those the ones that have value “AF (Atrial Fibrillation)”. Therefore, 

this would include patients with pre-existing AF, and those with new-onset AF, although the first 

AF episode recorded occurred after the first 24 hours of the ICU admission. Patients <18 years 

old, patient admissions with short ICU stays (<24 hours), and patients with multiple ICU stays 

were excluded from the analysis. 

In total, 21 variables from the MIMIC-IV database were used for modelling. These variables 

were extracted from sequences of vitals (e.g., temperature, and heart rate) and lab test results (e.g., 

glucose and haemoglobin) used to monitor the condition of the patient in the ICU. The variables 

used for modelling were selected as they represent key risk markers associated with AF in ICU 

[136,137]. 

5.2.3. Selection of variables associated with AF 

5.2.3.1. AF in the general population: UK-Biobank data 

AF is associated with ageing and comorbidities, as reflected in our phenotypic data. Indeed, 

multiple studies have shown how comorbid risk factors do not occur in isolation, but cluster 

together contributing to clinical complexity phenotypes [120,121]. There are well-recognised 

associations of common comorbidities such as hypertension, heart failure and diabetes, as well as 

renal and liver dysfunction [138]. The choice of biological sample variables selected for our 

modelling aims to represent key risk markers associated with AF since they are essential for a 



 

 

67 

 

comprehensive understanding of the factors contributing to AF. For example, inflammatory 

processes play a role in the development and progression of AF [139]. Certain genetic variants 

have also shown significant association with silent AF [140]. 

   Various risk prediction tools have been proposed for the prediction of incident AF [141], e.g. 

CHARGE-AF (The Cohorts for Heart and Ageing Research in Genomic Epidemiology AF) score, 

developed for the general population, which uses variables such as age, ethnicity, height, weight, 

blood pressure, medication use, and comorbidities [142]. Simpler clinical risk factor scores such 

as C2HEST have also been investigated to predict incident AF in population and post-stroke 

cohorts [143]. 

5.2.3.1. AF in the critical care population: MIMIC-IV data 

AF stands as the most prevalent arrhythmia among critically ill patients, occurring at an 

incidence rate of 10–15% [144] within the critical care population. The risk factors for AF can 

significantly differ between the general and the critical care populations. Common risk factors for 

AF in the community involve structural and valvular heart disease, but these factors may not be 

distinctly associated with AF in critical illness [145]. In addition, acute factors are thought to be 

associated with increased risk for newly diagnosed AF during critical illness [142]. For example, 

invasive ventilation is associated with AF episodes in critically ill patients [145]. Monitoring 

oxygenation is crucial in these patients to assess respiratory function and optimise oxygen 

delivery, as compromised oxygenation can exacerbate cardiovascular stress and contribute to 

complications [146]. Electrolyte imbalances, such as phosphate abnormalities, observed in 

medical conditions like kidney dysfunction, may indirectly contribute to AF development. 

5.2.4. Additional investigative variables 

5.2.4.1. Additional investigative variables extracted from the UK-Biobank database 

We used a set of 18 UK-Biobank variables for visualisation purposes. This selection consisted 

of 15 assessment centre variables, and two population characteristic variables, with the remaining 

variable belonging to the health-related outcomes category. Several of these variables were 

previously identified in prior AF studies [134]. 

We consider that incorporating comorbidity data is fundamental for understanding how 

various medical conditions can be differentiated among clusters of AF participants in the general 

population. To effectively convey information on thousands of diverse comorbidities in a clear, 

meaningful manner, we integrated the use of phecode [147]. Each phecode is composed of several 

individual diagnoses, defined using ICD-10 codes, which are subsequently grouped into various 

phecode categories.  
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In our analysis of AF participants from the general population using UK-Biobank data, we 

included several phecode categories that encompassed diagnoses from a predefined set of 

comorbidities commonly associated with individuals suffering from AF. To assign a phecode, and 

subsequently associate it with a phecode category, a patient’s record was examined for a match 

with the ICD-10 code of either primary or secondary diagnoses to one within a phecode. The list 

of all phecodes, and their respective phecode categories, that were considered in this analysis can 

be found in Table S2. For the full details regarding which ICD10 codes make up each phecode, 

please refer to the original publication [147].  

5.2.4.2. Additional investigative variables extracted from the MIMIC-IV database 

A selection of 27 variables from the MIMIC-IV database were extracted for further 

investigation. They include demographic data and ethnicity. They also include the Glasgow Coma 

Scale (GCS), a neurological assessment tool commonly employed in critical care settings, which 

is used to evaluate a patient’s level of consciousness based on their eye, verbal, and motor 

responses. Ventilation status (invasive and non-invasive), acute kidney injury (AKI) and acute 

respiratory distress syndrome (ARDS) are also investigated as variables of interest, as well as a 

series of variables related to length of stay and mortality. 

5.2.5. Data pre-processing 

To ensure the development of a robust and representative dataset for modelling, we undertook 

several pre-processing steps. First, we implemented a set of missingness criteria (defining 

appropriate levels/thresholds of data completion) to determine which variables and participants to 

include. The thresholds were set at 25% and 30% for data that could be missing for a variable or 

a participant, respectively. We also identified certain variables that exhibited positive skewness in 

their value distributions. To address this, we applied a log transformation to these variables, 

rendering their distributions more Gaussian in nature. 

Subsequently, any remaining missing data were addressed through imputation, employing a 

multivariate imputer. This imputer estimated missing values by considering known values from 

other variables. To accomplish this, we utilised the "IterativeImputer" function, which is part of 

the Scikit-Learn Python package and draws inspiration from the R MICE package [148]. Invalid 

values of the variables (e.g., heart rate < 0) were marked as not available. Variables recorded with 

different units were harmonised, e.g., in MIMIC-IV, height was present in inches and centimetres 

(cm), and they were all converted to cm. 
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5.2.6. Statistical analysis 

Medians and interquartile ranges were calculated for continuous variables, and frequencies 

and proportions (percentages) were used for categorical variables. There were several ordinal 

variables used for the exploratory analysis of the GTM output. These were one-hot encoded and 

then treated as a categorical variable and represented in the data as such.  

To study the characteristics of the generated phenotype groups, differences between 

continuous variables were analysed using the Kruskal-Wallis test and differences between 

categorical variables were analysed using the Chi-squared test. In both cases, a p-value <0.05 was 

the threshold for statistical significance. 

5.3. Results 

5.3.1. Characteristics of the participants/patient cohorts 

From the UK-Biobank we extracted 36,680 participants with AF from this general population 

cohort (median age 63 years (IQR 59-67), range 40 to 72 years; 63.5% male). Table 5 contains 

the summary of the biological variables used for modelling, and the investigative variables used 

in the post-hoc analysis. A second dataset of 2,695 critically ill patients with AF (median age 73 

years (IQR 65-81), range 21 to 89 years; 60.3% male) was extracted from the MIMIC-IV, with the 

full summary presented in Table 6. 

Table 5. Characteristics of the participant subset extracted from the UK-Biobank database. 

Medians and interquartile ranges were calculated for continuous variables, and frequencies and 

proportions (as percentages) were calculated for the categorical variables. Red shades were used 

for the modelling variables, whilst blue was used for the additional investigative variables. 

Variable name Value 

Model l ing  var iables:  

Inflammation markers:  

Neutrophil count [x109 cells/L] 4.3 (3.49, 5.24) 

Lymphocyte percentage [%] 27.03 (22.3, 31.93) 

Monocyte percentage [%] 7.24 (5.91, 8.68) 

C-reactive protein [mg/L] 1.77 (0.86, 3.57) 

Clotting markers:  

Haematocrit percentage [%] 41.78 (39.31, 44.1) 

Mean corpuscular volume [Femtolitres] 91.7 (88.95, 94.5) 

Red blood cell (erythrocyte) distribution width [%] 13.5 (13.07, 14.09) 

Platelet count [x109 cells/L] 235 (201, 274) 

Mean platelet (thrombocyte) volume [Femtolitres] 9.3 (8.64, 10.06) 

Platelet distribution width [%] 16.5 (16.2, 16.86) 

Mean reticulocyte volume [Femtolitres] 106.99 (102.5, 111.83) 

Mean sphered cell volume [Femtolitres] 83.1 (79.8, 86.66) 

Diabetes risk markers:  
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Glucose [mmol/L] 5.04 (4.68, 5.49) 

Glycated haemoglobin (HbA1c) [mmol/mol] 36.4 (33.8, 39.5) 

Liver function:  

Albumin [g/L] 44.65 (43.13, 46.1) 

Alanine aminotransferase [U/L] 21.56 (16.68, 28.19) 

Direct bilirubin [umol/L] 1.74 (1.39, 2.24) 

Gamma glutamyltransferase [U/L] 32.4 (22.2, 50.3) 

Renal function:  

Creatinine [umol/L] 75.6 (65.6, 86.1) 

Sodium in urine [millimole/L] 69.3 (44.0, 100.5) 

Urea [mmol/L] 5.69 (4.85, 6.63) 

Urate [umol/L] 338.01 (284, 393.7) 

Cholesterol markers:  

Cholesterol [mmol/L] 5.31 (4.53, 6.09) 

HDL cholesterol [mmol/L] 1.32 (1.11, 1.57) 

Triglycerides [mmol/L] 1.6 (1.14, 2.23) 

Sex-related markers:  

SHBG [nmol/L] 44.98 (33.62, 58.9) 

Testosterone [nmol/L] 8.73 (1.62, 12.2) 

Addit ional  inv es t igat iv e variables:   

Demographics:  

Age at recruitment [years] 63 (59, 67) 

Sex [Male] 23,284 (63.5%) 

Waist circumference [cm] 96 (87, 106) 

Hip circumference [cm] 105 (99, 111) 

Standing height [cm] 172 (164, 178) 

Weight [kg] 83.3 (72.9, 95) 

BMI [kg/m2] 28.16 (27.1, 29.98) 

Activity level:  

Summed minutes activity [mins] 95 (50, 180) 

MET minutes per week for vigorous activity [mins/week] 120 (0, 720) 

Blood pressure:  

Diastolic blood pressure, automated reading [mmHg] 82 (75, 90) 

Systolic blood pressure, automated reading [mmHg] 143 (130, 157) 

Pulse rate, automated reading [bpm] 68 (60, 77) 

Respiratory measures:  

Forced expiratory volume in 1 second (FEV1) [L] 2.68 (2.15, 3.27) 

Peak expiratory flow (PEF) [L/min] 383 (295, 484) 

Forced expiratory volume in 1 second (FEV1) Z-score 0.62 (-0.12, 1.37) 

FEV1/ FVC ratio Z-score 0.4 (-0.13, 1) 

Alcohol intake frequency:  

Daily or almost daily [yes] 7,170 (19.6%) 

Three or four times a week [yes] 6,417 (17.5%) 

Once or twice a week [yes] 6,869 (18.7%) 

One to three times a month [yes] 2,734 (7.5%) 

Special occasions only [yes] 3,354 (9.1%) 
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Never [yes] 2,734 (7.5%) 

Ethnic background:  

White [yes] 35,536 (96.9%) 

Asian or Asian British [yes] 406 (1.1%) 

Black or Black British [yes] 247 (0.7%) 

Mixed [yes] 111 (0.3%) 

Other ethnic group [yes] 160 (0.4%) 

Chinese [yes] 36 (0.1%) 

AF and flutter diagnosis (main/secondary):  

ICD10 - AF and flutter [yes] 20,966 (57.2%) 

ICD10 - Paroxysmal AF [yes] 6,558 (17.9%) 

ICD10 - Persistent AF [yes] 1,274 (3.5%) 

ICD10 - Chronic AF [yes] 570 (1.6%) 

ICD10 - Typical AF [yes] 216 (0.6%) 

ICD10 - Atypical atrial flutter [yes] 86 (0.2%) 

ICD10 - AF and atrial flutter, unspecified [yes] 21,767 (59.3%) 

Systems (phecode categories):  

Endocrine/metabolic [yes] 10,119 (27.6%) 

Circulatory system [yes] 26,628 (72.6%) 

Respiratory [yes] 6,097 (16.6%) 

Diabetes:  

Type 1 diabetes [yes] 839 (2.3%) 

Type 1 diabetes with ketoacidosis [yes] 81 (0.2%) 

Type 1 diabetes with renal manifestations [yes] 60 (0.2%) 

Type 1 diabetes with ophthalmic manifestations [yes] 175 (0.5%) 

Type 1 diabetes with neurological manifestations [yes] 96 (0.3%) 

Diabetes type 1 with peripheral circulatory disorders [yes] 52 (0.1%) 

Type 2 diabetes [yes] 7,130 (19.4%) 

Type 2 diabetes with ketoacidosis [yes] 96 (0.3%) 

Type 2 diabetes with renal manifestations [yes] 233 (0.6%) 

Type 2 diabetes with ophthalmic manifestations [yes] 852 (2.3%) 

Type 2 diabetes with neurological manifestations [yes] 427 (1.2%) 

Diabetes type 2 with peripheral circulatory disorders [yes] 351 (1%) 

Hypertension:  

Essential hypertension [yes] 24,442 (66.6%) 

Other hypertensive complications [yes] 86 (0.2%) 

Cardiovascular disease:  

Myocardial infarction [yes] 6,544 (17.8%) 

Other forms of chronic heart disease [yes] 2 (0%) 

Congestive heart failure (CHF) NOS [yes] 3,760 (10.3%) 

Chronic pulmonary heart disease [yes] 1,105 (3%) 

Heart failure NOS [yes] 4,680 (12.8%) 

Coronary atherosclerosis [yes] 163 (0.4%) 

Peripheral vascular disease:  

Peripheral vascular disease, unspecified [yes] 1,911 (5.2%) 

Other specified peripheral vascular diseases [yes] 23 (0.1%) 
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Pulmonary hypertension:  

Primary pulmonary hypertension [yes] 403 (1.1%) 

Stroke:  

Hemiplegia [yes] 1,214 (3.3%) 

Liver disease:  

Liver abscess and sequelae of chronic liver disease [yes] 373 (1%) 

Alcoholic liver damage [yes] 379 (1%) 

Other chronic non-alcoholic liver disease [yes] 1,441 (3.9%) 

Other disorders of the liver [yes] 808 (2.2%) 

Kidney disease:  

End-stage renal disease [yes] 484 (1.3%) 

 

Table 6. Characteristics of the ICU patient subset extracted from the MIMIC-IV database. 

Summary statistics and colours as in Table 5 

Variable name Value 

Model l ing  var iables:  

Diabetes risk marker:  

Glucose [mg/dL] 131.88 (118.17, 155.5) 

Bone profile:  

Phosphate [mg/dL] 3.58 (3.05, 4.22) 

Oxygenation:  

Oxygen saturation [%] 96.33 (94.38, 97.83) 

Respiratory rate [breaths per min] 18.51 (16.5, 21.27) 

Fraction inspired oxygen, FiO2 [%] 56.47 (50, 63.24) 

Positive end-expiratory pressure (PEEP) [cmH2O] 5.6 (5, 7.11) 

Partial pressure of oxygen [mmHg] 135.08 (99.15, 168.5) 

Haemoglobin [g/dL] 10.16 (9.11, 11.48) 

Respiratory/metabolic markers:  

pH 7.35 (7.21, 7.39) 

Anion Gap [mEq/L] 13.42 (11.33, 16.0) 

Lactate [mmol/L] 2.0 (1.49, 2.75) 

Cardiac markers:  

Heart rate [beats per min] 81.33 (74.24, 90.42) 

Capillary refill rate 0.0 (0.0, 0.02) 

Diastolic BP [mmHg] 57.25 (51.5, 63.38) 

Systolic BP [mmHg] 111.93 (104.73, 121.34) 

Clotting markers:  

Prothrombin time [sec] 14.47 (13.07, 16.45) 

Platelet count [K/uL] 165.0 (125.12, 223.0) 

Renal function:  

Creatinine [mg/dL] 1.03 (0.8, 1.56) 

Electrolytes:  

Magnesium [mg/dL] 2.15 (1.91, 2.44) 

Potassium [mEq/L] 4.29 (3.95, 4.61) 

Other:  
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Temperature [°C] 36.74 (36.55, 37.0) 

Addit ional  inv es t igat iv e variables:   

Demographics:  

Age [years] 73 (65, 81) 

Sex [Male] 1627 (60.4%) 

Height [cm] 170.09 (162.78, 177.9) 

Weight [kg] 82.43 (68.39, 97.37) 

Ethnicity:  

White [yes] 1971 (73.1%) 

Other ethnic group [yes] 453 (16.8%) 

Black [yes] 138 (5.1%) 

Hispanic [yes] 68 (2.5%) 

Asian [yes] 65 (2.4%) 

Glasgow Coma Scale (GCS):  

GCS eye-opening 2.88 (1.92, 3.75) 

GCS motor response 4.83 (3.5, 6) 

GCS verbal response 2.54 (1, 4.33) 

Ventilation:  

Non-Invasive ventilation [yes] 209 (7.8%) 

Invasive ventilation [yes] 2116 (78.5%) 

Outcomes:  

Time to AF diagnosis [hours] 53 (38, 83) 

In-hospital length of stay [hours] 256.78 (166.48, 407.12) 

In-ICU length of stay [hours] 109.18 (72.9, 200.43) 

Death after ICU [hours] 167.07 (17.64, 2700.04) 

Death after hospital discharge [hours] 20.44 (10.55, 2551.06) 

Death after hospital discharge [days] 0.85 (0.44, 106.29) 

In-hospital mortality [yes] 567 (21.0%) 

In-ICU length of stay of 3+ days [yes] 2040 (75.7%) 

In-ICU length of stay of 7+ days [yes] 840 (31.2%) 

Mortality after hospital discharge within 30 days [yes] 711 (26.4%) 

Mortality after hospital discharge within 365 days [yes] 936 (34.7%) 

Mortality after hospital discharge after 365 days [yes] 152 (5.6%) 

Acute Kidney Injury (AKI) [yes] 545 (20.2%) 

Acute Respiratory Distress Syndrome (ARDS) [yes] 174 (6.5%) 

 

5.3.2. Visualisation of the membership maps 

The results of the GTM hyperparameter tuning showed that for a latent space of dimension 

15x15 to provide an appropriate level of granularity, using 196 RBFs arranged in a 14x14 grid 

with a regularisation term of 1 was optimal and was therefore used when training the GTM models 

for both the UK Biobank and MIMIC-IV cohorts. Figure 18(A) and 18(B) show the membership 

map generated by the GTM models trained on the UK Biobank and MIMIC-IV cohorts, 

respectively. These maps display the latent space containing a compressed representation of the 
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entire original data space. Each point on the map represents a micro-cluster containing at least one 

participant, with the size of the point indicating the number of participants in the cluster: the larger 

the point, the more participants in the cluster and vice versa. Each participant has a probability of 

being assigned to every cluster, but the assignments below are the result of the participant being 

placed in the cluster with the highest probability. 

 

Figure 18. Membership maps showing how participants/patients are distributed in the latent space. 

The size of each cluster reflects the number of participants/patients allocated to it. A) General 

population data from the UK Biobank. B) Critical care population data from the MIMIM-IV. 

 

5.3.3. Visualisation of reference vectors for the modelling variables 

Figure 19 contains the reference vectors extracted from the trained GTM models for the UK-

Biobank and MIMIC-IV AF cohorts. For the UK-Biobank data, it contains the reference vectors 

for the biological sample variables, with plots grouped by the different risk factors they relate to, 

whilst for the MIMIC-IV, it displays all modelling variables used for modelling. Each point in 

every plot within Figure 19 corresponds exactly to the same point in their respective membership 

maps in Figure 18. A light grey–red colour scheme was used for the reference vectors plot such 

that areas of the plots that are redder indicate that participants in that cluster had a higher value of 

that variable. Likewise, if the point in the reference vector is greyer, the lower the value is for 

participants in this cluster. All plots using the light grey–red colour scheme indicate variables used 

in the GTM model development, whereas plots using a light grey–teal represent variables that 

were not used in the modelling and have no direct impact on the clusters themselves. 
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Figure 19. Reference vector visualisations demonstrating how each biological sample variable 

affects the cluster distribution in the latent space for both, the UK-Biobank and the MIMIC-IV AF 

cohorts. 

5.3.4. Visualisation of additional investigative variables 

Figure 20 contains a selection of visualisations showing how data from different investigative 

variables are distributed within the membership maps for the UK-Biobank and MIMIC-IV 
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cohorts. The visualisations representing the investigative variables all use a light grey-teal colour 

scheme as they were not used in model development. The value assigned to each micro-cluster is 

the average of the variable for all participants assigned to each cluster, the more teal a micro-

cluster is, the higher the value. For the visualisations for all investigated variables described in 

this chapter, please refer to the “Visualisation of all the additional investigative variables” in the 

supplementary material section. 

 

Figure 20. Membership maps showing how a selection of investigative variables data are 

distributed within the latent space for the UK-Biobank and the MIMIC-IV cohorts. AF: Atrial 

Fibrillation. AKI: Acute Kidney Injury. ARDS: Acute Respiratory Distress Syndrome. GCS: 

Glasgow Coma Scale. 

5.3.5. Description of AF phenotypes 

For the UK-Biobank cohort, we identified five clusters within the reference vectors residing 

in the data space, as demonstrated by the dendrogram in Figure 21(A). Transferring these 

reference vector cluster assignments to their corresponding latent centres gave five macro-cluster 

regions, which in turn were used to define the five AF phenotypes. These macro-cluster regions 

are visualised in Figures 21(B) and (C). Likewise, when applied to the MIMIC-IV cohort, the 

analysis identified four clusters within the reference vectors, as presented in Figure 22(A). The 
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macro-cluster regions generated by transferring these clusters to their respective latent centres are 

presented in Figures 22(B) and (C). The baseline data for each of the two databases were split 

according to the number of phenotypes and compared, in Tables 7 and 8 for the UK-Biobank and 

MIMIC-IV data, respectively. A description of the headline features that characterise both sets of 

phenotypes can be found in Figures 21(D) and 22(D).  

 

 

Figure 21. Derived phenotypes of AF in the general population using UK-Biobank data. A) 

Dendrogram produced using Ward’s minimum variance method. The graph shows the 5 clusters 

that are used to define the 5 AF phenotypes for the general population. B) Membership map with 

a uniform size for the micro-clusters to show the distribution of the macro-cluster regions. C) The 

size of the micro-clusters in the membership map dictated by the number of participants assigned 

to it. D) Main characterising features for each of the phenotypes 
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Figure 22. Derived phenotypes of AF in the general population using MIMIC-IV data. A) 

Dendrogram produced using Ward’s minimum variance method. The graph shows the 4 clusters 

that are used to define the 4 AF phenotypes for ICU patients. B) Membership map with a uniform 

size for the micro-clusters to show the distribution of the macro-cluster regions. C) The size of the 

micro-clusters in the membership map dictated by the number of participants assigned to it. D) 

Main characterising features for each of the phenotypes. 
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Table 7. Characteristics of the participants per phenotype of AF in the general population 

using UK-Biobank data. As in Table 5, medians and interquartile ranges were calculated for 

continuous variables, and frequencies and proportions (as percentages) were calculated for the 

categorical variables. Shades of red/blue were used per variable to illustrate differences between 

lower and higher values. Red shades were used for the modelling variables, whilst blue was used 

for the additional investigative variables. 

Variable name Phenotype 1 Phenotype 2 Phenotype 3 Phenotype 4 Phenotype 5 p-value 

MODELLING VARIABLES:  

Inflammation markers:       

Neutrophil count 
4.27 

(3.46, 5.18) 

4.37 

(3.57, 5.3) 

5.1 

(4.1, 6.35) 

4.46 

(3.95, 5.22) 

3.99 

(3.25, 4.77) 
<0.05 

Lymphocyte 

percentage 

26.53 

(22.1, 31.4) 

27.27 

(22.63, 32.1) 

24.5 

(19.01, 29.74) 

26.15 

(23.53, 29.4) 

29.2 

(24.67, 33.9) 
<0.05 

Monocyte percentage 
7.6 

(6.24, 9.04) 

7.4 

(6.11, 8.8) 

6.7 

(5.4, 8.15) 

7.45 

(6.16, 8.76) 

6.7 

(5.53, 7.91) 
<0.05 

C-reactive protein 
1.54 

(0.79, 2.94) 

2.15 

(1.07, 4.11) 

4.75 

(2.08, 10.82) 

2.05 

(0.9, 3.33) 

1.44 

(0.72, 2.86) 
<0.05 

Clotting markers:       

Haematocrit 

percentage 

43 

(40.98, 44.93) 

42.92 

(40.6, 45.13) 

39.82 

(37.39, 42.18) 

42.3 

(38.6, 45.16) 

39.3 

(37.55, 41.07) 
<0.05 

Mean corpuscular 

volume 

92.06 

(89.46, 94.73) 

91.82 

(89.03, 94.9) 

90.1 

(86.8, 93.28) 

91.6 

(89.03, 93.55) 

91.53 

(88.9, 94.12) 
<0.05 

Red blood cell 

distribution width 

13.5 

(13.06, 14) 

13.43 

(13, 13.99) 

13.95 

(13.34, 14.89) 

13.6 

(13.1, 13.94) 

13.47 

(13, 14) 
<0.05 

Platelet count 
228 

(198, 261.45) 

209 

(174, 248.53) 

262 

(223.6, 308) 

242 

(197.45, 275.5) 

253.4 

(218.6, 292.8) 
<0.05 

Mean platelet volume 
9.27 

(8.6, 9.91) 

9.9 

(9, 10.95) 

9.19 

(8.53, 9.8) 

9.17 

(8.65, 10.01) 

9.3 

(8.61, 10.04) 
<0.05 

Platelet distribution 

width 

16.5 

(16.2, 16.8) 

16.9 

(16.5, 17.36) 

16.49 

(16.2, 16.8) 

16.5 

(16.17, 16.9) 

16.37 

(16.08, 16.7) 
<0.05 

Mean reticulocyte 

volume 

107.37 

(102.93, 112.11) 

106.47 

(101.9, 111.62) 

106.39 

(101.8, 111.82) 

105.6 

(101.82, 108.46) 

106.6 

(102.28, 111.3) 
<0.05 

Mean sphered cell 

volume 

83.27 

(80, 86.7) 

82.55 

(79.36, 86.5) 

81.9 

(78.5, 85.56) 

81.71 

(79.19, 85.15) 

83.7 

(80.4, 87.13) 
<0.05 

Diabetes risk markers:       

Glucose 
5.02 

(4.66, 5.44) 

5.28 

(4.8, 6.36) 

5.13 

(4.72, 5.76) 

5.09 

(4.73, 5.42) 

4.97 

(4.67, 5.31) 
<0.05 

HbA1c 
36.2 

(33.6, 39.1) 

37.6 

(34.2, 44.63) 

38.5 

(35.6, 42.6) 

37.2 

(33.35, 40.95) 

35.6 

(33.4, 37.9) 
<0.05 

Liver function:       

Albumin 
44.81 

(43.38, 46.2) 

45.09 

(43.42, 46.9) 

43.72 

(41.96, 45.22) 

44.42 

(43.41, 46.41) 

44.5 

(43.08, 45.86) 
<0.05 

Alanine 

aminotransferase 

22.72 

(17.88, 28.67) 

30.56 

(22.69, 42.64) 

20.25 

(15.68, 26.3) 

21.54 

(16.14, 28.11) 

17.33 

(14.13, 21.39) 
<0.05 

Direct bilirubin 
1.91 

(1.52, 2.41) 

1.88 

(1.47, 2.46) 

1.57 

(1.25, 1.99) 

1.66 

(1.31, 2.11) 

1.48 

(1.22, 1.81) 
<0.05 

Gamma 

glutamyltransferase 

34.1 

(24.3, 50.6) 

53.9 

(34.5, 96.3) 

34.1 

(24.2, 52.3) 

34.9 

(22.1, 51.55) 

22 

(16.9, 31.3) 
<0.05 

Renal function:       

Creatinine 
79.8 

(71.7, 88.8) 

77.1 

(67.2, 87.4) 

76.1 

(64, 95) 

81.8 

(63.3, 90.25) 

63.8 

(57.3, 71.5) 
<0.05 

Sodium in urine 
76.4 

(49.5, 108.6) 

74.9 

(48.9, 106) 

69 

(43.5, 96.3) 

57.4 

(35.65, 86.15) 

53.2 

(34.3, 77.7) 
<0.05 

Urea 
5.73 

(4.94, 6.63) 

5.69 

(4.83, 6.66) 

6.08 

(5, 7.79) 

5.94 

(5.05, 6.52) 

5.41 

(4.61, 6.23) 
<0.05 

Urate 
354.8 

(310.5, 402.6) 

370.1 

(312.3, 428.42) 

354.44 

(297.4, 429) 

358.9 

(312.05, 402.7) 

269.3 

(230.3, 311.2) 
<0.05 

Cholesterol markers:       

Cholesterol 
5.16 

(4.4, 5.88) 

5.3 

(4.44, 6.18) 

5.09 

(4.29, 5.95) 

5.13 

(4.41, 6.07) 

5.8 

(5.1, 6.53) 
<0.05 

HDL cholesterol 
1.26 

(1.08, 1.46) 

1.17 

(0.99, 1.43) 

1.24 

(1.04, 1.45) 

1.27 

(1.16, 1.56) 

1.6 

(1.4, 1.84) 
<0.05 

Triglycerides 1.6 2.24 1.82 1.78 1.32 <0.05 
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(1.14, 2.18) (1.44, 3.4) (1.32, 2.5) (1.27, 2.44) (0.99, 1.76) 

Sex-related markers: 

SHBG 
42.75 

(33.16, 53.73) 

37.27 

(26.76, 50.01) 

38.3 

(28.58, 50.66) 

46.57 

(37.98, 59.25) 

61.46 

(48.69, 78.23) 
<0.05 

Testosterone 
11.03 

(8.4, 13.72) 

9.28 

(6.05, 12.16) 

5.03 

(1.09, 9.64) 

9.8 

(1.34, 13.18) 

1.17 

(0.76, 2.48) 
<0.05 

ADDITIONAL INVESTIGATIVE VARIABLES :  

Demographics:       

Age at recruitment 
63 

(59,67) 

62 

(58,66) 

64 

(60,67) 

63 

(60.5,67) 

63 

(60,67) 
<0.05 

Sex [Male] 
16,842 

(87.1%) 

3,535 

(78.9%) 
2,216 (48.6%) 30 (63.8%) 661 (8%) <0.05 

Waist circumference 
98 

(91,106) 

102 

(94,111) 
100 (91,110) 

100 

(91.75,105.5) 
85 (77,93) <0.05 

Hip circumference 
104 

(100,110) 

107 

(101,113) 
107 (101,116) 

106 

(101.75,113) 
103 (97,109) <0.05 

Standing height 175 (169,180) 
174 

(168,180) 
168 (161,175) 

173 

(163.25,180) 
164 (159,169) <0.05 

Weight 
86.2 

(77.2,96.7) 

90.2 

(80.3,102.5) 

85.4 

(74.4,98.8) 
86.5 (73.2,95.3) 

70.9 

(63.4,80.33) 
<0.05 

BMI 
28.15 

(27.03,29.85) 

29.79 

(28.45,31.64) 

30.26 

(28.7,32.26) 

28.9 

(27.47,29.41) 

26.36 

(25.08,28.12) 
<0.05 

Activity level:       

Summed minutes 

activity 

100 

(50,180) 

90 

(40,160) 

80 

(30,150) 

120 

(62.5,180) 

105 

(55,180) 
<0.05 

MET minutes/week 

for vigorous activity 

160 

(0,960) 

0 

(0,720) 

0 

(0,480) 

320 

(0,960) 

120 

(0,720) 
<0.05 

Blood pressure:       

Diastolic BP 
83 

(76,91) 

84 

(77,92) 

81 

(74,89) 

81.5 

(73,87) 

80 

(73,88) 
<0.05 

Systolic BP 
144 

(131,157) 

145 

(133,160) 

143 

(130,157) 

145 

(124.75,151.75) 

142 

(128,156) 
<0.05 

Pulse rate 
67 

(59,76) 

70 

(61,80.25) 

71 

(63,81) 

69 

(63.75,76.25) 

68 

(61,76) 
<0.05 

Respiratory measures:       

(FEV1) 
2.99 

(2.42,3.49) 

2.85 

(2.26,3.39) 

2.28 

(1.84,2.77) 

2.71 

(2.19,3.18) 

2.27 

(1.93,2.64) 
<0.05 

PEF 
433 

(334,520) 

414 

(313,507.75) 

332 

(258,415) 

366 

(304.5,469.5) 

318 

(260,375) 
<0.05 

FEV1 Z-score 
0.57 

(-0.18,1.33) 

0.77 

(0.07,1.53) 

0.97 

(0.22,1.73) 

0.72 

(0.08,1.08) 

0.5 

(-0.22,1.2) 
<0.05 

FEV1/FVC ratio Z-

score 

0.36 

(-0.17,0.98) 

0.29 

(-0.22,0.95) 

0.43 

(-0.12,1.08) 

0.45 

(-0.28,0.95) 

0.51 

(0.01,1.02) 
<0.05 

Alcohol intake frequency: 

Daily or almost daily 
4,196 

(21.7%) 

1,071 

(23.9%) 

624 

(13.7%) 

15 

(31.9%) 

1,264 

(15.3%) 
<0.05 

3 or 4 times a week 
3,761 

(19.5%) 

794 

(17.7%) 

580 

(12.7%) 

5 

(10.6%) 

1,277 

(15.5%) 
<0.05 

Once or twice a week 
3,665 

(19%) 

801 

(17.9%) 

822 

(18%) 

7 

(14.9%) 

1,574 

(19.1%) 
0.363 

1 to 3 times a month 
1,241 

(6.4%) 

299 

(6.7%) 

409 

(9%) 

5 

(10.6%) 

780 

(9.5%) 
<0.05 

Special occasions 

only 

1,404 

(7.3%) 

329 

(7.3%) 

640 

(14%) 

4 

(8.5%) 

977 

(11.8%) 
<0.05 

Never 
1,172 

(6.1%) 

311 

(6.9%) 

532 

(11.7%) 

4 

(8.5%) 

715 

(8.7%) 
<0.05 

Ethnic background:       

White 
18,578 

(96.1%) 

4,445 

(99.2%) 

4,264 

(93.5%) 

46 

(97.9%) 

8,203 

(99.4%) 
<0.05 

Asian or Asian 

British 

157 

(0.8%) 

2 

(0%) 

244 

(5.4%) 

1 

(2.1%) 

2 

(0%) 
<0.05 

Black or Black 

British 

243 

(1.3%) 

1 

(0%) 

2 

(0%) 

0 

(0%) 

1 

(0%) 
<0.05 

Mixed 
72 

(0.4%) 

9 

(0.2%) 

15 

(0.3%) 

0 

(0%) 

15 

(0.2%) 
0.0641 
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Other ethnic group 
135 

(0.7%) 

5 

(0.1%) 

12 

(0.3%) 

0 

(0%) 

8 

(0.1%) 
<0.05 

Chinese 
36 

(0.2%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 
<0.05 

AF and flutter diagnosis (main/secondary): 

ICD10 -  AF and 

flutter 

11,302 

(58.5%) 

2,684 

(59.9%) 

2,740 

(60.1%) 

27 

(57.5%) 

4,213 

(51%) 
<0.05 

ICD10 - Paroxysmal 

AF 

3,209 

(16.6%) 

696 

(15.5%) 

811 

(17.8%) 

7 

(14.9%) 

1,835 

(22.2%) 
<0.05 

ICD10 - Persistent 

AF 

740 

(3.8%) 

149 

(3.3%) 

106 

(2.3%) 

1 

(2.1%) 

278 

(3.4%) 
<0.05 

ICD10 - Chronic AF 
327 

(1.7%) 

80 

(1.8%) 

63 

(1.4%) 

0 

(0%) 

100 

(1.2%) 
<0.05 

ICD10 - Typical AF 
128 

(0.7%) 

31 

(0.7%) 

18 

(0.4%) 

0 

(0%) 

39 

(0.5%) 
0.1045 

ICD10 - Atypical 

atrial flutter 

43 

(0.2%) 

13 

(0.3%) 

13 

(0.3%) 

0 

(0%) 

17 

(0.2%) 
0.8072 

ICD10 - AF and atrial 

flutter, unspecified 

11,455 

(59.2%) 

2,723 

(60.8%) 

2,678 

(58.7%) 

24 

(51.1%) 

4,887 

(59.2%) 
0.6494 

Systems (phecode categories): 

Endocrine/metabolic 
4,467 

(23.1%) 

1,865 

(41.6%) 

1,947 

(42.7%) 

12 

(25.5%) 

1,828 

(22.1%) 
<0.05 

Circulatory system 
14,062 

(72.7%) 

3,559 

(79.4%) 

3,783 

(82.9%) 

35 

(74.5%) 

5,189 

(62.8%) 
<0.05 

Respiratory 
2,991 

(15.5%) 

804 

(18%) 

1,200 

(26.3%) 

9 

(19.2%) 

1,093 

(13.2%) 
<0.05 

Diabetes:       

Type 1 diabetes 
300 

(1.6%) 

258 

(5.8%) 

225 

(4.9%) 

0 

(0%) 

56 

(0.7%) 
<0.05 

Type 1 diabetes with 

ketoacidosis 

18 

(0.1%) 

40 

(0.9%) 

14 

(0.3%) 

0 

(0%) 

9 

(0.1%) 
<0.05 

Type 1 diabetes with 

renal manifestations 

16 

(0.1%) 

13 

(0.3%) 

29 

(0.6%) 

0 

(0%) 

2 

(0%) 
<0.05 

Type 1 diabetes with 

ophthalmic 

manifestations 

58 

(0.3%) 

61 

(1.4%) 

41 

(0.9%) 

0 

(0%) 

15 

(0.2%) 
<0.05 

Type 1 diabetes with 

neurological 

manifestations 

26 

(0.1%) 

36 

(0.8%) 

29 

(0.6%) 

0 

(0%) 

5 

(0.1%) 
<0.05 

Diabetes type 1 with 

peripheral circulatory 

disorders 

13 

(0.1%) 

13 

(0.3%) 

23 

(0.5%) 

0 

(0%) 

3 

(0%) 
<0.05 

Type 2 diabetes 
3,400 

(17.6%) 

1,620 

(36.2%) 

1,462 

(32.1%) 

9 

(19.2%) 

639 

(7.7%) 
<0.05 

Type 2 diabetes with 

ketoacidosis 

35 

(0.2%) 

41 

(0.9%) 

14 

(0.3%) 

0 

(0%) 

6 

(0.1%) 
<0.05 

Type 2 diabetes with 

renal manifestations 

66 

(0.3%) 

55 

(1.2%) 

103 

(2.3%) 

1 

(2.1%) 

8 

(0.1%) 
<0.05 

Type 2 diabetes with 

ophthalmic 

manifestations 

326 

(1.7%) 

244 

(5.5%) 

226 

(5%) 

3 

(6.4%) 

53 

(0.6%) 
<0.05 

Type 2 diabetes with 

neurological 

manifestations 

132 

(0.7%) 

139 

(3.1%) 

137 

(3%) 

2 

(4.3%) 

17 

(0.2%) 
<0.05 

Diabetes type 2 with 

peripheral circulatory 

disorders 

122 

(0.6%) 

109 

(2.4%) 

110 

(2.4%) 

0 

(0%) 

10 

(0.1%) 
<0.05 

Hypertension:       

Essential 

hypertension 

12,827 

(66.3%) 

3,334 

(74.4%) 

3,571 

(78.3%) 

31 

(66%) 

4,679 

(56.7%) 
<0.05 

Other hypertensive 

complications 

34 

(0.2%) 

5 

(0.1%) 

42 

(0.9%) 

0 

(0%) 

5 

(0.1%) 
<0.05 

Cardiovascular disease:       

Myocardial infarction 
3,684 

(19.1%) 

972 

(21.7%) 

1,027 

(22.5%) 

11 

(23.4%) 

850 

(10.3%) 
<0.05 

Other forms of 

chronic heart disease 

2 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 
0.7735 
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Congestive heart 

failure (CHF) NOS 

1,891 

(9.8%) 

539 

(12%) 

727 

(15.9%) 

2 

(4.3%) 

601 

(7.3%) 
<0.05 

Chronic pulmonary 

heart disease 

500 

(2.6%) 

168 

(3.8%) 

209 

(4.6%) 

0 

(0%) 

228 

(2.8%) 
<0.05 

Heart failure NOS 
2,452 

(12.7%) 

662 

(14.8%) 

834 

(18.3%) 

8 

(17%) 

724 

(8.8%) 
<0.05 

Coronary 

atherosclerosis 

92 

(0.5%) 

28 

(0.6%) 

30 

(0.7%) 

1 

(2.1%) 

12 

(0.2%) 
<0.05 

Peripheral vascular disease:  

Peripheral vascular 

disease, unspecified 

934 

(4.8%) 

316 

(7.1%) 

408 

(9%) 

2 

(4.3%) 

251 

(3%) 
<0.05 

Other specified 

peripheral vascular 

diseases 

8 

(0%) 

4 

(0.1%) 

6 

(0.1%) 

0 

(0%) 

5 

(0.1%) 
0.2495 

Pulmonary hypertension:  

Primary pulmonary 

hypertension 

193 

(1%) 

53 

(1.2%) 

84 

(1.8%) 

0 

(0%) 

73 

(0.9%) 
<0.05 

Stroke:       

Hemiplegia 
598 

(3.1%) 

167 

(3.7%) 

208 

(4.6%) 

1 

(2.1%) 

240 

(2.9%) 
<0.05 

Liver disease:       

Liver abscess and 

sequelae of chronic 

liver disease 

165 

(0.9%) 

117 

(2.6%) 

60 

(1.3%) 

0 

(0%) 

31 

(0.4%) 
<0.05 

Alcoholic liver 

damage 

155 

(0.8%) 

147 

(3.3%) 

65 

(1.4%) 

0 

(0%) 

12 

(0.2%) 
<0.05 

Other chronic non-

alcoholic liver 

disease 

654 

(3.4%) 

300 

(6.7%) 

268 

(5.9%) 

1 

(2.1%) 

218 

(2.6%) 
<0.05 

Other disorders of the 

liver 

387 

(2%) 

135 

(3%) 

125 

(2.7%) 

0 

(0%) 

161 

(2%) 
<0.05 

Kidney disease:       

End-stage renal 

disease 

155 

(0.8%) 

54 

(1.2%) 

247 

(5.4%) 

0 

(0%) 

28 

(0.3%) 
<0.05 

 

Table 8. Characteristics of the participants per phenotype of AF in an ICU population using 

the MIMIC-IV database. As in Table 6, medians and interquartile ranges were calculated for 

continuous variables, and frequencies and proportions (as percentages) were calculated for the 

categorical variables. As in Table 7, shades of red/blue were used per variable to illustrate 

differences between lower and higher values. Red shades were used for the modelling variables, 

whilst blue was used for the additional investigative variables. 

Variable name Phenotype 1 Phenotype 2 Phenotype 3 Phenotype 4 p-value 

MODELLING VARIABLES:  

Diabetes:      

Glucose 
139 

(115.22, 184.71) 

136.15 

(118.3, 160.6) 

127.94 

(119.24, 137.89) 

134.04 

(114.84, 159.54) 
< 0.05 

Bone profile:      

Phosphate 
4.57 

(3.65, 5.65) 

3.5 

(3, 4.1) 

3.38  

(2.99, 3.79) 

3.36 

(2.8, 3.86) 
< 0.05 

Oxygenation:      

Oxygen saturation 
96.08  

(93.88, 97.75) 

96.22  

(94.67, 97.65) 

96.36  

(93.66, 97.85) 

97.03  

(95.37, 98.4) 
< 0.05 

Respiratory rate 
19.25  

(16.9, 22.32) 

20.5  

(17.97, 23.09) 

16.98  

(15.7, 18.62) 

18.46  

(16.5, 20.63) 
< 0.05 

FiO2 
57.5  

(50, 66.27) 

56.07  

(50, 62.16) 

58.33  

(52.08, 64.58) 

53.57  

(46.15, 57.54) 
< 0.05 

PEEP 
6.45  

(5.08, 8.11) 

6.37  

(5.1, 7.68) 

5.05  

(5, 5.94) 

5.38  

(5, 6.24) 
< 0.05 

Partial pressure of oxygen 
109  

(72.0, 150.97) 

114.79  

(85.64, 139.45) 

168.96  

(143.3, 205.26) 

133.93  

(111.1, 152.19) 
< 0.05 
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Haemoglobin 
9.62  

(8.58, 10.79) 

10.5  

(9.14, 11.91) 

9.92  

(9.23, 10.79) 

11.81  

(10.4, 13.2) 
< 0.05 

Respiratory/metabolic markers:      

pH 
7.29  

(7.17, 7.36) 

7.32  

(7.15, 7.38) 

7.37  

(7.35, 7.4) 

7.22  

(7.08, 7.38) 
< 0.05 

Anion Gap 
17  

(14.0, 20.21) 

13.83  

(12, 15.97) 

11.67  

(10, 13.08) 

14  

(12.16, 15.94) 
< 0.05 

Lactate 
2.33  

(1.6, 3.39) 

1.9  

(1.4, 2.62) 

2.14  

(1.62, 2.78) 

1.6  

(1.16, 2.12) 
< 0.05 

Cardiac markers:      

Heart rate 
83.39  

(73.36, 93.75) 

85.03  

(76.83, 96.06) 

80.46  

(75.33, 85.81) 

75.86  

(68.26, 86.2) 
< 0.05 

Capillary refill 
0.03  

(0, 0.42) 

0  

(0, 0.02) 

0  

(0, 0) 

0  

(0, 0) 
< 0.05 

Diastolic BP 
56  

(50.34, 61.62) 

58.21  

(52.49, 63.98) 

55.19  

(50.21, 59.87) 

65.62  

(59, 72.69) 
< 0.05 

Systolic BP 
109.24  

(101.74, 119.08) 

110.19  

(103.3, 118.4) 

111.01  

(105.38, 117.38) 

131.09  

(121.45, 143.2) 
< 0.05 

Clotting markers:      

Prothrombin time 
16.53  

(13.95, 22.29) 

14.65  

(13.02, 16.7) 

14.2  

(13.2, 15.37) 

13.1  

(12.17, 14.3) 
< 0.05 

Platelet count 
148.42  

(102.73, 223.19) 

187.79  

(139.22, 254.14) 

146.29  

(120.05, 185.56) 

197  

(151.08, 245.71) 
< 0.05 

Renal function:      

Creatinine 
2.12  

(1.3, 3.7) 

1  

(0.75, 1.33) 

0.9  

(0.73, 1.16) 

0.9  

(0.7, 1.2) 
< 0.05 

Electrolytes:      

Magnesium 
2.11  

(1.91, 2.4) 

2  

(1.8, 2.25) 

2.4  

(2.19, 2.7) 

2  

(1.8, 2.13) 
< 0.05 

Potassium 
4.49  

(4.05, 4.92) 

4  

(3.83, 4.55) 

4.33  

(4.11, 4.57) 

4.05  

(3.74, 4.33) 
< 0.05 

Other:      

Temperature 
57.5  

(36.45, 36.97) 

56.07  

(36.62, 37.11) 

58.33  

(36.52, 36.85) 

53.57  

(36.67, 37.24) 
< 0.05 

ADDITIONAL INVESTIGATIVE VARIABLES :  

Demographics:      

Age 
71.0  

(63.0, 81.0) 

73.0  

(64.0, 82.0) 

74.0  

(67.0, 80.0) 

75.0  

(65.75, 84.0) 
< 0.05 

Sex 
405 

(63.4%) 

453 

(57.2%) 

563 

(62.3%) 

206 

(57.2%) 
0.3317 

Height 
172.86  

(162.78, 177.9) 

170.09  

(162.72, 177.9) 

170.09  

(162.78, 177.9) 

172.86  

(162.78, 180.17) 
0.2896 

Weight 
83.93  

(69.84, 98.29) 

81.42  

(65.9, 99.36) 

83.05  

(70.33, 95.92) 

79.79  

(65.85, 95.97) 
0.0768 

Ethnicity:      

White 
434.0  

(67.9%) 

589.0  

(74.4%) 

700.0  

(77.4%) 

248.0  

(68.9%) 
0.1263 

Other ethnic group 
117.0  

(18.3%) 

128.0  

(16.2%) 

136.0  

(15.0%) 

72.0  

(20.0%) 
0.1785 

Black 
51.0  

(8.0%) 

43.0  

(5.4%) 

23.0  

(2.5%) 

21.0  

(5.8%) 
< 0.05 

Hispanic 
16.0  

(2.5%) 

16.0  

(2.0%) 
28.0 (3.1%) 

8.0  

(2.2%) 
0.5508 

Asian 
21.0  

(3.3%) 

16.0  

(2.0%) 

17.0  

(1.9%) 

11.0  

(3.1%) 
0.2400 

Glasgow Coma Scale (GCS):      

GCS eye-opening 
2.83  

(1.75, 3.83) 

3.29  

(2.29, 4.0) 

2.5  

(1.67, 3.08) 

3.29  

(2.34, 4.0) 
< 0.05 

GCS motor response 
5.0 

 (3.06, 6.0) 

5.67  

(4.28, 6.0) 

4.12  

(2.79, 4.75) 

5.79  

(4.67, 6.0) 
< 0.05 

GCS verbal response 
2.04  

(1.0, 4.62) 

3.33  

(1.0, 5.0) 

2.25  

(1.0, 3.5) 

3.25  

(1.0, 5.0) 
< 0.05 

Ventilation:      

Non-Invasive ventilation 
56.0  

(8.8%) 

75.0  

(9.5%) 

54.0  

(6.0%) 

24.0  

(6.7%) 
< 0.05 
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Invasive ventilation 
485.0  

(75.9%) 
557.0 (70.3%) 852.0 (94.2%) 222.0 (61.7%) < 0.05 

Outcomes:      

Time to AF diagnosis (hours) 
59.0  

(41.0, 94.0) 

52.0  

(36.0, 91.0) 

49.0  

(37.0, 70.0) 

55.0  

(36.75, 89.0) 
< 0.05 

In-hospital length of stay (hours) 
296.32  

(180.18, 498.3) 

262.41  

(169.22, 427.41) 

228.08  

(159.62, 340.88) 

246.62  

(161.07, 413.97) 
< 0.05 

In-ICU length of stay (hours) 
143.89  

(82.93, 264.94) 

112.97  

(70.99, 211.78) 

98.33  

(69.63, 148.69) 

110.16  

(69.28, 212.26) 
< 0.05 

Death after ICU (hours) 
26.57  

(16.46, 1021.61) 

183.27  

(17.17, 2350.5) 

1558.35  

(21.98, 10015.99) 

394.49  

(18.8, 3513.18) 
< 0.05 

Death after hospital discharge 

(hours) 

17.5  

(8.5, 849.0) 

20.25  

(10.1, 2106.35) 

1330.07  

(16.3, 9930.92) 

27.81  

(12.62, 3271.6) 
< 0.05 

Death after hospital discharge 

(days) 

0.73  

(0.35, 35.38) 

0.84  

(0.42, 87.76) 

55.42  

(0.68, 413.79) 

1.16  

(0.53, 136.32) 
< 0.05 

In-hospital mortality 
245.0  

(38.3%) 

191.0  

(24.1%) 

60.0  

(6.6%) 

71.0  

(19.7%) 
< 0.05 

In-ICU length of stay of 3+ days 
526.0  

(82.3%) 

587.0  

(74.1%) 

665.0  

(73.6%) 

262.0  

(72.8%) 
0.1785 

In-ICU length of stay of 7+ days 
274.0  

(42.9%) 

257.0  

(32.4%) 

186.0  

(20.6%) 

123.0  

(34.2%) 
< 0.05 

Mortality after hospital discharge 

within 30 days 

301.0  

(47.1%) 

245.0  

(30.9%) 

77.0  

(8.5%) 

88.0  

(24.4%) 
< 0.05 

Mortality after hospital discharge 

Within 365 days 

368.0  

(57.6%) 

325.0  

(41.0%) 

121.0  

(13.4%) 

122.0  

(33.9%) 
< 0.05 

Mortality after hospital discharge 

after 365 days 

36.0  

(5.6%) 

49.0  

(6.2%) 

43.0  

(4.8%) 

24.0  

(6.7%) 
0.5042 

AKI 
161.0  

(25.2%) 

159.0  

(20.1%) 

184.0  

(20.4%) 

41.0  

(11.4%) 
< 0.05 

ARDS 
33.0  

(5.2%) 

58.0  

(7.3%) 

37.0  

(4.1%) 

46.0  

(12.8%) 
< 0.05 

 

A more detailed breakdown of the key features for each phenotype derived from the AF 

participants in the UK Biobank database is as follows:  

Phenotype 1 (n =19,335) 

The largest phenotype identified as part of the analysis, containing approximately 53% of the 

participants, shows the highest haematocrit percentage and mean corpuscular volume, as well as 

the highest levels of sodium in urine and direct bilirubin. This phenotype also contained the 

highest proportion of male participants (87.1%) which would be expected as the highest 

testosterone levels are seen in this phenotype. Additionally, this phenotype is categorised by 

participants that have the lowest pulse rate whilst having the highest peak expiratory flow rate and 

FEV1. This is also the most ethnically diverse phenotype, with it containing the height percentage 

of participants categorised as Black or Black British, Chinese, Mixed and Other ethnic group. It 

also features the highest alcohol consumption of the 5 phenotypes. A final distinguishing feature 

is that this phenotype has the highest levels of persistent AF across all phenotypes. 

Phenotype 2 (n =4,480) 

Characterised by having the youngest participant age group, participants in this phenotype 

were also the most likely to have chronic AF. Participants also showed the highest mean platelet 

distribution width, platelet distribution width, urate levels, albumin, alanine aminotransferase and 
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gamma glutamyl transferase. Participants in this phenotype also showed a high, albeit not the 

highest, drinking levels with 2nd highest saying they drink daily/almost daily and the least amount 

of people saying they drink infrequently at special occasions only. 

Other key characteristics of this phenotype are the highest levels of triglycerides, lowest HDL 

cholesterol and SHBG levels. These features appear to be captured in the investigative variables 

with participants in this phenotype having the highest diastolic and systolic blood pressure, highest 

rates of type 1 and 2 diabetes and the highest rate of liver conditions. 

Phenotype 3 (n =4,561) 

Phenotype consists of the oldest participants whilst also being the most balanced concerning 

sex 51.4% being female. Participants in this phenotype are characterised by the highest values for 

neutrophil count and c-reactive protein and the lowest values for lymphocyte and monocyte 

percentages. They also have the highest levels of glycated haemoglobin and the highest urea 

levels. However, a higher level of urea is common in older people which may explain this reading. 

A key distinguishing factor is the participants have the highest hemiplegia levels, indicating that 

they are the most at risk of stroke. 

The participants clustered in this phenotype also have the highest BMI and the lowest amount 

of weekly activity. The lowest alcohol intake levels are seen within the phenotype shown by 

having the highest percentage of participants that never drink or only drink on special occasions. 

The lowest number of white participants if seen in the phenotype, with it also having the highest 

percentage of Asian or Asian British participants. Regarding additional diseases, these participants 

are most likely to be diagnosed with additional comorbidities, with the phenotype showing the 

highest levels of circulatory system, endocrine/metabolic and respirator conditions. More 

specifically, the phenotype shows the highest rates of cardiovascular disease, peripheral vascular 

disease, hypertension, and kidney disease. 

Phenotype 4 (n =47) 

By far in the way the smallest phenotype, consisting of only a singular micro cluster. The 

participants here showed the lowest values for mean platelet volume, mean reticulocyte, and mean 

sphered cell volume whilst having the highest creatine value. Although unmentioned up until this 

point, this phecode has the most diverse genetic makeup, with 36 out of the 40 values being either 

a maximum or minimum value. This indicates that there may be some genetic difference in this 

between this phenotype when compared to the other four. These participants had the highest 

amount of weekly activity but the joint highest systolic blood pressure, matching that seen in 

phenotype 2. This is the only phenotype with no participants diagnosed with chronic AF 
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participants, however they are the most likely to be diagnosed with a neoplasm condition, 

myocardial infarction, and coronary atherosclerosis. 

Phenotype 5 (n =8,257) 

This phenotype is defined as consisting almost entirely of white female participants (92% 

female participants with 99.4% being White or White British). Across the board, the participants 

in this phenotype show the lowest risk factors in every category in comparison to the other 5 

phecodes. In addition to this, the participants also have the lowest BMI and lowest chance of 

having an additional comorbidity across all categories considered here. One feature that does stand 

out however is that participants in this phenotype are the most likely to be diagnosed with 

paroxysmal AF. 

As with the UK Biobank phenotypes, a detailed breakdown of the key features for each 

phenotype derived from the AF participants in the MIMIC-IV database is as follows: 

 Phenotype 1 (n = 1,705) 

This is the largest phenotype identified out of the 4, consisting of 63% of patients. Patients in 

this phenotype are the youngest of the four, with a median age of 71. These patients also showed 

the highest anion gap, capillary refill, glucose, lactate, PEEP, phosphate, potassium, prothrombin 

time, and creatine, whilst also having the lowest haemoglobin, partial pressure of oxygen, oxygen 

saturation, systolic BP and joint lowest temperature with phenotype 3. The patients in this 

phenotype have the lowest GCS verbal response score, with highest rates of AKI. 

Patients in this phenotype had the longest time to AF diagnosis once admitted to the ICU, as 

well as longest time spent in hospital and in the ICU. They also presented the highest rate mortality 

both in-hospital and after discharge, with the lowest time between mortality and ICU and hospital 

discharge. 

Phenotype 2 (n = 631) 

With regards to the variables used for modelling, patients in this phenotype had the least 

amount of standout characteristics, with the exceptions being that they presented the highest heart 

rate and respiratory rate and the joint lowest magnesium levels (shared with phenotype 4). Patients 

in this did however have the highest rate of non-invasive ventilation being used as well as the 

highest GCS scores for eye-opening and verbal response. 

Phenotype 3 (n = 250) 

This phenotype is defined by patients having the lowest values for anion gap, diastolic BP, 

glucose, PEEP, phosphate, platelet count, respiratory rate, creatine, and temperature, whilst also 
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having the highest partial pressure of oxygen, pH, magnesium and fraction inspired oxygen. 

Outside of the modelling variables, patients were also the lowest on the GCS eye-opening and 

motor response scales and had the highest rates of invasive ventilation. 

As opposed to phenotype 1, patients in this phenotype where diagnosed the quickest, and had 

the shortest length of stay both in-hospital and in the ICU. Furthermore, they had the lowest 

mortality rate both in-hospital and after discharge, with the longest time between discharge and 

mortality. Finally, patients here showed the lowest rates or ARDS. 

Phenotype 4 (n = 109) 

The final phenotype identified was the smallest of the 4, defined by contained the oldest patient’s 

cohort. The patients were also characterised with having the highest oxygen saturation, systolic 

and diastolic BP, temperature, haemoglobin, and platelet count. They also displayed the lowest 

fraction inspired oxygen, heart rate, lactate, magnesium, pH, phosphate, potassium, prothrombin 

time and creatine. Other defining features of this phenotype are the highest scores on GCS eye-

opening and motor response scales, highest rates of ARDS and lowest rates of AKI and invasive 

ventilation. 

5.3.6. Interpreting the visualisations 

The membership maps show us which participants share the same cluster indicating that they 

share similar features. To unlock deeper insights, superimposing modelling data onto the 

membership maps provides a better understanding of why patients/participants were clustered in 

such a way (Figures 19 and 20). Extra insights can be learnt by superimposing post-hoc data, 

unseen during modelling. One example from the UK-Biobank cohort relates to sex-related 

markers, specifically testosterone and SHBG levels. By assessing their respective reference 

vectors, individuals with higher testosterone and lower SHBG tended to be in the middle and top-

Figure 23. Membership map generated by GTM stratified by the sex of the participant. A) 

Only female participants; B) Only male participants. 
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right sections of the membership map. In contrast, those with heightened SHBG and lower 

testosterone were clustered towards the bottom left. Given that testosterone levels are generally 

higher in males  [149], and SHBG levels are typically elevated in females [150], we can deduce 

that the membership map effectively delineated male and female participants during clustering. 

This can be seen in Figure 20(A), where we visually represent the participants’ sex (the bluer area 

in Figure 20(A) predominantly corresponds to males), and in Figure 23, which shows the 

membership map stratified by sex. 

5.4. Discussion 

Using our novel AI methodology, we have identified and characterised clinical phenotypes of 

AF across diverse patient populations, which could facilitate the tailoring of prevention and 

treatment programs specific to each phenotype. 

The principal findings of this chapter are: (i) The proposed AI-based methodology showed its 

ability to derive meaningful clinical phenotypes of AF in the general and critical care populations. 

(ii) Our approach is probabilistic, offering advantages such as the ability to handle uncertainty, 

robustness to noise, more specific patient profiles, and the ability to uncover hidden subgroups, 

contributing to more robust patient stratification and visualising complex high-dimensional data 

in a more interpretable lower-dimensional space, enhancing understanding.   

5.4.1. Meaningful data representation using GTM 

Identifying clinical phenotypes of diseases using methods like hierarchical clustering 

(specifically Ward’s minimum variance method and complete linkage with Gowers distance) and 

k-prototype used in previous phenotyping studies [126–129], may not always be the best option 

for several reasons: 1) Clinical data often contains diverse information, and these methods may 

not effectively capture the complexity of relationships within the data, and they may also be 

influenced by outliers or noise. 2) In clinical phenotyping, diseases may exhibit considerable 

heterogeneity [126–129], however hierarchical clustering assumes that data points within a cluster 

are homogeneous. 3) High-dimensional clinical data may pose challenges for hierarchical 

clustering and k-prototype methods for interpreting results, which in the context of clinical 

phenotypes may render unintuitive. 4) In the case of k-prototype, it can be sensitive to the choice 

of initial cluster centroids and may converge to local minima. 5) Clinical data often includes a 

mix of continuous and categorical variables. Some clustering methods, like k-prototype, handle 

both types, but the integration of different variable types can be challenging and may not fully 

capture the information. 6) Results obtained from these methods may not generalise well across 

different datasets or populations due to variations in data characteristics [128]. 7) They lack 
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probabilistic foundations and hence are not specifically designed to handle such levels of 

uncertainty [46,47]. 

Alternative approaches, such as probabilistic or ensemble methods, may provide more robust 

and interpretable clinical phenotypes. Our approach involves deriving micro-clusters using a 

probabilistic method (i.e. GTM), followed by hierarchical clustering to identify macro-clusters, 

i.e. the phenotypes. The latter differs from previous studies as the hierarchical methods were 

applied to the reference vectors from a probabilistic model rather than the original data space, 

which makes the clusters more stable and resilient to data uncertainty. Our use of GTM often 

provides highly interpretable representations as it explicitly models clusters and prototypes, 

offering insights into the underlying structure of the data. The membership map produced by GTM 

captures the underlying relationships and clusters within the data by mapping data points to these 

prototypes. This enables comprehensible and interpretable representations of complex data, aiding 

in knowledge extraction and facilitating insights that might otherwise remain hidden in the 

original high-dimensional space. Indeed, GTM has been applied in diverse real-world situations 

spanning various domains such as bioinformatics [111,112]; the financial sector [115]; and more 

recently also in modelling freedom of expression (Chapter 4)[81]. To the best of our knowledge, 

GTM has not been used before to study AF or to generate clinical phenotypes. 

5.4.2. Clinical significance of the identified phenotypes 

The identification and characterisation of clinical phenotypes of AF across diverse patient 

populations show potential for personalised risk assessment and prognosis. Leveraging these 

phenotypes could facilitate the tailoring of prevention and treatment programs specific to each 

phenotype. 

The proposed methodology provides several advantages to extract meaningful phenotypes. 

First, as opposed to previous approaches [118,126,127,129,131], we define phenotypes based on 

a non-linear clustering approach which can capture more complex relationships. Furthermore, we 

can visualise the clusters, and by extension the phenotypes, and how each variable affects each 

cluster, which provides interpretability, crucial for validation and understanding. It also allows for 

a convenient method of looking at phenotype differences. For example, phenotype 2 in Figure 

21(b) occupies predominantly the right side of the membership map. The reference vector for 

glucose in Figure 19 (top) highlights that participants in the bottom right micro-clusters have the 

highest glucose values when compared to the other micro-clusters. This information can be 

translated back to phenotype 2 to provide more context about its participants, and how risk factors 

may not be uniformly distributed within a given phenotype. 
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Another difference is in the selection of modelling variables. The phenotypes for both data 

cohorts were generated using only vitals and laboratory test data, as opposed to previous studies 

that also included demographics and medical history/comorbidity information in the modelling. 

This leads to each of the phenotypes having significant differences for such variables as they were 

used to initially stratify the data. The phenotypes generated in our analysis show significant 

differences with these key risk factors, but without including explicit information on these 

variables during modelling. Additionally, as the between-phenotype differences for variables such 

as demographics and comorbidities are performed post-hoc, should new data become available 

from variables not yet examined, their distribution between and within each phenotype can be 

swiftly identified. 

5.4.3. Analysis limitations 

One of the limitations of this analysis relates to the genomic principal components used for 

the UK-Biobank cohort, as their loadings were not available, limiting the ability to interpret them. 

Another limitation is related to the transferability of the derived phenotypic clusters to other 

cohorts of data, as they could vary across diverse populations due to genetic, environmental, and 

cultural differences. Additionally, differences in clinical settings, such as healthcare access, 

diagnostic criteria, and treatment approaches, may contribute to distinct phenotypic patterns 

among various patient groups. Since this chapter’s main objective is to present a robust AI 

methodology for the derivation of AF phenotypes, this limitation can be mitigated by the 

derivation of specific phenotypes for different patient cohorts, as and when required. The dynamic 

nature of risk is also another possible limitation, as the current approach does not address how 

phenotypes change over time. 

5.5. Conclusion 

This chapter proposed a novel, AI-based approach for the derivation of clinically meaningful 

AF phenotypes. We applied it to two large cohort databases representing general and critical care 

populations. Our approach is probabilistic, contributing to robust patient stratification. It produces 

interpretable visualisation of complex high-dimensional data, enhancing understanding. It showed 

its ability to identify clinical phenotypes of AF, which could enable prevention and treatment 

programs specific to each phenotype. Our methodology can be applied to other datasets to derive 

clinically meaningful phenotypes of other conditions. 
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6. The Athlete’s Heart and Machine Learning: A Review of 

Current Implementations and Gaps for Future Research 

This chapter and Chapter 7 both focus on the same area of cardiovascular research known as 

the athlete’s heart. Unlike the other clinical applications in other chapters, the application of AI 

techniques within the area of athlete’s heart is much smaller in comparison. We therefore 

conducted an in-depth scoping review to gain a better understanding of the current applications 

and ascertain what approaches had already been taken; what clinical questions were researchers 

trying to address within the area; and what the gaps were for future novel research. This work in 

this chapter has also been published, and cited, demonstrating the value this research has added 

to the field [61]. 

6.1. Introduction 

 Heart disease is the leading cause of death worldwide, accounting for 16% of the total world’s 

deaths in 2019 [151]. In the UK alone, around 7.6 million people are living with heart disease 

which causes, on average, one death every three minutes [152]. Exercise is one of the best methods 

for improving health and reducing cardiovascular risk factors [153]. However, extreme exercise 

regimes, such as those followed by athletes, cause physiological changes in the heart to help it 

cope with the increased demands placed upon it [154]. These physiological changes, also known 

as the “athlete’s heart”, can cause issues as they are difficult to distinguish from pathological 

changes, exposing athletes to sudden cardiac death [154]. 

Sudden cardiac death is the most common cause of death in young athletes, with current 

estimates placing its incidence rate between 1 in 40,000 and 1 in 80,000 athletes per year [155]. 

To prevent this, pre-participation screening, using techniques such as electrocardiography (ECG) 

and echocardiography, is used to identify the cardiovascular conditions associated with sudden 

cardiac death, allowing for appropriate treatments, and avoiding adverse outcomes. Although 

shown to be generally effective, there are still approximately 1% false positives, resulting in some 

athletes going undiagnosed, e.g., the cardiac arrest of Christian Eriksen at the Euro 2020 

tournament and Fabrice Muamba in the FA Cup quarterfinals in 2012). 

AI has rapidly grown over the last decade, with ML accounting for the majority of this growth 

[29]. ML techniques, powered by advances in computational performance and very large datasets, 

have shown great success and they frequently outperform human performance [156]. ML is 

commonly used in supervised and unsupervised learning tasks. Supervised ML techniques work 

in two parts: first, the ML algorithm is trained using input variables and labelled output variables 

to learn the associates between the two, then, the trained model is used to make predictions on a 
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test set, again where the labels of the outputs are known, to assess the performance [157]. Some 

examples of these methods include ANN, Random Forest, etc. Unlike supervised ML, 

unsupervised ML uses unlabelled data and automatically finds the key relationships and structures 

within the data. Two examples of such methodologies are t-distributed stochastic neighbourhood 

embedding (t-SNE) and principal component analysis (PCA). 

The use of ML techniques applied to diagnostic investigations may prove valuable to help 

detect cardiac conditions in athletes, establish the risk levels, and develop an understanding of the 

physiological changes more accurately. ML models trained using different data modalities and 

data formats have been applied successfully in detecting many cardiovascular issues [158–162], 

showing how ML can solve a range of tasks, such as predicting mortality following a cardiac 

intervention [162], in specific populations of individuals [161], predicting coronary heart disease 

[159] and estimating the prognosis of patients with congenital heart failure [160].  

The aim of this chapter, therefore, is to review the current state of ML applied to the athlete’s 

heart by evaluating the current trends regarding the ML methodologies and approaches used 

within the area and determining the relevant questions and problems ML currently faces. To this 

end, we plan to focus the review on the following: (1) ML applications in the assessment of the 

athlete’s heart, and (2) understanding the desire to implement ML approaches within this area of 

research. 

6.2. Methods 

6.2.1. Search strategy and selection process 

To obtain the data needed to carry out the review, the Scopus and PubMed online electronic 

databases were searched to return the relevant literature. Table 9 outlines the criteria used to define 

the search term and where, within the manuscript, each term focuses. The literature returned from 

the searches was then reviewed and filtered by two authors, RAAB and DLO, by the titles and 

abstracts, and then through full-text readings, which were carried out by RAAB, so that only the 

studies relevant to the review were included. 

Table 9. Criteria used to build the literature search. 

Criteria  Term Location 

A “deep learning” OR “machine learning” OR 

“artificial intelligence” 

Anywhere within the 

manuscript 

B electrocardio* OR echocardio* Anywhere within the 

manuscript 

C “athletes heart” OR “athlete*” Title, Abstract, or Keywords 
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6.2.2. Search results 

The search process is detailed in Figure 24. Based on the search criteria, 132 total studies were 

returned from the searches performed on the Scopus and PubMed online databases. The unique 

studies from these searches were subsequently extracted, which left a total of 128 studies. The 

titles and abstracts of these 128 studies were reviewed, resulting in 79 studies being excluded as 

they were deemed to be not relevant due to having a different focus area than the one specified 

for this review. 

 

Of the 49 studies that remained, 1 study was excluded from the review due to issues with 

accessing the full manuscript, leaving 48 studies to be included for full-text readings and to form 

the dataset for this review. However, during the full-text readings, a further 20 studies were 

excluded: 16 were excluded as they were deemed to be not relevant to the review, and the other 4 

were excluded due to concerns about their quality, i.e., being vague and having an unclear 

description of either their methodology or approach used to develop their models, how the 

evaluation criteria were presented, and why certain metrics were used over others. After all the 

Figure 24. Study selection flow chart. 
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exclusions had been applied, this left a final total of 28 studies that were considered for this review 

[154,163,172–181,164,182–189,165–171].  

6.3. Results 

6.3.1. Study subgroups 

Of the 28 studies, several different approaches were taken. We clustered the studies into four 

subgroups: predictive modelling, reviews, wearables and others. Each study was then assigned to 

one of these four groups using the criteria outlined in Table 10. “Predictive Modelling” made up 

most of the studies with 10 (36%) [163,165,171,173,178,179,182,183,187,188] being assigned to 

this group. “Reviews” was the next single largest group with eight (29%) studies 

[166,169,172,174,175,180,185,186]. “Wearables” was the smallest single group with four (14%) 

studies [164,168,177,184]. The final six (21%) unassigned studies [154,167,170,176,181,189] 

were placed in the “Others” group as they did not meet the inclusion criteria for the previous 

groups. 

Table 10. Criteria for classification. 

Group  Criteria 

1 Predictive 

Modelling 

The main aim is to use some methodology to create a model 

or framework that can be used to classify data 

2 Review Consolidate existing literature in some way to construct 

practical guidelines or conduct a systematic review, etc. 

3 Wearables The main aim is the discussion or development of wearable 

technology for use as either a solely data collection enterprise 

or to conduct automatic analysis 

4 Others Does not fit the above criteria  

 

6.3.1.1. Predictive modelling 

The studies within this group are focused on using methods that can be applied to a dataset to 

attribute one of two or more classes to each patient or participant. This has been approached in 

two main ways. The first and most popular type of approach implemented was to use ML to learn 

from the data and make predictions on what class each patient/participant should be classified as 

automatically. Eight of the studies [163,165,171,173,178,179,182,183] use this approach, 

applying ML algorithms in varying levels of complexity, from linear discriminant analysis (LDA) 

to ANN. A more in-depth discussion of the individual methods which were used and their 

respective applications can be found in the section “Machine learning approaches used”. 

The second approach used in the other two studies forgoes the use of ML and instead focuses 

on defining an algorithm tree that can be manually followed by a human user to help improve the 
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accuracy of their diagnoses. Vergani et al. [187] proposed a diagnostic algorithm that can be used 

by healthcare professionals to distinguish between a hypertrabeculation phenotype, 

noncompaction phenotype, and left ventricular noncompaction cardiomyopathy. Viviers et al. 

[188] focused on comparing the predictions made by a sports physician using a history 

questionnaire and a physical examination, to a technician using computer-assisted auscultation on 

the nature of cardiac murmurs in collegiate athletes. These two approaches are focused on 

classification, as with the ML-focused studies, but they have done so in a way that only utilizes 

human expertise. 

6.3.1.2. Reviews 

Within the data, there were eight studies which were classified as reviews. Georgijević and 

Andrić [174] and Lucas et al. [180] had relatively similar aims: they both reviewed the current 

use of different modalities in the pre-participation screening of athletes, with Georgijević and 

Andrić [174] looking specifically at ECG and Lucas et al. [180] concentrating on 

echocardiography. These studies also review the guidelines for how their respective modality 

should be used in the pre-participation environment and the benefits that they provide. Higgins et 

al. [175] had a different focus and instead reviewed the different defects that can cause sudden 

cardiac death in young athletes and recommended which modalities are best suited to diagnose 

each. Chang [169] also focused on the ECG, but their approach was to consider the positives and 

negatives of applying it to screening young adults, as well as a brief discussion on how AI is likely 

to shape the future of the heart screening of athletes. Conversely to the studies already mentioned, 

Beavers and Chung [166] and Seshadri et al. [185] both centred their reviews on wearables. More 

specifically, Beavers and Chung [166] highlighted the emerging wearable technologies and how 

they can be used to aid in heart assessments, with specific examples focused on minimising 

cardiovascular risk in athletes. Seshadri et al. [185] reviewed how the data collected from 

wearables had been analysed with ML to evaluate athletes’ heart health, with several successful 

implementations reported to have achieved accuracies as high as 98% in the prediction of 

obstructive hypertrophic cardiomyopathy. 

The remaining two studies are systematic reviews: Claudino et al. [172] focused on the sports 

performance and injury risk of athletes within team sports and highlighted which AI techniques 

have been applied within each sport, while Van Eetvelde et al. [186] looked more specifically at 

the ML methods which have been used in the prediction and prevention of general sports injuries. 

Our review differs from both Claudino et al. [172] and Van Eetvelde et al. [186] in two key areas: 

(1) we focus on highlighting ML applications towards the athlete’s heart exclusively, instead of 

the wider research area of injury prevention and risk, and (2) we aim for a more comprehensive 
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overview of the ML approaches, and emphasise the relevant challenges that are present and how 

to address them through future research. 

6.3.1.3. Wearables 

The four studies in this category share the same goal: they describe the development or 

implementation of wearable hardware that can be used by athletes to help collect physiological 

data automatically. However, they differ in their individual implementations of the wearable 

technology, and in how the data are collected, stored, and analysed. Adetiba et al. [164] developed 

a smart jersey to be worn by athletes to automatically record an ECG signal. These data are then 

automatically passed through an ANN that has been pre-trained to identify heart defects and 

returns whether the result is normal or not to a smartphone application. Hussain et al. [177] 

proposed a fog-centric, wireless, and real-time framework for health and fitness analysis, which 

consists of collecting data such as ECG recordings, body movement, and posture from multiple 

wearables simultaneously, which is then fed into two ML models: one to predict the exercise being 

performed by the athlete; the other to predict the athlete’s health state. Similar to the 

aforementioned studies, Castillo-Atoche et al. [168] described the development of a new wearable 

ECG with a dynamic power management strategy that then automatically passes the collected data 

to an ML model to detect arrhythmias in real time. Unlike Adetiba et al. [164] and Hussain et al. 

[177], the final study in this group by Rymarczyk et al. [184] concentrated exclusively on the 

development of a new type of electrode for physiological signal sensing as an alternative to a 

conventional gelled electrode. 

6.3.1.4. Others 

The remaining six studies do not match any of the criteria for the three main groups. Instead, 

these are individual pieces of research that provide a different overview of the athlete’s heart. 

Chatzakis et al. [170] focused on developing an electronic health record, with a built-in decision 

support system, to support paediatric cardiovascular disease screening. Dockerill et al. [189] 

utilised a case series approach to assess the hearts of 27 runners before and after an extreme 

running event whilst documenting the changes in the cardiac structure caused by an acute bout of 

exercise. Similarly, Kerkhof et al. [154] investigated the changes in the heart of a select group: 

three division one undergraduate crew athletes explored the use of ‘focused’ echocardiography in 

screening athletes to assess their heart health and function. 

The studies by Bernardino et al. [167], Huang et al. [176], and Mlynczak and Krysztofiak 

[181] bring unique approaches. Bernardino et al. [167] used cardiac magnetic resonance imaging 

data for athletes and non-athletes and applied several techniques, such as statistical shape analysis 

and dimensionality reduction, to highlight the areas of the heart that underwent a remodelling due 
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to endurance exercise (more details on the methods used are discussed in the section on the 

“Machine learning approaches used”). Huang et al. [176] is the only study to leverage 

unsupervised clustering to investigate the validity of sport-specific adaptions in athletes’ hearts 

(the methods are further discussed in the section on the “Machine learning approaches used”). 

Mlynczak and Krysztofiak [181] focused on discovering causal relationships between 

cardiovascular and respiratory variables in elite athletes whilst they were supine and standing, 

aimed at developing appropriate training plans. 

6.3.2. Data modalities used for athlete’s heart assessment 

Within this review, a data modality refers to the type of data collected. There are various 

modalities mentioned within the studies being reviewed, from images to signal data. There are 

examples of these being used as a sole modality as well as examples where information from 

multiple modalities have been used to evaluate the heart, with the splits for all the modalities 

mentioned displayed in Figure 25. 

Our review highlighted that only 23 of the 28 studies mentioned which modality, or a 

combination of modalities, were used to either review or generate their dataset. The most 

commonly used was an ECG, with it listed in 16 of the studies, and it is the sole modality used in 

9 of the studies. This is expected due to it being able to detect several conditions associated with 

Figure 25. Displays the number of times each modality was mentioned within 

the studies. It also displays how often the modality was implemented on its own, or 

in conjunction with another modality. Abbreviations: ECG = electrocardiogram, 

Echo = echocardiogram, TR = tabular records, MRI = cardiac magnetic resonance 

imaging, CAA = computer-assisted auscultation, MCG = magnetocardiogram. 
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sudden cardiac death in athletes, such as hypertrophic cardiomyopathy, arrhythmogenic right 

ventricular cardiomyopathy, myocarditis, dilated cardiomyopathy, brigade syndrome, long QT 

syndrome, and Wolff-Parkinson-White syndrome [175]. The use of the ECG as part of athletes’ 

screening is recommended by associations worldwide, including the European Society of 

Cardiology (ESC) and the International Olympic Committee, highlighting its widespread 

application within the literature [174]. ECGs are also very commonly used among healthcare 

practitioners due to them being a cost-effective, non-invasive technique with a relatively high 

sensitivity for detecting underlying cardiac disease [180]. 

Echocardiography is the next most commonly used modality, with it being used in conjunction 

with other techniques in seven studies, with it being the sole modality used in two. Like with an 

ECG, echocardiography is widely used for many of the same reasons. It is non-invasive and, 

compared with other imaging modalities such as CT imaging and MRI, it is cost-effective [175]. 

It also plays a crucial role in diagnosing some conditions where the ECG is less sensitive such as 

coronary anomalies, and dilated cardiomyopathy [175]. Echocardiography also yields positive 

results when used in conjunction with the information generated from other sources, such as 

ECGs, in a multimodal approach [180]. 

A widely adopted modality is tabular records, which consolidate diverse sources of 

information concerning the patient/participant such as their age, sex, and race. This modality was 

referred to in five studies, with it appearing as the sole modality once. Rahman et al. [183] gave a 

compelling reason as to why tabular records should not be used as a sole modality in regard to the 

evaluation of athletes’ hearts. Their use of the tabular information taken from the American Heart 

Association questionnaire for classification was not able to perform as well as a cardiologist that 

had both ECG and echocardiographic data available. However, it does serve an important purpose, 

as certain demographics such as age, race, and sex have already been shown to affect the heart 

differently, so ignoring this information may lead to overlooking a key insight. This point is further 

supported by Narula et al. [182], whereby using information derived from both tabular records 

and the echocardiogram, they built an accurate predictive model (the specific model 

performances, with metrics, can be found in the section on the “Machine learning approaches 

used”). 

Other modalities are referenced; however, they are used less frequently than the three most 

popular modalities: electrocardiography, echocardiography, and tabular records, discussed above. 

CMRI is referenced twice [167,187], and computer-assisted auscultation [188] and 

magnetocardiography [179] are both mentioned once. The reasons for this trend likely lie in the 
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already highlighted cost-effectiveness and non-invasive nature of the three popular modalities 

when compared to their alternatives. 

A common theme throughout the studies is that in the majority of cases, the key features pre-

extracted from the modality are analysed instead of the raw data itself. The features can either be 

extracted manually by a healthcare professional, such as the physical measurements 

[178,179,182], or by using a technique to generate statistical features instead [163,171]. The only 

study that bucks this trend was by Castillo-Atoche et al. [168], where authors developed their 

model on ECGs in an image format instead. 

6.3.3. Machine learning approaches used 

The application of ML has been used in 13 of the studies considered for this review. Eight of 

them were assigned to the “predictive modelling” group, three were assigned to the “wearables” 

group, and two were assigned to the “other” group. The most commonly used method was the 

ANN, with it being used in 5 out of the 13 studies [163,164,171,178,182]. This was then closely 

followed by support vector machines [171,178,182,183], used in 4 out of the 13 studies, and then 

random forest [171,182,183] and logistic regression [165,167,173], tested in 3 out of the 13 

studies. Other techniques that were also mentioned within the literature but were less commonly 

used were decision trees [165,173], naïve Bayes classifiers [178,183], multiple linear regression 

[176], k nearest neighbours [178], LDA [179] and long-term short memory neural networks 

(LSTM) [177], CNN [168], and hierarchical clustering [176]. A summary of all 13 studies can be 

found in Table 11 which details the aims of each study along with other key information. 

The main application of ML within these 13 studies is towards classifying whether a 

patient/participant has a particular heart disease or defect, with 8 out of the 13 having this focus. 

Adetiba et al. [163] used an artificial neural network to classify whether an athlete’s heart is 

normal, or whether one of the following defects was present: tachyarrhythmia, bradyarrhythmia, 

or hypertrophic cardiomyopathy. This was done by extracting the ECG signals, applying a first-

order statistical signal processing technique, and passing these features as inputs to train the 

model. The final model reported an accuracy of 90%. A subsequent study [164] from the same 

authors, published two years later, performed the same classification task, included feature 

extraction methods, and used only ANN. However, this time the data were generated by a 

wearable jersey they designed, reporting an accuracy of 100%. 

Lombardi et al. [179] used LDA to determine whether patients with idiopathic ventricular 

arrhythmias with a left bundle branch block and inferior axis morphology arrhythmia originated 

from the aortic sinus cusps or the right ventricular outflow tract. Manually extracted features from 

multiple modalities were used to create the linear separation between the two classes, achieving a 
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final accuracy of 94.7%. The aim of Narula et al. [182] was to discriminate between hypertrophic 

cardiomyopathy and physiological hypertrophy in athletes. The manually extracted features from 

the echocardiographic scans as well as tabular records were used as the inputs to train a support 

vector machine, random forests, and an ANN model. The predictions from each model were taken 

and a voting system was used to determine the overall class of the patient. The reported 

performance of this ensemble method was an AUC of 0.795. 

Długosz et al. [173] used different ML techniques in an attempt to address the two aims of the 

study, which were to use ECGs to estimate the level of cardiac troponin (cTnI) in amateur athletes 

as well as detect coronary artery disease (CAD) in the same cohort of patients. The cTnI levels of 

the athletes were recorded at several times before and after a sporting event, and CAD was 

confirmed in six athletes. The study attempted (unsuccessfully) to train a logistic regression model 

to estimate the cTnI levels. However, they were able to detect CAD successfully by training a grid 

search optimised decision tree using the pre-extracted features from ECGs performed on the 

athletes and tabular records such as their BMI and age and the blood levels of the cTnI. The best 

performing model achieved an AUC of 0.91. 

The work by Rahman et al. [183] differs from the above three studies as it forwent any formal 

screening test data such as ECGs or echocardiograms and used the tabular record information 

collected from the American Heart Association questionnaire. It aimed to predict whether an 

athlete’s heart was normal or not and it did this by training three models: a support vector machine, 

a random forest, and a naïve Bayes classifier. They performed two experiments, the first was on 

the whole dataset, which contained a large positive class (representing healthy hearts) bias, and 

another on a dataset where the positive class had been subsampled to create a biased dataset. The 

best results reported for these experiments were an accuracy of 0.742 using the support vector 

machine for the first experiment, and 0.553 using the random forest for the second experiment. 

Regardless of their stated results and methodology, many of the studies referred to previously 

share a similar drawback: they all used a small dataset for their analyses. The size of the dataset 

used by Adetiba et al. [163,164] is n = 40, Lombardi et al. [179] is n = 26, with Narula et al. [182], 

Długosz et al. [173], and Rahman et al. [183] using larger datasets of n = 139, n = 160, and n = 

470 participants, respectively. The use of small datasets can lead to problems when trying to 

leverage ML methods such as ANN, whereby the model will not learn the underlying relationship 

between the input variables and the output, potentially resulting in the model overfitting the data 

and reducing its ability to generalise to new, unseen data. Barbieri et al. [165] and Castillo-Atoche 

et al. [168] both addressed this issue by using much larger datasets for their analysis. Barbieri et 

al. [165] used 26,002 participants for their analysis, to classify whether an athlete is at a 
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cardiovascular risk or not. For this, the authors use tabular record information as well as the 

features manually extracted from ECGs as inputs to train and test two models, one built using a 

decision tree, and the other using logistic regression. The logistic regression model provided the 

best performance, generating an AUC of 0.78. Castillo-Atoche et al. [168] used a much larger 

dataset consisting of 56,542 ECG samples taken from 487 patients to automatically predict 

arrhythmias in athletes in real time. The ECG samples were analysed in an image format, with 

55,222 samples taken from 480 subjects used for training and 1320 samples taken from 7 athletes 

used for the test. The training dataset was pieced together using several open-access online 

datasets, with the test set comprised of a manual reading taken from their discussed wearable. The 

model used to make the predictions was developed using a CNN and achieved an accuracy of 

94.3% on the training set and an average accuracy across the seven athletes in the test set of 93.9%.  

The remaining five studies that applied ML techniques have a different focus other than 

disease classification. Christ and Rückert [171] aimed to use ML to predict whether a participant 

was an athlete or not based on their ECG criteria. The authors used statistical measurements for 

time-domain features and discrete Fourier transforms to extract the frequency-domain features 

that were then used as model inputs. An ANN, a support vector machine, and a random forest 

model were trained and tested on the data, with the best performance coming from the random 

forest model which generated an accuracy of 98.1%.  

Laurino et al. [178] focused on classifying the heart states in athletes, distinguishing between 

heart rates that were at rest and those during stressful conditions. Like with many of the 

approaches stated thus far, the features from the ECGs were manually extracted to be used as the 

dataset for this analysis. K nearest neighbours, support vector machines, naïve Bayes, and 

artificial neural networks were all tested, and the best result came from the artificial neural 

network, which successfully managed to separate the two classes with an accuracy of 0.87 and 

0.86 on the training and test set, respectively. 

Hussain et al. also used a similar application of ML [177] whereby they used an LSTM neural 

network on the waveforms generated from the heart rate, breathing rate, and heart rate variability, 

to predict the athletes’ health state. The health state considered for the analysis were aerobic, 

anaerobic, V02 max, hazardous, and moderate, and their model was able to classify the athletes 

with an accuracy of over 97%. Hussain et al. [177] also described a second ML application, where 

they again used an LSTM network to predict what activity the athlete was performing. They 

trained four models for four different experiments, all using breathing waveform data and the 

ECG data as the inputs, with the best-stated predictive performance being an accuracy of over 

83%. 
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Table 11. Summary of studies that applied ML methods. 

Study Sample 

Size (N) 

Type of Method Problem Addressed Performance 

Metrics Stated 

Adetiba et al. 

[163] 

40 ANN Automatic heart defect detection 

for athletes 

Accuracy = 0.9 

Adetiba et al. 

[164] 

40 ANN Develop a wearable ECG that 

can be worn by athletes to help 

automatically detect defects 

Accuracy = 1 

Barbieri et 

al. [165] 

26,002 Decision trees 

Logistic regression 

Classify whether an athlete is at 

cardiovascular risk or not 

AUC = 0.78 

Bernardino 

et al. [167] 

- Logistic regression 

Principal 

component analysis 

Statistical shape 

analysis 

Highlight areas of the heart that 

undergo cardiac remodelling due 

to endurance exercise 

- 

Castillo-

Atroche et al. 

[168] 

56,542 

samples 

from 487 

patients 

CNN Automatically predict 

arrhythmias in athletes in real 

time 

Accuracy = 

0.939 

Christ and 

Rückert 

[171] 

22 and 9 ANN 

Random forest 

Support vector 

machine 

Predict whether a patient was an 

athlete or not based on ECG 

readings 

Accuracy = 

0.981 

Długosz et 

al. [173] 

160 Decision tree 

Logistic regression 

(1) Use ECGs to estimate 

the level of cardiac troponin 

(cTnI) in amateur athletes 

(2) Detect coronary artery 

disease (CAD) in athletes 

AUC = 0.91 

Huang et al. 

[176] 

598 Agglomerative 

hierarchical Clustering 

Multiple regression 

analysis 

(1) Identify athlete groups 

with similar characteristics 

(2) Investigate the validity of 

sport-specific adaption for 

evaluating athlete’s hearts 

- 

Hussain at al 

[177] 

7200 data 

points from 

4 athletes 

LSTM (1) Predict an athlete’s 

health state 

(2) Predict the activity being 

performed by an athlete 

1) Accuracy 

= 0.97 

2) Accuracy = 

0.83 

Laurino et al. 

[178] 

14 and 12 ANN 

K nearest 

neighbours 

Naïve Bayes 

Support vector 

machines 

Classifying heart states in 

athletes between those at rest 

and those in stressful conditions 

Accuracy = 0.86 

Lombardi et 

al. [179] 

26 Linear discriminant 

analysis 

Determine whether patients with 

idiopathic ventricular 

arrhythmias with left bundle 

branch block and inferior axis 

morphology arrhythmia 

originated from the aortic sinus 

Accuracy = 

0.947 
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Huang et al. [176] are different from the former as they leveraged unsupervised learning in an 

attempt to find hidden clusters within the dataset. The study had two aims: (1) to explore the 

natural clustering of echocardiographic variables to identify athlete groups with similar 

characteristics; and (2) to investigate the validity of sport-specific adaption through a data-driven 

approach for evaluating the athlete’s heart. To address the first aim, through utilising standard 

statistical tests such as an ANOVA and t-tests as well as multiple regression analysis, they were 

able to show clear training-related adaptations between the groups which were defined by using 

Mitchell’s classification. For the second aim, the agglomerative hierarchical clustering managed 

to find two distinct clusters for both male and female athletes, confirming sport-specific adaptions. 

The final study by Bernardino et al. [167] used a different approach and ML implementation 

to the other twelve studies. They presented a linear statistical shape analysis framework that 

looked for shape differences between the athletes and a set of control participants. This framework 

works by using a combination of dimensionality reduction techniques, principal component 

analysis, and partial least squares to reduce the high dimensional shape vectors to a latent space 

that contains the most relevant shape patterns. Logistic regression was then used to classify what 

shape patterns were the most discriminating between the two populations, and then they used this 

information to provide a visual representation of the changes. This framework was applied to 

cardiac magnetic resonance imaging for the study population which was able to highlight areas of 

the heart that undergo a cardiac remodelling due to endurance exercise. 

There is a total of 11 years between the earliest study published by Laurino et al. [17] in 2011 

and the most recent study published by Castillo-Atoche et al. [168] in 2022. Over most of this 

time, the implementation of machine learning was fairly straightforward: selecting a classification 

task, testing several techniques to find which performed the best, and reporting the results. 

However, more recently, the types of ML techniques which have been used have become more 

complex and intricate, as seen in Hussain et al. [177] being the first to leverage deep learning 

cusps or the right ventricular 

outflow tract 

Narula et al. 

[182] 

139 ANN 

Random forest 

Support vector 

machine 

Discriminate between 

hypertrophic cardiomyopathy 

from physiological hypertrophy 

in athletes 

AUC = 0.795 

Rahmen et 

al. [183] 

470 Naïve Bayes 

Random forest 

Support vector 

machines 

Predict whether an athlete’s 

heart is normal or not 

Accuracy 0.742 

and 0.553 for 

experiments 1 

and 2, 

respectively 
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methodologies in the form of an LSTM, and Castillo-Atoche et al. [168] leveraging the power of 

CNNs for image analysis. Additionally, the problems ML are being applied to are becoming more 

focused and novel, as seen in Bernardino et al. [34] and Huang et al. [176]. This indicates the 

beginning of a trend towards a more in-depth ML analysis being implemented within the research 

area. 

6.4. Discussion 

The studies evaluated as part of this review indicate that there is a clear drive within the 

research area of the athlete’s heart to leverage ML. This is shown by 57% of the 28 studies either 

using ML to create a model to answer a question or solve a particular problem [14,16,19–22,25–

27,34,36,37,40], or to evaluate how ML is being implemented in similar areas through review 

studies [172,185,186]. The most popular application of ML is in its use to generate models for 

classifying patients/participants to aid in diagnosing heart defects at an early stage.  

The results stated in the research are very positive, showing the real benefit ML could have 

should it see a widespread adoption. What the studies also show is that alongside the traditional 

disease and heart health predictive modelling, there is also a desire to use ML to help further 

develop the knowledge surrounding the athlete’s heart itself. This has been done by studies aimed 

at quantifying the magnitude of exercise volume on cardiac adaptations within athletes’ hearts 

when compared to that of the general population. 

6.4.1. Limitations of current research 

The use of ML is desirable in many tasks, including health care, as properly trained models 

can help reduce errors in diagnosis by either matching human performance [190] or even being 

superior in some cases [156]. Even though the ML applications in this area have shown promise, 

several issues could potentially slow the adoption of such techniques and limit their application 

in the real world. First, the vast majority of the data used in the studies that reference ML, or any 

of the 28 studies in the full literature reviewed, do not use an open-source dataset. This is 

problematic, making it difficult for external groups to assess the data to determine potential biases 

that were missed in the study or to validate the stated models being presented. This will likely be 

a difficult problem to overcome, due to the nature of the data being analysed. For the teams elite 

athletes compete for, having information about their players’ health, or obtaining it for elite 

athletes from other teams, can give an unfair advantage in situations such as transfer markets 

[191]. Therefore, it is not in the best interests of the main collectors of athletes’ data to make it 

publicly available and performing the data collection at the scale needed by third parties would 

become very costly. The only study that uses open-source data is by Castillo-Atoche et al. [168], 

where they fuse several open-source databases to form a training dataset. The datasets used are 
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the MIT-BIH Arrhythmia Database [192], ECG-ID Database [193], MIT-BIH Supraventricular 

Arrhythmia Database[194], MIT-BIH Atrial Fibrillation Database [195], QT Database [196], and 

Long Term ST Database [197] which are all hosted on PhysioNet [70]. Even though the use of 

open-source data is positive, this approach does not solve the issues discussed. First, there is not 

a clear description of how the data has been fused and pre-processed, hampering validation efforts. 

Additionally, the open-source data used does not contain the athlete’s data used in the study, again 

further hindering the ability for external validation. 

Another issue relating to the data is that many of the studies use small sample sizes for their 

analyses. This poses a problem, especially with ML applications, as it is well known that having 

sufficiently large data available is required not only to increase the model’s performance but also 

to increase the generalisability of the model. Adetiba et al. [164] is an example where a classic 

symptom of overfitting is present, as the stated accuracy is unusually high at 100%. This, paired 

with the very small data size and the inability to reproduce the work due to non-public data, further 

supports the idea that overfitting may be present in this model. Furthermore, heart defects in 

athletes are generally at a low prevalence in a given population, hence a small sample size is 

unlikely to be fully representative of the disease which the authors are attempting to analyse. 

Hussain et al. [177] further demonstrated the effects imbalanced data can have on the results in 

the accuracy stated for the health state predictions of 97%. Even though the dataset is large, the 

prevalence for the class of concern, whether the health state is currently hazardous, represents 

only 0.085% of the dataset, with the classes aerobic and moderate accounting for 92.7% of the 

dataset. This causes an issue as it becomes very easy for a model to overfit and generate good 

performance metrics by mainly predicting the majority classes. This increases the difficulty for 

an ML model to fully understand trends that distinguish what separates the class of interest and 

reduces the likelihood of it generalising well to an unseen dataset.  

As briefly mentioned previously, the analyses are mainly performed using the features 

extracted from the different modalities, such as electrocardiograms, as inputs for their analysis 

instead of the raw input itself. With the successes seen by using the raw data as inputs to develop 

ML models for the prediction of different heart conditions [62,63,198], it is surprising that none 

of the studies has attempted to implement this approach toward the athlete’s heart. Additionally, 

restricting the input data to the pre-extracted features only means working under the assumption 

that the features themselves explain enough variance between the different output classes to enable 

accurate predictions, which may not hold true. Another potential issue arises due to either the time 

and associated cost of a healthcare practitioner extracting these features manually, which can 
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further exacerbate the small dataset issue, or using a feature extraction technique which may not 

fully capture all the relevant features of the original input, harming the model’s performance. 

A further point here is that most models which have been built have used supervised ML as 

the basis of the analysis. The difficulty here again is that the data are required to be labelled for 

supervised ML to be carried out, meaning an expert practitioner will need to analyse the data to 

provide an appropriate diagnosis or status to each sample, which can be costly and time-

consuming. There may also be a situation where assigning labels to the data is not appropriate or 

even possible to do accurately, for example where a cross-sectional study was performed with no 

specific outcome in mind, or if the equipment needed for a gold standard diagnosis is unavailable. 

This problem will only be worsened by the ever-increasing volume of the data generated and 

could result in large numbers of datasets being underutilized, again exacerbating the issues 

surrounding the lack of open-source data and small sample sizes. Another problem supervised ML 

has in this context is, as described in the previous paragraph, the low prevalence of adverse 

outcomes in the athlete’s heart. Having limited information on non-healthy hearts will likely 

impact the ability of any supervised ML to properly model the underlying structures that 

distinguish a healthy and non-healthy heart. Some techniques can be applied to help improve the 

performance on imbalanced datasets, however, again, these come with their own challenges, such 

as potentially introducing an additional bias to the results. Considering the numerous challenges 

associated with supervised ML in this area, it hints that a different approach may be appropriate 

to generate an optimal output. 

6.4.2. Future research and impact 

A great first step would be an organised effort to generate large, open-source datasets 

consisting of athletes’ hearts data so that ML models can be built, tested, and validated by external 

researchers to confirm the performances of different models. This should also help in building up 

the trust between those developing the models and those that will be using them, which in turn 

may help speed up the adoption. This approach is not novel, with the creation of public databases 

playing a pivotal role in pushing key areas of research in closely related disciplines, such as atrial 

fibrillation detection [29]. 

A further area for future research will be to focus on applying ML models to the raw data 

instead of using pre-extracted features. This will have obvious benefits which have already been 

stated of saving time and money, in theory allowing the scope of future projects to be more 

ambitious. The main reason for this approach, however, is the potential for the discovery of novel 

biomarkers by the ML model, finding associations between the features in the raw data and the 

previously unknown outcome. These discoveries would help push this research field forward, 
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helping to strengthen the understanding of the athlete’s heart. Castillo-Atoche et al. [168] is the 

only study within the review that embraces the raw data in the form of ECG images. Their study 

clearly shows the benefits of this approach with their model being able to carry out analysis 

automatically and to a high degree of accuracy. 

In addition to this, there should also be a focus on developing frameworks that can use ML 

models that can analyse the raw data from several modalities simultaneously to make its decisions. 

Rahman et al. [183] suggested that the data from electrocardiography and echocardiography 

should be considered by healthcare professionals when performing athletes’ heart screenings to 

yield the best results. Therefore, it seems a logical next step to evaluate whether this hypothesis 

transfers to ML models and if it yields tangible improvements to the model’s performance. 

Another potential avenue that could be pursued is to look at developing models to determine 

disease progression alongside the physiological adaptations of the athlete’s heart. All the 

predictive modelling conducted in the above literature centres on determining the presence of the 

disease, not necessarily the severity of the disease or how it will develop within the subject. 

Expanding the research in this area will provide healthcare professionals with the tools and 

information needed to help properly manage the disease and provide the appropriate treatments 

earlier. 

Finally, future research should start to focus on expanding the implementation of unsupervised 

ML due to its advantages in certain situations over supervised ML. As unsupervised learning does 

not require labelled data, instead finding key relationships within the data automatically, it 

provides a solution to the issues with datasets which were mentioned above, relating to the time 

and cost of labelling, as well as the data where labels are simply not appropriate. A more 

significant benefit of unsupervised ML in this context is that it allows for a rephrasing of the 

problem and provides an alternative look into the data. For example, instead of taking the classical 

approach and phrasing the problem as a binary classification problem, such as is the athlete’s heart 

healthy or not healthy, the problem can instead be constructed as an anomaly detection task and 

answer “What does a healthy athlete’s heart look like?”. This approach provides compelling 

solutions to the issues discussed in the limitations section surrounding the low prevalence of 

adverse outcomes in athletes’ hearts, as only healthy data would be required to develop such a 

model, providing solutions which give a deeper understanding of the raw data itself, as well as 

looking at to what degree the data are similar. 

6.5. Chapter Conclusion 

This review shows that there is a clear interest in the use of ML to study the athlete’s heart. 

The most commonly used ML methodologies within this research area were ANNs, support vector 
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machines, and random forests, where the most common implementation was to perform predictive 

modelling in the form of disease classification. With continued development and sustained 

advancements, the future potential of ML applications is promising, not only in improving model 

prediction accuracies, but in aiding in the understanding of the underlying physiological changes 

within an athlete’s heart. 
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7. Modelling Healthy Athlete’s Hearts: Applying GTM to ECG 

Rhythm Strip Data to Identify Clinically Relevant Sub-Groups 

7.1. Introduction 

As thoroughly discussed in Chapter 6, the athlete’s heart describes the physiological 

adaptations the heart undergoes during extreme training regimes to cope with the increased 

stresses placed upon it. A heart that has undergone these adaptations differs from the general 

population in several ways, such as increased cavity sizes (both left and right) and left ventricular 

wall thickness. There are also differences between athletes as well, caused by factors such as age, 

sex, and sport played [199–201]. These adaptations can result in cardiac measurements frequently 

exceeding normal limits [199] that can overlap significantly with identifiers of cardiac disease 

[200], which if left undiagnosed, can lead to adverse cardiac outcomes. They also make it difficult 

to develop a complete picture of what a healthy athlete’s heart looks like. 

Pre-participation screening is used to identify abnormalities in athletes before partaking in 

sports to reduce any potential risks [61]. Again, as discussed in Chapter 6, ECG tests are 

commonly used in these screenings as they can help improve the sensitivity of cardiovascular 

disease detection [200]. In prior years there was some debate around the effectiveness of ECGs 

for mass pre-participation screenings, with the European model recommending the use of 12-lead 

ECGs which contrasted with the American Heart Association’s opposition to its inclusion based 

on potentially high false positive rates [202]. However, more recently the inclusion of the ECG is 

more favourable, with it now being supported by the European Society of Cardiology, the 

International Olympic Committee, and many National Collegiate Athletic Associations [203]. 

Regardless, the need for minimising false positives within screening an athlete’s heart remains 

crucial as they can cause a large financial burden and, more importantly, a psychological impact 

on the athlete in question [204]. Therefore, ensuring a principled approach to interpreting the 

athlete’s heart is vital to minimise this risk. 

There have been continued developments for guidelines that provide recommendations to 

clinicians and medical professionals on how to best interpret ECGs for athletes [204–207]. 

Alongside these developments, there has also been a growth in the application of AI and ML to 

help further understand the athlete’s heart [61]. An extensive review of these applications is 

presented in Chapter 6, which highlights unsupervised ML as a promising future avenue for 

athlete’s heart research. Since the publication of the work contained in Chapter 6, a subsequent 

review looking into the same area has also been published [208], further strengthening the overall 

message previously presented. The authors identify that the area is still in its infancy, with there 
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being several promising areas for future AI integration into sports cardiology. They suggest that a 

hybrid approach that allows AI to be leveraged by clinicians as a decision-making aid will be an 

optimal format, enhancing the medical expertise they already have. Naturally, however, there are 

several challenges in developing and implementing AI applications, especially in a healthcare 

setting. There are general problems that apply, such as the lack of interpretability and transparency 

of certain ML models, alongside more specific challenges, such as a lack of available data 

[61,204]. In any case, the inclusion of AI will likely lead to a better understanding of the athlete’s 

heart and in turn, lead to more positive outcomes by proper management and treatment of disease 

[61,208], should it address the challenges and concerns surrounding its implementation. 

This chapter proposes a novel methodological workflow to identify different sub-groups 

within a population of healthy athletes based on their ECG recordings. The proposed methodology 

will consist of three core sections that combine and build upon many novel elements described in 

previous chapters. These core sections are data extraction, feature generation, and data clustering. 

First, the data extraction stage applied the ECG digitisation algorithm defined in Chapter 3 to 

extract the signals presented within the ECGs stored as PDFs. The feature extraction stage then 

takes an ECG signal and extracts human readable features, such as P wave and QRS duration, 

automatically. Finally, the data clustering section groups together athletes based on the similarity 

of their ECG features. To carry out this clustering, we applied a modified version of the 

methodology described in Chapter 5 that now performs constrained hierarchical clustering, based 

on neighbourhoods derived using the magnification factors calculated from the GTM output. This 

proposed methodology aims to address several of the areas highlighted for future research, 

providing a robust and trustworthy output [61,208]. 

7.2. Materials and Methods 

7.2.1. Data Source 

The data used for this analysis was derived from a set of 854 ECG recordings from 611 healthy 

athletes from four different sporting disciplines: footballers, cyclists, rugby league players, and 

ultra runners. The ECG recordings were carried out by cardiologists at Liverpool John Moores 

University over several years for the purposes of pre-participation screening. The ECG recordings 

contained the 12 standard leads arranged in a 3x4 grid (identical to the arrangement B ECGs 

outlined in Figure 5c in Chapter 3) along with a full 10-second recording of the signal generated 

by lead II. These prolonged single lead recordings are known as rhythm strips and are used to 

accurately assess the cardiac rhythm, with lead II commonly being used for this purpose as it 

generally provides a good view of the P-wave [209]. The analysis carried out within this chapter 
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used these rhythm strip signals. The ECG recordings were stored in a PDF format and recorded 

at a sample rate of 150Hz. 

7.2.2. Methodological Workflow 

7.2.2.1. Data Extraction 

The first section of the approach focuses on converting the ECGs stored in the PDF format 

into digital signals. The ECG signals were embedded within a page surrounded by other 

demographical data such as age and sex. An important note here is that the data had already been 

pseudo-anonymised, meaning any identifiable information had already been omitted from the 

PDF, and replaced with appropriate IDs. We then created an algorithm that could extract the 

rhythm strip ECG signal portion of the PDF and store it as a PNG file. This step is crucial as 

converting the data to an image format allowed for the signal extraction algorithm defined in 

Chapter 3 to be employed to convert the rhythm strip image into a digital signal. As the signal was 

sampled at 150Hz, and the rhythm strip represents a 10-second recording of lead II, then each 

generated signal had a dimension of 1x1500, with each data point representing 6.67ms. 

Within the algorithm used to locate the rhythm strip and convert it to an image, we also 

leveraged the Python package “Pytesseract” to perform optical character recognition. This 

allowed for metadata to be extracted for each athlete simultaneously from the information 

surrounding each ECG signal. From the PDFs, we were able to extract the following 

demographical information for each athlete: sporting discipline, ethnicity, age (at ECG recording), 

sex, height, and weight (and by extension, BMI). These variables were not used for modelling and 

instead used as additional investigative variables to provide a deeper understanding and context 

to the makeup of the identified clusters. 

7.2.2.2. Feature Generation 

The next part of the methodology takes the extracted rhythm strip signals from the previous 

section and generates human interpretable features from these signals to be used during the 

modelling phases of the analysis. To achieve this, an algorithm was developed using functions 

provided in the Python packages “heartpy” and “neurokit2” [79]. The heartpy package is a Python-

based heart rate analysis toolkit that provides several functions to both pre-process an ECG signal 

and extract heart rate variability features. The neurokit2 package is an open-source Python-based 

neurophysiological signal processing toolkit that provides several functions that can be applied to 

a range of bodily signals, however, for our purposes, only ECG-related functions were required. 

These functions were used primarily to identify key event locations within the ECG signal, such 

as the onset and offset points of P and T waves.  
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Before any feature extraction is performed, each signal is min-max scaled to normalise its 

values between 0 and 1. Then, the first step is to identify the locations for the peaks of the R waves 

for each signal. This is an important step as the subsequent functions rely on these locations to 

accurately extract their relevant features. This is achieved by employing the enhanced_peaks 

heartpy function that enhances the signal-to-noise ratio by emphasizing the highest peaks, which 

generally within an ECG is the R-wave [210]. This processed signal is then passed through the 

ecg_peaks neurokit2 function that identifies the peak of the R-wave by detecting the local maxima 

of the absolute gradient within the QRS complex. 

From this point the feature generation is split into two parts: the first part extracted features 

from the ECG relating to heart rate variability, with the second part focusing on extracting 

information regarding wave and interval durations. Starting with the heart rate variability, all 

features extracted are derived from the time differences between subsequent R-wave peaks. The 

heart rate variability features calculated from each signal, along with a description of each 

variable, are outlined in Table 12. 

Table 12. Defines each of the heart rate variability features extracted from each ECG rhythm 

strip, along with a description of each variable. 

Heart Rate Variability 

Extracted Feature 
Description 

Beats per minute (BPM) 

Describes the resting heart rate of the athlete, calculated by the 

average number of large squares in between consecutive R waves 

per minute 

Interbeat Interval (IBI) 
Another term for the RR Interval, this describes the average time 

between consecutive R peaks 

RR Interval (sd) Describes the standard deviation of all the calculated IBIs 

Standard deviation of 

successive differences 

Describes the standard deviation of the differences between 

consecutive IBIs 

Root mean square of 

successive differences 

Describes the root mean square of the differences between 

consecutive IBIs 

Proportion of successive 

differences above 20ms 

A value between 0 and 1 that indicates what proportion of the 

differences between the consecutive IBIs were over 20ms 

Proportion of successive 

differences above 50ms 

A value between 0 and 1 that indicates what proportion of the 

differences between the consecutive IBIs were over 50ms 

 

The second part of the feature extraction generates wave and interval durations from the ECG 

signal, commonly used when interpreting an ECG recording. This was achieved by first using the 

ecg_delineate neurokit2 function that identified key points along the ECG signal using discrete 
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wavelet transformations [211]. The identified points relate to the onset, peak, and offset locations 

of the P wave, QRS complex and T Wave. A set of points is generated for each R wave peak 

identified earlier in the process, i.e. for every beat in the ECG signal. Figure 26 displays one of 

the ECG rhythm strips with the identified points marked on the signal. Before any durations are 

calculated, however, a check is performed to ensure that the points that have been extracted are 

correct and accurate. The check looks to see if the order of the locations identified is in the correct 

sequence, with the correct order demonstrated in the legend of Figure 26. If all the locations are 

in the correct order, the beat is included for the calculations of the interval and wave durations. 

Again, using Figure 26 to demonstrate this, we see that 7 out of the 8 beats passed the check and 

will be used in the duration calculations, with the first beat of the signal excluded. This will be 

due to an error in the order of the points identified, for example, the R wave onset being identified 

as occurring earlier than the p wave offset for that beat. From these identified positions, we were 

able to calculate the following features: 

• P wave duration (mean and standard deviation) 

• PR interval (mean and standard deviation) 

• QRS complex (mean and standard deviation) 

• ST segment (mean and standard deviation) 

• T wave (mean and standard deviation) 

By applying all the feature generation steps to each ECG rhythm strip, we were able to 

generate a total of 17 features which serve as the data used during the modelling stage of the 

analysis. 

7.2.2.3. Data Clustering 

The final stage of the proposed methodology takes the features extracted from the ECG rhythm 

strips and applies a clustering approach to identify similar sub-groups within the data. The 

approach outlined in this chapter builds upon the methodology outlined in Chapter 5, with GTM 

again being the method of choice to model the data and generate the latent clusters. Like with 

Figure 26. An athlete’s ECG rhythm strip with the key points relating to the P wave, QRS complex and T wave 

marked on the signal. 
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Chapters 4 and 5, GTM was selected due to its ability to identify complex non-linear relationships 

within the data, as well as provide interpretability of the cluster compositions via the reference 

vectors and reference maps. 

This chapter provides new developments in the identification of the macro clusters in the latent 

space. Here, we introduce a novel methodology for identifying clinically relevant macro clusters 

by using a constrained hierarchical clustering of the reference vectors. When considering the latent 

nodes generated via GTM, nodes that are closer together will be mapped to points that are close 

together in the data space. The idea behind applying a constraint to the hierarchical clustering is 

to help preserve these latent neighbourhoods within the macro-clusters to generate more accurate, 

easier-to-interpret macro-clusters [50]. This work is essential due to the GTM micro-cluster 

visualisation being too granular for practical use [212]. Like in Chapter 5, macro clusters solve 

this issue by providing aggregated cluster partitions that can be more easily interpreted. Using 

constrained hierarchical clustering for this purpose is not novel in and of itself, with a version of 

the approach being used by Vellido et al [50]. The study implemented a simple neighbourhood 

constraint to the reference vectors such that all immediate surrounding nodes were considered 

neighbours, with non-neighbouring nodes restricted from merging. 

The novel aspect of our approach therefore is that we first define the neighbouring condition 

in the latent space using magnification factors. The neighbours for each latent node were defined 

using unsupervised k nearest neighbours’ (KNN) algorithm. Given a set of points 𝑼 =

 {𝑢1, 𝑢2, ⋯ , 𝑢𝑙 , } in 𝑅𝑛, for every point 𝑢𝑖, unsupervised KNN defines 𝑘 neighbours for that point 

that have the smallest distance away [43,213]. For our purposes, each point 𝑢𝑖 resides in 𝑅3, with 

it being defined by the 2-dimensional coordinates of each latent centre along with the 

magnification factor corresponding to that centre. Euclidean distance was used to evaluate the 

distance between pairs of points. We set 𝑘 = 4 as we wished to define highly nuanced 

neighbourhoods that captured the information being provided through the magnification factors 

[43]. Once the neighbouring conditions had been defined for each latent centre, these were 

transferred to their corresponding reference vector to be used as the constraint in the hierarchical 

clustering. 

 The magnification factors generated from the trained GTM model provides information for 

how the lower dimensional latent manifold distorts when being mapped to the higher dimensional 

data space. Higher magnification factors show areas of high distortion during the projection, 

which corresponds to areas where data is sparse, with the reverse being true for lower 

magnification values. These can be assessed visually by superimposing the magnification factors 

onto the membership map generated from GTM and using a grey-colour scale to represent the 
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values of the factors. Magnification factors were used in the study by Vellido et al [50], however, 

they were used indirectly to visually assess the macro-clusters to see if they estimated the 

magnification factor distribution. Our approach instead looks to directly include the magnification 

factor information to influence the macro-clusters to create a simpler, equally informative, output. 

This process is visually outlined in Figure 27. 

 

 

Figure 27. Proposed AI-based methodology that builds on the approach outlined in Chapter 

5. The modification to the approach is contained with the green dashed box and demonstrates 

how the magnification factors are generated from the GTM model, used to identify neighbourhood 

constraints, which are then used to influence the hierarchical clustering applied to the reference 

vectors. 

7.2.3. Statistical analysis 

Medians and interquartile ranges were calculated for continuous variables, and frequencies 

and proportions (percentages) were used for categorical variables. There were several ordinal 

variables used for the exploratory analysis of the GTM output. These were one-hot encoded and 

then treated as a categorical variable and represented in the data as such.  

To study the characteristics of the generated phenotype groups, differences between 

continuous variables were analysed using the Kruskal-Wallis test and differences between 

categorical variables were analysed using the Chi-squared test. In both cases, a p-value <0.05 was 

the threshold for statistical significance. 
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7.3. Results 

7.3.1. Data Summary 

The data extraction algorithm extracted all available demographical information contained 

within the PDFs. From this, we learned that the median age of the athletes is 20 (IQR 16-28) with 

a range between 13 and 62, with ~81% being male. Table 13 contains the summary of these 

additional investigative variables, along with the modelling variables extracted during the feature 

generation stage of the methodology. A note here is that the colour scheme used to differentiate 

between the modelling and additional investigative variables, both in the tables and in the 

visualisations, is the same as that used within Chapter 5. 

Table 13. Summary characteristics of the athlete’s data 

Variable name Value 

Model l ing variables:  

Heart Rate Variability:  

BPM 58 (52, 65) 

IBI [ms] 1034 (924, 1163) 

RR Intervals (sd) [ms] 47 (30, 73) 

Standard deviation of successive differences [ms] 57 (36, 94) 

Root mean square of successive differences [ms] 59 (37, 96) 

Proportion of successive differences above 20ms 0.83 (0.67, 1) 

Proportion of successive differences above 50ms 0.43 (0.14, 0.67) 

Waves and Intervals:  

P-wave duration (mean) [ms] 75 (55, 93) 

P-wave duration (sd) [ms] 16 (8, 23) 

PR-interval duration (mean) [ms] 151 (134, 173) 

PR-interval duration (sd) [ms] 16 (10, 26) 

QRS-complex (mean) [ms] 107 (91, 120) 

QRS-complex (sd) [ms] 9 (4, 17) 

ST-segment duration (mean) [ms] 154 (135, 175) 

ST-segment duration (sd) [ms] 16 (8, 28) 

T-wave duration (mean) [ms] 140 (123, 153) 

T-wave duration (sd) [ms] 14 (8, 27) 

Addit ional invest igat ive variables:   

Demographics:  

Age at ECG [years] 20 (16, 28) 

Height [cm] 179 (171, 184) 

Weight [kg] 76 (65, 87) 

BMI [kg/m2] 24 (22, 26) 

Sex [Male] 691 (81%) 
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Ethnicity (70% populated):  

White 469 (55%) 

Black 124 (15%) 

Hispanic 3 (0%) 

Asian 1 (0%) 

Sporting Discipline (98% populated):   

Football 375 (44%) 

Cyclists 213 (25%) 

Rugby League 130 (15%) 

Ultra runner 115 (13%) 

 

7.3.2. Data Clustering Results 

7.3.2.1. Membership map visualisation 

Like Chapter 5, we also performed hyperparameter tuning using 10-fold cross validation to 

determine the optimal parameters for the GTM modelling.  For a latent space of dimension 10x10 

to provide an appropriate level of granularity for this smaller dataset size, using 16 RBFs arranged 

in a 4x4 grid with a regularisation term of 0.1 was optimal. Figure 28 shows the membership map 

generated by the GTM model trained on the features extracted from the athlete’s ECG rhythm 

strips. The maps display the latent space containing a compressed representation of the entire 

original data space. Each point on the map represents a micro-cluster containing at least one ECG, 

with the size of the point indicating the number of ECGs in the cluster: the larger the point, the 

more ECGs in the cluster and vice versa. 



 

 

118 

 

 

Figure 28. Membership map representing the latent space generated from the GTM model 

trained of the features extracted from the athlete’s ECG rhythm strips. 

7.3.2.2. Reference map visualisation 

Figure 29 contains the reference vectors extracted from the trained GTM model trained on the 

features extracted from the athlete’s ECG rhythm strips. The reference maps displayed how each 

of the modelling variables affected the latent clusters and have been split based on whether the 

variable relates to heart variability, or the wave and intervals of the rhythm strip for easier 

interpretation. Each point in every plot within Figure 29 corresponds exactly to the same point in 

their respective membership maps in Figure 28. A light grey–red colour scheme was used for the 

reference vectors plot such that areas of the plots that are redder indicate that participants in that 

cluster had a higher value of that variable. Likewise, if the point in the reference vector is greyer, 

the lower the value is for participants in this cluster.  Again, like in Chapter 5, all plots using the 

light grey–red colour scheme indicate variables used in the GTM model development, whereas 

plots using a light grey–teal represent variables that were not used in the modelling and have no 

direct impact on the clusters themselves. 
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7.3.2.3. Additional investigative variable visualisations 

Figure 30 contains visualisations for all the additional investigative variables that show how 

data from different investigative variables are distributed within the membership maps. The 

visualisations representing the investigative variables all use a light grey-teal colour scheme as 

they were not used in model development. The value assigned to each micro-cluster is the average 

of the variable for all participants assigned to each cluster, the more teal a micro-cluster is, the 

higher the value.  

 

Figure 29. Reference vector visualisations demonstrating how each variable extracted from 

the ECG rhythm strip affects the cluster distribution in the latent space for both, with variables 

split by their respective categories. 
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7.3.2.4. Magnification factors visualisation 

Figure 31 displays the magnification factor plot generated from the trained GTM, as described 

in section 7.2.2.3, using a grey-scale representation. This plot provides a visual representation of 

how the latent manifold distorts when projected and fitted to the data. Lighter areas of this 

visualisation demonstrate the regions whereby there was low distortion in the mapping, with the 

darker the grey corresponding to regions that experienced high distortion in the same mapping. 

 

Figure 30. Membership maps showing how the additional investigative variables 

data are distributed within the latent space. 



 

 

121 

 

 

7.3.2.5.Macro-cluster analysis and description of identified athlete sub-groups 

The data described in Table 13 was then split according to the number of sub-groups identified 

through the macro-cluster analysis and compared in Table 14. By applying the clustering approach 

outlined in section 7.2.2.3, we identified 8 clusters within the reference vectors, as demonstrated 

in the dendrogram in Figure 32(a). By transferring these cluster assignments to their 

corresponding latent centre, we were able to generate 8 macro cluster regions that also define the 

8 different athlete sub-groups, as shown in Figures 32 (b) and (c). A full breakdown of the headline 

features of each sub-group derived using the information within Table 14 is presented in Figure 

32 (d). Unlike Chapter 5, a full separate text breakdown is not required due to the smaller, more 

manageable, number of variables. 

 

Figure 31. Magnification map calculated from the trained GTM. Light areas of this map 

correspond to areas of low distortion during mapping, with the darker areas relating to area of 

high distortion during the mapping. 
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Table 14. Characteristics of the participants split per athlete sub-group. Shades of red/blue 

were used per variable to illustrate differences between lower and higher values. Red shades were 

used for the modelling variables, whilst blue was used for the additional investigative variables. 

Variable name Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 P-value 

Model l ing variables:  

Heart Rate Variability:          

BPM 
54 

(51, 56) 

67 

(63, 74) 

47 

(43, 50) 

56 

(52, 61) 

53 

(48, 54) 

54 

(51, 58) 

64 

(61, 70) 

65 

(62, 69) 
<0.05 

IBI 
1119 

(1064, 1187) 

897 

(809, 953) 

1297 

(1211, 1407) 

1068 

(987, 1148) 

1230 

(1179, 1325) 

1128 

(1058, 1193) 

953 

(865, 1005) 

925 

(874, 973) 
<0.05 

RR Intervals (sd)  
24 

(17, 33) 

23 

(15, 37) 

61 

(42, 91) 

51 

(37, 68) 

403 

(344, 469) 

68 

(46, 106) 

60 

(41, 97) 

52 

(38, 77) 
<0.05 

Standard 

deviation of 

successive 

differences 

28 

(20, 38) 

22 

(16, 34) 

82 

(60, 130) 

62 

(44, 89) 

631 

(540, 811) 

94 

(68, 151) 

73 

(46, 123) 

61 

(48, 91) 
<0.05 

Root mean square 

of successive 

differences 

30 

(21, 38) 

23 

(16, 34) 

83 

(62, 130) 

63 

(45, 90) 

631 

(540, 812) 

96 

(70, 153) 

75 

(46, 123) 

63 

(49, 93) 
<0.05 

Proportion of 

successive 

differences above 

20ms 

0.57 

(0.39, 0.71) 

0.5 

(0.31, 0.63) 

0.83 

(0.8, 1) 

0.86 

(0.72, 1) 

1 

(0.83, 1) 

1 

(0.86, 1) 

0.88 

(0.75, 1) 

0.88 

(0.75, 1) 
<0.05 

Proportion of 

successive 

differences above 

50ms 

0.11 

(0, 0.17) 

0 

(0, 0.13) 

0.6 

(0.5, 0.75) 

0.5 

(0.29, 0.71) 

0.78 

(0.58, 0.83) 

0.6 

 (0.5, 0.82) 

0.5 

(0.25, 0.71) 

0.5 

(0.38, 0.67) 
<0.05 

Waves and Intervals:          

P-wave duration 

(mean) 

88 

(75, 107) 

59 

(45, 74) 

59 

(50, 76) 

92 

(76, 107) 

97 

(78, 112) 

77 

(61, 91) 

76 

(67, 89) 

49 

(39, 63) 
<0.05 

P-wave duration 

(sd) 

17 

(7, 30) 

15 

(10, 20) 

20 

(13, 31) 

12 

(6, 22) 

15 

(6, 23) 

22 

(12, 31) 

15 

(11, 21) 

16 

(12, 21) 
<0.05 

PR-interval 

duration (mean) 

158 

(143, 178) 

135 

(118, 150) 

204 

(170, 239) 

158 

(139, 176) 

163 

(141, 184) 

144 

(132, 168) 

140 

(128, 164) 

139 

(125, 153) 
<0.05 

PR-interval 

duration (sd) 

18 

(11, 30) 

15 

(10, 22) 

39 

(27, 48) 

12 

(7, 19) 

15 

(9, 26) 

20 

(14, 27) 

15 

(11, 18) 

17 

(13, 22) 
<0.05 

QRS-complex 

(mean) 

119 

(110, 136) 

89 

(83, 99) 

121 

(113, 139) 

110 

(100, 117) 

111 

(107, 116) 

153 

(143, 168) 

92 

(84, 101) 

92 

(85, 102) 
<0.05 

QRS-complex 

(sd) 

11 

(3, 20) 

9 

(5, 15) 

19 

(5, 31) 

7 

(3, 11) 

10 

(6, 15) 

27 

(22, 35) 

8 

(4, 15) 

9 

(4, 15) 
<0.05 

ST-segment 

duration (mean) 

159 

(145, 170) 

159 

(129, 182) 

172 

(148, 195) 

148 

(132, 166) 

173 

(149, 193) 

123 

(104, 143) 

160 

(143, 175) 

155 

(143, 175) 
<0.05 

ST-segment 

duration (sd) 

10 

(6, 16) 

30 

(20, 50) 

8 

(5, 14) 

11 

(7, 18) 

13 

(8, 20) 

21 

(14, 29) 

37 

(31, 46) 

19 

(14, 26) 
<0.05 

T-wave duration 

(mean) 

146 

(136, 160) 

98 

(65, 125) 

152 

(143, 161) 

148 

(137, 158) 

138 

(128, 153) 

150 

(137, 162) 

128 

(106, 142) 

127 

(113, 141) 
<0.05 

T-wave duration 

(sd) 

10 

(6, 14) 

24 

(18, 34) 

8 

(5, 12) 

10 

(7, 17) 

12 

(6, 16) 

9 

(6, 20) 

37 

(30, 47) 

20 

(13, 27) 
<0.05 
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Addit ional invest igat ive variables:  

Demographics:          

Age at ECG 
30 

(19, 43) 

21 

(16, 31) 

22 

(17, 28) 

19 

(17, 27) 

32 

(19, 46) 

19 

(16, 26) 

20 

(15, 26) 

18 

(15, 21) 
<0.05 

Height 
180 

(177, 188) 

179 

(172, 184) 

181 

(171, 185) 

180 

(172, 185) 

178 

(168, 188) 

178 

(170, 184) 

176 

(170, 182) 

177 

(170, 182) 
<0.05 

Weight 
79 

(73, 87) 

75 

(66, 84) 

76 

(67, 90) 

76 

(69, 87) 

75 

(62, 82) 

75 

(64, 85) 

71 

(61, 84) 

71 

(60, 85) 
0.0802 

BMI 
24 

(23, 26) 

24 

(22, 26) 

24 

(22, 26) 

24 

(22, 27) 

23 

(22, 25) 

24 

(22, 26) 

24 

(22, 25) 

23 

(21, 26) 
0.5270 

Sex 80 (87%) 104 (83%) 69 (73%) 207 (83%) 25 (96%) 42 (76%) 72 (77%) 92 (79%) 0.9262 

Ethnicity          

White 56 (61%) 74 (59%) 50 (53%) 130 (52%) 16 (62%) 24 (44%) 47 (50%) 72 (62%) 
0.735 

 

Black 9 (10%) 23 (18%) 19 (20%) 31 (12%) 3 (12%) 14 (25%) 14 (15%) 11 (9%) 
0.0975 

 

Hispanic 1 (1%) 1 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (1%) 
0.6834 

 

Asian 
0.0 

(0.0%) 
0.0 (0.0%) 0.0 (0.0%) 0.0 (0.0%) 1.0 (4.0%) 0.0 (0.0%) 0.0 (0.0%) 0.0 (0.0%) <0.05 

Sporting Discipline:          

Football 
30 

(33%) 

48 

(38%) 

42 

(44%) 

111 

(44%) 

12 

(46%) 

31 

(56%) 

50 

(53%) 

51 

(44%) 
0.3808 

Cyclists 
20 

(22%) 

29 

(23%) 

28 

(29%) 

68 

(27%) 

3 

(12%) 

10 

(18%) 

22 

(23%) 

33 

(28%) 
0.6112 

Rugby League 
9 

(10%) 

20 

(16%) 

17 

(18%) 

39 

(16%) 

0 

(0%) 

9 

(16%) 

9 

(10%) 

27 

(23%) 
0.0672 

Ultra runner 
30 

(33%) 

27 

(21%) 

4 

(4%) 

26 

(10%) 

11 

(42%) 

4 

(7%) 

11 

(12%) 

2 

(2%) 
<0.05 
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Figure 32. Derived sub-groups of athletes using data extracted from their ECG rhythm strips 

A) Dendrogram produced using a constrained Ward’s minimum variance method. The graph 

shows the 8 clusters that are used to define the 8 athlete’s sub-groups B) Membership map with a 

uniform size for the micro-clusters to show the distribution of the macro-cluster regions. C) The 

size of the micro-clusters in the membership map dictated by the number of ECGs assigned to it. 

D) Characterising features for each of the sub-groups. 
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7.4. Discussion 

By using the methodology outlined in this chapter, we were able to take ECGs stored in a PDF 

format, digitise the signal, and automatically extract features relating to heart rate variability as 

well as wave and interval durations, and generate clinically relevant athlete sub-groups. These 

sub-groups provide an alternative view to visualising the different adaptions athlete’s hearts 

undergo, which in turn could enable a deeper understanding of these differences. Identifying sub-

groups such as these could also a useful addition to a pre-participation screening toolbox. By 

applying the trained model to a new athletes’ data, it would provide a user the ability to see what 

athletes are similar and aid in making an informed decision based on common outcomes for the 

group it is assigned to. 

Along with the benefits of the approach already outlined in Chapter 5, a key finding from this 

chapter is that we were successfully able to develop upon the methodology. We achieved this 

through the inclusion of the magnification factor to directly influence the macro-cluster 

identification process. This approach resulted in the generation of macro-clusters with boundaries 

that better reflected the latent micro-cluster neighbours. To the best of our knowledge, GTM has 

not been used before to study the athlete’s heart or to generate clinically relevant athlete sub-

groups. 

7.4.1. Interpretation of athlete sub-groups 

As in Chapter 5, through the combination of the membership map in Figure 28, the reference 

maps in Figure 29, and the additional investigative variable plots in Figure 30 we can gain a 

greater understanding of the reasons behind cluster assignments. The inclusion of the 

magnification factor plot in Figure 31, further improves the ability to interpret the results. 

By comparing the magnification factor plot in Figure 31 and the athlete sub-groups presented 

in Figure 32 (b) and (c), we clearly see how the former successfully influenced the boundaries in 

the latter. To demonstrate this, we will consider 3 of the identified groups: group 5, group 6, and 

group 7. Figure 33 highlights the areas of interest within the magnification factor plot for this 

example, where the blue-shaded region encapsulates groups 6 and 7, which corresponds to an area 

that experienced high distortion during the mapping process. This region completely isolates a 

denser area of points contained within the green-shaded region, which corresponds to the location 

of group 5. This indicates that the ECGs assigned to group 5 are much further away from the 

others within the data space. By referring to Figure 29, we see the reference maps show that ECGs 

in cluster 5 are distinct in that they have the highest values for RR interval (sd), standard deviation 

of successive differences and root mean square successive differences. This is also confirmed 
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within Table 14, with the value differences for these variables being an order of magnitude larger. 

Upon further investigation, we uncovered that cluster 5 ECGs took one of two forms: 

1. ECGs that genuinely displayed high levels of heart rate variability within the rhythm 

strip (Figure 34 (a)) 

2. ECGs that have high heart rate variability due to erroneous data extraction (Figure 34 

(b)).  

To further expand on point 2, the erroneous data extraction refers to the R wave between beats 

7 and 8 in Figure 34 (b) that was not identified properly. This resulted in the R peak detection part 

of the feature generation section of the methodology failing to identify it. Therefore, the algorithm 

considers the two beats as consecutive, when in fact there should be another beat in between that 

would result in the heart rate variability being calculated as normal. This highlights a limitation 

in the data extraction and feature generation as there are certain instances whereby data is not 

obtained accurately. However, this result also highlights the benefit of using GTM for this type of 

analysis, as it has successfully managed to identify and isolate similar, erroneous data into one 

area of the latent space. 

 

 

  

Figure 33. Magnification factor plot from figure 31, with areas of interest highlighted. The blue 

shaded region highlights an area where there was high distortion when mapping to fit the data, with 

the green shaded region highlighting a denser region of points isolated in the top right of the plot. 

Figure 34. Examples of the two types of ECG rhythm strips that were assigned to group 5. (a) Contains 

an ECG that genuinely exhibits high heart rate variability; (b) An ECG whereby an erroneous extraction has 

led to a false high heart rate variability calculation. 
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7.4.2. Analysis limitations 

As discussed in the previous sub-section, a limitation of this analysis lies in the data extraction 

and feature generation stage with regard to failed R wave peak detections, which in turn led to 

some heart rate variability calculations being skewed. An additional potential limitation lies within 

the GTM algorithm’s use of Gaussian distributions, as these distributions can struggle to deal with 

outliers in the data, in this case, caused both by the erroneously calculated and genuinely high 

heart rate variability ECGs. This can result in the rest of the data being condensed down into a 

smaller area of the latent space, and in turn, not fully capturing the underlying relationships in the 

data. This could potentially be an explanation as to why in this analysis, sex and race were not 

significantly different among the identified groups, even when these are key factors used in real-

world assessments to evaluate an athlete’s heart [199–201]. This could be addressed in future 

analysis by employing t-GTM,  an alternative to the regular GTM that redefines the methodology 

to instead use t-distributions, which are less sensitive to outliers [214]. 

7.5. Chapter Conclusion 

The analysis in this chapter proposed a novel approach to analysing the athlete’s heart and 

generating clinically relevant sub-groups from within a population of healthy athletes. We 

developed and applied data extraction and feature generation algorithms to convert PDFs 

containing ECGs, into human-readable features commonly used to evaluate an ECG recording. 

We then applied a modified version of the GTM macro clustering outlined in Chapter 5 to cluster 

these features to identify the sub-groups. This approach is the first of our knowledge to integrate 

the magnification factors to directly influence the macro-cluster boundaries, providing simpler 

more interpretable output.  
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8. Chapter 8: Conclusions and Future Research 

8.1. Conclusion 

The overall goal of this thesis was to develop and implement ML models to generate novel 

insights into several areas of cardiovascular research. The research outlined in the above chapters 

details this journey, outlining the various developed methodologies to help further the 

understanding of ECG ML modelling, atrial fibrillation, and the athlete’s heart. Along the way, 

the methods developed as part of the research were also able to contribute novel and meaningful 

results to areas outside of cardiovascular research, further solidifying the robustness of the 

developed approaches. 

Chapter 3 describes the comparative analysis of different ECG data formats to ascertain which 

is the best for ML modelling. We also aimed to address whether extracting signals from image 

ECGs and analysing the digitised signals was feasible within the context of ML. The data used 

for this analysis was taken from the PTB-XL dataset, an open-source database containing over 

20,000 ECGs. From this data we defined the binary classification task of predicting whether an 

ECG was normal or showed MI, with three ECG data formats being tested: Signal ECGs, Image 

ECGs, and Extracted Signal ECGs. Several models were trained for each data format, using 

different data representations and different model tuning methods to provide as thorough a 

comparison as possible. The result of this analysis was that should the original signals be available, 

they should always be used for any analysis. Should these be absent, then Image ECGs should be 

used if they contain 2.5s of data for each lead and Extracted Signal ECGs should be used if the 

Image ECGs contain 10s of data for each lead. These results provided to first quantitative answer 

as to what the best ECG data format is for ML modelling, along with proving the viability of using 

extracted ECG signals for ML modelling. 

Chapter 4 moved away from supervised ML to focus on developing a framework for applying 

GTM, a probabilistic unsupervised ML clustering technique. GTM was selected as the 

methodology of choice for this thesis due to its ability to identify complex non-linear relationships 

and generate robust data stratifications through its ability to handle high levels of uncertainty, 

along with the enhanced understanding of the output gained through the interpretable 

visualisations it produces. 

The aim of this chapter from an analysis perspective was to generate the “Index Index”: an 

index that ranks countries based upon the level of censorship they place on their populus. To 

achieve this, we collated data from several open-source data repositories, such as V-DEM, the 

World Press Freedom Index and the Committee to Protect Journalists. From these sources, we 
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created a dataset containing 178 different variables representing the academic, media and digital 

freedoms of a country. GTM was then applied to this data, which we then generated the rankings 

from using the normalised reference vectors extracted from the trained model. This therefore 

applied the rankings to each latent cluster, with each country inheriting the rank assigned to the 

cluster it was placed in. The use of this approach removed the subjective interpretation from the 

modelling process and provided the resulting Index Index with a greater degree of rigour than 

previous rankings. Not only did this work result in novel findings that led to a peer-reviewed 

published work [81], but it also served the purpose within the context of the thesis by facilitating 

the development and validation of a clustering methodology and workflow to serve as a blueprint 

for Chapters 5 and 7. 

In Chapter 5, we aimed to develop a novel methodology for the identification of phenotypes 

within AF populations. The outlined methodology is built upon the developments made within 

Chapter 4, with the inclusion of hierarchical clustering being applied to the reference vectors 

instead, to generate the macro-clusters in the latent space. To develop and validate this 

methodology, we used two datasets: the first was the UK Biobank as it represented the general 

population; the second was the MIMIC-IV database as it represented a critically ill population. 

Our proposed methodology was able to identify 5 and 4 clinically relevant phenotypes 

respectively when applied to the two datasets. It demonstrated the ability of such an approach to 

identify clinical phenotypes of AF, which could enable prevention and treatment programs 

specific to each phenotype.  

Both Chapters 6 and 7 aimed to address the same clinical area of the athlete’s heart. Chapter 

6 provides an in-depth review of the current state of AI applications within this area, as well as 

determining key avenues for future research. This was an important step as the area itself is still 

in its infancy, so understanding the full research landscape allows for the identification of the most 

effective research directions moving forward. The results highlighted that there was a clear desire 

for AI applications within the area, with most of the research implementing AI focusing on 

predictive modelling. The review highlighted several limitations such as small, unlabelled datasets 

that restrict the current approaches. However, the final prognosis for the future of the research 

area is very positive, with key areas for potential development being identified. The results of this 

review provided proven novelty to the area, with the work leading to a peer-reviewed publication 

[61]. 

One such avenue was explored within Chapter 7. The aim of this chapter was to implement 

unsupervised learning, an area identified in the review that could add key findings to the area. 

More specifically, we aimed to identify clinically relevant sub-groups with a healthy athlete 
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population consisting of 854 ECGs from 611 athletes. This was achieved by further developing 

the methodology outlined in Chapter 5. The hierarchical clustering element was replaced by a 

constrained variant, with the constraint being derived from the magnification factors derived from 

the trained GTM model. By using the magnification factors this way, we were able to generate a 

simpler, more interpretable output. It is also the first approach to directly use magnification factors 

to influence the identification of macro-clusters within a GTM latent space. 

8.2. Future Work 

While the work within this thesis is promising and provides various novel contributions, with 

further time and resources the work could be further developed and improved. Starting with 

Chapter 3, analysis was carried out successfully and thoroughly to identify the optimal ECG data 

format for ML modelling. However, there is a potential limitation in these results in that the 

prediction task carried out was a binary classification between normal ECGs and MI ECGs. To 

address this, future work should focus on defining a multi-class problem to re-test the same data 

formats to further validate the results. This could again be carried out using the same PTB-XL 

data, but remove the restriction applied to only include normal and MI data. 

There are several interesting ways in which the analysis in Chapter 5 could be further 

progressed. First, the genomic data used within the analysis proved vital in stratifying participants 

into phenotypes, however, the interpretation of this is hampered due to the absence of the PCA 

loadings. By obtaining these PCA loadings, this analysis would unlock a new level of 

understanding of the results as it would improve the interpretability of the GTM output, providing 

insight into how specific genetic profiles can influence each phenotype. This could allow for 

research into causal relationships behind the different types of AF. Furthermore, further work 

could be done to validate the AF phenotypes generated as part of this paper by applying the 

methodology to different AF populations. 

Another area of future work that would generate novel results would be to use GTM through 

time (GTM-TT) [47] to analyse how a subject changes within the latent space over time. This 

could be applied to both the AF analysis (on both the UK Biobank and MIMIC-IV data) as well 

as the athletes’ ECG data. By developing such an approach, it would provide the user with the 

means to monitor an athlete or patient’s clinical trajectory or disease progression, providing 

crucial updates sooner and improving outcomes. 

An additional area for future work lies in the methodological workflow developed within 

Chapter 7. As already highlighted, there are known issues with certain parts of the data extraction 

relating to R wave peak detection. By addressing this, it would improve the accuracy of the 

features extracted, in turn leading to a more informative latent space. To further assist in this goal, 
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implementing t-GTM [214] would also likely result in the latent space better representing the 

relationships in the data space due to its better ability to handle outliers. In addition to this, work 

could be done to the feature generation section of the methodology to also extract amplitude and 

distance measurements, such as P wave amplitude or ST segment elevation, to be used as 

modelling variables. Being able to identify events such as T wave inversion, a potential sign of 

heart muscle disease [215], could lead to more accurate sub-groups and add functionality to the 

process to increase the capability of identifying potential issues.   
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Glossary of Aggregated Terms 

Abbreviation Definition 

1D 1-dimensional 

2D 2-dimensional 

AF Atrial fibrillation 

AI Artificial intelligence 

AKI Acute kidney injury 

ANN Artificial neural network 

ANOVA Analysis of variance 

ARDS acute respiratory distress syndrome 

AUC 
Area under the receiver operating 

characteristics curve 

BMI Body mass index 

BN Batch normalisation 

BPM Beats per minute 

CAD Coronary artery disease  

CAM Class activation mapping 

CHARGE-AF  
The Cohorts for Heart and Ageing Research 

in Genomic Epidemiology AF 

CMRI Cardiac magnetic resonance imaging 

CNN Convolutional neural network 

COST Cost of shutdown 

CPJ Committee to Protect Journalists 

CT  Computed tomography 

cTnI Cardiac troponin  

CVD Cardiovascular disease 

DL Deep learning 

DNN Deep neural network 

ECG Electrocardiogram 

EM Expectation-maximisation algorithm 

ESC European Society of Cardiology  
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FCNN Fully connected neural network 

GCI Global cybersecurity index 

GCS Glasgow coma scale 

GDP Gross domestic product 

Grad-CAM Gradient-weighted class activation mapping 

GTM Generative topographic mapping 

HDI Human development index 

HiResCAM High resolution class activation mapping 

IBI Interbeat interval 

ICU Intensive care unit 

IQR Interquartile range 

KNN K nearest neighbours 

LDA Linear discriminant analysis 

LLM Large language models 

LSTM Long-teerm short memory neural networks 

MI Myocardial infarction 

MIMIC-IV  
Medical Information Mart for Intensive Care 

IV  

ML Machine learning 

MLP Multi-layer perceptron 

MRI Magnetic resonance imaging 

MSE Mean squared error 

NN Neural Networks 

NORM Normal ECGs 

PCA Principal component analysis 

PDF Portable document format 

PNG Portable network graphics 

RBF Radial basis function 

ReLU Rectified linear unit 

RNN Recurrent neural network 

RSF Reporters without borders 
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sd Standard deviation 

SNP Single nucleotide polymorphisms 

SOM Self-organising map algorithm 

t-SNE 
t-distibuted stochastic neighbourhood 

embedding 

UMAP 
Uniform manifold approximation and 

projection 

UN United Nations 

UNFPA United Nations population fund 

V-Dem Varieties of democracy 
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Supplementary Materials 

 

 

Figure S1. Signal ECG model structure trained on arrangement A data from the 

conservative cohort. 
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Figure S2. Image ECG model structure trained on arrangement A data from the 

conservative cohort. 
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Figure S3. Extracted Signal ECG model structure trained on arrangement A data from 

the conservative cohort. 
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Figure S4. Signal ECG model structure trained on arrangement A data from the speculative 

cohort. 
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Figure S5. Image ECG model structure trained on arrangement A data from the speculative 

cohort. 



 

 

153 

 

 

Figure S6. Extracted Signal ECG model structure trained on arrangement A data from the 

speculative cohort. 
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Figure S7. Signal ECG model structure trained on arrangement B data from the conservative 

cohort. 
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Figure S8. Image ECG model structure trained on arrangement B data from the conservative 

cohort. 
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Figure S9. Extracted Signal ECG model structure trained on arrangement B data from the 

conservative cohort. 
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Figure S10. Signal ECG model structure trained on arrangement B data from the speculative 

cohort. 
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Figure S11. Image ECG model structure trained on arrangement B data from the speculative 

cohort. 
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Figure S12. Extracted Signal ECG model structure trained on arrangement B data from the 

speculative cohort. 
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Table S1. List of variables collected and used for analysis is compiled below. It includes the origin of 

the data, the V-Dem indicator code wherever applicable, the area of freedom (academic, digital or media) 

to which the variable was assigned during this study, and a variable reference used in this study, so they 

can be used further studied in the context of their reference maps 

Name 
Origin of 

data 

V-Dem indicator 

code 

Area of 

Freedom 

Variable 

Reference 

Abuse of defamation and copyright law by 

elites 
V-Dem v2smdefabu Digital DI1 

Abuse of defamation and copyright law by 

elites - Standard Deviation 
V-Dem v2smdefabu_sd Digital DI1SD 

Academic Freedom Index V-Dem v2xca_academ Academic AC1 

Academic Freedom Index - Standard 

Deviation 
V-Dem v2xca_academ_sd Academic AC1SD 

Academics as critics V-Dem v2cacritic Academic AC2 

Academics as critics - Standard Deviation V-Dem v2cacritic_sd Academic AC2SD 

Access to Justice for Men V-Dem v2clacjstm Media ME1 

Access to Justice for Men - Standard 

Deviation 
V-Dem v2clacjstm_sd Media ME1SD 

Access to Justice for Women V-Dem v2clacjstw Media ME2 

Access to Justice for Women - Standard 

Deviation 
V-Dem v2clacjstw_sd Media ME2SD 

Accountability index V-Dem v2x_accountability Media ME3 

Alternative sources of information index V-Dem v2xme_altinf Digital DI2 

Alternative sources of information index - 

Standard Deviation 
V-Dem v2xme_altinf_sd Digital DI2SD 

Arrests for political content V-Dem v2smarrest Media ME4 

Arrests for political content – Standard 

Deviation 
V-Dem v2smarrest_sd Media ME4SD 

Average people’s use of social media to 

organize offline action 
V-Dem v2smorgavgact Digital DI3 

Average people’s use of social media to 

organize offline action - Standard Deviation 
V-Dem v2smorgavgact_sd Digital DI3SD 

Campus integrity V-Dem v2casurv Academic AC3 

Campus integrity - Standard Deviation V-Dem v2casurv_sd Academic AC3SD 

Civil liberties index V-Dem v2x_civlib Media ME5 
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Civil liberties index - Standard Deviation V-Dem v2x_civlib_sd Media ME5SD 

Common Good V-Dem v2dlcommon Media ME6 

Common Good - Standard Deviation V-Dem v2dlcommon_sd Media ME6SD 

Core civil society index V-Dem v2xcs_ccsi Media ME7 

Core civil society index - Standard Deviation V-Dem v2xcs_ccsi_sd Media ME7SD 

Defamation protection V-Dem v2smlawpr Media ME8 

Defamation protection - Standard Deviation V-Dem v2smlawpr_sd Media ME8SD 

Elites use of social media to organize offline 

action 
V-Dem v2smorgelitact Digital DI4 

Elites use of social media to organize offline 

action - Standard Deviation 
V-Dem v2smorgelitact_sd Digital DI4SD 

Engaged Society V-Dem v2dlengage Media ME9 

Engaged Society - Standard Deviation V-Dem v2dlengage_sd Media ME9SD 

Executive Bribery Corrupt Exchanges V-Dem v2exbribe Media ME10 

Executive Bribery Corrupt Exchanges - 

Standard Deviation 
V-Dem v2exbribe_sd Media ME10SD 

Executive corruption index V-Dem v2x_execorr Media ME11 

Executive corruption index - Standard 

Deviation 
V-Dem v2x_execorr_sd Media ME11SD 

Executive Respects Constitution V-Dem v2exrescon Media ME12 

Executive Respects Constitution - Standard 

Deviation 
V-Dem v2exrescon_sd Media ME12SD 

Female journalists V-Dem v2mefemjrn Media ME13 

Female journalists - Standard Deviation V-Dem v2mefemjrn_sd Media ME13SD 

Foreign governments ads V-Dem v2smforads Media ME14 

Foreign governments ads - Standard Deviation V-Dem v2smforads_sd Media ME14SD 

Foreign government's dissemination of false 

information 
V-Dem v2smfordom Media ME15 

Foreign government's dissemination of false 

information - Standard Deviation 
V-Dem v2smfordom_sd Media ME15SD 

Freedom of Academic and Cultural 

Expression 
V-Dem v2clacfree Media ME16 
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Freedom of Academic and Cultural 

Expression - Standard Deviation 
V-Dem v2clacfree_sd Media ME16SD 

Freedom of academic exchange and 

dissemination 
V-Dem v2cafexch Academic AC4 

Freedom of academic exchange and 

dissemination - Standard Deviation 
V-Dem v2cafexch_sd Academic AC4SD 

Freedom of discussion V-Dem v2xcl_disc Academic AC5 

Freedom of discussion - Standard Deviation V-Dem v2xcl_disc_sd Academic AC5SD 

Freedom of Discussion for Men V-Dem v2cldiscm Media ME17 

Freedom of Discussion for Men - Standard 

Deviation 
V-Dem v2cldiscm_sd Media ME17SD 

Freedom of Discussion for Women V-Dem v2cldiscw Media ME18 

Freedom of Discussion for Women - Standard 

Deviation 
V-Dem v2cldiscw_sd Media ME18SD 

Freedom of domestic movement V-Dem v2xcl_dmove Media ME19 

Freedom of domestic movement - Standard 

Deviation 
V-Dem v2xcl_dmove_sd Media ME19SD 

Freedom of Domestic Movement for Men V-Dem v2cldmovem Media ME20 

Freedom of Domestic Movement for Men - 

Standard Deviation 
V-Dem v2cldmovem_sd Media ME20SD 

Freedom of Domestic Movement for Women V-Dem v2cldmovew Media ME21 

Freedom of Domestic Movement for Women - 

Standard Deviation 
V-Dem v2cldmovew_sd Media ME21SD 

Freedom of Foreign Movement V-Dem v2clfmove Media ME22 

Freedom of Foreign Movement - Standard 

Deviation 
V-Dem v2clfmove_sd Media ME22SD 

Freedom of peaceful assembly V-Dem v2caassemb Media ME23 

Freedom of peaceful assembly - Standard 

Deviation 
V-Dem v2caassemb_sd Media ME23SD 

Freedom of Religion V-Dem v2clrelig Media ME24 

Freedom of Religion - Standard Deviation V-Dem v2clrelig_sd Media ME24SD 

Freedom to research and teach V-Dem v2cafres Academic AC6 

Freedom to research and teach - Standard 

Deviation 
V-Dem v2cafres_sd Academic AC6SD 
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Government capacity to regulate online 

content 
V-Dem v2smregcap Digital DI5 

Government capacity to regulate online 

content - Standard Deviation 
V-Dem v2smregcap_sd Digital DI5SD 

Government censorship effort - Media V-Dem v2mecenefm Media ME25 

Government censorship effort - Media - 

Standard Deviation 
V-Dem v2mecenefm_sd Media ME25SD 

Government cyber security capacity V-Dem v2smgovcapsec Digital DI6 

Government cyber security capacity - 

Standard Deviation 
V-Dem v2smgovcapsec_sd Digital DI6SD 

Government dissemination of false 

information abroad 
V-Dem v2smgovab Digital DI7 

Government dissemination of false 

information abroad - Standard Deviation 
V-Dem v2smgovab_sd Digital DI7SD 

Government dissemination of false 

information domestic 
V-Dem v2smgovdom Digital DI8 

Government dissemination of false 

information domestic - Standard Deviation 
V-Dem v2smgovdom_sd Digital DI8SD 

Government Internet filtering capacity V-Dem v2smgovfilcap Digital DI9 

Government Internet filtering capacity - 

Standard Deviation 
V-Dem v2smgovfilcap_sd Digital DI9SD 

Government Internet filtering in practice V-Dem v2smgovfilprc Digital DI10 

Government Internet filtering in practice - 

Standard Deviation 
V-Dem v2smgovfilprc_sd Digital DI10SD 

Government Internet shut down capacity V-Dem v2smgovshutcap Digital DI11 

Government Internet shutdown capacity - 

Standard Deviation 
V-Dem 

v2smgovshutcap_s

d 
Digital DI11SD 

Government Internet shutdown in practice V-Dem v2smgovshut Digital DI12 

Government Internet shutdown in practice - 

Standard Deviation 
V-Dem v2smgovshut_sd Digital DI12SD 

Government online content regulation 

approach 
V-Dem v2smregapp Digital DI13 

Government online content regulation 

approach - Standard Deviation 
V-Dem v2smregapp_sd Digital DI13SD 
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Government social media alternatives V-Dem v2smgovsmalt Digital DI14 

Government social media alternatives - 

Standard Deviation 
V-Dem v2smgovsmalt_sd Digital DI14SD 

Government social media censorship in 

practice 
V-Dem v2smgovsmcenprc Digital DI15 

Government social media censorship in 

practice - Standard Deviation 
V-Dem 

v2smgovsmcenprc

_sd 
Digital DI15SD 

Government social media monitoring V-Dem v2smgovsmmon Digital DI16 

Government social media monitoring - 

Standard Deviation 
V-Dem 

v2smgovsmmon_s

d 
Digital DI16SD 

Government social media shut down in 

practice 
V-Dem v2smgovsm Digital DI17 

Government social media shut down in 

practice - Standard Deviation 
V-Dem v2smgovsm_sd Digital DI17SD 

Harassment of journalists V-Dem v2meharjrn Media ME26 

Harassment of journalists - Standard 

Deviation 
V-Dem v2meharjrn_sd Media ME26SD 

Institutional autonomy V-Dem v2cainsaut Academic AC7 

Institutional autonomy - Standard Deviation V-Dem v2cainsaut_sd Academic AC7SD 

Internet binary V-Dem v2mecenefibin Digital DI18 

Internet binary - Standard Deviation V-Dem v2mecenefibin_sd Digital DI18SD 

Internet censorship effort V-Dem v2mecenefi Digital DI19 

Internet censorship effort - Standard Deviation V-Dem v2mecenefi_sd Digital DI19SD 

Internet legal regulation content V-Dem v2smregcon Digital DI20 

Internet legal regulation content - Standard 

Deviation 
V-Dem v2smregcon_sd Digital DI20SD 

Judicial corruption decision V-Dem v2jucorrdc Media ME27 

Judicial corruption decision - Standard 

Deviation 
V-Dem v2jucorrdc_sd Media ME27SD 

Mass mobilization V-Dem v2cagenmob Media ME28 

Mass mobilization - Standard Deviation V-Dem v2cagenmob_sd Media ME28SD 

Mass mobilization concentration V-Dem v2caconmob Media ME29 
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Mass mobilization concentration - Standard 

Deviation 
V-Dem v2caconmob_sd Media ME29SD 

Media bias V-Dem v2mebias Media ME30 

Media bias - Standard Deviation V-Dem v2mebias_sd Media ME30SD 

Media corrupt V-Dem v2mecorrpt Media ME31 

Media corrupt - Standard Deviation V-Dem v2mecorrpt_sd Media ME31SD 

Media self-censorship V-Dem v2meslfcen Media ME32 

Media self-censorship - Standard Deviation V-Dem v2meslfcen_sd Media ME32SD 

Mobilization for autocracy V-Dem v2caautmob Media ME33 

Mobilization for autocracy - Standard 

Deviation 
V-Dem v2caautmob_sd Media ME33SD 

Mobilization for democracy V-Dem v2cademmob Media ME34 

Mobilization for democracy - Standard 

Deviation 
V-Dem v2cademmob_sd Media ME34SD 

Online media existence V-Dem v2smonex Digital DI21 

Online media existence - Standard Deviation V-Dem v2smonex_sd Digital DI21SD 

Online media fractionalization V-Dem v2smmefra Digital DI22 

Online media fractionalization – Standard 

Deviation 
V-Dem v2smmefra_sd Digital DI22SD 

Online media perspectives V-Dem v2smonper Media ME35 

Online media perspectives - Standard 

Deviation 
V-Dem v2smonper_sd Media ME35SD 

Party dissemination of false information 

abroad 
V-Dem v2smparab Media ME36 

Party dissemination of false information 

abroad - Standard Deviation 
V-Dem v2smparab_sd Media ME36SD 

Party dissemination of false information 

domestic 
V-Dem v2smpardom Media ME37 

Party dissemination of false information 

domestic - Standard Deviation 
V-Dem v2smpardom_sd Media ME37SD 

Party-candidate use of social media in 

campaigns 
V-Dem v2smcamp Media ME38 

Party-candidate use of social media in 

campaigns - Standard Deviation 
V-Dem v2smcamp_sd Media ME38SD 
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Polarization of society V-Dem v2smpolsoc Media ME39 

Polarization of society - Standard Deviation V-Dem v2smpolsoc_sd Media ME39SD 

Political civil liberties index V-Dem v2x_clpol Media ME40 

Political civil liberties index - Standard 

Deviation 
V-Dem v2x_clpol_sd Media ME40SD 

Political corruption index V-Dem v2x_corr Media ME41 

Political corruption index - Standard 

Deviation 
V-Dem v2x_corr_sd Media ME41SD 

Political parties' cyber security capacity V-Dem v2smpolcap Digital DI23 

Political parties’ cyber security capacity - 

Standard Deviation 
V-Dem v2smpolcap_sd Digital DI23SD 

Political parties hate speech V-Dem v2smpolhate Media ME42 

Political parties hate speech - Standard 

Deviation 
V-Dem v2smpolhate_sd Media ME42SD 

Political polarization V-Dem v2cacamps Media ME43 

Political polarization - Standard Deviation V-Dem v2cacamps_sd Media ME43SD 

Political violence V-Dem v2caviol Media ME44 

Political violence - Standard Deviation V-Dem v2caviol_sd Media ME44SD 

Print/broadcast media critical V-Dem v2mecrit Media ME45 

Print/broadcast media critical - Standard 

Deviation 
V-Dem v2mecrit_sd Media ME45SD 

Print/broadcast media perspectives V-Dem v2merange Media ME46 

Print/broadcast media perspectives - Standard 

Deviation 
V-Dem v2merange_sd Media ME46SD 

Privacy protection by law exists V-Dem v2smprivex Media ME47 

Privacy protection by law exists - Standard 

Deviation 
V-Dem v2smprivex_sd Media ME47SD 

Private civil liberties index V-Dem v2x_clpriv Media ME48 

Private civil liberties index - Standard 

Deviation 
V-Dem v2x_clpriv_sd Media ME48SD 

Public Sector Corrupt Exchanges V-Dem v2excrptps Media ME49 

Public Sector Corrupt Exchanges - Standard 

Deviation 
V-Dem v2excrptps_sd Media ME49SD 
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Public sector corruption index V-Dem v2x_pubcorr Media ME50 

Public sector corruption index - Standard 

Deviation 
V-Dem v2x_pubcorr_sd Media ME50SD 

Range of Consultation V-Dem v2dlconslt Media ME51 

Range of Consultation - Standard Deviation V-Dem v2dlconslt_sd Media ME51SD 

Regime corruption V-Dem v2xnp_regcorr Media ME52 

Regime corruption - Standard Deviation V-Dem v2xnp_regcorr_sd Media ME52SD 

Respect Counter Arguments V-Dem v2dlcountr Media ME53 

Respect Counter Arguments - Standard 

Deviation 
V-Dem v2dlcountr_sd Media ME53SD 

Rule of law index V-Dem v2x_rule Media ME54 

Rule of law index - Standard Deviation V-Dem v2x_rule_sd Media ME54SD 

Social Group Equality in Respect for Civil 

Liberties 
V-Dem v2clsocgrp Media ME55 

Social Group Equality in Respect for Civil 

Liberties - Standard Deviation 
V-Dem v2clsocgrp_sd Media ME55SD 

Use of social media to organize offline 

violence 
V-Dem v2smorgviol Digital DI24 

Use of social media to organize offline 

violence - Standard Deviation 
V-Dem v2smorgviol_sd Digital DI24SD 

Global Cybersecurity Index 2020 - Score 

Global 

Cybersecurit

y Index 

- Digital DI25 

Missing journalists CPJ - Media ME56 

Number of journalists and media workers 

killed - up to 2022 
CPJ - Media ME57 

Number of journalists imprisoned as of 1 

December 2021 
CPJ - Media ME58 

RSF Global ranking - Score 

World Press 

Freedom 

Index 

- Media ME59 

UNESCO - observatory of killed journalists UNESCO - Media ME60 

Cost of Total Shutdown Per Hour (USD) NetBlocks - Digital DI26 
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Table S2. Results of hyperparameter tuning carried out to select the optimal regularisation 

term 

REGULARISATION TERM ERROR 

100 83.5 

10 64.82 

1 59.89 

0.1 59.14 

0.01 59.09 

0.001 58.88 

0.0001 59.08 

 

 

Figure S13. Detailed country clustering visualisation (cluster membership map) colour-coded 

by the cluster ranking. The countries allocated to a selection of clusters are displayed. Cluster 

separation indicates similarity (i.e. closer clusters are more similar than further clusters). 
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Figure S14. This figure mirrors Figure S7 but omits the list of countries allocated to the 

clusters to offer a clearer view of the size of the clusters and the assigned ranking. 
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Figure S15. Reference maps for the academic freedom-related variables used to produce 

the GTM model. 
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Figure S16. Reference maps for 25 of the media freedom-related variables (ME1-ME25) used 

to produce the GTM model. 
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Figure S17. Continuation of Figure S16, including the reference maps for 25 of the media 

freedom-related variables (ME26-ME50) used to produce the GTM model. 
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Figure S18. Continuation of Figure S17, including the reference maps for 10 of the 

media freedom-related variables (ME51-ME60) used to produce the GTM model. 
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Figure S19. Reference maps for 10 of the digital freedom-related variables (DI1-DI10) used 

to produce the GTM model. 
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Figure S20. Continuation of Figure S19, including the reference maps for 16 of the digital 

freedom-related variables (DI11-DI26) used to produce the GTM model. 
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Figure S21. World map showing the academic free expression ranking. 

Table S3. Global ranking of academic free expression by deciles. Lower ranks represent higher 

levels of free expression while higher ranks represent lower levels of freedom. 

COUNTRIES AND NATIONS ACADEMIC 

FREEDOM 

RANKING 

Argentina, Austria, Belgium, Costa Rica, Finland, Germany, Ireland, 

Italy, Latvia, Lithuania, Netherlands, Peru, Portugal, Slovakia, 

Sweden, Switzerland 

1 

Canada, Chile, Cyprus, Denmark, Dominican Republic, Estonia, 

Greece, Honduras, Iceland, Jamaica, Luxembourg, Malta, Mongolia, 

Montenegro, New Zealand, Norway, South Africa, Uruguay 

2 

Australia, Barbados, Botswana, Cape Verde, Czechia, France, 

Ghana, Israel, Japan, Paraguay, Romania, Senegal, Seychelles, 

Solomon Islands, South Korea, Spain, Trinidad and Tobago, United 

Kingdom 

3 

Armenia, Benin, Bulgaria, Croatia, Georgia, Guinea-Bissau, 

Moldova, Namibia, Panama, Sierra Leone, Slovenia, Suriname, 

Taiwan, Tunisia, United States of America, Vanuatu 

4 
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Albania, Bolivia, Bosnia and Herzegovina, Burkina Faso, Ecuador, 

Gabon, Guatemala, Guyana, Hungary, Kosovo, Malawi, Mauritius, 

Mozambique, Nigeria, North Macedonia, Poland, Sao Tome and 

Principe, Timor-Leste, Togo 

5 

Angola, Brazil, El Salvador, Indonesia, Ivory Coast, Kenya, 

Kyrgyzstan, Lebanon, Lesotho, Madagascar, Maldives, Mexico, 

Nepal, Niger, Philippines, Serbia, The Gambia 

6 

Central African Republic, Colombia, Comoros, Democratic Republic 

of the Congo, Fiji, Haiti, India, Kuwait, Malaysia, Mali, Mauritania, 

Morocco, Pakistan, Sri Lanka, Tanzania, Ukraine, Zambia 

7 

Afghanistan, Bhutan, Cameroon, Chad, Ethiopia, Guinea, Iraq, 

Jordan, Libya, Palestine, Republic of the Congo, Rwanda, Singapore, 

Somalia, Sudan, Thailand, Uganda, Venezuela 

8 

Algeria, Azerbaijan, Bangladesh, Burundi, Cambodia, Djibouti, 

Eswatini, Hong Kong, Kazakhstan, Nicaragua, Oman, Russia, South 

Sudan, Tajikistan, Türkiye, Uzbekistan, Zimbabwe 

9 

Bahrain, Belarus, Burma/Myanmar, China, Cuba, Egypt, Equatorial 

Guinea, Eritrea, Iran, Laos, North Korea, Qatar, Saudi Arabia, Syria, 

Turkmenistan, United Arab Emirates, Vietnam, Yemen 

10 

 

Figure S22. World map showing the digital free expression ranking. 
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Table S4. Global ranking of digital free expression by deciles. Lower ranks represent higher 

levels of free expression while higher ranks represent lower levels of freedom. 

COUNTRIES AND NATIONS DIGITAL FREEDOM 

RANKING 

Austria, Belgium, Costa Rica, Czechia, Denmark, Finland, Germany, 

Ireland, Latvia, Lithuania, Netherlands, New Zealand, Norway, Portugal, 

Romania, Slovakia, Sweden, Switzerland 

1 

Armenia, Australia, Barbados, Bulgaria, Canada, Croatia, Estonia, 

Georgia, Greece, Iceland, Italy, Japan, Luxembourg, Slovenia, South 

Africa, Spain 

2 

Cape Verde, Chile, Cyprus, France, Hungary, Israel, Jamaica, Mongolia, 

Montenegro, Poland, South Korea, Taiwan, Trinidad and Tobago, 

Tunisia, United Kingdom, United States of America 

3 

Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Dominican 

Republic, Honduras, Kosovo, Malta, Mexico, Moldova, Namibia, North 

Macedonia, Panama, Paraguay, Peru, Serbia, Solomon Islands, Suriname, 

Uruguay, Vanuatu 

4 

Botswana, Colombia, Ecuador, Ghana, Guatemala, Guyana, Lebanon, 

Malawi, Mauritius, Mozambique, Nigeria, Sao Tome and Principe, 

Senegal, Seychelles, Sierra Leone, Timor-Leste, Ukraine 

5 

Albania, Angola, Benin, Comoros, Democratic Republic of the Congo, El 

Salvador, Guinea-Bissau, Indonesia, Ivory Coast, Kenya, Kyrgyzstan, 

Lesotho, Madagascar, Maldives, Nepal, Philippines, Sri Lanka 

6 

Burkina Faso, Cameroon, Central African Republic, Fiji, Gabon, Guinea, 

Haiti, India, Iraq, Malaysia, Mali, Niger, Pakistan, Tanzania, Thailand, 

The Gambia, Togo, Zambia 

7 

Afghanistan, Bhutan, Chad, Ethiopia, Jordan, Kuwait, Libya, Mauritania, 

Morocco, Palestine, Republic of the Congo, Singapore, Somalia, Sudan, 

Uganda 

8 

Algeria, Azerbaijan, Bangladesh, Burundi, Cambodia, Djibouti, Egypt, 

Eswatini, Hong Kong, Kazakhstan, Oman, Russia, Rwanda, Tajikistan, 

Türkiye, Uzbekistan, Venezuela, Vietnam, Zimbabwe 

9 
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Bahrain, Belarus, Burma/Myanmar, China, Cuba, Equatorial Guinea, 

Eritrea, Iran, Laos, Nicaragua, North Korea, Qatar, Saudi Arabia, South 

Sudan, Syria, Turkmenistan, United Arab Emirates, Yemen 

10 

 

Table S5. Global ranking of media free expression by deciles. Lower ranks represent higher 

levels of free expression while higher ranks represent lower levels of freedom. 

COUNTRIES AND NATIONS MEDIA FREEDOM 

RANKING 

Austria, Belgium, Canada, Denmark, Estonia, Finland, Germany, 

Iceland, Ireland, Latvia, Lithuania, Luxembourg, Netherlands, New 

Zealand, Norway, Sweden, Switzerland 

1 

Australia, Barbados, Cape Verde, Chile, Costa Rica, Cyprus, 

Dominican Republic, France, Israel, Italy, Jamaica, Japan, Malta, 

Portugal, Slovakia, Spain, Trinidad and Tobago, Uruguay 

2 

Czechia, Greece, Moldova, Namibia, Panama, Romania, South 

Africa, South Korea, Suriname, Taiwan, Tunisia, United Kingdom, 

United States of America, Vanuatu 

3 

Argentina, Armenia, Benin, Botswana, Bulgaria, Croatia, Georgia, 

Ghana, Guyana, Kosovo, Mauritius, Mongolia, Montenegro, Niger, 

4 

Figure S23. World map showing the media free expression ranking. 
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Peru, Sao Tome and Principe, Senegal, Seychelles, Slovenia, 

Solomon Islands, Timor-Leste 

Albania, Bhutan, Fiji, Guinea-Bissau, Honduras, Hungary, Jordan, 

Madagascar, Malaysia, Maldives, Paraguay, Poland, Sierra Leone, 

Singapore, Tanzania, The Gambia 

5 

Angola, Burkina Faso, Ecuador, Gabon, Guatemala, Indonesia, Ivory 

Coast, Kenya, Kuwait, Kyrgyzstan, Lesotho, Malawi, Morocco, 

Mozambique, Nepal, Nigeria, Philippines, Togo 

6 

Bolivia, Bosnia and Herzegovina, Brazil, Central African Republic, 

Comoros, Democratic Republic of the Congo, El Salvador, Haiti, 

India, Lebanon, Mali, Mexico, North Macedonia, Pakistan, Rwanda, 

Serbia, Sri Lanka, Zambia 

7 

Algeria, Bangladesh, Chad, Colombia, Djibouti, Egypt, Ethiopia, 

Kazakhstan, Mauritania, Oman, Qatar, Uganda, Ukraine, Uzbekistan, 

Venezuela, Vietnam, Zimbabwe 

8 

Afghanistan, Azerbaijan, Cameroon, China, Guinea, Hong Kong, 

Iraq, Libya, Palestine, Republic of the Congo, Russia, Somalia, 

Sudan, Thailand, Türkiye 

9 

Bahrain, Belarus, Burma/Myanmar, Burundi, Cambodia, Cuba, 

Equatorial Guinea, Eritrea, Eswatini, Iran, Laos, Nicaragua, North 

Korea, Saudi Arabia, South Sudan, Syria, Tajikistan, Turkmenistan, 

United Arab Emirates, Yemen 

10 

 

Table S6. List of phecodes, and their respective phecode categories, used in the analysis 

carried out in Chapter 4 

Phecode Category Phecode 

Circulatory System 
 

 
Cardiac complications, not elsewhere classified  
Chronic pulmonary heart disease  
Chronic venous hypertension  
Congestive heart failure (CHF) NOS  
Coronary atherosclerosis  
Essential hypertension  
Heart failure NOS  
Heart failure with preserved EF [Diastolic heart failure] 
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Heart failure with reduced EF [Systolic or combined heart failure]  
Hypertension  
Late effects of cerebrovascular disease  
Myocardial infarction  
Other forms of chronic heart disease  
Other hypertensive complications  
Other specified peripheral vascular diseases  
Peripheral vascular disease, unspecified  
Primary pulmonary hypertension 

Dermatologic 
 

 
Unspecified diffuse connective tissue disease 

Digestive 
 

 
Liver abscess and sequelae of chronic liver disease  
Other chronic non-alcoholic liver disease  
Other disorders of liver 

Endocrine/Metabolic 
 

 
Acquired hypothyroidism  
Congenital hypothyroidism  
Diabetes insipidus  
Diabetes mellitus  
Diabetes type 1 with peripheral circulatory disorders  
Diabetes type 2 with peripheral circulatory disorders  
Diabetic retinopathy  
Hypothyroidism NOS  
Polyneuropathy in diabetes  
Secondary diabetes mellitus  
Secondary hypothyroidism  
Type 1 diabetes  
Type 1 diabetes with ketoacidosis  
Type 1 diabetes with neurological manifestations  
Type 1 diabetes with ophthalmic manifestations  
Type 1 diabetes with renal manifestations  
Type 2 diabetes  
Type 2 diabetes with ketoacidosis  
Type 2 diabetes with neurological manifestations  
Type 2 diabetes with ophthalmic manifestations  
Type 2 diabetes with renal manifestations 

Genitourinary 
 

 
End-stage renal disease 

Mental Disorders 
 

 
Alcoholic liver damage  
Alcoholism  
Delirium dementia and amnestic and other cognitive disorders  
Dementia with cerebral degenerations 
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Dementias  
Senile dementia  
Vascular dementia 

Neoplasms 
 

 
Basal cell carcinoma  
Bone cancer  
Bone marrow or stem cell transplant  
Breast cancer  
Breast cancer [female]  
Breast cancer [male]  
Cancer of bladder  
Cancer of bone and connective tissue  
Cancer of brain  
Cancer of brain and nervous system  
Cancer of bronchus; lung  
Cancer of connective tissue  
Cancer of oesophagus  
Cancer of eye  
Cancer of hypopharynx  
Cancer of intrathoracic organs  
Cancer of kidney and renal pelvis  
Cancer of larynx  
Cancer of larynx, pharynx, nasal cavities  
Cancer of lip  
Cancer of liver and intrahepatic bile duct  
Cancer of major salivary glands  
Cancer of mouth  
Cancer of nasopharynx  
Cancer of nasal cavities  
Cancer of oropharynx  
Cancer of other endocrine glands  
Cancer of other female genital organs  
Cancer of other female genital organs (excluding uterus and ovary)  
Cancer of other lymphoid, histiocytic tissue  
Cancer of other male genital organs  
Cancer of prostate  
Cancer of stomach  
Cancer of the gums  
Cancer of the mouth floor  
Cancer of tongue  
Cancer of urinary organs (incl. kidney and bladder)  
Cancer within the respiratory system  
Cancer, suspected or other  
Carcinoma in situ of skin 
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Cervical cancer  
Cervical intraepithelial neoplasia [CIN] [Cervical dysplasia]  
Chemotherapy  
Colon cancer  
Colorectal cancer  
Hemangioma and lymphangioma, any site  
Hemangioma of skin and subcutaneous tissue  
Hodgkin's disease  
Kaposi's sarcoma  
Large cell lymphoma  
Leukemia  
Lymphoid leukemia  
Lymphoid leukemia, acute  
Lymphoid leukemia, chronic  
Lymphosarcoma  
Malignant neoplasm of bladder  
Malignant neoplasm of female breast  
Malignant neoplasm of gallbladder and extrahepatic bile ducts  
Malignant neoplasm of head, face, and neck  
Malignant neoplasm of kidney, except pelvis  
Malignant neoplasm of liver, primary  
Malignant neoplasm of other and ill-defined sites within the 

digestive organs and peritoneum  
Malignant neoplasm of other urinary organs  
Malignant neoplasm of ovary  
Malignant neoplasm of ovary and other uterine adnexa  
Malignant neoplasm of rectum, rectosigmoid junction, and anus  
Malignant neoplasm of renal pelvis  
Malignant neoplasm of retroperitoneum and peritoneum  
Malignant neoplasm of small intestine, including duodenum  
Malignant neoplasm of testis  
Malignant neoplasm of unspecified male genital organ  
Malignant neoplasm of uterus  
Malignant neoplasm, other  
Manlignant and unknown neoplasms of brain and nervous system  
Melanomas of skin  
Melanomas of skin, dx or hx  
Monocytic leukemia  
Multiple myeloma  
Myeloid leukemia  
Myeloid leukemia, acute  
Myeloid leukemia, chronic  
Myeloproliferative disease  
Neoplasm of uncertain behavior 



 

 

184 

 

 
Neoplasm of uncertain behavior of breast  
Neoplasm of uncertain behavior of male genital organs  
Neoplasm of uncertain behavior of skin  
Neoplasm of unspecified nature of digestive system  
Neurofibromatosis  
Nevus, non-neoplastic  
Nodular lymphoma  
Non-Hodgkins lymphoma  
Other non-epithelial cancer of skin  
Pancreatic cancer  
Polycythemia vera  
Reticulosarcoma  
Secondary malignancy of bone  
Secondary malignancy of brain/spine  
Secondary malignancy of lymph nodes  
Secondary malignancy of respiratory organs  
Secondary malignant neoplasm  
Secondary malignant neoplasm of digestive systems  
Secondary malignant neoplasm of liver  
Secondary malignant neoplasm of skin  
Squamous cell carcinoma  
Thyroid cancer 

Neurological 
 

 
Hemiplegia 

Pregnancy 

Complications 

 

 
Diabetes or abnormal glucose tolerance complicating pregnancy  
Endocrine and metabolic disturbances of fetus and newborn  
Hypertension complicating pregnancy, childbirth, and the 

puerperium  
Other complications of pregnancy NEC  
Preeclampsia and eclampsia 

Respiratory 
 

 
Asthma  
Asthma with exacerbation  
Chronic airway obstruction  
Obstructive chronic bronchitis  
Respiratory failure  
Respiratory insufficiency  
Wheezing 
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Visualisation of all the additional investigative variables 

UK Biobank Investigative variables 
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MIMIC-IV Investigative Variables 
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