
Sante, A, Font, AS, Ortega-Martorell, S, Olier, I and McCarthy, IG

 Applying machine learning to Galactic Archaeology: how well can we recover 
the origin of stars in Milky Way-like galaxies?

https://researchonline.ljmu.ac.uk/id/eprint/23672/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Sante, A, Font, AS ORCID logoORCID: https://orcid.org/0000-0001-8405-
9883, Ortega-Martorell, S ORCID logoORCID: https://orcid.org/0000-0001-
9927-3209, Olier, I ORCID logoORCID: https://orcid.org/0000-0002-5679-7501
and McCarthy, IG ORCID logoORCID: https://orcid.org/0000-0002-1286-483X 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


MNRAS 531, 4363–4382 (2024) https://doi.org/10.1093/mnras/stae1398 
Advance Access publication 2024 June 5 

Applying machine learning to Galactic Archaeology: how well can we 

reco v er the origin of stars in Milky Way-like galaxies? 

Andrea Sante, 1 ‹ Andreea S. Font, 1 , 2 Sandra Ortega-Martorell , 2 Ivan Olier 2 and Ian G. McCarthy 

1 , 2 

1 Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK 

2 Data Science Research Centre, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK 

Accepted 2024 May 31. Received 2024 May 23; in original form 2024 April 25 

A B S T R A C T 

We present several machine learning (ML) models developed to efficiently separate stars formed in situ in Milky Way-type 
galaxies from those that were formed externally and later accreted. These models, which include examples from artificial neural 
networks, decision trees, and dimensionality reduction techniques, are trained on a sample of disc-like, Milky Way-mass galaxies 
drawn from the ARTEMIS cosmological hydrodynamical zoom-in simulations. We find that the input parameters which provide 
an optimal performance for these models consist of a combination of stellar positions, kinematics, chemical abundances ([Fe/H] 
and [ α/Fe]), and photometric properties. Models from all categories perform similarly well, with area under the precision–recall 
curve (PR-AUC) scores of � 0.6. Beyond a galactocentric radius of 5 kpc, models retrieve > 90 per cent of accreted stars, 
with a sample purity close to 60 per cent, ho we ver the purity can be increased by adjusting the classification threshold. For one 
model, we also include host galaxy-specific properties in the training, to account for the variability of accretion histories of the 
hosts, ho we ver this does not lead to an improvement in performance. The ML models can identify accreted stars even in regions 
heavily dominated by the in-situ component (e.g. in the disc), and perform well on an unseen suite of simulations (the AURIGA 

simulations). The general applicability bodes well for application of such methods on observational data to identify accreted 

substructures in the Milky Way without the need to resort to selection cuts for minimizing the contamination from in-situ stars. 

Key words: methods: data analysis – methods: numerical – Galaxy: abundances – Galaxy: kinematics and dynamics – solar 
neighbourhood – Galaxy: stellar content. 
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 I N T RO D U C T I O N  

n a lambda-cold dark matter ( � CDM) cosmological model, large 
alaxies like the Milky Way (MW) form through a hierarchical 
rocess, with smaller structures merging progressively into larger 
nes (Searle & Zinn 1978 ; White & Rees 1978 ). In this framework,
ignatures of past accretion and disruption events in the Galaxy are 
eft imprinted in a multidimensional parameter space, composed of 
ositions, and kinematics and chemical abundances of stars (e.g. 
elmi 2020 ). From the information gathered about tidal streams 

n this multidimensional parameter space, one can reconstruct the 
ssembly history of the MW (Freeman & Bland-Hawthorn 2002 ), 
hat is, determine the timing of the accretion events, the masses of
he progenitor galaxies, their star formation histories or the orbital 
roperties. 
A multitude of methods have been devised to find tidal stellar

treams. Streams from massive accretions can be usually detected 
rom photometry, as they tend to be brighter and to be spatially ex-
ended. Those from low-mass progenitors may sometimes appear as 
oherent structures in physical space (i.e. in positions and velocities 
f stars), particularly if the accretions were recent (e.g. Bullock & 

ohnston 2005 ; Johnston et al. 2008 ) or in a special geometry
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Johnston, Hernquist & Bolte 1996 ). Over longer dynamical time- 
cales, ho we ver, the streams tend to disperse due to phase-mixing
Tremaine 1999 ) and thus they become increasingly difficult to 
istinguish from background field stars. Information about them may 
e still retained in the integrals of motion related to angular momenta
nd total energies of their orbits (see Binney & Tremaine 2008 ).
ethods have been devised to identify tidal streams as ‘clumps’ in the

nergy ( E ) and angular momentum ( L z ) space (Helmi & White 1999 ;
 ́omez et al. 2010 ), as these quantities are (quasi-)conserved through

ime. Methods that rely on finding specific patterns of tidal streams
n the velocity space (Johnston, Spergel & Haydn 2002 ; G ́omez
t al. 2010 ; Koppelman & Helmi 2021 ), or in the angles, actions
r frequencies (McMillan & Binney 2008 ; Bovy 2014 ; Sanders &
inney 2016 ; Malhan et al. 2022 ) have also been used to identify

treams in the Galaxy. Ho we v er, man y of these methods require
nowledge of the gravitational potential of the MW, although more 
ecent techniques, such as STREAMFINDER (Malhan & Ibata 2018 ), 
o not rely on such assumptions. 
Other parameters have also been used to impro v e the detection.

 or e xample, methods based on match filters that weigh the colour–
agnitudes of stars (Grillmair et al. 1995 ; Rockosi et al. 2002 ;
albinot et al. 2011 ) have proven useful in the detection of new

treams (Shipp et al. 2019 ). More widely used are methods employing
he chemical abundances of stars, building on the expectation that 
tars formed in a given progenitor share similar chemical ‘finger- 
is is an Open Access article distributed under the terms of the Creative 
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rints’ even if their spatial and kinematical information has become
hase-mixed. In combination with 6D physical space parameters
positions and kinematics), the principle of ‘chemical tagging’
Freeman & Bland-Hawthorn 2002 ) has been applied successfully
n the disco v ery or characterization of tidal debris (Belokurov et al.
018 ; Helmi et al. 2018 ; Koppelman et al. 2019 ; Kruijssen et al.
019 ; Das, Hawkins & Jofr ́e 2020 ; Ji et al. 2020 ; Naidu et al. 2022 ;
orta et al. 2023 ; Malhan & Rix 2024 ), or in the reconstruction of

he early stages of the MW (Belokurov & Kravtsov 2024 ). 
In the era of large Galactic surv e ys, such as Gaia , new methods

ased on machine learning (ML) techniques have been developed
nd have proven viable. Clustering algorithms, such as density-
ased clustering non-parametric algorithms (see Ester et al. 1996 )
ave been applied to chemodynamical data to confirm existing
isco v eries or to reveal new ones (Koppelman et al. 2019 ; Borsato,
artell & Simpson 2020 ). An unsupervised learning method, called
IA MACHINAE , was also developed, using conditional density
stimation and sideband interpolation to find local o v erdensities
Shih et al. 2022 ). Veljanoski et al. ( 2019 ) developed a gradient
oosted trees model to identify halo stars based on astrometric and
hotometric data from the Gaia Universe Model Snapshot
Robin et al. 2012 ). 

The disco v ery of new tidal streams is becoming increasingly more
ifficult, in part due to current limitations in the current methods.
 or e xample, man y stream-finding methods assume that the halo is
ostly of accreted origin. This is a reasonable assumption only for

he outer parts of the Galaxy ( � 20 kpc), which are less contaminated
y disc stars. Observations indicate that the stellar halo has a ‘dual
ature’ (Carollo et al. 2007 , 2010 ; Beers et al. 2012 ), where the
wo components, accreted and in situ , o v erlap o v er some distance.
isentangling the two components is important in order to construct a

elatively clean sample of accreted stars on which to apply the stream
etection methods. The two components differ in spatial distribution,
inematics and metallicity (Carollo et al. 2007 ); specifically, the
n-situ halo is more centrally concentrated than the accreted and
ends to have an overall rotating motion prograde with the disc,
hereas the orbits of accreted stars are more randomly distributed;
enerally, the in-situ halo is also more metal-rich than the accreted.
his suggests that the two halo components could be, in principle,
learly separated. In practice, ho we ver, most observ ational samples
nclude some selection criteria which are meant to minimize the
ontamination from both the disc and in-situ halo. 

The observational selection cuts usually relate to spatial location,
inematics or chemistry (or a combination thereof). In some cases,
he criteria are purposefully conserv ati v e, for e xample, selecting stars
nly on retrograde orbits to search for debris. This kinematical cut has
ro v en beneficial for the disco v ery of man y substructures in the solar
eighbourhood (Koppelman et al. 2019 ), including a debris from
 massive progenitor, called Gaia Enceladus/Sausage (Belokurov
t al. 2018 ; Helmi et al. 2018 ), which merged with the Galaxy � 8–
 Gyr ago. Ho we v er, man y tidal streams are predicted to still remain
idden (Shipp et al. 2023 ). Therefore, relaxing the selection criteria
or observational samples could lead to more debris disco v eries,
specially in the less explored regions of the Galaxy, such as the
eated stellar disc (Mackereth et al. 2019 ; Belokurov et al. 2020 ). 
The dual nature of stellar haloes is retrieved naturally in cosmolog-

cal hydrodynamical simulations (Zolotov et al. 2009 ; McCarthy et al.
012 ; Tissera et al. 2013 ; Cooper et al. 2015 ; Pillepich, Madau &
ayer 2015 ; Monachesi et al. 2016 ; Pillepich et al. 2018 ; Brook

t al. 2020 ). Ho we ver, these simulations are too general to inform
he precise selection cuts that can be applied to observations in the

W, as they model systems with a variety of different accretion
NRAS 531, 4363–4382 (2024) 
istories none of which is expected to exactly match that of the MW.
oreo v er, depending on the implementation of subgrid physical

rescriptions, simulations may predict different properties for the
n-situ halo component. This is related to the different formation
hannels of in-situ halo stars in simulations: either as stars ejected
rom the galaxy disc, or formed within filaments of cold gas, or in
he w ak es of stripped gas from inf alling satellites. 

Rather than using simulations to inform selection cuts, one can
se them to train ML models to separate the accreted from in-situ
tars more accurately and hopefully in a way which is sufficiently
eneral to apply to the observational data. ML provides an ideal
ramework to find out the relations between objects belonging to
ifferent classes by leveraging the information hidden in large data
ets. This is particularly useful in those regions of the parameter
pace where the two halo components o v erlap, for e xample, in the
ase of accreted stars that o v erlap with the disc (e.g. Hawkins et al.
015 ), or of the old, in-situ halo stars that may o v erlap in metallicity
ith some of the accreted substructure. 
Several ML techniques have been developed recently to separate

he two components. For example, by analysing a Gaia mock
atalogue constructed from the FIRE simulations (Sanderson et al.
020 ), Ostdiek et al. ( 2020 ) trained an artificial neural network
ANN) to classify accreted and in-situ stars based on 5D kinematics
nd then fine-tuning the model on a Gaia DR2/RAdial Velocity
xperiment (RAVE) data set. This has led to the disco v ery of
 new substructure in the MW, called Nyx (Necib et al. 2020 ).
ecently, Tronrud et al. ( 2022 ) developed an ANN to separate
ccreted and in-situ stars, and trained it on the chemical abundances
nd ages of stars in AURIGA simulations (Grand et al. 2017 ).
 similar method has been developed by Trujillo-Gomez et al.

 2023 ) to classify accreted and in-situ globular clusters in the
-MOSAICS simulations (Pfeffer et al. 2018 ), using as inputs
7 observable properties, including some of the associated host
alaxies. 

Rather than focusing on the description of a single methodology,
ere we perform an e xtensiv e comparison of different ML algorithms,
n order to decide which ones are more suitable for the classification
f accreted and in-situ stars. We also include a wide range of input
arameters the models, chosen as stellar parameters which can be
irectly observed from MW surveys, such as positions, kinematics,
ges, chemical abundances ([Fe/H] and [ α/Fe]), and photometric
roperties. Our aim is to identify the optimal, data-driven model that
an automatically identify accreted stars in observational samples of
he MW. The ML algorithms we consider can be grouped broadly into
hree categories: ANNs, decision trees, and dimensionality reduction

ethods. The ANNs and decision trees are used for developing
he classification models, whereas the dimensionality reduction
echnique is used for visualizing the data and providing insights into
he output of the models. As a benchmark for comparison of models,
e adopt an ANN model which resembles the ‘Galactic Archaeology
eural Network’ (GANN) of Tronrud et al. ( 2022 ). For training and

esting the ML models, we use a sample MW-mass galaxies from the
RTEMIS simulations (Font et al. 2020 ), selected to be disc-like today,
ut with different accretion histories. Since in simulations the origin
f each star particle is already known (i.e. whether it formed in situ
r was accreted), we can assess the performance of the techniques
ore accurately than by testing them on observations. 
The paper is organized as follows. Section 2 provides a brief

escription of the ARTEMIS simulations and of the sample of disc-like
alaxies which are used for training and testing. The selection of the
hysical parameters considered as inputs for the models is described
n Sections 2.1 and 2.2 . In Section 3 , we present the ML methods;
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1 We note that, in an initial phase, we used for training simulated galaxies 
irrespective of their morphological type (i.e. both ellipticals and discs). 
Ho we ver, we found that the performance of models was significantly reduced 
in this case, particularly when the training set was composed of mostly 
different morphological types than the testing set. Since here we are mainly 
interested in optimizing the performance of the ML models, we choose to use 
a subsample composed of only disc-like systems. This restricts somewhat the 
accretion histories that are included in the data sets to those that are more 
quiescent. Ho we ver, this approach is justified as: (1) the accretion history of 
the MW is partially known, and therefore we do not need to be completely 
agnostic about this feature; and (2) disc-like galaxies can form with a variety 
of accretion histories (see e.g. Font et al. 2017 ) and our disc-like subsample 
co v ers a broad range of these scenarios. 
2 Although our ML models are developed with the aim of applying them on 
individual stars in the Galaxy, the simulations can only track star particles, 
which are essentially individual SSP. For brevity, throughout the paper, we 
will refer to the star particles as ‘stars’. 
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he metrics used for e v aluating the classification are discussed
n Section 3.1 , while the methods are described individually in 
ection 3.2 , including a description of how we determine the optimal
et of input parameters (in Section 3.2.2 ). Section 4 includes a
omparison of the performance of the ML models (Section 4.1 ) and
ho ws ho w the in-situ and accreted stars identified by these methods
re separated in a chemodynamical phase space (Section 4.2 ); it
lso shows how ML models may impro v e the detection of accreted
tars in areas omitted by observational selection cuts (Section 4.3 ); 
nd illustrates how the predictions of the models can be visualized 
ith UMAP (Uniform Manifold Approximation and Projection, 
ection 4.4 ). In Section 5 , we apply our ML methods on a different
uite of simulations ( AURIGA ), to further test their performance. The
onclusions of our study are summarized in Section 6 . 

 T H E  ARTEMIS SIMULATIONS  

RTEMIS is a suite of zoomed-in, high-resolution cosmological hy- 
rodynamical simulations of 45 MW-mass systems (Font et al. 2020 ; 
ont, McCarthy & Belokurov 2021 ) in a flat � CDM cosmological
odel with the following parameters measured from the Nine-Year 
ilkinson Microw ave Anisotrop y Probe (WMAP9) observations 

Hinshaw et al. 2013 ): �m 

= 0.2793, �b = 0.0463, h = 0.70, σ 8 =
.8211, and n s = 0.972. The MW-mass systems have total masses
anging between 8 × 10 11 < M 200 /M � < 2 × 10 12 , where M 200 is
he mass enclosing a mean density of 200 times the critical density
f the universe at present time. The dark matter particle masses are
.17 × 10 5 M � h −1 , the initial gas particle masses are 2.23 × 10 4 

 � h −1 , and the (Plummer equi v alent) force resolution is 125 pc h −1 .
The simulations were run with the GADGET -3 code (Springel et al.

005 ), including an updated hydrodynamical solver and subgrid 
hysical prescriptions developed for the EAGLE project (Schaye 
t al. 2015 ). The ph ysical prescriptions for subgrid ph ysics include
etal-dependent radiative cooling in the presence of a photoion- 

zing ultraviolet background, star formation, stellar and chemical 
volution, formation of supermassive black holes, and feedback from 

upernova, stellar winds, and active galactic nuclei (see Crain et al. 
015 and Schaye et al. 2015 for details). The chemical enrichment 
odel follows 11 element species taking in account the mass loss

rom asymptotic giant branch stars, stellar winds, and both core 
ollapse and thermonuclear supernovae. The heavy elements rele v ant 
or our study, are Fe (produced mainly in Type Ia SNe) and Mg (an
-element, produced in Type II SNe). 
Font et al. ( 2020 ) also computed, in post-processing, the optical

roperties of the simulated galaxies in ARTEMIS . These include lu-
inosities, magnitudes, and colours in various passbands, assuming 

ach star particle is an a single stellar population (SSP), by using the
ARSEC v1.2S + COLIBRI PR16 isochrones (Bressan et al. 
012 ; Marigo et al. 2017 ) and a Chabrier (Chabrier 2003 ) initial mass
unction. In this study, we are mainly interested in Gaia photometric 
roperties, which were not computed originally. For this, we use the 
vailable magnitudes for the Sloan Digital Sky Survey (SDSS) and 
onvert them to the Gaia G , G BP , and G RP passbands equi v alents,
sing the photometric relationships from Busso et al. ( 2022 ). 
The origin of each star particle (accreted/ in situ ) was determined

n post-processing. Here, we use the labels from Font et al. ( 2020 ).
n brief, the redshift of formation is recorded for each star particle
uring the simulation and in post-processing the simulation snapshot 
hat this is closest to (in lookback time) was identified. If at the time
f its formation the star particle was gravitationally bound to the 
ain progenitor of the MW-mass galaxy, it was labelled as in situ ,

therwise, as accreted. Note that by this definition, stars that are born
rom gas stripped from an infalling satellite, but inside the main halo,
re also labelled in situ. This is the case only for a small percentage
f stars, ho we ver. 
Since we aim to devise ML models suited for the Galactic

bservations, we focus our training and testing of models on a subset
f galaxies from ARTEMIS which have a disc-like component similar 
o that of the MW. 1 This ensures that there are sufficient examples
n the learning set which encapsulate the distribution of accreted and
n-situ stars in a disc-like galaxy. For the disc-like selection criteria,
e use the kinematics, specifically the corotational parameter κco 

Abadi et al. 2003 ; see also Font et al. 2020 ; Dillamore et al. 2022 ).
ere, we define it as κco = 

∑ 30 kpc 
r= 0 L z / 

∑ 30 kpc 
r= 0 L z, circ , where L z is

he total stellar angular momentum along the z-axis, and L z, circ is the
otal angular momentum of star particles with the same energy but
n a corotating circular orbit. For this computation, we only consider
tar particles within an aperture of 30 kpc , and impose a cut-off of κco 

0.50 to select galaxies with the most prominent disc components. 
his results in a sample of 16 galaxies listed in Table 1 , together with

heir main physical properties: the total accreted stellar fraction, 
he corotation parameter, the total stellar mass, half-(stellar) mass 
adius, maximum circular v elocity, and av erage chemical abundances 
[Fe/H] and [ α/Fe]). 

Galaxies are further split into two sets: a training and a test data set,
espectively. The training set is used to provide examples of accreted
nd in-situ stars to the ML models, while the test data set is used to
ssess the classification performance. The test data set is composed of
alaxies with an assembly history more similar (although not exactly 
he same) to the one inferred for the MW, specifically those where
he most massive accreted progenitor (MMAP) was accreted more 
han 8 Gyr ago, and the stellar mass ratio of this MMAP to the total
tellar mass of the host is ≥0.4 (see fig. 7 and table A1 of Dillamore
t al. 2022 for details). The two data sets, comprising of 12 galaxies
or training and 4 for testing, are listed separately in Table 1 . 

For each galaxy in the training data set, we also reserve 20 per cent
f stars, 2 for the validation data set. This comprises data that are
sed during the training routine for e v aluating the neural networks
n unseen data and detecting o v erfitting, that is, the modelling of the
oise contained in the training examples. 

.1 Stellar parameters as features 

or training and testing of the ML models, each star particle is
escribed as a vector of physical parameters (also known as features)
hich are expected to be rele v ant for the distinction between
MNRAS 531, 4363–4382 (2024) 
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M

Table 1. Sample of disc-like galaxies in ARTEMIS selected based on their corotation parameter, κco . These galaxies are separated into two datasets used for 
training and test the performance of the ML models, respectively. The columns are: (1) galaxy label; (2) fraction of accreted stellar component (defined as the 
mass fraction of accreted star particles o v er the total stellar mass ( in situ + accreted); (3) corotational parameter; (4) the total stellar mass; (5) half stellar mass 
radius (defined as the radius enclosing 50 per cent of the total stellar mass); (6) maximum circular v elocity; (7) av erage [Fe/H] abundance; and (8) average 
[ α/Fe] abundance, where α is tracked by Mg abundance. Apart for the fraction of accreted stars, all quantities are computed within 30 kpc from the centre of the 
MW -mass galaxy . 

Galaxy f acc k co M ∗[10 10 M �] r 1 / 2 [ kpc ] v θMAX [ km s −1 ] 〈 [Fe/H] 〉 〈 [ α/Fe] 〉 
Training data set 

G01 0.14 0.60 3.64 4.86 199 −0.14 0.19 
G15 0.11 0.61 3.57 5.88 170 −0.16 0.22 
G17 0.10 0.69 3.74 7.26 198 −0.21 0.25 
G18 0.22 0.59 2.78 4.38 184 −0.15 0.20 
G19 0.04 0.67 2.57 4.92 177 −0.16 0.24 
G23 0.11 0.56 2.87 2.77 197 −0.07 0.21 
G24 0.11 0.55 3.63 3.90 185 −0.16 0.22 
G25 0.18 0.63 2.57 5.52 172 −0.24 0.26 
G27 0.21 0.57 2.57 5.40 160 −0.19 0.22 
G38 0.04 0.81 2.97 8.46 176 −0.13 0.20 
G40 0.16 0.64 2.02 4.50 155 −0.15 0.20 
G44 0.12 0.63 4.28 5.22 204 −0.27 0.31 

Test data set 

G29 0.08 0.65 2.95 2.60 210 −0.08 0.18 
G30 0.28 0.55 2.12 4.20 172 −0.10 0.23 
G34 0.05 0.78 2.76 6.20 183 −0.16 0.21 
G42 0.13 0.65 2.10 3.10 174 −0.18 0.25 
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ccreted and in-situ stars. Although the simulations provide more
nformation on each star particle (including, e.g. the mass or the
ravitational potential), we focus only on stellar parameters which
an be observed, to facilitate future applications on surv e y data. These
eatures are divided into four cate gories, resembling (v ery broadly)
he focus of different types of observational Galactic surv e ys: 

(i) Positions and kinematics. For many MW stars, positions and
elocities are readily available, for example, from Gaia and RAVE.
ccreted stars are expected to differ from in-situ ones both in

erms of their locations and of their o v erall motions. Accreted stars
xtend much further out into the halo where they tend to appear as
inematically cold tidal streams, and their orbits tend to be more
andomly distributed, whereas the in-situ stars are more prominent
n the inner region of a galaxy (Font et al. 2011 ), follow a more
attened distribution, and tend to have a prograde rotation with the
isc (McCarthy et al. 2012 ). Therefore, for positions, we choose as
eatures the Galactocentric radius in the plane of the disc, R , and the
istance perpendicular to the plane of the disc, z, while for kinematics
easures we use the rotational velocity in the plane of the disc, v θ ,

nd the velocity dispersion in the plane perpendicular to the disc, σ .
(ii) Chemical ab undances. Chemical ab undances are related to

he star formation history of the associated progenitors (Freeman &
land-Hawthorn 2002 ). Here, we focus on the stellar metallicities,
efined as [Fe/H], and on the [ α/Fe] abundances, where α is tracked
y Mg. We expect stars of accreted origin to have, on average, lower
Fe/H] and higher [Mg/Fe] values than those in situ . 

(iii) Stellar a g es. Stellar ages, τ , can also be used in tandem with
he kinematic and chemical properties of stars to trace populations
ormed in the same galactic environment (Helmi 2020 ). [Fe/H]
alues are expected to correlate well with ages and they are often
sed as proxies for the latter. Old accreted stars are also expected
o have higher [ α/Fe] abundances due to the short, bursty star
ormation episodes in their parent dwarf galaxies at high redshift
Robertson et al. 2005 ). In addition, ages can provide complementary
NRAS 531, 4363–4382 (2024) 
nformation about the rate of chemical enrichment at different epochs
e.g. Hawkins et al. 2014 ). 

(iv) Photometry. Tidal streams from different disrupted satellite
alaxies are expected to stand out in terms of their surface brightness;
pecifically, the brightness of a stream tends to correlate with the
tellar mass of its dwarf progenitor (Font et al. 2006b ; Johnston
t al. 2008 ; Gilbert et al. 2009 ; Cooper et al. 2010 ). Similarly,
ccreted stars can also be distinguished from in-situ stars in terms
f their photometric properties. Accreted debris tends to be fainter
han the in-situ component, due to its lower mass and larger spatial
 xtent. F or photometric properties, we choose the absolute magnitude
n the Gaia G passband, M G , and the colour e v aluated in the
 BP and G RP passbands, BP − RP. We note, ho we ver, that our

esults are not dependent to the specific Gaia passbands or surv e y.
hese photometric properties also correlate with stellar ages (which
e inferred from colour–magnitude diagram fitting, e.g. Gallart,
occali & Aparicio 2005 ), thus offering an alternative to direct age
easurements, which are usually more difficult to obtain. 

To summarize, we choose as possible input features for ML models
he following stellar parameters: 

 R, z, v θ , σ, [Fe / H] , [ α/ Fe ] , τ, M G , BP − RP } . 
As described later, in Section 3.2.2 , the ML models ultimately in-

lude an optimal set of features, which provides the best performance
or our benchmark model. The optimal set is the same as the set of
arameters abo v e, but e xcluding the stellar ages ( τ ), for which the
enchmark model is able to retrieve the information from the other
arameters, mainly from [Fe/H] and [ α/Fe]. 

.2 Galaxy-specific features 

n addition to stellar features, one of our models (see Section 3.2.4 )
ncludes a set of galaxy-specific features, devised to account for the
ccretion histories of MW-mass hosts. These are listed in Table 1 , and
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omprise of: the stellar mass half-radius, the corotational parameter, 
he total stellar mass, the maximum circular velocity, and the average 
Fe/H] and [ α/Fe] abundances of the respective MW-mass galaxy. 

In general, we expect galaxies that experienced more massive 
ergers to have less well-defined stellar discs (e.g. smaller sizes, 

ower κco ) and also tend to be more massive. Additionally, we expect
hat systems with higher masses would be more more chemically 
nriched (higher 〈 [Fe/H] 〉 and lower 〈 [ α/Fe] 〉 ). Therefore, some
ndication about the accretion histories can be inferred from the 
resent-day properties of stellar populations in the MW-mass hosts 
see also Grimozzi, Font & De Rossi 2024 ). 

We note that, although the merger histories of the simulated 
alaxies are already known (e.g. in the form of merger trees, or
he properties of the MMAPs), we choose not to use this type
f information and focus instead on observable parameters, as we 
o in the case of star particle features. In Section 4.1 , we discuss
he performance of models with and without these galaxy-specific 
eatures. 

 M AC H I N E  L E A R N I N G  M O D E L S  

o devise an appropriate ML model for our task, we need to address
wo challenges: (i) to identify ML models which can learn ef fecti vely
he underlying patterns in the data; and (ii) to determine the input
arameters that optimize the performance of these models. 
For the first task, we consider models representative of two main 

amilies of supervised ML methods, namely ANNs and decision 
rees. From the ANN type, we consider a feedforward model called 
 multilayer perceptron (MLP). Given the relatively small number 
f features that describe the accreted and in-situ stars, we choose to
onsider shallower architectures than the ones selected in Tronrud 
t al. ( 2022 ), so as to limit the risk of o v erfitting. We then augment
his MLP model with domain inputs, that is, we include additional 
alaxy-specific features. With the extended set of features, both 
tellar and galaxy-specific, we aim to mitigate the potential decrease 
n the performance caused by the variability introduced by the 
pecific assembly histories of galaxies. For the same purpose, we also 
onsider the transformational machine learning (TML) technique 
Olier et al. 2021 ). From the category of decision tree-like systems,
e consider the eXtreme Gradient Boosting (XGBoost) model 

Chen & Guestrin 2016 ). 
To better visualize the data set used for training the models, 

s well as to understand the functioning of these models, we use
he UMAP dimensionality reduction technique (McInnes, Healy & 

elville 2018a ). This method consists of mapping the accreted and 
n-situ stars into a ne w, lo wer-dimensional plane, while maintaining 
he global and local structures; thus, stars are clustered in structures
hich make relations hidden in physical space more visually evident. 
ANNs have been investigated recently for this task (Ostdiek et al. 

020 ; Tronrud et al. 2022 ; Trujillo-Gomez et al. 2023 ), and are
ommonly used in astrophysics, for example, for the classification of 
ransients and variable stars (Jayasinghe et al. 2019 ; Agarwal et al.
020 ; Chen et al. 2022 ), of quasars (Nakoneczny et al. 2019 ; Clarke
t al. 2020 ; Nakoneczny et al. 2021 ), or of galaxies (Traven et al.
017 ; Dom ́ınguez S ́anchez et al. 2018 ; Huertas-Company & Lanusse
023 ). XGBoost is also commonly used, with many applications in 
alactic studies (e.g. Anders et al. 2023 ). To our knowledge, models

ike TML or UMAP are investigated for the first time here for an
strophysical problem. 

For the task of determining the optimal set of features, we start with
 wide range of physical stellar parameters (described in Section 2.1 )
nd determine which combination provides the best performance 
Section 3.2.2 ) for our benchmark model (Section 3.2.1 ). The implicit
ssumption in our approach is that the optimal set of features would
e the same for any type of ML model adopted. We then compare
he classification performances of different models using the same 
fixed) set of features. 

In the following, we describe the metrics used for e v aluating
he classification performance of models (Section 3.1 ). The model 
mplementations are described separately in Section 3.2 , where we 
lso provide some technical background on each of them. Otherwise 
pecified, we will make use of common ML terminology. 

The training and implementation of the ANNs is performed 
sing the TENSORFLOW (Abadi et al. 2015 ) library. The XGBoost
nd UMAP methods are developed using the XGBOOST (Chen & 

uestrin 2016 ) and UMAP (McInnes et al. 2018b ) PYTHON packages,
espectively. 

.1 Performance metrics 

n the development of all models we adopt a supervised learning
pproach. In supervised models, the mapping between features and 
rediction is learned by providing a set of example-label pairs. 
urthermore, the model parameters are tuned to minimize the 
ifference between the prediction and the actual class (the label) 
s quantified by an objective function. The separation of the accreted
ersus in-situ stars can be thought as a binary classification problem,
here the positive class is represented by the accreted stars and the
e gativ e class by the in situ . An ML model achieves this by applying
 sequence of mathematical operations and tunable parameters to 
ap the properties of stars to a value of either 0 or 1, representing

he ne gativ e and positiv e classes, respectiv ely. 
For the ANN and decision tree models, the prediction for a given

tar is represented by the output, which is a value between 0 and
 and measures the probability of the star belonging to the positive
accreted) class. In both cases, a star is classified as accreted if its
rediction is greater than a threshold value. The optimal performance 
f a classifier may occur at a different threshold value for different
odels, especially in problems with highly imbalanced data sets, 

uch as ours where accreted stars comprise, on average, 10 per cent
f the o v erall stellar content of a galaxy. We therefore explore also
he effect of changing threshold values on the performance of our

odels (see Section 4.2 ). 
Here, use the usual performance metrics, namely the precision ( P )

nd recall ( R ) of a model. These are used to compare the performances
f various models, but also to identify the optimal set of stellar
eatures. P represents also the purity of the sample of accreted stars,
hile R characterizes the completeness of the sample. By definition, 

hese two parameters correspond to the number of correctly and 
is-predicted accreted stars, respectively: 

 = 

TP 

TP + FP 

and R = 

TP 

TP + FN 

, 

here TP , FP , and FN are the number of true positives (i.e. stars
hat are correctly classified as accreted), false positives ( in-situ stars
hich are misclassified as accreted), and false ne gativ es (accreted

tars which are misclassified as in situ ), respectively. 
Because the precision and recall values of both ANNs and 

ecision tree-based models vary based on the different classification 
hresholds, with some thresholds fa v ouring some models o v er the
thers, we also use as metric the area under the precision–recall
urve, PR-AUC. This metric is more robust across models as it
ccounts for the precision and recall values evaluated on a range of
hresholds common to all models. A random classifier would return 
MNRAS 531, 4363–4382 (2024) 
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Figure 1. PR-AUC scores for the precision–recall curves for the models 
obtained training the benchmark architecture using different combinations 
of features. The feature categories are: positions and kinematics (labelled 
‘kin’), [Fe/H] and [ α/Fe] abundances (‘chem’), ages, and Gaia magnitudes 
and colours (‘phot’). 
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 PR-AUC score equal to the fraction of accreted stars in the test data
et, whereas a perfect classification algorithm would have a PR-AUC
core of 1. 

We have elected not to employ the accuracy metric, defined as the
 v erall fraction of correctly classified stars, due to its shortcomings
or highly imbalanced cases. For example, in galaxies with accreted
ractions of ≈10 per cent (a typical value), a classifier which al w ays
redicts stars as being in situ would have an accuracy of ≈90 per cent
ven though it failed to identify any accreted stars. 

Aside from the common ML metrics, we also compare the models
n terms of how well they fare in terms of astrophysical diagnostics.
hese are not metrics per se, ho we v er, the y are useful to help
nderstand whether the models are able to grasp the ‘physics’ behind
he data. We expect that a model that is able to learn (or mimic) the
hysical processes behind the origins of the two populations would be
ess precise exactly in those regions of the parameter space where the
roperties of the two populations are similar (e.g. stars that were born
n the early phases of the galaxy formation are old, metal-poor, more
-enhanced, and mo v e on less ordered orbits, regardless of whether

hey were born in situ or accreted). A model that cannot learn the
hysical patterns may still have a good performance, ho we ver its
is-classifications may be distributed more randomly in physical

pace. The three diagnostics used here, are: 

(i) [ α/F e] – [F e/H] plane. Accreted stars tend to be located in the
igh [ α/Fe], low [Fe/H] region of the plane, while disc and in-situ
alo stars generally have lower [ α/Fe] and higher [Fe/H] values. 
(ii) Toomre diagram, which is the distribution of rotational veloc-

ty, v θ , versus the dispersion velocity σ . In this plane, the disc and
he in-situ halo stars have high v θ and low σ , whereas accreted stars
o not have a preferred direction of motion, and generally have high
. 
(iii) E − L z distribution. As these parameters are quasi-conserved

or a given infalling satellite, stars belonging to different disrupted
rogenitor would appear as ‘clumps’ in this plane. These clumps are
ikely to be more distinct in the upper part of the plane, which is
ssociated with late accretions. The in-situ halo stars, and the disc,
re located on the region with positive L z . 

.2 Supervised ML models 

.2.1 The benchmark model 

or our analysis, we build a benchmark model to: (i) investigate
he most informative set of stellar properties that can distinguish
ccreted from in-situ stars, that is, the optimal set of features; and
ii) to compare the performance of different ML algorithms trained
n this optimal set. 
Our benchmark model is similar to the GANN model of Tronrud

t al. ( 2022 ). This is an MLP (see Section 3.2.3 ) comprised of an input
ayer, a batch normalization layer, four hidden layers of 64, 256, 64,
nd 32 neurons, and an output layer with one neuron, resulting in a
otal of 35 521 trainable parameters. We also use the same acti v ation
unctions as in the GANN model in the corresponding layers. In the
ollowing, we refer to this configuration of layers and neurons as the
enchmark architecture. 
The model is first trained on a set of stellar features comprising

ges, [Fe/H] and [ α/Fe], as in the GANN model. Following the
ame approach as in GANN, the chemical abundances are expressed
inearly (rather than the more conventional logarithmic form) and
ormalized by the correspondent solar v alues. Ho we ver, unlike
n GANN, we choose not to include the hydrogen fraction with
NRAS 531, 4363–4382 (2024) 
Fe/H], given that the information about the former can be implicitly
econstructed by the network from the latter. As for GANN, our
enchmark model is trained on an equal number of accreted and
n-situ stars. There are other differences from the GANN model
lso. One is that we train the model only on stars within r ≤ 50 kpc
rom the centres of galaxies, as beyond this radius the distribution
f stars is o v erwhelmingly of accreted origin (this is also valid for
he other models). More significantly, we only include example stars
rom the main halo, whereas Tronrud et al. ( 2022 ) include also those
rom present-day satellites, to augment the samples of accreted stars.

oreo v er, the y adopt a strategy of drawing equal number of stars
rom satellites in different mass ranges, in order to increase the
umber of examples of stars from objects which contribute fewer
tars (i.e. the low-mass dwarfs). In choosing to train only on existing
ebris, our benchmark model has a slightly lower performance than
hat of GANN, ho we ver the training data represents a closer match
o what one would expect from observations. 

.2.2 The optimal set of stellar features 

ith the benchmark architecture, we proceed to compare the
lassification performance using different combinations of stellar
eatures as inputs, to determine the optimal set for the models. We
onsider the stellar properties described in Section 2.1 , which we
ivide into four categories: positions and kinematics ( R, z, v θ , σ ),
hemical abundances ( [Fe / H] , [ α/ Fe ]), ages ( τ ), and photometry
M G , BP − RP ). For brevity, these are also referred to as ‘kin’,
chem’, ‘age’, and ‘phot’, respectively. 

We then train the benchmark architecture with different com-
inations of these four categories and e v aluate the classification
erformance on stars from the validation data’set. The results are
hown in Fig. 1 . On their own, positions and kinematics (kin)
ive a PR-AUC score of 0.57, which is significantly higher than
han the score for [Fe/H] and [ α/Fe] (chem), PR-AUC 0.38. This
uggests that spatial distribution and kinematics are more informative
han chemical abundances. In combination, kin + chem perform
omewhat better than kin alone, with a PR-AUC score of 0.63, which
uggests that the two categories provide complementary information.
dding ages to positions and kinematics impro v es the performance
f the model compared to just adding chemistry (PR-AUC scores
.66 for kin + age versus 0.63 for kin + chem). Similarly, adding
ges to positions, kinematics, and chemistry impro v es the score
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Figure 2. Comparison between the precision–recall curves obtained training 
the benchmark architecture and shallower ANNs on the optimal set of features 
(see Section 3.2.2 ). 
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ompared to not adding ages (PR-AUC of 0.71 for kin + chem
 age compared to 0.63 for kin + age). Interestingly, photometry 

dds slightly more information than the ages, to both positions and 
inematics (PR-AUC scores 0.69 for kin + phot versus 0.66 for kin +
ge), or chemistry categories (PR-AUC scores 0.45 for chem + phot 
ersus 0.42 for chem + age). A possible explanation for this is that
hotometry is implicitly related to both the ages and metallicities of 
tars. 

Overall, the best performance is provided by kin + chem + phot
PR-AUC score of 0.72), therefore excluding ages. We therefore 
ssign the corresponding input parameters, namely: 

 R, z, v θ , σ, [Fe / H] , [ α/ Fe ] , M G , BP − RP } , 

s the optimal set features for further training and comparison of the
ther ML models. 
We note, ho we ver, that the combinations kin + phot + age

nd kin + phot have classification performances which are very 
lose to that of the optimal combination. This suggests that ML
odels could also be trained on reduced information, for example 

n just positions, kinematics, and photometry, without a significant 
rop in performance. In fact, this may be a preferred option for
bserv ations, gi ven that photometry is usually more readily available 
han spectroscopy. 

.2.3 Multilayer perceptron 

n MLP is a type of ANN consisting of multiple layers of
nterconnected artificial neurons, or perceptrons. The architecture 
ypically comprises an input layer, one or more hidden layers, and 
n output layer. Each neuron receives input signals from neurons 
n the previous layer and computes a weighted sum based on 
nternal, tunable parameters describing the importance of the single 
nputs. Before being forwarded to the next layer, the result is
assed to a non-linear acti v ation function to allow the learning
f non-linear relations between inputs and outputs. During the 
raining process, the weights connecting the neurons are updated 
o minimize the error, as estimated by an objective function, 
etween the predicted and actual class through an optimization 
lgorithm. 

The benchmark model described earlier is also an MLP. Ho we ver,
ecause the classification between accreted and in-situ stars is 
nferred from a small number of features, we consider also shallower 
rchitectures than the one used in the benchmark model. Specifically, 
e explore architectures comprised of one hidden layer of 10, 50, 

nd 100 neurons, and two hidden layers with 50 neurons in each.
n total, these four MLPs have 101, 501, 1001, and 3051 trainable
arameters, respectively. In comparison, the benchmark architecture 
ontains 35 777 parameters. 

We train the MLPs with various architectures on the optimal 
et of input features (described in Section 3.2.2 ), as was done for
he benchmark model. We adopt the same acti v ation functions and
ptimization algorithm for all cases. For the outputs of the neurons 
n the hidden layers, we apply a Scaled Exponential Linear Unit 
unction (Klambauer et al. 2017 ), while for the neuron in the output
ayer we apply a sigmoid function, to ensure the prediction is in the
ange 0–1. The trainable parameters are updated using the Adam 
Kingma & Ba 2014 ) optimization algorithm on the error between 
redictions and labels estimated by the binary cross-entropy function. 
he training on the optimal set of features of the four MLP plus the
enchmark architectures is done for a maximum of 100 epochs, 3 with
n adaptive learning rate 4 halving when the value of the objective
unction stops decreasing for more than five epochs. 

Fig. 2 shows a comparison of the classification performances of all
hese architectures, based on the PR-AUC score e v aluated on the test
ata set. All MLPs have similar performances, with PR-AUC scores 
anging from 0.578 (1 hidden layer and 10 neurons model) to 0.591 (1
idden layer and 100 neurons model). Despite the significantly larger 
umber of trainable parameters, the benchmark architecture (0.584) 
utperforms only the shallowest model. The model with 1 hidden 
ayer and 50 neurons, and the one with 2 hidden layers of 50 neurons
ach, have PR-AUC score of 0.589 and 0.590, respectively. As the
rchitecture comprising 1 hidden layer with 100 neurons returns the 
ighest PR-AUC score (0.591), we considered it for the rest of the
nalysis (hereafter denoted as MLP). 

.2.4 Multilayer perceptron with galaxy features 

he study of Tronrud et al. ( 2022 ) suggests that MLP models may be
iased towards specific assembly histories. This result is expected, 
specially when the training set does not contain sufficient types 
f accretion histories. We find a similar result when we train an
LP model on a single galaxy. As expected, the model performs

etter when the stars belong to the same galaxy. Table 2 shows the
lassification performances of these MLP models represented by 
he PR-AUC scores. The models are trained on the optimal set of
eatures using accreted and in-situ examples from one galaxy (listed 
n the leftmost column) and tested on another galaxy (listed in the
op row). Where the galaxy pairs are the same, we only use the stars
n the validation data set. On a galaxy basis (i.e. column-by-column
nalysis in the table), the best classification performance is al w ays
ssociated to the model explicitly trained on the galaxy it is tested on.

This result is a consequence of the unique assembly history of each
alaxy, where the properties of the progenitors, for example, their 
MNRAS 531, 4363–4382 (2024) 
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M

Table 2. PR-AUC scores for the MLP models trained on accreted and in-situ examples from the galaxy in the leftmost column, and tested on the galaxies listed 
in the top row. Where the galaxy label is the same, stars in the validation data set were considered. 

G01 G15 G17 G18 G19 G23 G24 G25 G27 G38 G40 G44 

G01 0.68 0.60 0.52 0.66 0.44 0.60 0.59 0.45 0.81 0.48 0.76 0.66 
G15 0.54 0.77 0.48 0.67 0.58 0.62 0.67 0.44 0.74 0.62 0.66 0.66 
G17 0.58 0.64 0.62 0.62 0.62 0.70 0.61 0.47 0.73 0.59 0.67 0.71 
G18 0.55 0.66 0.45 0.76 0.46 0.50 0.65 0.46 0.78 0.48 0.74 0.57 
G19 0.54 0.67 0.47 0.64 0.74 0.71 0.66 0.44 0.73 0.62 0.66 0.65 
G23 0.57 0.67 0.52 0.62 0.69 0.82 0.61 0.44 0.76 0.62 0.63 0.72 
G24 0.52 0.66 0.43 0.67 0.48 0.56 0.78 0.45 0.79 0.53 0.75 0.61 
G25 0.47 0.43 0.44 0.58 0.44 0.46 0.39 0.61 0.62 0.32 0.46 0.58 
G27 0.48 0.49 0.35 0.63 0.25 0.36 0.47 0.42 0.88 0.53 0.76 0.50 
G38 0.51 0.62 0.47 0.63 0.45 0.50 0.52 0.45 0.77 0.76 0.70 0.65 
G40 0.47 0.43 0.33 0.63 0.16 0.29 0.43 0.39 0.78 0.29 0.83 0.46 
G44 0.57 0.64 0.55 0.63 0.64 0.65 0.63 0.46 0.78 0.58 0.73 0.83 
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nfall times, orbits, and masses, imprint a specific characteristic in the
tellar properties (features) of accreted stars. For instance, in galaxies
here the MMAP was accreted at early times the accreted stars are
ostly rich in α-elements and are more phase-mix ed; conv ersely, in

alaxies with a late MMAP, the accreted stars tend to be more α-poor
nd more spatially coherent (Font et al. 2006a ). Consequently, the
LP model learns the details of the unique imprint of the assembly

istory of a given galaxy leaves in its distribution of accreted 
tars. 

We note, ho we ver, that some models are able to identify a purer
nd more complete sample of accreted stars in other galaxies than the
ne they had been trained on. Again, this can be directly related to a
ifference in assembly histories as some galaxies (e.g. G27) have a
eater distinction between the accreted and in-situ populations. 
To account for the variability in the properties of accreted stars

n different systems, we could choose to use a conglomeration of
alaxies in the training set, as in the data set described in Section 2 .
o we ver, this model would still underperform if applied onto a
alaxy whose assembly history is not represented in the training set.
n ML terminology, the performance degradation of a model trained
n a source distribution (‘domain’) when applied to a statistically
ifferent target one is referred to as ‘domain shift’ (Qui ̃ nonero-
andela et al. 2009 ). Since our aim is to create a model capable
f generalizing across different assembly histories, we retrain the
LP model by providing additional information about the galaxy

rom which the example stars are taken from. These additional input
eatures are global properties of host MW-mass galaxies, measured
ithin an aperture of 30 kpc. This approach has the advantage of
roviding information about the accretion history of the host galaxy,
ithout given the model any a priori knowledge of which stars
ere accreted. The galaxy-specific input features are described in
ection 2.2 and are listed in Table 1 . 

.2.5 Tr ansformational mac hine learning 

s an alternative method to mitigate the domain shift problem, we
onsider the TML technique of Olier et al. ( 2021 ). In this framework,
ach data point is described by a vector of predictions obtained from
n ensemble of base models. While using a common set of features,
he base models are sequentially trained on different examples to
erform different tasks. This representation of the data is used as an
nput to a new model, which combines the prior information encoded
n the base models. 
NRAS 531, 4363–4382 (2024) 
Before the implementation of the TML approach, we trained an
LP model (see Section 3.2.3 ) on each galaxy in the training data

et. Because of the differences in the assembly histories of these
alaxies, learning to classify the accreted stars is considered by the
odel to be a specific task for each galaxy. The resulting ensemble

f MLPs is then used to derive a predictive description of all the
tars in the training data set. These 12D vectors are then passed as
nputs to a single-layer ANN with 100 neurons. During training,
he internal parameters of the base MLP models are held constant,
hile the parameters from the neural network which combines the
redictions are allowed to update. Also, to a v oid any data leakage,
he predictions of a base model on the stars used for the training are
et to 0. 

.2.6 XGBoost 

 decision tree is an ML algorithm based on a tree-like structure.
t begins with a root node representing the entire data set and
ecursively splits the data into smaller subsets (branches) based on
eature values. The endpoint of a branch is called a leaf and contains
he model prediction. In this work, we combine many decision tree

odels trained on the same data set using the gradient boosting
achine (GBM) method (Friedman 2001 ). Following this algorithm,
 decision tree is created to separate accreted and in-situ stars by
redicting their classification label as a continuous score between
 and 1. Then, a new decision tree is added to predict the error
etween the predicted and actual labels (here, as for the MLP model,
stimated by the binary-loss function). The prediction from the new
odel is then added to the initial predictions to make a more accurate

lassification. This continues for an arbitrary number of iterations,
ith each new model sequentially added and trained to minimize the

rror of the whole ensemble. 
Here, we implement a GBM with decision tree models using

he XGBoost (Chen & Guestrin 2016 ) method. This algorithm is
articularly suitable for large data sets as the ensemble of models
s built in parallel rather than serially. Moreo v er, it includes L1 and
2 regularization techniques to control overfitting. The number of
ase models in the ensemble and the number of splits in each tree are
ecided using the OPTUNA 

5 hyperparameter optimization framework.
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Table 3. Fiducial classification threshold values for the models. Each value 
is associated to the highest F1-score calculated based on the precision and 
recall values on the validation data set. 

Model Threshold F1-score 

MLP 0.33 0.67 
MLP + 0.31 0.63 
galaxy features 
TML 0.24 0.62 
XGBoost 0.33 0.68 
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Figure 3. Precision and recall values at different classification thresholds for 
the models. The metrics were e v aluated considering all the stars in the test 
data set. 
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.2.7 UMAP 

he UMAP method (McInnes et al. 2018a ) is a dimensionality 
eduction technique, such as principal component analysis, with the 
dvantage that the obtained dimensions can be non-linearly related to 
he starting ones. We apply this method in order to find relations, or
dentify possible structures within the accreted and in-situ examples 
hat may exist in the training and test data sets. Given the specificity
f this method, we use it only for visualizing the data, and therefore
e do not include it in our classification performance comparison. 
Assuming the data are uniformly distributed on a locally connected 

iemannian manifold, the algorithm constructs a fuzzy topological 
tructure of it in a 8D parameter space and maps it into a lower
imensional space with the closest equi v alent structure. UMAP can 
e used in a supervised way by providing the labels of the classes into
hich the data are separated. This ensures that both the global and

lass-specific structures of the data are retained while maximizing 
heir separation in the new embedding. 

Here, we train a UMAP model to reduce the 8D parameter space
efined by the optimal set of stellar features into a 2D plane, where
he separation between the accreted and in-situ training examples is 

aximized. Because of the high-computational resources required by 
his method, we consider only a subset of examples from each galaxy,
hich consists of all the accreted examples and an equal amount of

he in-situ ones. This results in a statistically significant number 
f examples from each galaxy. To investigate potential differences 
etween the structures of the training and test data sets, we use the
ame UMAP model to project all the test examples into the 2D plane.
 discussion of the results of this UMAP embedding is provided in
ection 4.4 . 

 M O D E L  C O M PA R I S O N  

.1 Classification performance 

ith the optimal set input features, we proceed to compare the 
lassification performance of our models, MLP, MLP with galaxy 
eatures, TML, and XGBoost, in separating the two classes of 
tars. We e v aluate all models on the test data set, and compare
he classification performances using the PR-AUC scores. We also 
ssess the purity and completeness of the retrieved accreted samples 
sing the precision and recall metrics at the optimal threshold 
alue. To ensure a fair comparison, for each model we consider 
he threshold associated to the highest value of the harmonic mean 
etween precision and recall (i.e. the F1-score). The resulting fiducial 
hresholds are shown in Table 3 . 

Fig. 3 shows the comparison between these four models, plus the 
enchmark model. For the latter, we use the reduced set of features
escribed in Section 3.2.1 . This figures shows that all four models
erform significantly better than the benchmark, which indicates the 
mportance of adding more input parameters, in this case from the 
inematical and photometric properties of the stars. The MLP, TML, 
nd XGBoost models perform similarly on the test data set, with PR-
UC scores of 0.59, 0.57, and 0.59 respectively. The TML model
oes not provide any improvement over the MLP, which implies that
here is not enough variance among the single MLPs in the ensemble.

The MLP model with added galaxy-specific features gives a PR- 
UC score of 0.57, which is worse than the one of the MLP model
nd the one calculated on validation data (0.64). This suggests that
he galaxy-specific features fa v our the learning of specific patterns
n the data, leading to o v erfitting, rather than learning the distinction
etween the accreted and in-situ classes in those features. This could
e due to redundancies in the set of galaxy-specific features (which,
nlike the stellar features, have not been optimized). For example, 
nformation gained from galaxy stellar masses may be very similar to
hat inferred from 〈 [Fe/H] 〉 , as MW-mass systems follow the stellar

ass–metallicity scaling relation. Also, the information gained from 

he o v erall rotation of stars (i.e. κco ) may o v erlap with that obtained
rom the sizes of galaxies. In the future, we aim to investigate whether
n optimal set of galaxy-specific features exists, particularly one that 
ill increase the performance abo v e the model without any such

eatures. Alternatively, it could be that the galaxy properties used 
or this task are not representative of the specific accretion histories.
n this case, one may opt, instead, to use parameters more directly
elated to the merger histories, for example the properties of the

MAPs. This will be investigated in a future study. 
Table 4 shows a g alaxy-by-g alaxy comparison of all five models

ased on the P and R v alues e v aluated at the fiducial classification
hresholds. Confirming what was found previously, MLP, TML, 
nd XGBoost have similar performances for every test galaxy, 
onsistently retrieving > 50 per cent of accreted stars with similar 
urity. In general, the TML model retrieves a larger sample of
ccreted stars than the single MLP, with only a minor decrease in
recision. 
Overall, despite belonging to different families of ML methods, 

he MLP, TML, and XGBoost models show similar performances, 
uggesting that the same underlying relations between stellar proper- 
ies and their origin are learned from the data. This is an encouraging
esult for further applications. 
MNRAS 531, 4363–4382 (2024) 
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Table 4. Comparison of the precision and recall values evaluated on the test data set at the fiducial thresholds for the ML models. 

Model G29 G30 G34 G42 
P R P R P R P R 

Benchmark 0.15 0.98 0.45 0.91 0.09 1.00 0.21 0.97 
MLP 0.47 0.64 0.59 0.57 0.35 0.65 0.54 0.54 
MLP + 0.54 0.59 0.56 0.56 0.41 0.55 0.50 0.63 
galaxy features 
TML 0.46 0.73 0.58 0.55 0.32 0.72 0.54 0.60 
XGBoost 0.49 0.70 0.58 0.58 0.36 0.68 0.54 0.58 

Figure 4. Distribution of the FPs in the test set in the [ α/Fe]–[Fe/H] plane (top row) and in the Toomre diagram (bottom row). Columns from left to right 
correspond to the MLP, MLP + galaxy features, TML, and XGBoost models, respectiv ely. F or each panel, the top and side subpanels show the probability 
density function of the FP distributions (yellow) and of the accreted (grey) and in-situ (blue) training examples. For each model, we also show the FP fraction 
( f FP ) of the total number of stars in the test data set. The metrics are e v aluated at the fiducial threshold values listed in Table 3 . 
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.2 Model comparison on physical diagnostics 

o far, we have shown that all ML models trained on the optimal
eatures perform similarly well, which is remarkable given that
ccreted stars comprise only a small fraction of the total stellar
udget. Ho we ver, despite the similar overall performance, the models
ay still perform differently in certain regions of the physical

arameter space co v ered by the accreted/ in-situ stars. If the models
re truly able to extract the physical properties of the two stellar
opulations, we expect that they will perform better in regions where
he two populations are clearly distinct in physical parameters (e.g.
inematics, or metallicity) and less well in regions where these prop-
rties o v erlap. To inv estigate this possibility, we map the distribution
n a chemodynamical parameter space of false positives ( in-situ stars

isclassified as accreted) and of false ne gativ es (accreted stars mis-
lassified as in-situ ) in different models. In Section 3.1 , we introduced
everal physically motivated chemodynamical diagnostics, such as
he Toomre diagram, or the [ α/Fe]–[Fe/H] and E –L z planes, which
e use here to e v aluate ho w well can the models identify accreted

tars in these parameter spaces. 
NRAS 531, 4363–4382 (2024) 
Fig. 4 shows the distribution of the FPs in the entire test galaxy
et in the [ α/Fe]–[Fe/H] plane (top row) and in the Toomre diagram
bottom row), for four models: MLP, MLP + galaxy features, TML,
nd XGBoost, respectively. Each panel has a corresponding set
f top and side subpanels, in which we compare the probability
ensity functions of the FPs (shown in yellow) with that of the
ccreted stars (grey), and of the in-situ stars (blue) in the training
et. This figure shows that the FPs tend to be located in regions
f the parameter space with low rotational velocities ( v θ � 0) and
ower metallicities ([Fe/H] < −1), which are regions dominated by
ccreted stars. This indicates that the models can learn to identify
ccreted stars as typically more metal-poor and characterized by
ore chaotic motion, which are properties expected for this category.
o we ver, models find it more difficult to identify in-situ stars in

his chemodynamical region. This behaviour is seen across all four
odels, which indicates that they all learn similar physical patterns

or accreted stars. This result suggests that the similar classification
erformances of the models, found earlier, are in fact physically 
oti v ated. 
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6 We note that, in the analysis of observations, these types selection cuts 
are just a first step, and further algorithms are applied to the samples to 
identify accreted substructure/tidal streams, for example, HDBSCAN , or k - 
means. As already mentioned, the moti v ation of this e x ercise is to investigate 
whether ML methods could disco v er more accreted stars in the regions that 
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Similarly, in Fig. 5 , we investigate the distribution of FNs in
he same chemodynamical parameter space. This figure shows 
hat, although the MLP, TML, and XGBoost models retrieve the 

ajority of the accreted stars in the test galaxies (see Table 4 ), some
ccreted stars are still missed, despite them having relatively distinct 
otions and chemical abundance distributions from those of the in- 

itu stars (compare, again, the yellow, grey, and blue probability 
istribution functions). All models present a similar behaviour in 
his respect, as was the case for FPs. We note here, too, that the
Ns represent only a small fraction of the total number of stars, with
 FN ≈ 5 per cent − 7 per cent across different models. 
The mis-classification in the case of FNs is likely due to the in-

itu stars greatly outnumbering the accreted stars in the examples 
vailable to these models. To elucidate this, we also investigate 
he spatial location of the FNs. For the MLP, TML, and XGBoost

odels, we find that the majority of mis-classified accreted stars 
76 per cent, 77 per cent, and 73 per cent, respectively) lie within a
alactocentric radius of 5 kpc . This suggests that the models tend to
dentify more accurately the stars originating from late accretions, 
hich are generally located in the outer regions of galaxies, while 

truggling to retrieve the stars that originate from early accretion 
vents and which are now fully phase-mixed in the inner region. 
 possible solution to improving the classification of models can 
e provided by data augmentation techniques, which can be used 
o generate a higher number of accreted stars in the training sets
n the inner region. Outside the 5 kpc range, the MLP, TML, and
GBoost models identify 93 per cent, 94 per cent, and 91 per cent of

he accreted stars in the test data set, with a precision of 0.57, 0.56,
nd 0.59 at the fiducial classification threshold, respectively. 

Furthermore, since the XGBoost model has a built-in degree 
f explainability, it can be used to determine more quantitatively 
he contribution of each input feature during the classification. 
pecifically, at each decision node, it is possible to calculate the 

nformation gain from a given feature by subtracting the impurity 
i.e. a measure of the entropy in the tree) before and after the
plitting. The information gain of a specific feature in the XGBoost
odel can be estimated by av eraging o v er all trees in the ensemble.
ig. 6 shows that the rotational velocity ( v θ ) and the distance from

he centre of the galaxy ( R ) are the most important parameters for
istinguishing between the accreted and in-situ stars in this model. 
urprisingly, [ α/Fe] has a significantly lower information gain. Given 

he high importance of the [Fe/H] parameter, it is possible that the
odel considers the information provided by [ α/Fe] as redundant. 
herefore, although the abundance of α-elements can be used to 
haracterize individual accreted substructures, the information from 

Fe/H] may be sufficient to remo v e the in-situ background. 
We note that the model performances reported here depend on the 

hosen classification threshold. For example, for the MLP model, the 
verage purity of the accreted stars sample at the fiducial threshold 
s � 50 per cent (see Table 4 ). Purer samples can be obtained by
ncreasing the classification threshold, ho we ver, this is done at the
ost of completeness. This is shown in Fig. 7 , where we plot the
redictions of this model in the E –L z plane, for different threshold
alues (0.25, 0.5, and 0.75, respectively). Here, E denotes the total 
nergy of a star, composed of the sum of kinetic and potential energy,
hile colours indicate the stellar mass fraction of accreted stars, 

s predicted by the model. The results are shown individually, for
he four galaxies in the test data set. The regions of the accreted
omponents which are identified with more confidence by the models 
re those in the upper parts of the energy spectrum, which represent
ostly stars originating from late accretions. These regions are 
a

ominated by clumpy structures which correspond to tidal debris 
ot yet fully mixed with the rest of the halo. 
This result is encouraging and indicates that ML models are 

ensitive to physical patterns in the data, and may be used in the future
o not only identify the bulk of accreted stars in the halo, but also to
nd individual tidal streams. Adjusting the classification threshold 
ould provide an advantage compared with traditional methods of 
electing halo stars which are fixed (see the next section), whereas

L models can be customized to provide the most appropriate 
amples for different types of analysis. For instance, the identification 
f accreted substructures in integrals-of-motion space requires a 
ample of high purity to a v oid the identification of spurious clusters,
hereas a characterization of substructures based on a large number 
f chemical abundances may be conducted at a lower purity, as the
ontamination of in-situ stars can be more easily identified. In this
ase, the model would represent a pre-processing step for reducing 
he number of stars to analyse. 

.3 The ML performance in separating components versus 
bser v ational cuts 

bservational studies of accreted substructures in the MW often 
ocus on regions dominated by halo stars, for example away from the
isc. For instance, halo stars are often identified by imposing cuts
n the stellar rotational v elocities, v ertical distances abo v e or below
he disc plane, metallicities, or a combination thereof. These cuts 
re physically moti v ated, ho we v er the y may e xclude also accreted
tructures embedded in or near the disc. In the previous sections, we
ave shown that ML methods are able to identify accreted stars even
n the regions which are dominated by in-situ stars (the fractions
f FPs and FNs are low even in the disc). This suggests that it
ay be feasible to apply them directly on the observational data,
ithout making recourse to specific selection cuts. To investigate this 
ossibility, we choose a few representative examples of selection cuts 
rom the literature, and compare the composition of accreted versus 
n-situ stellar distributions in these cases with the corresponding 
istributions predicted by the ML models. 6 

Specifically, we consider three examples of selection criteria for 
alo stars in the Galactic Solar neighbourhood: (i) a cut in velocity,
 V − V LSR | > 210 km s −1 (Helmi et al. 2018 ; Koppelman, Helmi & 

eljanoski 2018 ; L ̈ovdal et al. 2022 ), where the velocity of the local
tandard of rest is V LSR = 232 km s −1 (McMillan 2017 ); (ii) a
election in the [Fe/H]–v θ plane, used by Myeong et al. ( 2018 ) to
emo v e the disc stars in order to find accreted substructures in the
alo, namely imposing [Fe/H] < −0.5 and v θ < 150 km s −1 ; and (iii)
 kinematic selection used by Massari, Koppelman & Helmi ( 2019 )
o construct a sample of accreted globular clusters, by imposing ε >
.5, where ε = L z / L z, circ (the latter was used for larger regions of the
alaxy, ho we ver we adapt it here for the Solar neighbourhood). 
For this comparison, we focus on the Solar neighbourhood regions 

n the simulations, which are defined as ring tori with a minor radii
f 2.5 kpc. The major radii of the tori are determined on a galaxy-by-
alaxy basis, by multiplying the Solar radius in the MW (assumed
ere to be 8 kpc) with the ratios between the disc scale lengths of the
MNRAS 531, 4363–4382 (2024) 

re typically o v erlooked by observational methods. 
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Figure 5. Same as in Fig. 4 , but for the accreted stars mis-classified as in situ , that is, the false ne gativ es. 

Figure 6. Information gain values describing the importance of the input 
features used by the XGBoost model to distinguish between accreted and 
in-situ stars. 
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imulated galaxies and the scale length of the thin disc of the MW,
aken as 2.6 kpc (Bland-Hawthorn & Gerhard 2016 ). This accounts
or the differences in size between the disc of the MW and the discs
f the simulated galaxies. 
We apply the three selection criteria abo v e on the four galaxies

rom the test data set (G29, G30, G34, and G42) and label stars
s accreted or in situ according to these cuts. In doing this, we
ssume that halo stars in the Solar neighbourhoods are the equi v alent
f stars of accreted origin, and disc stars are equi v alent to those
ormed in situ . Note that, while these selection criteria are designed
o exclude most of the stars of in-situ origin, the real compositions
re a mixture of accreted and in situ , both in and outside the cut-out
egions. The fractions of accreted stars in these two regions vary
rom g alaxy-to-g alaxy, and also on the type of selection cut that is
pplied. The fractions of accreted stars in the disc-like regions are
ery small, although the accreted stars in these regions are likely to
e representative of early merger events (i.e. mostly old and metal-
NRAS 531, 4363–4382 (2024) 
oor stars). The labels assigned by these cuts are then compared
ith the true labels obtained from simulations, and we compute the

qui v alents of FPs and FNs. 
We then apply the ML models on the simulated Solar neighbour-

oods in the test galaxies (this time, without any selection cuts)
o predict the accreted stars in these regions. As before, we use
he models trained on the optimal set of features. For the sake
f conciseness, we only present here the results for the MLP, but
ote that the XGBoost and TML models have similar classification
erformances. 
In Fig. 8 , we compare the distributions in the [ α/Fe]–[Fe/H] plane

f accreted and in-situ stars in the Solar neighbourhood regions
redicted by the three selection criteria and by the MLP model. A
imilar comparison is shown in Fig. 9 for the distributions in the
oomre diagram. Both figures illustrate the difference in complexity
etween the two approaches, with the MLP model being able to
rovide a closer description of the true distribution of accreted
tars in the chemodynamical space for all the test galaxies. This
esult is expected, considering that traditional observational methods
re based on the assumption of a simple disc–halo dichotomy. For
xample, the selection cut of Myeong et al. ( 2018 ), which assumes
 distinct dichotomy in terms of [Fe/H], o v erpredicts the number
f accreted stars the [ α/Fe]–[Fe/H] space compared with the other
ethods that do not employ a [Fe/H] cut (see Fig. 8 ). Overall, the
LP retrieves the accreted stars most accurately, compared with all

he selection cut methods. This is the case not only in the o v erall
istribution of accreted stars in the chemical ab undance space, b ut
lso in terms of the number of accreted stars (compare, e.g. the
ccreted fractions, f acc , in the corresponding panels for each galaxy
n Fig. 8 ). 

Likewise, since all selection cuts employ some type of v θ thresh-
ld, they all underperform compared with the MLP model (see
ig. 9 ). The criterion of Massari et al. ( 2019 ), which allows for

he inclusion of counter-rotating stars in the disc, gives a closer
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Figure 7. The distribution in the E –L z plane of the accreted sample retrieved by the MLP model, at different classification thresholds (left to right panels), 
for each of the galaxy in the test data set (top to bottom rows corresponding to galaxies G29, G30, G34, and G42, respectively.). The completeness ( R ) of the 
retrieved sample is also reported. The distribution is colour-coded by the actual fraction of accreted stars as defined by the simulation label. 
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escription of the distribution of stars in the Toomre diagram than 
he other two selection criteria, although it still provides a very 
implified version of the true distribution of the two populations. 
s in the case for chemical abundances, the MLP model is able to

etrieve the overall patterns in the kinematical distribution of the two 
tellar populations, in all four test galaxies. 

Table 5 includes the purity ( P ) and completeness ( R ) of the samples
f accreted stars retrieved by the MLP model, using three different 
lassification thresholds (the fiducial value of 0.33, 0.10, and 0.75). 
hese metrics are compared with the equi v alent P and R values
omputed using the labels inferred from the three selection cuts 
ersus the true labels from simulations. All values are computed 
or the Solar neighbourhoods in each of the four galaxies in the test
ata set. At the fiducial threshold, the MLP model retrieves the purest
amples of accreted stars for all test galaxies. When the classification 
hreshold is lowered to 0.10, the model identifies consistently more 
han 95 per cent of the accreted stars, while maintaining a precision
ev el v ery similar to the purest sample retriev ed by the selection
riteria. As the classification threshold is increased, progressively 
urer samples of accreted stars are retrie ved, ho we ver, at the expense
f completeness. When the threshold is set to 0.75, the MLP model
 e
s able to create samples of accreted stars, on average, twice as purer
s the ones obtained through the observational selection criteria. 

In addition to being more accurate in identifying the accreted 
tars than the selection cuts, the MLP model also retrieves fewer
tars labelled accreted (on average, 20 per cent fewer than using
he selection cuts). This makes it less computationally e xpensiv e,
specially when applied on large observational data sets. This 
ould be the preferred methodology for the initial processing of 
bservational data to use for subsequent analysis, for example using 
lustering algorithms to identify tidal stellar streams. 

.4 Visualization of accreted and in-situ structures with UMAP 

urther insights on the behaviour of the ML models can be obtained
rom the distribution of accreted and in-situ stars in a 2D plane
onstructed by the UMAP model. Through the UMAP algorithm, 
tars with similar properties are pulled together, revealing structures 
hich may be hidden in the usual spatial or chemodynamical 
arameter spaces. 
In Fig. 10 , we show the distribution of the training and test

xamples obtained using the UMAP model. The 2D planes are 
MNRAS 531, 4363–4382 (2024) 



4376 A. Sante et al. 

M

Figure 8. The [ α/Fe]–[Fe/H] distrib ution, colour -coded by the fraction of accreted stars, f acc for stars in the simulated Solar neighbourhoods. From top to 
bottom, the rows correspond to galaxies G29, G30, G34, and G42, respectively. In the columns, the accreted stars are defined by: (1) the simulation label; (2)–(4) 
the observational selection criteria; and (5) the label predicted by the MLP model. In each panel, we show the actual (column 1) and predicted (columns 2–5) 
o v erall fractions of accreted stars in the simulated Solar neighbourhoods. 
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olour-coded based on the fraction of accreted stars, using the
imulation labels (left and middle panels) and the predictions of the

LP model (right panel), respectively. As before, the MLP model is
onsidered representative of all ML models. The training distribution
ndicates a clear separation between the accreted and in-situ stars.
he accreted stars appear to be clustered in two main regions: the
mallest cluster comprises stars located outside R � 15 kpc, while
he other includes stars with a broader range of properties, which
re also more gradually changing. The stars in this second cluster
ypically have high velocity dispersions and low [Fe/H] abundances.
he in-situ stars appear to be mostly clustered in an L-shaped region
haracterized by high-rotational motions. Smaller clusters of in-situ
tars with specific features are also present in this plane. For instance,
he top cluster in this figure is comprised of young, metal-rich stars,
ocated in the inner region of the galaxy; while the rightmost cluster
s composed of stars orbiting in the plane of the disc, but at large
istances from the centre of the galaxy. 
In Fig. 11 , we show the distribution of the training data, colour-

oded by each of the stellar properties in the optimal set of input
arameters. All properties are presented as normalized values. The
ame structures are observed in the distribution of the test examples
nce projected in the UMAP-defined space (central panel, Fig. 10 );
NRAS 531, 4363–4382 (2024) 
o we ver, the largest region of the accreted stars shows a significant
ontamination of in-situ examples. This seems to suggest that some
n-situ stars in the test data set have stellar parameters that resemble
hose in the accreted examples from the training data set. As expected,
hese are the examples which the ML models struggle to associate to
ither the accreted or the in-situ classes (as shown in the right panel
n Fig. 10 ), and which comprise the majority of the misclassified
tars (in both the FP and FN cases). Moreo v er, the MLP predictions
n the largest accreted region appear to follow a gradient as the
odel outputs progressively higher probabilities of being accreted,

or stars occupying the higher parts of this region. In Fig. 11 , a
imilar , although much shallower , gradient is observed in the R plot,
uggesting that the accreted stars from late mergers are identified
ith higher probabilities by the model, as already concluded from
ig. 5 . 

 TESTING  T H E  M O D E L S  O N  T H E  AU R I G A 

I MULATI ONS  

e further test the performance of our models with an independent
ata set, drawn from the AURIGA simulations (Grand et al. 2017 ).
his allows us to investigate whether there are any biases introduced
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Figure 9. Same as in Fig. 8 , but showing results for the distributions of accreted stars in the Toomre diagram. 

Table 5. Comparison of the purity ( P ) and completeness ( R ) of the sample of accreted stars retrieved by using observational selection cuts (top three rows) 
and by the MLP model (bottom three rows) evaluated at different thresholds, in the simulated Solar neighbourhoods of galaxies G29, G30, G34, and G42. 

Halo (accreted) G29 G30 G34 G42 
Selection criterion P R P R P R P R 

Helmi et al. ( 2018 ) | V − V LSR | > 210 km s −1 0.28 0.81 0.47 0.83 0.21 0.79 0.47 0.54 
Myeong et al. ( 2018 ) [ Fe / H] < −0 . 5 ∧ v θ < 150 km s −1 0.28 0.93 0.49 0.65 0.09 0.87 0.48 0.76 
Massari et al. ( 2019 ) ε > 0.5 0.28 0.65 0.48 0.67 0.21 0.68 0.49 0.52 

MLP (0.33, fiducial) 0.35 0.75 0.52 0.71 0.22 0.93 0.51 0.56 
MLP (0.10) 0.27 0.98 0.46 0.97 0.11 1.00 0.48 0.95 
MLP (0.75) 0.70 0.03 0.88 0.05 0.55 0.04 0.76 0.02 
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n our models due to training only on the ARTEMIS simulations, and
o test the classification performance of the models outside their 
ev elopment environment. F or this purpose, we use the ‘lev el 3’ set
f six galaxies from the Auriga Project public data release (Grand 
t al. 2024 ): Au6, Au16, Au21, Au23, Au24, and Au27. These are
lso disc galaxies of MW mass, with total masses ranging between 
 . 04 − 1 . 74 × 10 12 M � and disc-to-total ratios, D / T , ranging from
.63 to 0.83 (Grand et al. 2017 ). 
The simulations were run with the hydrodynamical code AREPO 

Springel 2010 ), which includes physical subgrid prescriptions (Vo- 
elsberger et al. 2013 ) that are significantly different from those 
mplemented in the EAGLE code which was used for ARTEMIS . 
urthermore, these simulations have somewhat higher numerical 
esolution than ARTEMIS , with dark matter particle masses of ∼
 × 10 4 M � and baryonic masses of ∼ 5 × 10 3 M �, respectively. 
o we ver, we find that the simulated galaxies in AURIGA have similar

patial distributions of in situ of accreted stars as in the ARTEMIS (not
ho wn here). The le vel of dif ferences in the spatial distributions
etween galaxies drawn from these two suites of simulations is 
omparable with the differences seen between galaxies from the 
ame suite. 

We apply the same ML models on these six systems and test
heir performance. First, we divide the sample into a training and
 test data set, setting aside a fraction of stars in the training data
et for validation purposes. Galaxies Au6 and Au21 experienced 
he most massive merging events with mass ratios of 0.54 and 0.53
MNRAS 531, 4363–4382 (2024) 
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Figure 10. Distribution of stars in the training (left panel) and test (central and right panels) data sets in the parameter space defined by UMAP to maximize the 
separation between the accreted and in-situ populations. Colours represent the fraction of accreted stars in each region of the plane, as defined by the simulation 
labels (left and central panels) and by the predictions of the MLP model (right panel). 

Figure 11. UMAP projections of the distribution of accreted and in-situ examples in the training data, weighted by the value of the corresponding physical 
parameters from the optimal set of features, used as input to the UMAP model. All values are normalized. 
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Grand et al. 2018 ), respectively, and were thus selected for the
est data set. The rest of the galaxies in the sample (Au16, Au23,
u24, and Au27) were used to provide training examples to the 
odels. 
Fig. 12 sho ws ho w the ANNs and decision-tree models perform

hen developed on the AURIGA data. The MLP, MLP + galaxy
eatures, and the TML models have a slightly better classification
erformance than XGBoost. This may be caused by a missed
ptimization of the XGBoost hyperparameters (as we use the the
ame hyperparameters tuned for the ARTEMIS data). Alternatively,
here could be more complex non-linear relations between the
eatures describing the accreted stars which are better modelled by
he ANNs. Nevertheless, similarly to what it was found for ARTEMIS ,
ll these four models have a similar classification performance.
his is encouraging, as it suggests that the models are able to
xtract the rele v ant relationships between the accreted and in-situ
tars, regardless of the type of simulation they were developed on.
he benchmark model shows an impro v ed performance compared
NRAS 531, 4363–4382 (2024) 
o the ARTEMIS analogue (PR-AUC score of 0.45 versus 0.36)
uggesting a clearer chemical distinction between accreted and in-
itu stars in the AURIGA galaxies. Nevertheless, the benchmark model
eturns samples of the lowest purity compared to the other models
eveloped in AURIGA , showing that, as for ARTEMIS , the addition of
inematic and photometric informations impro v es significantly the
lassification. 

The MLP, MLP + galaxy features, and the TML models share
 similar classification performance, with PR-AUC scores of 0.59,
.60, and 0.62, respectively, while the XGBoost model shows a drop
n performance (0.53). These scores are similar to those found for
RTEMIS , which are 0.59 (MLP), 0.55 (MLP + galaxy features), 0.57
TML), and 0.59 (XGBoost), respectively (see Section 4 ). 

We perform an additional test, whereby the models developed
n the training data set from ARTEMIS are applied on the AU-
IGA test dataset, and vice versa (purple lines and orange dots

n Fig. 13 , respectively). This allows us to further investigate
he robustness of the models. We also compare the performance
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Figure 12. Precision ( P ) and recall ( R ) at different classification thresholds 
for the benchmark model, MLP, MLP + galaxy features, TMP, and XGBoost, 
trained on stars from six AURIGA galaxies. The metrics are e v aluated 
considering all stars in galaxies Au6 and Au21. 

Figure 13. Comparison of the classification performance of models trained 
on ARTEMIS (continuous lines) and AURIGA (dotted lines). The performance 
of models tested on data from the same simulation is represented using the 
same colour, as indicated in the legend. 
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f criss-crossing the simulations with the performance of using 
ets from the same type of simulation (shown by orange lines
or ARTEMIS models and purple dots for the AURIGA ones in 
ig. 13 ). 
Interestingly, when the models trained on AURIGA are applied to 

he test data from ARTEMIS , the classification performance drops 
rastically. The same is observed when the models trained on the 
RTEMIS data are applied to the AURIGA test data. The lack of
onsistency in the classification performance of the model can be 
xplained in terms of both data and model complexity. 
Differences in the code, physical model, or the numerical resolu- 
ion of the two simulations inevitably result in a domain shift between
he two data sets; consequently, the models trained and tested on
ifferent simulations show a drop in classification performance. 
omain adaptation techniques, such as described in Ćiprijanovi ́c 

t al. ( 2020 ), could be explored to develop models that can maintain
 consistent classification performance when applied across simula- 
ions or on observational data. Models with a high level of complexity
an be affected by o v erfitting as they capture simulation-specific
atterns while learning the distinction between accreted and in-situ 
tars. Combined with domain shift, o v erfitting leads to more drastic
erformance drops. As shown in Fig. 13 , this is the case of the
GBoost model, which has sufficient complexity to extract external 
atterns from the data, being ef fecti vely fine-tuned on the set of
imulations it is trained on. The MLP with galaxy features model
lso performs better on the simulation it is trained on. This can be
ue to the galaxy-specific properties may be affected by the different
alaxy formation models used in ARTEMIS and AURIGA simulations. 
or the MLP and TML methods, the models developed on ARTEMIS

ata have a better out-of-sample classification performance then their 
URIGA counterparts. Despite being similar in size, the ARTEMIS 

raining data set comprises a larger number of assembly histories 
eading to a wider variety of accreted star properties learned by the 

odels. 
Fig. 13 shows that the MLP model trained on ARTEMIS data is the

nly model that maintains a consistent classification performance 
cross the two simulations. This is probably due to its simpler model
rchitecture, which makes it less sensitive to overfitting, as well as
o the larger sample of assembly histories in the ARTEMIS training
et (12 galaxies versus 4 in the AURIGA set). Because of its more
onsistent performance when applied to an entirely different set of 
imulations, the MLP model is perhaps better suited to be applied on
ntirely unseen data, such as observational data from the MW. 

 C O N C L U S I O N S  

n this study, we have investigated the performance of different 
L models in separating accreted from in-situ stars in MW-mass 

alaxies, using data from the ARTEMIS simulations. We developed 
nd compared models based on ANN and decision trees algorithms 
nd compared the performance of these models using the usual 
erformance metrics and other physically moti v ated diagnostics. 
The main conclusions of this study are as follows: 

(i) We find that the optimal set of stellar features for the models
ncludes a combination of positions and kinematics ( R , z, v θ , σ ),
hotometry ( M G , BP − RP), and chemical abundances ([ α/Fe]
nd [Fe/H]). A similar classification performance is found with a 
lightly reduced set of features, including positions, kinematics, and 
hotometry (Fig. 1 ). 
(ii) All ML models investigated here have good classification 

erformances (Fig. 3 ). Moreo v er, MLP, TML, and XGBoost perform
imilarly well also in terms of the distribution of FPs and FNs in a
hemodynamical parameter space (Figs 4 and 5 ). The majority of
is-classified accreted stars are within a 5 kpc radius from the centres

f the test galaxies. Ho we ver, the models perform reasonably well in
he regions dominated by in-situ stars (e.g. the disc), and typically,
he fractions of FPs and FNs are only a few per cent. In the outer
egions of galaxies, the MLP, TML, and XGBoost models retrieve 
ore than 90 per cent of the accreted stars with an accuracy close to

0 per cent, at the fiducial thresholds. These results are remarkable,
iven that these models belong to different families of ML methods,
MNRAS 531, 4363–4382 (2024) 



4380 A. Sante et al. 

M

s  

a  

r  

a
 

p  

o  

o  

m  

t  

f  

o  

c  

m  

b  

(  

c  

t
 

p  

t  

d  

(
 

m  

(  

T  

c  

l  

t  

t
 

i  

k  

i  

m  

m  

a  

a
 

c  

p  

t  

w  

t  

t  

s  

b  

b  

t  

t  

a

 

a  

p  

a  

i  

a  

s  

f  

e  

s  

t  

(  

H  

M  

2  

E  

S  

s  

c  

o

A

A  

f  

m  

P  

C  

a  

c  

f  

b  

b  

S  

o  

I

D

A  

r  

m

R

A  

 

 

A
A  

A
B  

B
B  

B
B  

B  

B
B
B
B  

B  

B
B  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/531/4/4363/7688459 by guest on 01 July 2024
uggesting that the similar underlying patterns related to accreted
nd in-situ stars are learned in all cases. Similar patterns are also
etrieved by the UMAP dimensionality reduction method (Figs 10
nd 11 ). 

(iii) Of all models investigated here, MLP is less sensitive to
erformance drops due to domain shift related to the specificity
f accretion history of any given galaxy, and could be the preferred
ption to use on observ ational data. Ho we ver, de veloping an ML
odel that is able to learn the galaxy-specific properties (namely,

he accretion histories of galaxies) remains a challenge. We have
ound that adding average galaxy properties, such as stellar masses
r metallicities, to the set of input features does not impro v e the
lassification performance (specifically, the MLP + galaxy features
odel), and on the contrary, it leads to o v erfitting (Fig. 3 ). Also, com-

ining the predictions of multiple models using ensemble learning
i.e. the TML model) does not provide an improvement, and more
omplex domain adaptation techniques may be needed to address
his issue. 

(iv) As shown by the importance gain in the XGBoost model, the
arameters which provide the most accurate distinction between the
wo populations are: the rotational velocity ( v θ ), the galactocentric
istance in the plane of the disc ( R ), and the [Fe/H] abundance
Fig. 6 ). 

(v) The purity ( P ) of the sample of accreted stars retrieved by the
odels can be increased by adjusting the classification threshold

Fig. 7 ), ho we ver this comes at the cost of completeness ( R ).
he accreted stars identified more accurately by the models have
hemodynamical properties associated with late accretions, and are
ocated in the outer regions of galaxies. This suggests that adjusting
he classification threshold of ML models can also be used to identify
idal streams in the outer halo. 

(vi) We also compared the performance of the ML models versus
mposing common observational selection cuts (either in space,
inematics or chemistry) to separate accreted stars from those formed
n situ . We have found that ML models outperform in purity these

ore traditional methods (Figs 8 and 9 ). Therefore, ML models
ay be applied directly on observational data without the need of

dditional selection criteria. Thus, they may help in the search for
ccreted substructures even in the regions dominated by the disc. 

(vii) Finally, we have tested the models on a different suite of
osmological simulations (namely, on AURIGA ), to e v aluate their
erformance on unseen data (Figs 12 and 13 ). In general, we find
hat the models perform similarly well on AURIGA as on ARTEMIS ,
hich suggests that they may be also suitable to be applied on other

ypes of previously unseen data, for example, on observations. Of all
he models, XGBoost has the least performance on an unseen data
et, possibly because it uses more detailed properties, which differ
etween the two sets of simulations. In contrast, the MLP appears to
e using more broadbrush properties that are rele v ant to the o v erall
rends between features. These results highlight the importance of
esting not only of different ML models, but of different training sets
s well. 

Our study has shown that ML methods can efficiently separate
ccreted from in-situ stars in galaxies like the MW. These methods
erform optimally with a combination of kinematics and chemical
bundances, and can impro v e the detection of accreted substructures
n regions of the Galaxy that are highly dominated by in-situ stars,
nd which have not been fully explored to date for identifying
ubstructure. A wealth of high precision data are already available
or millions of MW stars, from both astrometric observations, for
xample, with Gaia (Gaia Collaboration 2018 , 2023 ), and spectro-
NRAS 531, 4363–4382 (2024) 
copic measurements of chemical abundances, from surv e ys such as
he SDSS Apache Point Observatory Galactic Evolution Experiment
APOGEE, Majewski et al. 2017 ), the Galactic Archaeology with
ERMES (GALAH, De Silva et al. 2015 ), the Large Sky Area
ulti-Object Fibre Spectroscopic Telescope (LAMOST, Zhao et al.

012 ), the William Herschel Telescope Enhanced Area Velocity
xplorer (WEAVE, Dalton et al. 2014 ), or the 4-metre Multi-Object
pectroscopic Telescope (4MOST, de Jong et al. 2019 ). ML methods
uch as the ones developed here can be directly deployed on this
ombined, multidimensional parameter space to help in the disco v ery
f accreted substructures. 
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