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A B S T R A C T   

The primary issue with joining an immiscible magnesium/iron system is the lack of a bonding medium. This 
research used an aluminium (Al) additive as a bonding medium to facilitate the formation of an interface layer. 
Immiscible AZ31 magnesium alloy and SPHC low-carbon steel were successfully joined by employing aluminium 
(Al) powder as an additive in the gap between them with friction stir welding (FSW). The extensive interfacial 
microstructural analyses confirmed that the aluminium-rich Fe2Al5 intermetallic compound (IMC) formed with a 
range of 20–25 nm in thickness at the interface between magnesium and iron resulted from the metallurgical 
reaction between the Al powder additive and base SPHC steel. This IMC phase served as a transitional layer, 
facilitating the metallurgical bonding between Magnesium and Iron. The tensile strength of the joint was 
significantly improved by 43%, from 126 MPa without the additive to 180 MPa using the aluminium additive. 
The formation of the following well-matched interface lattice sites between Fe and Fe2Al5 region was identified: 
(002)Fe2Al5//(110)Fe, [110]Fe2Al5//[1 13]Fe. The intermetallic Fe2Al5 was composed of nanocrystalline and 
amorphous interface layers. Furthermore, the fracture of the joint occurred at the interface, indicating a brittle 
mode of fracture behaviour.   

1. Introduction 

Research has been conducted on the possibility of using hybrid 
structures composed of different materials to reduce the vehicle’s 
overall [1–4]. The use of a hybrid structure, achieved by welding and 
joining Mg alloys and steels, has been identified as an effective strategy 
for vehicle weight reduction while maintaining the required strength 
[5–7]. According to the Magnesium–Iron phase diagram, magnesium 
and iron are considered immiscible (unable to mix together) since the 
highest amount of Fe that can dissolve in Mg is merely 0.00043 wt% [8, 
9]. Hence, directly establishing a bond between Mg and steel is 

challenging [6,10,11]. 
A metallurgical interaction between the alloys of Mg and steel may 

be achieved through the diffusion of aluminium elements from the 
magnesium alloy workpiece and iron, forming the Fe2Al5 layer at the 
interface of welded joints [12–15]. Such a type of metallurgical bond 
was effectively achieved by the use of various welding methods, for 
instance, laser welding (LW) [16–18], cold metal transfer welding 
(CMT) [19–21], resistance spot welding (RSW) [22–24] and friction stir 
welding (FSW) [25–31]. These methods have a significant deal of 
promise for achieving a joint between steel and magnesium, which are 
incompatible with one another. Intermetallic layer formation is the 
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primary factor determining the integrity of the steel and magnesium 
joining, regardless of the technique used [12,32,33]. 

The FSW is a solid-state welding process that has demonstrated its 
effectiveness in joining materials that are both similar and different 
[34–40]. A significant amount of research has been conducted on the 
application of FSW for dissimilar materials joining. Based on these 
studies, one may get an understanding of the mechanism that allows 
different materials to join together [41–44]. Nevertheless, FSW has been 
employed to join low-carbon steel with AZ31 alloy [45,46]. An interface 
layer consisting of Fe2Al13 was detected by joining Mg and steel without 
a trace of Zn. The use of zinc has improved the ability to weld AZ31 and 
steel together, resulting in an effective joining. It has been established by 
FSW of a variety of AZ-based magnesium alloys with steel that 
enhancing the amount of aluminium that exists in magnesium alloys 
results in an improvement in the mechanical characteristics of the joint. 
The experiment demonstrated that the AZ61 alloy, which contains a 
significant amount of aluminium, forms joints with the greatest strength, 
having Fe2Al5 IMC at the joint interface [47]. 

Due to the fact that the intermetallic layer plays a vital role in 
bonding magnesium and steel, many researchers have conducted 
extensive research on the interface layer. The CMT welding method was 
used to fabricate magnesium and steel dissimilar joints. A consistent and 
dense Al2Fe intermetallic was produced at the joining interface of AZ61 
and DP600 steel [48]. An investigation was conducted into the brazing 
capability of AZ31 alloy to tin-coated steel by employing the Mg–Al–Zn 
alloy-based filler material. It was found that the establishment of the 
joining of AZ31 with steel was facilitated by Fe–Al based IMC [49]. RSW 
was used to join the AZ31 with DP600 steel. The Fe3Al nano IMC forms 
an effective bonding of AZ31 alloy with steel, resulting in a 
high-strength joining owing to the presence of low-energy interfaces 
[23]. 

Utilising the alloying elements from base workpiece materials is an 
easy and effective approach for joining magnesium and steel. Never-
theless, the formation of the IMC layer is affected by several factors, 
including the base material’s chemical composition, the welding tech-
nique, and the inclusion of alloying elements from base workpiece ma-
terials. Consequently, it becomes challenging to control the 
development of the interface layer [50,51]. Moreover, it exacerbates the 
challenge of attaining robust welds, particularly for welding techniques 
such as FSW that operate at lower process temperatures, as the alloying 
element’s diffusion from the base materials to the weld interface is 
limited [14,34,52]. 

Steel sheets and plates with low carbon have the advantages of 
excellent strength and a cost-effective manufacturing technique. It has 
found widespread application in many industries, such as machinery, 
shipbuilding, automotive, etc [53,54]. Steel pickle hot-rolled coil 
(SPHC) is a low-carbon steel that frequently finds applications for 
various automobile components, such as vehicle frames, wheels, and 
body bottoms [55,56]. Automotive parts fabricated from SPHC steel 
provide superior stiffness and strength, enhancing load-bearing capacity 
and strengthening energy absorption capability. Furthermore, SPHC 
steel is frequently employed to produce manufacturing components that 
seek convenient maintenance at inexpensive costs, such as vehicle 
frames [57]. Magnesium-based alloys frequently occur in several series, 
such as AM, AZ, ZK, ZE etc. Amidst these alternatives, AZ31 alloy is 
extensively used owing to its widespread availability in the marketplace 
and favourable mechanical properties [58,59]. 

Therefore, an aluminium powder additive was used in this study to 
achieve the goal of achieving improved joint properties in magnesium 
and steel welding. The AZ31 magnesium alloy and SPHC low carbon 
steel with Al powder at abutting faces were joined using FSW. The main 
aim of this research is to (a) realizing the bonding mechanism of AZ31 
and SPHC steel and (b) establishing the orientation relationship between 
the nanoscale intermetallic interface layer and base materials. 

2. Experimental 

AZ31 magnesium alloy and low carbon steel, whose commercial 
name is steel pickle hot-rolled coil (SPHC) with JIS 3131 Japanese 
standard, were used as base material. Each workpiece had a dimension 
of 200 mm in length, 50 mm in width and 1.5 mm in thickness. The 
milled-certified chemical composition of the base material obtained 
from the supplier is depicted in Table 1. Aluminium powder (99.5% 
pure) with an average particle size of 5 μm was procured from Sigma- 
Aldrich. 

Manford VL-610 vertical CNC milling machine equipped with an 
FSW fixture was used for experimentation. The pneumatic clamp was 
used to clamp the workpiece. The advantage of the pneumatic clamp 
over conventional nut and bolt arrangement is uniform pressure distri-
bution and ease of clamp-unclamp of workpieces. 

FSW was performed using a welding tool made from tungsten car-
bide with a shoulder diameter of 12 mm, 1.3 mm length of tool pin and 4 
mm pin diameter, as shown in Fig. 1 (a). The workpiece was placed in a 
butt configuration in which SPHC steel was kept at the advancing side, 
and AZ31 was kept at the retreating side. The faying surface of the 
workpieces was cleaned with acetone to remove contamination and dirt. 
Tool offset was taken as 0.5 mm into the steel. Prior to welding, a gap of 
0.5 mm was filled with the Al powder additive, as shown in Fig. 1 (b). 
Welding was performed with the tool rotation speed of 500 rpm and 
welding speed of 50 mm/min, as depicted in Fig. 1 (c). In addition, the 
FSW of AZ31 and SPHC steel was performed for comparison purposes 
without any additives using similar process parameters. 

A wire electrical discharge machine cut samples for tensile test and 
metallographic analysis. Specimens for tensile testing were prepared 
according to ASTM: E8 sub-size standard, as shown in Fig. 1 (d). Tensile 
test was performed using the universal testing machine (Instron-3369) 
with a 0.5 mm/min pull rate. The sample for microstructure was taken 
from the cross-section of the welded specimen and successively groun-
ded and polished with 0.5 μm alumina suspension. Microstructural 
characterization was performed using optical microscopy and scanning 
electron microscopy equipped with energy-dispersive spectroscopy 
(SEM-EDS). The macroscopic view of samples was observed with 
Olympus (Origin- Tokyo, Japan) optical microscope. The microscopic 
characteristics were observed with SEM-EDS equipment (Model: Hita-
chi, SU8030) with an accelerating voltage of 5 kV–15 kV in order to get 
images and EDS analysis. 

TEM lamella was prepared using the FEI Helios dual beam instru-
ment. Fig. 2 shows steps to prepare thin lamella with a thickness of less 
than 100 nm for TEM-EDS analysis. Fig. 2 (a) shows the AZ31 and SPHC 
steel interface from where the TEM lamella sample was extracted. Fig. 2 
(b)–(d) shows the slicing of the lamella until the thickness is less than 
100 nm. The lamella was picking up and mounting on the Cu-grid, as 
shown in Fig. 2 (e)–(f). TEM-EDS analysis was performed using FEI 
Tecnai G2 F20 TEM. The TEM machine was equipped with EDS. TEM 
imaging was performed at 300 kV accelerating voltage. EDS analysis was 
performed at different locations to know about elemental composition at 
the nanoscale level. 

3. Result and discussion 

3.1. Welded joint surface appearance 

Welded joints exhibited excellent surface appearances without any 
flash formation. Fig. 3 shows the surface appearance of the FSW joint 

Table 1 
Chemical composition of base material.  

Element Mg Al Zn Si Mn C Fe 

AZ31 Balance 2.80 0.60 0.10 0.15 – – 
SPHC Steel – – – 0.01 0.27 0.05 Balance  
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with and without the addition of the Al additive. 
The addition of Al powder resulted in an improved surface finish of 

the joint, as seen by comparing Fig. 3(a) and (b). Fig. 3 (a) shows the 
surface of the welded joint without any additive. A boundary between 
AZ31 and SPHC can be clearly seen. However, this distinct boundary 
disappeared in the welded sample with the Al additive, as shown in 
Fig. 3 (b), which is believed to be due to the uniform mixing of the Al 
additive during welding. Lastly, none of the joints had defects like 
tunnels, voids or pores. 

3.2. Macrostructural observation of cross-section 

The cross-sectional microstructure of typical FSWed AZ31 and SPHC 
steel without additive and with Al powder additive is depicted in Figs. 4 
and 5, respectively. 

Fig. 4 depicts the steel strip inserted into the magnesium side. The 
insertion of a large steel strip into the magnesium side is mostly asso-
ciated with the plastic flow behaviour of the materials. The base AZ31 
magnesium alloy exhibits an equiaxed grain structure, whereas SPHC 
steel has a grain structure consisting of ferrite grains owing to its low 
carbon content, as shown in Fig. 4 (a) and 4 (d). Fig. 4 (b) and 4 (c) 
depict the microstructure of the stir zone for AZ31 magnesium alloy and 
SPHC steel. It is evident that the tool’s stirring actions cause significant 
deformation in the grains of both AZ31 magnesium alloy and SPHC steel 
near the interface. 

In Fig. 5, the materials were mixed in an alternating manner to create 
an intricate layered structure. The results showed that the shorter steel 
strips established a beneficial mechanical interlocking, which effectively 
enhanced the strength of the joints. Fig. 5 (a) shows the AZ31 magne-
sium alloy with grains that are equiaxed in shape. Furthermore, inside 
the area where stirring occurs, equiaxed grains are formed with a 
smaller grain size, as seen in Fig. 5 (b). The grains of AZ31 in the stir 
zone underwent recrystallization and were transformed into smaller, 
equiaxed grains. Due to the adverse heat input circumstance, the 
development of magnesium grain did not occur after the tool probe had 
passed through the system. Similarly, the area where stirring occurs on 
the mild steel side shows finer grains than the base SPHC steel, as 
depicted in Fig. 5 (a) and 5 (b), respectively. 

In FSW, the stir zone experiences the most extreme thermal cycle and 
endures substantial plastic deformation. This leads to the occurrence of 
dynamic recrystallization (DRX) and the refinement of grain structure. 
Since the material surrounding the stir zone is subjected to plastic 
deformation as a consequence of the shear stress that is delivered by the 
tool, the thermomechanically affected zone (TMAZ) is formed as a 
result. The TMAZ is mainly composed of smaller grains that are equiaxed 

in shapes and grains that have been partially modified. The normal grain 
size of the TMAZ is considerably larger than that of the stir zone [60]. 

3.3. Interfacial characterisation and tensile properties analysis 

Fig. 6 (a) shows the cross-sectional SEM image for AZ31 and SPHC 
steel FSW without any additive. Fig. 6 (c) depicts the high-magnification 
micrograph of the highlighted interface region highlighted in Fig. 6 (a) 
without any apparent interface layer. Fig. 6 (d)–(f) shows the line EDS 
line scanning across the interface. A region with an elevated concen-
tration of aluminium is seen at the interface between magnesium and 
steel, as shown in Fig. 6 (e). The interface line scanning findings indicate 
that the interface layer mostly consists of iron and aluminium. However, 
the intensity count of aluminium is relatively low, which could be a 
reason for the non-existence of an apparent interface layer. The con-
centration of aluminium at the interface of the AZ31/SPHC steel is very 
low, making it challenging to detect any variations in the Al content. 

Fig. 6 (b) shows the cross-sectional SEM image for AZ31 and SPHC 
steel FSW with Al additive. The SEM image with high magnification 
depicted in Fig. 6 (g) is taken from the area encircled in Fig. 6 (b). It can 
be seen that an interface layer appeared in FSWed AZ31/SPHC steel with 
Al additive. Subsequently, Fig. 6 (h)–(j) shows the EDS line scanning 
across the interface for welded sample with Al additive. The intensity of 
the Al-enriched region exhibits significant variation, as seen by the line 
scanning depicted in Fig. 6 (i). This significantly increased and fluctu-
ated aluminium concentration due to the Al additive, which could help 
in the formation of the IMC. Due to apparent visibility of the IMC in 
AZ31/SPHC welding with Al additive, further analysis will be followed 
with this welding condition to realize the influence of Al additive in 
interface layer formation with improved joint properties. 

In order to gain a more explicit understanding of the joint’s inter-
facial structure, a specific interface region was enlarged, and the 
resulting morphology is shown in Fig. 7. The EDS elemental spectra 
provide the elemental composition for points 1–3. Based on the infor-
mation shown in Fig. 7, it is evident that an increase in the concentration 
of aluminium Al element is seen at the interface between AZ31 and steel. 
When the tool is stirred along the joint line, the exertion of heat and 
force causes the diffusion of the aluminium additive into the base steel. 
As a result, there is an increase in the concentration of Al elements at the 
interfacial region. The EDS examination of point 2 in Fig. 7 indicates that 
it predominantly comprises an Al-rich intermetallic layer (70.6% Al and 
29.3% Fe). 

A SEM-EDS mapping analysis was performed to determine the dis-
tribution of aluminium additives. Fig. 8 demonstrates the uniform dis-
tribution of aluminium along the interface between magnesium and 

Fig. 1. Schematic of FSW process (a) FSW tool, (b)schematic diagram of tool-offset and gap for additive (c) FSW process, (d) Standard tensile tests specimen.  
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steel, which verifies the high-intensity aluminium concentration of line 
scanning in Fig. 6 (i) and spot analysis in Fig. 7. An effective bond be-
tween immiscible materials occurs when an IMC forms along the joint 
line. The alloying elements present in the base materials are consumed 

to form the intermetallic compound during the welding process of 
immiscible materials, namely between magnesium alloy and steel [51]. 
To control the reduction of the alloying components from the base 
workpiece materials, one may use second-phase particles as additives to 

Fig. 2. Lamella preparation using dual-beam from the interface of AZ31/SPHC (a) AZ31/SPHC interface (b–d) digging of trench all around lamella (e) picking up of 
lamella (f) lamella mounted on a copper grid. 

Fig. 3. Surface Appearance of AZ31 and SPHC steel (a) without additive, (b) with Al powder additive.  
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maintain the elemental content of the base workpiece. 
Using aluminium additions led to higher tensile strengths compared 

to specimens without powder additives. The specimen containing Al 
powder additions attained a tensile strength of 180 MPa, as seen in Fig. 9 
(a). The tensile strength of the specimen with powder additions is 43% 
higher than the specimen without additives. The reduced strength of the 
welded specimen without the additive may be attributed to the immis-
cibility of magnesium and iron, resulting in the absence of an interface 
layer, leading to poor joint formation. Based on the observation of the 
stress-strain curve from Fig. 9(b), it is evident that the elongation is low 
in the absence of additives. This is likely because no visible interfacial 
layer is present at the AZ31/SPHC steel interface, which is responsible 
for reducing the strength and elongation. 

3.4. Role of Al additive in the formation of IMC in the FSW process 

The welded interface between AZ31 and SPHC steel with Al additive 
has been analysed using high-magnification SEM images, shown in 
Figs. 6–8. These images reveal the presence of a visible interfacial layer. 
The EDS line scan from AZ31 to SPHC steel workpiece reveals a gradual 
variation in the intensity of aluminium at the interface, as seen in Fig. 6 
(i). The EDS spot analysis in Fig. 7 shows that the interface consists of 
70.6 at. % of Al and 29.3 at. % of Fe. EDS elemental mapping has shown 
an enrichment of aluminium along the interface, as seen in Fig. 8. The 

findings from elemental line EDS, spot EDS, and elemental mapping 
indicate the formation of an aluminium-rich IMC near the joint 
interface. 

The development of IMC is a process that is regulated by diffusion 
and occurs in three distinct stages. The first stage encompasses the 
diffusion of iron and aluminium atoms, but their solubility is limited 
[61]. Furthermore, it is worth noting that the aluminium and iron 
diffusion coefficients are very low. Specifically, the iron’s diffusion co-
efficient into Aluminium is 53 × 10− 4 m2/s (at temperatures ranging 
from 793 to 922 K), while the aluminium’s diffusion coefficient into Iron 
is 1.8 × 10− 4 m2/s (at temperatures ranging from 713 to 733 K) [62,63]. 
The solid solution undergoes a process where it produces an interme-
tallic compound in the second step after its elemental composition ap-
proaches the saturation point. This is subsequently followed by the 
growing of the intermetallic compound thicknesses in the third step. The 
thickness of the intermetallic compound is determined by the reaction 
time (t) at a specific temperature and pressure, which can be calculated 
using the fundamental kinematics equations (1) and (2) [61]. 

S=Ktx (1)  

K=K0 exp
(
− Q
RT

)

(2) 

The variables in the equation are defined as follows: K represents the 

Fig. 4. Cross-sectional macrograph of AZ31 and SPHC steel without additive (a) base AZ31 magnesium alloy, (b) AZ31 side of stir zone, (c) SPHC steel side of stir 
zone, (d) base SPHC steel. 
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“rate constant”, K0 represents the “pre-exponential factor”, Q represents 
the “chemical activation energy” in joules per mole, x represents the 
“exponential factor”, R represents the “universal gas constant” in Joules 
per Kelvin per mole, and T represents the “reaction temperature” in 
kelvin. While the activation energy for aluminium and iron for Fe2Al5 
may vary from 74 kJ mol− 1 to 281 kJ mol− 1, it is essential to note that 
this energy varies following the temperature of the reaction [64]. The 
development of intermetallic compounds between aluminium and iron 
typically occurs at temperatures over 600 ◦C and under atmospheric 
pressure. However, in the case of the FSW, IMC may form at the weld 
interface even at temperatures below 600 ◦C. This is attributed to the 
intense plastic deformation and pressure applied by the friction stir 
welding tool. 

Fig. 10 depicts an illustration that explains the changes in the 
microstructure of the joint interface between AZ31 and SPHC steel with 
Al additive. Before FSW, the AZ31 workpiece is placed on the retreating 
side, while the steel workpiece is on the advancing side. The heat 
generated from the rotation of the welding tool is transferred to the 
interface by the process of thermal conduction. Fig. 10 (a) illustrates the 
starting condition of the welding process. During the welding process, 
the application of heat and pressure causes the diffusion of aluminium 
additives towards the interface, creating a new layer at the interface, as 
depicted in Fig. 10 (b). When the heat input during welding is reduced, 

as is the case with FSW, the aluminium elements at the joint interface 
react with iron elements, forming aluminium-rich Fe–Al intermetallic 
compounds. Fig. 10 (c) and (d) depict the interfacial layer’s 
arrangement. 

3.5. Bonding orientation relationship (OR) of AZ31 and SPHC steel 
interface layer 

The line scan analysis using SEM-EDS of the AZ31 and SPHC steel 
with Al additive, as shown in Fig. 6 (i), indicated significant fluctuations 
in the aluminium elements in the near interface area. Further analysis 
through spot analysis and elemental mapping, depicted in Figs. 7 and 8, 
divulged that the joint interface primarily comprises Fe–Al IMC with a 
high concentration of aluminium. However, the SEM-EDS analysis could 
not accurately and reliably determine the composition of the interface 
layer. Therefore, TEM and TEM-EDS spot analysis was used to conduct a 
more in-depth analysis of the interface. 

A continuous and uniform nanolayer of IMC ranging from 20 to 25 
nm in thickness was clearly detected at the interface, as shown in Fig. 11 
(b). The SAED of IMC is depicted in the inset of Fig. 11 (b). The presence 
of a nanolayer IMC between the aluminium and iron elements was 
verified using TEM-EDS spot analysis in Fig. 11 (c). At interface point 3 
in TES-EDS, the counts of aluminium and iron were high, suggesting the 

Fig. 5. Cross-sectional macrograph of AZ31 and SPHC steel with Al additive (a) base AZ31 magnesium alloy, (b) AZ31 side of stir zone, (c) SPHC steel side of stir 
zone, (d) base SPHC steel. 
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Fig. 6. (a)–(b) Cross-section of AZ31/SPHC steel and AZ31/SPHC steel with Al additive (c)–(f) AZ31/SPHC steel without additive interface morphology with EDS 
line scanning, (g)–(j) AZ31/SPHC steel with Al additive interface morphology with EDS line scanning. 
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Fig. 7. Interface morphology AZ31/SPHC steel using Al additive with EDS spot spectra.  

Fig. 8. EDS mapping of AZ31/SPHC steel interface with Al additive.  

Fig. 9. (a) Tensile strength of joint with and without additive, (b) stress-strain curve.  
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presence of IMC composed of Al and Fe. The study revealed that the IMC 
consisted of 70.85 at.% Al and 28.03 at.% Fe, which confirms the Fe2Al5 
intermetallic compound formation. 

The bonding OR of the Fe/Fe2Al5 interface and Mg/Fe2Al5 interface 
were obtained using SAED [Fig. 11 (e)–(f)]. SAED image, as shown in 
Fig. 11 (e), was obtained in a consistent orientation without any incli-
nation, following the zone axis of [110]Fe2Al5 and [1 13]Fe. The 
diffraction pattern of the (002)Fe2Al5 was superimposed with the 
diffraction pattern of the (110)Fe, as illustrated in Fig. 11 (e). This 
revealed that the OR of the Fe and Fe2Al5 was: (002)Fe2Al5//(110)Fe, [1 
13]Fe//[110]Fe2Al5. It was observed that the Fe–Al intermetallic 

compound may develop on ferrite grains. This results in the formation of 
Fe2Al5, which exhibits clear orientation relationships with the Fe 
workpiece, such as (1 1 0)Fe2Al5//(2 11)Fe, (001)Fe2Al5//(0 1 1)Fe and 
[110]Fe2Al5//[111]Fe [65]. As depicted in Fig. 11 (e), an orientation 
relationship of (002)Fe2Al5//(110)Fe, [1 13]Fe//[110]Fe2Al5 was discov-
ered for the Fe and Fe2Al5 interface in this work. It is implied that this 
orientation relationship leads to a low-energy interface [66]. As a result, 
steel and Fe2Al5 IMC have the potential to form a strong bond. 

An absence of a superimposed diffraction spot at the Fe2Al5/Mg 
interface was noticed. However, the theoretical calculation of the 
orientation relationship between Fe2Al5 and Mg is possible. According to 

Fig. 10. Schematic diagram of AZ31 and SPHC FSW joint using Al additive (a) Initial welding state (b) Formation IMC during FSW (c) Formation of joint with 
interfacial layer (d) schematic of Fe–Al IMC. 

Fig. 11. TEM analysis of interface (a) TEM image of AZ31/SPHC steel interface (b) TEM image showing IMC thickness and corresponding SAED of IMC in inset (c) 
TEM-EDS spot analysis across the interface (d–e) diffraction pattern, parallel to [110]Fe2Al5 and [1 13]Fe, (f) diffraction pattern of Fe2Al5/Mg interface. 

S. Raja et al.                                                                                                                                                                                                                                     



Journal of Materials Research and Technology 30 (2024) 9102–9114

9111

the orthorhombic Fe2Al5 lattice parameters, a = 0.7649 nm, b =

0.6413 nm, and c = 0.4217 nm; and HCP Mg lattice parameters, a =

0.3209 nm and c = 0.5211 nm, potential planes and orientations that 
may be matched between Fe2Al5 and Mg are presented in Table 2. To get 
the interatomic and interplanar misfits for Fe2Al5 and Mg interface, the 
following formula (3) is utilised: 

δ=
|Δa0|

(a0)
(3) 

Δa0 = Difference between interplanar or interatomic distance 
a0 = respective Fe2Al5 interplanar or interatomic distance 
Table 2 indicates that the [0–10]Fe2Al5//[4-2-20]Mg and [1-12] 

Fe2Al5//[4-2-20]Mg direction mismatch is slight, which is found to be 
0% and 1.9%, respectively. Additionally, the interplanar mismatching of 
(021)Fe2Al5//(0002)Mg and (022)Fe2Al5//(01-1-2)Mg, is also minimal and 
found to be 2.3% and 10.5%, respectively. These results based upon the 
orientation relationships suggest that the lattice locations of Fe, Al5Fe2, 
and Mg are in agreement, indicating that Al5Fe2 might be used as a 
possible intermetallic compound layer to achieve improved strength in 
friction stir welding of magnesium alloys to steels. 

Diffraction rings were seen in the SAED pattern of the intermetallic 
compound region shown in Fig. 11 (b). This suggests that the IMC layer 
may consist of a combination of crystalline and amorphous compounds. 
Hence, conducting the HRTEM investigation of the IMC layer is 
essential. 

Fig. 12 displays the HRTEM analysis of the interface between mag-
nesium and steel. Fig. 12 (a) displays the HRTEM image illustrating the 

Table 2 
Potential planes and orientations that may be matched between Fe2Al5 and Mg 
in FSW.  

Matching 
Planes or 
directions 

(0002)Mg// 
(021)Fe2Al5 

(022)Fe2Al5// 
(01-1-2)Mg 

[4-2-20]Mg// 
[0–10]Fe2Al5 

[4-2- 
20]Mg//[1- 
12] Fe2Al5 

d-Spacing 
(nm) 
Mg 

0.261 0.190 0.642 0.642 

d-Spacing 
(nm) 
Fe2Al5 

0.255 0.211 0.642 0.654 

Mismatch 
(%) 

2.3 10.5 0 1.9  

Fig. 12. HRTEM analysis (a) Mg/IMC/Fe image (b) HRTEM image Mg/IMC (c) HRTEM image of IMC/Fe (d) HRTEM image of Fe2Al5.  
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IMC layer between Mg and steel. There are no consistent patterns pre-
sent in the IMC layer. The IMC layer exhibits intermittent lattice fringes, 
mainly consisting of nanocrystalline structures, whereas the majority of 
the area in the IMC layer remains amorphous. Fig. 12 (b) shows the 
HRTEM image of Mg/Fe2Al5, depicting the amorphousness and nano-
crystallinity of the IMC. The region of the Fe2Al5, located nearer to the 
Mg side, consists of the amorphous structure. Fig. 12 (c) displays the 
HRTEM image of Fe2Al5/steel, revealing the amorphousness and nano-
crystallinity of the IMC, as in the previous case. However, the region of 
the Fe2Al5, located nearer to the steel interface, consists of the nano-
crystalline structure, with a few distant areas exhibiting amorphousness. 
Fig. 12 (d) shows lattice fringes of the Fe2Al5 IMC’s nanocrystalline re-
gion, which were found to be 0.21 nm. 

3.6. Fractography of specimen with Al additive 

Fig. 13 depicts the SEM images of the fractured tensile workpiece 
with Al powder additive. Fig. 13(a) depicts the area of the fractured 
surface where the lack of the Al additive was seen in a localised manner. 
Fig. 13(b) exhibits a satisfactory distribution of Al particles after FSW, 
allowing increased surface exposure for intense deformation caused by 
the effects of friction and temperature exposures. In addition, the 
interface additionally displays Al powder additive agglomerates in 
specific locations. Based on the fractography analysis, it was determined 
that the FSWed sample experienced fracture at the joint interface. 

4. Conclusions 

Friction stir welding of immiscible AZ31 magnesium alloy and SPHC 
steel using Al powder as an additive was successfully achieved, and the 
formation and influencing mechanism of the intermetallic compound 
was investigated. The following conclusions are drawn.  

1. The specimen containing Al powder additions attained an improved 
tensile strength of 180 MP compared to 126 MPa without the addi-
tive. The tensile strength of the specimen with powder additions is 
43% higher than that of the specimen without additives.  

2. A continuous and uniform nanolayer of Al-rich Fe2Al5 intermetallic 
compound with a thickness ranging from 20 to 25 nm was formed at 
the interface. The IMC layer consists of the amorphous structure as 
well as nanocrystalline structures featuring lattice fringes. In other 
words, IMC consists of an amorphous-nanocrystalline structure.  

3. Low energy and well-matched lattice sites were observed between Fe 
and Fe2Al5 Interface. Orientation relationship of (002)Fe2Al5// 
(110)Fe, [1 13]Fe//[110]Fe2Al5 was identified for the Fe and Fe2Al5 
interface. 
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