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ABSTRACT

We present several machine learning (ML) models developed to efficiently separate stars formed in situ in Milky Way-type
galaxies from those that were formed externally and later accreted. These models, which include examples from artificial neural
networks, decision trees, and dimensionality reduction techniques, are trained on a sample of disc-like, Milky Way-mass galaxies
drawn from the ARTEMIS cosmological hydrodynamical zoom-in simulations. We find that the input parameters which provide
an optimal performance for these models consist of a combination of stellar positions, kinematics, chemical abundances ([Fe/H]
and [«/Fe]), and photometric properties. Models from all categories perform similarly well, with area under the precision—recall
curve (PR-AUC) scores of ~ 0.6. Beyond a galactocentric radius of 5 kpc, models retrieve > 90 per cent of accreted stars,
with a sample purity close to 60 per cent, however the purity can be increased by adjusting the classification threshold. For one
model, we also include host galaxy-specific properties in the training, to account for the variability of accretion histories of the
hosts, however this does not lead to an improvement in performance. The ML models can identify accreted stars even in regions
heavily dominated by the in-sifu component (e.g. in the disc), and perform well on an unseen suite of simulations (the AURIGA
simulations). The general applicability bodes well for application of such methods on observational data to identify accreted
substructures in the Milky Way without the need to resort to selection cuts for minimizing the contamination from in-situ stars.

Key words: methods: data analysis—methods: numerical — Galaxy: abundances —Galaxy: kinematics and dynamics —solar

neighbourhood — Galaxy: stellar content.

1 INTRODUCTION

In a lambda-cold dark matter (ACDM) cosmological model, large
galaxies like the Milky Way (MW) form through a hierarchical
process, with smaller structures merging progressively into larger
ones (Searle & Zinn 1978; White & Rees 1978). In this framework,
signatures of past accretion and disruption events in the Galaxy are
left imprinted in a multidimensional parameter space, composed of
positions, and kinematics and chemical abundances of stars (e.g.
Helmi 2020). From the information gathered about tidal streams
in this multidimensional parameter space, one can reconstruct the
assembly history of the MW (Freeman & Bland-Hawthorn 2002),
that is, determine the timing of the accretion events, the masses of
the progenitor galaxies, their star formation histories or the orbital
properties.

A multitude of methods have been devised to find tidal stellar
streams. Streams from massive accretions can be usually detected
from photometry, as they tend to be brighter and to be spatially ex-
tended. Those from low-mass progenitors may sometimes appear as
coherent structures in physical space (i.e. in positions and velocities
of stars), particularly if the accretions were recent (e.g. Bullock &
Johnston 2005; Johnston et al. 2008) or in a special geometry
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(Johnston, Hernquist & Bolte 1996). Over longer dynamical time-
scales, however, the streams tend to disperse due to phase-mixing
(Tremaine 1999) and thus they become increasingly difficult to
distinguish from background field stars. Information about them may
be still retained in the integrals of motion related to angular momenta
and total energies of their orbits (see Binney & Tremaine 2008).
Methods have been devised to identify tidal streams as ‘clumps’ in the
energy (E) and angular momentum (L,) space (Helmi & White 1999;
Gomez et al. 2010), as these quantities are (quasi-)conserved through
time. Methods that rely on finding specific patterns of tidal streams
in the velocity space (Johnston, Spergel & Haydn 2002; Gémez
et al. 2010; Koppelman & Helmi 2021), or in the angles, actions
or frequencies (McMillan & Binney 2008; Bovy 2014; Sanders &
Binney 2016; Malhan et al. 2022) have also been used to identify
streams in the Galaxy. However, many of these methods require
knowledge of the gravitational potential of the MW, although more
recent techniques, such as STREAMFINDER (Malhan & Ibata 2018),
do not rely on such assumptions.

Other parameters have also been used to improve the detection.
For example, methods based on match filters that weigh the colour—
magnitudes of stars (Grillmair et al. 1995; Rockosi et al. 2002;
Balbinot et al. 2011) have proven useful in the detection of new
streams (Shipp etal. 2019). More widely used are methods employing
the chemical abundances of stars, building on the expectation that
stars formed in a given progenitor share similar chemical ‘finger-

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
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prints’ even if their spatial and kinematical information has become
phase-mixed. In combination with 6D physical space parameters
(positions and kinematics), the principle of ‘chemical tagging’
(Freeman & Bland-Hawthorn 2002) has been applied successfully
in the discovery or characterization of tidal debris (Belokurov et al.
2018; Helmi et al. 2018; Koppelman et al. 2019; Kruijssen et al.
2019; Das, Hawkins & Jofré 2020; Ji et al. 2020; Naidu et al. 2022;
Horta et al. 2023; Malhan & Rix 2024), or in the reconstruction of
the early stages of the MW (Belokurov & Kravtsov 2024).

In the era of large Galactic surveys, such as Gaia, new methods
based on machine learning (ML) techniques have been developed
and have proven viable. Clustering algorithms, such as density-
based clustering non-parametric algorithms (see Ester et al. 1996)
have been applied to chemodynamical data to confirm existing
discoveries or to reveal new ones (Koppelman et al. 2019; Borsato,
Martell & Simpson 2020). An unsupervised learning method, called
VIA MACHINAE, was also developed, using conditional density
estimation and sideband interpolation to find local overdensities
(Shih et al. 2022). Veljanoski et al. (2019) developed a gradient
boosted trees model to identify halo stars based on astrometric and
photometric datafromthe Gaia Universe Model Snapshot
(Robin et al. 2012).

The discovery of new tidal streams is becoming increasingly more
difficult, in part due to current limitations in the current methods.
For example, many stream-finding methods assume that the halo is
mostly of accreted origin. This is a reasonable assumption only for
the outer parts of the Galaxy (Z20 kpc), which are less contaminated
by disc stars. Observations indicate that the stellar halo has a ‘dual
nature’ (Carollo et al. 2007, 2010; Beers et al. 2012), where the
two components, accreted and in situ, overlap over some distance.
Disentangling the two components is important in order to construct a
relatively clean sample of accreted stars on which to apply the stream
detection methods. The two components differ in spatial distribution,
kinematics and metallicity (Carollo et al. 2007); specifically, the
in-situ halo is more centrally concentrated than the accreted and
tends to have an overall rotating motion prograde with the disc,
whereas the orbits of accreted stars are more randomly distributed;
generally, the in-situ halo is also more metal-rich than the accreted.
This suggests that the two halo components could be, in principle,
clearly separated. In practice, however, most observational samples
include some selection criteria which are meant to minimize the
contamination from both the disc and in-situ halo.

The observational selection cuts usually relate to spatial location,
kinematics or chemistry (or a combination thereof). In some cases,
the criteria are purposefully conservative, for example, selecting stars
only on retrograde orbits to search for debris. This kinematical cut has
proven beneficial for the discovery of many substructures in the solar
neighbourhood (Koppelman et al. 2019), including a debris from
a massive progenitor, called Gaia Enceladus/Sausage (Belokurov
et al. 2018; Helmi et al. 2018), which merged with the Galaxy 28—
9 Gyr ago. However, many tidal streams are predicted to still remain
hidden (Shipp et al. 2023). Therefore, relaxing the selection criteria
for observational samples could lead to more debris discoveries,
especially in the less explored regions of the Galaxy, such as the
heated stellar disc (Mackereth et al. 2019; Belokurov et al. 2020).

The dual nature of stellar haloes is retrieved naturally in cosmolog-
ical hydrodynamical simulations (Zolotov et al. 2009; McCarthy et al.
2012; Tissera et al. 2013; Cooper et al. 2015; Pillepich, Madau &
Mayer 2015; Monachesi et al. 2016; Pillepich et al. 2018; Brook
et al. 2020). However, these simulations are too general to inform
the precise selection cuts that can be applied to observations in the
MW, as they model systems with a variety of different accretion
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histories none of which is expected to exactly match that of the MW.
Moreover, depending on the implementation of subgrid physical
prescriptions, simulations may predict different properties for the
in-situ halo component. This is related to the different formation
channels of in-situ halo stars in simulations: either as stars ejected
from the galaxy disc, or formed within filaments of cold gas, or in
the wakes of stripped gas from infalling satellites.

Rather than using simulations to inform selection cuts, one can
use them to train ML models to separate the accreted from in-situ
stars more accurately and hopefully in a way which is sufficiently
general to apply to the observational data. ML provides an ideal
framework to find out the relations between objects belonging to
different classes by leveraging the information hidden in large data
sets. This is particularly useful in those regions of the parameter
space where the two halo components overlap, for example, in the
case of accreted stars that overlap with the disc (e.g. Hawkins et al.
2015), or of the old, in-situ halo stars that may overlap in metallicity
with some of the accreted substructure.

Several ML techniques have been developed recently to separate
the two components. For example, by analysing a Gaia mock
catalogue constructed from the FIRE simulations (Sanderson et al.
2020), Ostdiek et al. (2020) trained an artificial neural network
(ANN) to classify accreted and in-situ stars based on 5D kinematics
and then fine-tuning the model on a Gaia DR2/RAdial Velocity
Experiment (RAVE) data set. This has led to the discovery of
a new substructure in the MW, called Nyx (Necib et al. 2020).
Recently, Tronrud et al. (2022) developed an ANN to separate
accreted and in-situ stars, and trained it on the chemical abundances
and ages of stars in AURIGA simulations (Grand et al. 2017).
A similar method has been developed by Trujillo-Gomez et al.
(2023) to classify accreted and in-situ globular clusters in the
E-MOSAICS simulations (Pfeffer et al. 2018), using as inputs
17 observable properties, including some of the associated host
galaxies.

Rather than focusing on the description of a single methodology,
here we perform an extensive comparison of different ML algorithms,
in order to decide which ones are more suitable for the classification
of accreted and in-situ stars. We also include a wide range of input
parameters the models, chosen as stellar parameters which can be
directly observed from MW surveys, such as positions, kinematics,
ages, chemical abundances ([Fe/H] and [«a/Fe]), and photometric
properties. Our aim is to identify the optimal, data-driven model that
can automatically identify accreted stars in observational samples of
the MW. The ML algorithms we consider can be grouped broadly into
three categories: ANNS, decision trees, and dimensionality reduction
methods. The ANNs and decision trees are used for developing
the classification models, whereas the dimensionality reduction
technique is used for visualizing the data and providing insights into
the output of the models. As a benchmark for comparison of models,
we adopt an ANN model which resembles the ‘Galactic Archaeology
Neural Network’ (GANN) of Tronrud et al. (2022). For training and
testing the ML models, we use a sample MW-mass galaxies from the
ARTEMIS simulations (Font et al. 2020), selected to be disc-like today,
but with different accretion histories. Since in simulations the origin
of each star particle is already known (i.e. whether it formed in situ
or was accreted), we can assess the performance of the techniques
more accurately than by testing them on observations.

The paper is organized as follows. Section 2 provides a brief
description of the ARTEMIS simulations and of the sample of disc-like
galaxies which are used for training and testing. The selection of the
physical parameters considered as inputs for the models is described
in Sections 2.1 and 2.2. In Section 3, we present the ML methods;
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the metrics used for evaluating the classification are discussed
in Section 3.1, while the methods are described individually in
Section 3.2, including a description of how we determine the optimal
set of input parameters (in Section 3.2.2). Section 4 includes a
comparison of the performance of the ML models (Section 4.1) and
shows how the in-situ and accreted stars identified by these methods
are separated in a chemodynamical phase space (Section 4.2); it
also shows how ML models may improve the detection of accreted
stars in areas omitted by observational selection cuts (Section 4.3);
and illustrates how the predictions of the models can be visualized
with UMAP (Uniform Manifold Approximation and Projection,
Section 4.4). In Section 5, we apply our ML methods on a different
suite of simulations (AURIGA), to further test their performance. The
conclusions of our study are summarized in Section 6.

2 THE ARTEMIS SIMULATIONS

ARTEMIS 1is a suite of zoomed-in, high-resolution cosmological hy-
drodynamical simulations of 45 MW-mass systems (Font et al. 2020;
Font, McCarthy & Belokurov 2021) in a flat ACDM cosmological
model with the following parameters measured from the Nine-Year
Wilkinson Microwave Anisotropy Probe (WMAP9) observations
(Hinshaw et al. 2013): @, = 0.2793, @, = 0.0463, h = 0.70, 03 =
0.8211, and ny; = 0.972. The MW-mass systems have total masses
ranging between 8 x 10" < M,y /Mg < 2 x 10'2, where My is
the mass enclosing a mean density of 200 times the critical density
of the universe at present time. The dark matter particle masses are
1.17 x 10° Mg h™!, the initial gas particle masses are 2.23 x 10*
Mg h~!, and the (Plummer equivalent) force resolution is 125 pc 2~!.

The simulations were run with the GADGET-3 code (Springel et al.
2005), including an updated hydrodynamical solver and subgrid
physical prescriptions developed for the EAGLE project (Schaye
et al. 2015). The physical prescriptions for subgrid physics include
metal-dependent radiative cooling in the presence of a photoion-
izing ultraviolet background, star formation, stellar and chemical
evolution, formation of supermassive black holes, and feedback from
supernova, stellar winds, and active galactic nuclei (see Crain et al.
2015 and Schaye et al. 2015 for details). The chemical enrichment
model follows 11 element species taking in account the mass loss
from asymptotic giant branch stars, stellar winds, and both core
collapse and thermonuclear supernovae. The heavy elements relevant
for our study, are Fe (produced mainly in Type Ia SNe) and Mg (an
a-element, produced in Type II SNe).

Font et al. (2020) also computed, in post-processing, the optical
properties of the simulated galaxies in ARTEMIS. These include lu-
minosities, magnitudes, and colours in various passbands, assuming
each star particle is an a single stellar population (SSP), by using the
PARSEC v1.2S +4 COLIBRI PR16 isochrones (Bressanetal.
2012; Marigo et al. 2017) and a Chabrier (Chabrier 2003) initial mass
function. In this study, we are mainly interested in Gaia photometric
properties, which were not computed originally. For this, we use the
available magnitudes for the Sloan Digital Sky Survey (SDSS) and
convert them to the Gaia G, Ggp, and Grp passbands equivalents,
using the photometric relationships from Busso et al. (2022).

The origin of each star particle (accreted/in situ) was determined
in post-processing. Here, we use the labels from Font et al. (2020).
In brief, the redshift of formation is recorded for each star particle
during the simulation and in post-processing the simulation snapshot
that this is closest to (in lookback time) was identified. If at the time
of its formation the star particle was gravitationally bound to the
main progenitor of the MW-mass galaxy, it was labelled as in situ,
otherwise, as accreted. Note that by this definition, stars that are born
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from gas stripped from an infalling satellite, but inside the main halo,
are also labelled in situ. This is the case only for a small percentage
of stars, however.

Since we aim to devise ML models suited for the Galactic
observations, we focus our training and testing of models on a subset
of galaxies from ARTEMIS which have a disc-like component similar
to that of the MW.! This ensures that there are sufficient examples
in the learning set which encapsulate the distribution of accreted and
in-situ stars in a disc-like galaxy. For the disc-like selection criteria,
we use the kinematics, specifically the corotational parameter &,
(Abadi et al. 2003; see also Font et al. 2020; Dillamore et al. 2022).
Here, we define it as k., = Zfoj’c L,/ Zfi‘g’c L cire, where L, is
the total stellar angular momentum along the z-axis, and L, ¢ is the
total angular momentum of star particles with the same energy but
in a corotating circular orbit. For this computation, we only consider
star particles within an aperture of 30 kpc, and impose a cut-off of k.,
> 0.50 to select galaxies with the most prominent disc components.
This results in a sample of 16 galaxies listed in Table 1, together with
their main physical properties: the total accreted stellar fraction,
the corotation parameter, the total stellar mass, half-(stellar) mass
radius, maximum circular velocity, and average chemical abundances
([Fe/H] and [«/Fe)).

Galaxies are further split into two sets: a training and a test data set,
respectively. The training set is used to provide examples of accreted
and in-situ stars to the ML models, while the test data set is used to
assess the classification performance. The test data set is composed of
galaxies with an assembly history more similar (although not exactly
the same) to the one inferred for the MW, specifically those where
the most massive accreted progenitor (MMAP) was accreted more
than 8 Gyr ago, and the stellar mass ratio of this MMAP to the total
stellar mass of the host is >0.4 (see fig. 7 and table A1 of Dillamore
et al. 2022 for details). The two data sets, comprising of 12 galaxies
for training and 4 for testing, are listed separately in Table 1.

For each galaxy in the training data set, we also reserve 20 per cent
of stars,” for the validation data set. This comprises data that are
used during the training routine for evaluating the neural networks
on unseen data and detecting overfitting, that is, the modelling of the
noise contained in the training examples.

2.1 Stellar parameters as features

For training and testing of the ML models, each star particle is
described as a vector of physical parameters (also known as features)
which are expected to be relevant for the distinction between

'We note that, in an initial phase, we used for training simulated galaxies
irrespective of their morphological type (i.e. both ellipticals and discs).
However, we found that the performance of models was significantly reduced
in this case, particularly when the training set was composed of mostly
different morphological types than the testing set. Since here we are mainly
interested in optimizing the performance of the ML models, we choose to use
a subsample composed of only disc-like systems. This restricts somewhat the
accretion histories that are included in the data sets to those that are more
quiescent. However, this approach is justified as: (1) the accretion history of
the MW is partially known, and therefore we do not need to be completely
agnostic about this feature; and (2) disc-like galaxies can form with a variety
of accretion histories (see e.g. Font et al. 2017) and our disc-like subsample
covers a broad range of these scenarios.

2 Although our ML models are developed with the aim of applying them on
individual stars in the Galaxy, the simulations can only track star particles,
which are essentially individual SSP. For brevity, throughout the paper, we
will refer to the star particles as ‘stars’.

MNRAS 531, 4363-4382 (2024)
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Table 1. Sample of disc-like galaxies in ARTEMIS selected based on their corotation parameter, «¢,. These galaxies are separated into two datasets used for
training and test the performance of the ML models, respectively. The columns are: (1) galaxy label; (2) fraction of accreted stellar component (defined as the
mass fraction of accreted star particles over the total stellar mass (in situ + accreted); (3) corotational parameter; (4) the total stellar mass; (5) half stellar mass
radius (defined as the radius enclosing 50 per cent of the total stellar mass); (6) maximum circular velocity; (7) average [Fe/H] abundance; and (8) average
[a/Fe] abundance, where « is tracked by Mg abundance. Apart for the fraction of accreted stars, all quantities are computed within 30 kpc from the centre of the

MW-mass galaxy.

Galaxy face keo M.[10""Mo)] r1/2 [kpe] Vayiax kms ™' ] ([Fe/H]) ([a/Fe])
Training data set
GO1 0.14 0.60 3.64 4.86 199 —0.14 0.19
G15 0.11 0.61 3.57 5.88 170 —0.16 0.22
G17 0.10 0.69 3.74 7.26 198 —0.21 0.25
G18 0.22 0.59 2.78 438 184 —0.15 0.20
G19 0.04 0.67 2.57 4.92 177 —0.16 0.24
G23 0.11 0.56 2.87 2.71 197 —0.07 0.21
G24 0.11 0.55 3.63 3.90 185 —0.16 0.22
G25 0.18 0.63 2.57 5.52 172 —0.24 0.26
G27 0.21 0.57 2.57 5.40 160 —0.19 0.22
G38 0.04 0.81 297 8.46 176 —0.13 0.20
G40 0.16 0.64 2.02 4.50 155 —0.15 0.20
G44 0.12 0.63 4.28 522 204 -0.27 0.31
Test data set
G29 0.08 0.65 2.95 2.60 210 —0.08 0.18
G30 0.28 0.55 2.12 4.20 172 —0.10 0.23
G34 0.05 0.78 2.76 6.20 183 —-0.16 0.21
G42 0.13 0.65 2.10 3.10 174 —0.18 0.25

accreted and in-situ stars. Although the simulations provide more
information on each star particle (including, e.g. the mass or the
gravitational potential), we focus only on stellar parameters which
can be observed, to facilitate future applications on survey data. These
features are divided into four categories, resembling (very broadly)
the focus of different types of observational Galactic surveys:

(1) Positions and kinematics. For many MW stars, positions and
velocities are readily available, for example, from Gaia and RAVE.
Accreted stars are expected to differ from in-situ ones both in
terms of their locations and of their overall motions. Accreted stars
extend much further out into the halo where they tend to appear as
kinematically cold tidal streams, and their orbits tend to be more
randomly distributed, whereas the in-situ stars are more prominent
in the inner region of a galaxy (Font et al. 2011), follow a more
flattened distribution, and tend to have a prograde rotation with the
disc (McCarthy et al. 2012). Therefore, for positions, we choose as
features the Galactocentric radius in the plane of the disc, R, and the
distance perpendicular to the plane of the disc, z, while for kinematics
measures we use the rotational velocity in the plane of the disc, vy,
and the velocity dispersion in the plane perpendicular to the disc, o.

(i1) Chemical abundances. Chemical abundances are related to
the star formation history of the associated progenitors (Freeman &
Bland-Hawthorn 2002). Here, we focus on the stellar metallicities,
defined as [Fe/H], and on the [«a/Fe] abundances, where « is tracked
by Mg. We expect stars of accreted origin to have, on average, lower
[Fe/H] and higher [Mg/Fe] values than those in situ.

(iii) Stellar ages. Stellar ages, T, can also be used in tandem with
the kinematic and chemical properties of stars to trace populations
formed in the same galactic environment (Helmi 2020). [Fe/H]
values are expected to correlate well with ages and they are often
used as proxies for the latter. Old accreted stars are also expected
to have higher [o/Fe] abundances due to the short, bursty star
formation episodes in their parent dwarf galaxies at high redshift
(Robertson et al. 2005). In addition, ages can provide complementary
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information about the rate of chemical enrichment at different epochs
(e.g. Hawkins et al. 2014).

(iv) Photometry. Tidal streams from different disrupted satellite
galaxies are expected to stand out in terms of their surface brightness;
specifically, the brightness of a stream tends to correlate with the
stellar mass of its dwarf progenitor (Font et al. 2006b; Johnston
et al. 2008; Gilbert et al. 2009; Cooper et al. 2010). Similarly,
accreted stars can also be distinguished from in-situ stars in terms
of their photometric properties. Accreted debris tends to be fainter
than the in-sifu component, due to its lower mass and larger spatial
extent. For photometric properties, we choose the absolute magnitude
in the Gaia G passband, Mg, and the colour evaluated in the
Gpp and Grp passbands, BP — RP. We note, however, that our
results are not dependent to the specific Gaia passbands or survey.
These photometric properties also correlate with stellar ages (which
be inferred from colour-magnitude diagram fitting, e.g. Gallart,
Zoccali & Aparicio 2005), thus offering an alternative to direct age
measurements, which are usually more difficult to obtain.

To summarize, we choose as possible input features for ML models
the following stellar parameters:

{R, z, vy, 0, [Fe/H], [a/Fe], T, Mg, BP — RP}.

As described later, in Section 3.2.2, the ML models ultimately in-
clude an optimal set of features, which provides the best performance
for our benchmark model. The optimal set is the same as the set of
parameters above, but excluding the stellar ages (t), for which the
benchmark model is able to retrieve the information from the other
parameters, mainly from [Fe/H] and [«/Fe].

2.2 Galaxy-specific features

In addition to stellar features, one of our models (see Section 3.2.4)
includes a set of galaxy-specific features, devised to account for the
accretion histories of MW-mass hosts. These are listed in Table 1, and
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comprise of: the stellar mass half-radius, the corotational parameter,
the total stellar mass, the maximum circular velocity, and the average
[Fe/H] and [«/Fe] abundances of the respective MW-mass galaxy.

In general, we expect galaxies that experienced more massive
mergers to have less well-defined stellar discs (e.g. smaller sizes,
lower k) and also tend to be more massive. Additionally, we expect
that systems with higher masses would be more more chemically
enriched (higher ([Fe/H]) and lower ([a/Fe])). Therefore, some
indication about the accretion histories can be inferred from the
present-day properties of stellar populations in the MW-mass hosts
(see also Grimozzi, Font & De Rossi 2024).

We note that, although the merger histories of the simulated
galaxies are already known (e.g. in the form of merger trees, or
the properties of the MMAPs), we choose not to use this type
of information and focus instead on observable parameters, as we
do in the case of star particle features. In Section 4.1, we discuss
the performance of models with and without these galaxy-specific
features.

3 MACHINE LEARNING MODELS

To devise an appropriate ML model for our task, we need to address
two challenges: (i) to identify ML models which can learn effectively
the underlying patterns in the data; and (ii) to determine the input
parameters that optimize the performance of these models.

For the first task, we consider models representative of two main
families of supervised ML methods, namely ANNs and decision
trees. From the ANN type, we consider a feedforward model called
a multilayer perceptron (MLP). Given the relatively small number
of features that describe the accreted and in-situ stars, we choose to
consider shallower architectures than the ones selected in Tronrud
et al. (2022), so as to limit the risk of overfitting. We then augment
this MLP model with domain inputs, that is, we include additional
galaxy-specific features. With the extended set of features, both
stellar and galaxy-specific, we aim to mitigate the potential decrease
in the performance caused by the variability introduced by the
specific assembly histories of galaxies. For the same purpose, we also
consider the transformational machine learning (TML) technique
(Olier et al. 2021). From the category of decision tree-like systems,
we consider the eXtreme Gradient Boosting (XGBoost) model
(Chen & Guestrin 2016).

To better visualize the data set used for training the models,
as well as to understand the functioning of these models, we use
the UMAP dimensionality reduction technique (Mclnnes, Healy &
Melville 2018a). This method consists of mapping the accreted and
in-situ stars into a new, lower-dimensional plane, while maintaining
the global and local structures; thus, stars are clustered in structures
which make relations hidden in physical space more visually evident.

ANN s have been investigated recently for this task (Ostdiek et al.
2020; Tronrud et al. 2022; Trujillo-Gomez et al. 2023), and are
commonly used in astrophysics, for example, for the classification of
transients and variable stars (Jayasinghe et al. 2019; Agarwal et al.
2020; Chen et al. 2022), of quasars (Nakoneczny et al. 2019; Clarke
et al. 2020; Nakoneczny et al. 2021), or of galaxies (Traven et al.
2017; Dominguez Sanchez et al. 2018; Huertas-Company & Lanusse
2023). XGBoost is also commonly used, with many applications in
Galactic studies (e.g. Anders et al. 2023). To our knowledge, models
like TML or UMAP are investigated for the first time here for an
astrophysical problem.

For the task of determining the optimal set of features, we start with
a wide range of physical stellar parameters (described in Section 2.1)
and determine which combination provides the best performance
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(Section 3.2.2) for our benchmark model (Section 3.2.1). The implicit
assumption in our approach is that the optimal set of features would
be the same for any type of ML model adopted. We then compare
the classification performances of different models using the same
(fixed) set of features.

In the following, we describe the metrics used for evaluating
the classification performance of models (Section 3.1). The model
implementations are described separately in Section 3.2, where we
also provide some technical background on each of them. Otherwise
specified, we will make use of common ML terminology.

The training and implementation of the ANNs is performed
using the TENSORFLOW (Abadi et al. 2015) library. The XGBoost
and UMAP methods are developed using the XGBOOST (Chen &
Guestrin 2016) and UMAP (Mclnnes et al. 2018b) PYTHON packages,
respectively.

3.1 Performance metrics

In the development of all models we adopt a supervised learning
approach. In supervised models, the mapping between features and
prediction is learned by providing a set of example-label pairs.
Furthermore, the model parameters are tuned to minimize the
difference between the prediction and the actual class (the label)
as quantified by an objective function. The separation of the accreted
versus in-situ stars can be thought as a binary classification problem,
where the positive class is represented by the accreted stars and the
negative class by the in situ. An ML model achieves this by applying
a sequence of mathematical operations and tunable parameters to
map the properties of stars to a value of either O or 1, representing
the negative and positive classes, respectively.

For the ANN and decision tree models, the prediction for a given
star is represented by the output, which is a value between 0 and
1 and measures the probability of the star belonging to the positive
(accreted) class. In both cases, a star is classified as accreted if its
prediction is greater than a threshold value. The optimal performance
of a classifier may occur at a different threshold value for different
models, especially in problems with highly imbalanced data sets,
such as ours where accreted stars comprise, on average, 10 per cent
of the overall stellar content of a galaxy. We therefore explore also
the effect of changing threshold values on the performance of our
models (see Section 4.2).

Here, use the usual performance metrics, namely the precision (P)
andrecall (R) of amodel. These are used to compare the performances
of various models, but also to identify the optimal set of stellar
features. P represents also the purity of the sample of accreted stars,
while R characterizes the completeness of the sample. By definition,
these two parameters correspond to the number of correctly and
mis-predicted accreted stars, respectively:

TP TP
=—— and R= ———,
TP + FP TP + FN

where TP, FP, and FN are the number of true positives (i.e. stars
that are correctly classified as accreted), false positives (in-situ stars
which are misclassified as accreted), and false negatives (accreted
stars which are misclassified as in situ), respectively.

Because the precision and recall values of both ANNs and
decision tree-based models vary based on the different classification
thresholds, with some thresholds favouring some models over the
others, we also use as metric the area under the precision—recall
curve, PR-AUC. This metric is more robust across models as it
accounts for the precision and recall values evaluated on a range of
thresholds common to all models. A random classifier would return

P
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a PR-AUC score equal to the fraction of accreted stars in the test data
set, whereas a perfect classification algorithm would have a PR-AUC
score of 1.

We have elected not to employ the accuracy metric, defined as the
overall fraction of correctly classified stars, due to its shortcomings
for highly imbalanced cases. For example, in galaxies with accreted
fractions of ~10 per cent (a typical value), a classifier which always
predicts stars as being in situ would have an accuracy of ~90 per cent
even though it failed to identify any accreted stars.

Aside from the common ML metrics, we also compare the models
in terms of how well they fare in terms of astrophysical diagnostics.
These are not metrics per se, however, they are useful to help
understand whether the models are able to grasp the ‘physics’ behind
the data. We expect that a model that is able to learn (or mimic) the
physical processes behind the origins of the two populations would be
less precise exactly in those regions of the parameter space where the
properties of the two populations are similar (e.g. stars that were born
in the early phases of the galaxy formation are old, metal-poor, more
a-enhanced, and move on less ordered orbits, regardless of whether
they were born in situ or accreted). A model that cannot learn the
physical patterns may still have a good performance, however its
mis-classifications may be distributed more randomly in physical
space. The three diagnostics used here, are:

(1) [a/Fe] — [Fe/H] plane. Accreted stars tend to be located in the
high [a/Fe], low [Fe/H] region of the plane, while disc and in-situ
halo stars generally have lower [«/Fe] and higher [Fe/H] values.

(i1) Toomre diagram, which is the distribution of rotational veloc-
ity, vg, versus the dispersion velocity o. In this plane, the disc and
the in-situ halo stars have high vy and low o, whereas accreted stars
do not have a preferred direction of motion, and generally have high
o.

(iii) E — L, distribution. As these parameters are quasi-conserved
for a given infalling satellite, stars belonging to different disrupted
progenitor would appear as ‘clumps’ in this plane. These clumps are
likely to be more distinct in the upper part of the plane, which is
associated with late accretions. The in-situ halo stars, and the disc,
are located on the region with positive L.

3.2 Supervised ML models
3.2.1 The benchmark model

For our analysis, we build a benchmark model to: (i) investigate
the most informative set of stellar properties that can distinguish
accreted from in-situ stars, that is, the optimal set of features; and
(ii) to compare the performance of different ML algorithms trained
on this optimal set.

Our benchmark model is similar to the GANN model of Tronrud
etal. (2022). This is an MLP (see Section 3.2.3) comprised of an input
layer, a batch normalization layer, four hidden layers of 64, 256, 64,
and 32 neurons, and an output layer with one neuron, resulting in a
total of 35 521 trainable parameters. We also use the same activation
functions as in the GANN model in the corresponding layers. In the
following, we refer to this configuration of layers and neurons as the
benchmark architecture.

The model is first trained on a set of stellar features comprising
ages, [Fe/H] and [«a/Fe], as in the GANN model. Following the
same approach as in GANN, the chemical abundances are expressed
linearly (rather than the more conventional logarithmic form) and
normalized by the correspondent solar values. However, unlike
in GANN, we choose not to include the hydrogen fraction with
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Figure 1. PR-AUC scores for the precision—recall curves for the models
obtained training the benchmark architecture using different combinations
of features. The feature categories are: positions and kinematics (labelled
‘kin’), [Fe/H] and [«/Fe] abundances (‘chem’), ages, and Gaia magnitudes
and colours (‘phot’).

[Fe/H], given that the information about the former can be implicitly
reconstructed by the network from the latter. As for GANN, our
benchmark model is trained on an equal number of accreted and
in-situ stars. There are other differences from the GANN model
also. One is that we train the model only on stars within » < 50 kpc
from the centres of galaxies, as beyond this radius the distribution
of stars is overwhelmingly of accreted origin (this is also valid for
the other models). More significantly, we only include example stars
from the main halo, whereas Tronrud et al. (2022) include also those
from present-day satellites, to augment the samples of accreted stars.
Moreover, they adopt a strategy of drawing equal number of stars
from satellites in different mass ranges, in order to increase the
number of examples of stars from objects which contribute fewer
stars (i.e. the low-mass dwarfs). In choosing to train only on existing
debris, our benchmark model has a slightly lower performance than
that of GANN, however the training data represents a closer match
to what one would expect from observations.

3.2.2 The optimal set of stellar features

With the benchmark architecture, we proceed to compare the
classification performance using different combinations of stellar
features as inputs, to determine the optimal set for the models. We
consider the stellar properties described in Section 2.1, which we
divide into four categories: positions and kinematics (R, z, vg, 0),
chemical abundances ([Fe/H], [«/Fe]), ages (), and photometry
(Mg, BP — RP). For brevity, these are also referred to as ‘kin’,
‘chem’, ‘age’, and ‘phot’, respectively.

We then train the benchmark architecture with different com-
binations of these four categories and evaluate the classification
performance on stars from the validation data’set. The results are
shown in Fig. 1. On their own, positions and kinematics (kin)
give a PR-AUC score of 0.57, which is significantly higher than
than the score for [Fe/H] and [a/Fe] (chem), PR-AUC 0.38. This
suggests that spatial distribution and kinematics are more informative
than chemical abundances. In combination, kin 4 chem perform
somewhat better than kin alone, with a PR-AUC score of 0.63, which
suggests that the two categories provide complementary information.
Adding ages to positions and kinematics improves the performance
of the model compared to just adding chemistry (PR-AUC scores
0.66 for kin + age versus 0.63 for kin + chem). Similarly, adding
ages to positions, kinematics, and chemistry improves the score
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compared to not adding ages (PR-AUC of 0.71 for kin 4+ chem
+ age compared to 0.63 for kin + age). Interestingly, photometry
adds slightly more information than the ages, to both positions and
kinematics (PR-AUC scores 0.69 for kin + phot versus 0.66 for kin +
age), or chemistry categories (PR-AUC scores 0.45 for chem + phot
versus 0.42 for chem + age). A possible explanation for this is that
photometry is implicitly related to both the ages and metallicities of
stars.

Overall, the best performance is provided by kin 4 chem + phot
(PR-AUC score of 0.72), therefore excluding ages. We therefore
assign the corresponding input parameters, namely:

{R, z, v, 0, [Fe/H], [a/Fe], Mg, BP — RP},

as the optimal set features for further training and comparison of the
other ML models.

We note, however, that the combinations kin + phot + age
and kin -+ phot have classification performances which are very
close to that of the optimal combination. This suggests that ML
models could also be trained on reduced information, for example
on just positions, kinematics, and photometry, without a significant
drop in performance. In fact, this may be a preferred option for
observations, given that photometry is usually more readily available
than spectroscopy.

3.2.3 Multilayer perceptron

An MLP is a type of ANN consisting of multiple layers of
interconnected artificial neurons, or perceptrons. The architecture
typically comprises an input layer, one or more hidden layers, and
an output layer. Each neuron receives input signals from neurons
in the previous layer and computes a weighted sum based on
internal, tunable parameters describing the importance of the single
inputs. Before being forwarded to the next layer, the result is
passed to a non-linear activation function to allow the learning
of non-linear relations between inputs and outputs. During the
training process, the weights connecting the neurons are updated
to minimize the error, as estimated by an objective function,
between the predicted and actual class through an optimization
algorithm.

The benchmark model described earlier is also an MLP. However,
because the classification between accreted and in-situ stars is
inferred from a small number of features, we consider also shallower
architectures than the one used in the benchmark model. Specifically,
we explore architectures comprised of one hidden layer of 10, 50,
and 100 neurons, and two hidden layers with 50 neurons in each.
In total, these four MLPs have 101, 501, 1001, and 3051 trainable
parameters, respectively. In comparison, the benchmark architecture
contains 35 777 parameters.

We train the MLPs with various architectures on the optimal
set of input features (described in Section 3.2.2), as was done for
the benchmark model. We adopt the same activation functions and
optimization algorithm for all cases. For the outputs of the neurons
in the hidden layers, we apply a Scaled Exponential Linear Unit
function (Klambauer et al. 2017), while for the neuron in the output
layer we apply a sigmoid function, to ensure the prediction is in the
range 0-1. The trainable parameters are updated using the Adam
(Kingma & Ba 2014) optimization algorithm on the error between
predictions and labels estimated by the binary cross-entropy function.
The training on the optimal set of features of the four MLP plus the
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Figure 2. Comparison between the precision—recall curves obtained training
the benchmark architecture and shallower ANNSs on the optimal set of features
(see Section 3.2.2).

benchmark architectures is done for a maximum of 100 epochs,® with
an adaptive learning rate* halving when the value of the objective
function stops decreasing for more than five epochs.

Fig. 2 shows a comparison of the classification performances of all
these architectures, based on the PR-AUC score evaluated on the test
data set. All MLPs have similar performances, with PR-AUC scores
ranging from 0.578 (1 hidden layer and 10 neurons model) to 0.591 (1
hidden layer and 100 neurons model). Despite the significantly larger
number of trainable parameters, the benchmark architecture (0.584)
outperforms only the shallowest model. The model with 1 hidden
layer and 50 neurons, and the one with 2 hidden layers of 50 neurons
each, have PR-AUC score of 0.589 and 0.590, respectively. As the
architecture comprising 1 hidden layer with 100 neurons returns the
highest PR-AUC score (0.591), we considered it for the rest of the
analysis (hereafter denoted as MLP).

3.2.4 Multilayer perceptron with galaxy features

The study of Tronrud et al. (2022) suggests that MLP models may be
biased towards specific assembly histories. This result is expected,
especially when the training set does not contain sufficient types
of accretion histories. We find a similar result when we train an
MLP model on a single galaxy. As expected, the model performs
better when the stars belong to the same galaxy. Table 2 shows the
classification performances of these MLP models represented by
the PR-AUC scores. The models are trained on the optimal set of
features using accreted and in-situ examples from one galaxy (listed
in the leftmost column) and tested on another galaxy (listed in the
top row). Where the galaxy pairs are the same, we only use the stars
in the validation data set. On a galaxy basis (i.e. column-by-column
analysis in the table), the best classification performance is always
associated to the model explicitly trained on the galaxy it is tested on.

This result is a consequence of the unique assembly history of each
galaxy, where the properties of the progenitors, for example, their

3An epoch is a complete pass of the MLP through all the examples in the
training data set.

4The learning rate is the constant of proportionality relating the gradient of
the objective function and the associated change in the trainable parameters
of the MLP.
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Table 2. PR-AUC scores for the MLP models trained on accreted and in-situ examples from the galaxy in the leftmost column, and tested on the galaxies listed
in the top row. Where the galaxy label is the same, stars in the validation data set were considered.

GO1 G15 G17 G18 G19 G23 G24 G25 G27 G38 G40 G44
GO1 0.68 0.60 0.52 0.66 0.44 0.60 0.59 0.45 0.81 0.48 0.76 0.66
G15 0.54 0.77 0.48 0.67 0.58 0.62 0.67 0.44 0.74 0.62 0.66 0.66
G17 0.58 0.64 0.62 0.62 0.62 0.70 0.61 0.47 0.73 0.59 0.67 0.71
G18 0.55 0.66 0.45 0.76 0.46 0.50 0.65 0.46 0.78 0.48 0.74 0.57
G19 0.54 0.67 0.47 0.64 0.74 0.71 0.66 0.44 0.73 0.62 0.66 0.65
G23 0.57 0.67 0.52 0.62 0.69 0.82 0.61 0.44 0.76 0.62 0.63 0.72
G24 0.52 0.66 0.43 0.67 0.48 0.56 0.78 0.45 0.79 0.53 0.75 0.61
G25 0.47 0.43 0.44 0.58 0.44 0.46 0.39 0.61 0.62 0.32 0.46 0.58
G27 0.48 0.49 0.35 0.63 0.25 0.36 0.47 0.42 0.88 0.53 0.76 0.50
G38 0.51 0.62 0.47 0.63 0.45 0.50 0.52 0.45 0.77 0.76 0.70 0.65
G40 0.47 0.43 0.33 0.63 0.16 0.29 0.43 0.39 0.78 0.29 0.83 0.46
G44 0.57 0.64 0.55 0.63 0.64 0.65 0.63 0.46 0.78 0.58 0.73 0.83

infall times, orbits, and masses, imprint a specific characteristic in the
stellar properties (features) of accreted stars. For instance, in galaxies
where the MMAP was accreted at early times the accreted stars are
mostly rich in a-elements and are more phase-mixed; conversely, in
galaxies with a late MMAP, the accreted stars tend to be more cz-poor
and more spatially coherent (Font et al. 2006a). Consequently, the
MLP model learns the details of the unique imprint of the assembly
history of a given galaxy leaves in its distribution of accreted
stars.

We note, however, that some models are able to identify a purer
and more complete sample of accreted stars in other galaxies than the
one they had been trained on. Again, this can be directly related to a
difference in assembly histories as some galaxies (e.g. G27) have a
neater distinction between the accreted and in-situ populations.

To account for the variability in the properties of accreted stars
in different systems, we could choose to use a conglomeration of
galaxies in the training set, as in the data set described in Section 2.
However, this model would still underperform if applied onto a
galaxy whose assembly history is not represented in the training set.
In ML terminology, the performance degradation of a model trained
on a source distribution (‘domain’) when applied to a statistically
different target one is referred to as ‘domain shift’ (Quifionero-
Candela et al. 2009). Since our aim is to create a model capable
of generalizing across different assembly histories, we retrain the
MLP model by providing additional information about the galaxy
from which the example stars are taken from. These additional input
features are global properties of host MW-mass galaxies, measured
within an aperture of 30 kpc. This approach has the advantage of
providing information about the accretion history of the host galaxy,
without given the model any a priori knowledge of which stars
were accreted. The galaxy-specific input features are described in
Section 2.2 and are listed in Table 1.

3.2.5 Transformational machine learning

As an alternative method to mitigate the domain shift problem, we
consider the TML technique of Olier et al. (2021). In this framework,
each data point is described by a vector of predictions obtained from
an ensemble of base models. While using a common set of features,
the base models are sequentially trained on different examples to
perform different tasks. This representation of the data is used as an
input to a new model, which combines the prior information encoded
in the base models.
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Before the implementation of the TML approach, we trained an
MLP model (see Section 3.2.3) on each galaxy in the training data
set. Because of the differences in the assembly histories of these
galaxies, learning to classify the accreted stars is considered by the
model to be a specific task for each galaxy. The resulting ensemble
of MLPs is then used to derive a predictive description of all the
stars in the training data set. These 12D vectors are then passed as
inputs to a single-layer ANN with 100 neurons. During training,
the internal parameters of the base MLP models are held constant,
while the parameters from the neural network which combines the
predictions are allowed to update. Also, to avoid any data leakage,
the predictions of a base model on the stars used for the training are
set to 0.

3.2.6 XGBoost

A decision tree is an ML algorithm based on a tree-like structure.
It begins with a root node representing the entire data set and
recursively splits the data into smaller subsets (branches) based on
feature values. The endpoint of a branch is called a leaf and contains
the model prediction. In this work, we combine many decision tree
models trained on the same data set using the gradient boosting
machine (GBM) method (Friedman 2001). Following this algorithm,
a decision tree is created to separate accreted and in-situ stars by
predicting their classification label as a continuous score between
0 and 1. Then, a new decision tree is added to predict the error
between the predicted and actual labels (here, as for the MLP model,
estimated by the binary-loss function). The prediction from the new
model is then added to the initial predictions to make a more accurate
classification. This continues for an arbitrary number of iterations,
with each new model sequentially added and trained to minimize the
error of the whole ensemble.

Here, we implement a GBM with decision tree models using
the XGBoost (Chen & Guestrin 2016) method. This algorithm is
particularly suitable for large data sets as the ensemble of models
is built in parallel rather than serially. Moreover, it includes L1 and
L2 regularization techniques to control overfitting. The number of
base models in the ensemble and the number of splits in each tree are
decided using the OPTUNA’ hyperparameter optimization framework.

Shttps://optuna.org/
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Table 3. Fiducial classification threshold values for the models. Each value
is associated to the highest F1-score calculated based on the precision and
recall values on the validation data set.

Model Threshold Fl-score
MLP 0.33 0.67
MLP + 0.31 0.63
galaxy features

TML 0.24 0.62
XGBoost 0.33 0.68
3.2.7 UMAP

The UMAP method (Mclnnes et al. 2018a) is a dimensionality
reduction technique, such as principal component analysis, with the
advantage that the obtained dimensions can be non-linearly related to
the starting ones. We apply this method in order to find relations, or
identify possible structures within the accreted and in-sifu examples
that may exist in the training and test data sets. Given the specificity
of this method, we use it only for visualizing the data, and therefore
we do not include it in our classification performance comparison.

Assuming the data are uniformly distributed on a locally connected
Riemannian manifold, the algorithm constructs a fuzzy topological
structure of it in a 8D parameter space and maps it into a lower
dimensional space with the closest equivalent structure. UMAP can
be used in a supervised way by providing the labels of the classes into
which the data are separated. This ensures that both the global and
class-specific structures of the data are retained while maximizing
their separation in the new embedding.

Here, we train a UMAP model to reduce the 8D parameter space
defined by the optimal set of stellar features into a 2D plane, where
the separation between the accreted and in-sifu training examples is
maximized. Because of the high-computational resources required by
this method, we consider only a subset of examples from each galaxy,
which consists of all the accreted examples and an equal amount of
the in-situ ones. This results in a statistically significant number
of examples from each galaxy. To investigate potential differences
between the structures of the training and test data sets, we use the
same UMAP model to project all the test examples into the 2D plane.
A discussion of the results of this UMAP embedding is provided in
Section 4.4.

4 MODEL COMPARISON

4.1 Classification performance

With the optimal set input features, we proceed to compare the
classification performance of our models, MLP, MLP with galaxy
features, TML, and XGBoost, in separating the two classes of
stars. We evaluate all models on the test data set, and compare
the classification performances using the PR-AUC scores. We also
assess the purity and completeness of the retrieved accreted samples
using the precision and recall metrics at the optimal threshold
value. To ensure a fair comparison, for each model we consider
the threshold associated to the highest value of the harmonic mean
between precision and recall (i.e. the F1-score). The resulting fiducial
thresholds are shown in Table 3.

Fig. 3 shows the comparison between these four models, plus the
benchmark model. For the latter, we use the reduced set of features
described in Section 3.2.1. This figures shows that all four models
perform significantly better than the benchmark, which indicates the
importance of adding more input parameters, in this case from the
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Figure 3. Precision and recall values at different classification thresholds for
the models. The metrics were evaluated considering all the stars in the test
data set.

kinematical and photometric properties of the stars. The MLP, TML,
and XGBoost models perform similarly on the test data set, with PR-
AUC scores of 0.59, 0.57, and 0.59 respectively. The TML model
does not provide any improvement over the MLP, which implies that
there is not enough variance among the single MLPs in the ensemble.

The MLP model with added galaxy-specific features gives a PR-
AUC score of 0.57, which is worse than the one of the MLP model
and the one calculated on validation data (0.64). This suggests that
the galaxy-specific features favour the learning of specific patterns
in the data, leading to overfitting, rather than learning the distinction
between the accreted and in-situ classes in those features. This could
be due to redundancies in the set of galaxy-specific features (which,
unlike the stellar features, have not been optimized). For example,
information gained from galaxy stellar masses may be very similar to
that inferred from ([Fe/H]), as MW-mass systems follow the stellar
mass—metallicity scaling relation. Also, the information gained from
the overall rotation of stars (i.e. k,) may overlap with that obtained
from the sizes of galaxies. In the future, we aim to investigate whether
an optimal set of galaxy-specific features exists, particularly one that
will increase the performance above the model without any such
features. Alternatively, it could be that the galaxy properties used
for this task are not representative of the specific accretion histories.
In this case, one may opt, instead, to use parameters more directly
related to the merger histories, for example the properties of the
MMAPs. This will be investigated in a future study.

Table 4 shows a galaxy-by-galaxy comparison of all five models
based on the P and R values evaluated at the fiducial classification
thresholds. Confirming what was found previously, MLP, TML,
and XGBoost have similar performances for every test galaxy,
consistently retrieving > 50 per cent of accreted stars with similar
purity. In general, the TML model retrieves a larger sample of
accreted stars than the single MLP, with only a minor decrease in
precision.

Overall, despite belonging to different families of ML methods,
the MLP, TML, and XGBoost models show similar performances,
suggesting that the same underlying relations between stellar proper-
ties and their origin are learned from the data. This is an encouraging
result for further applications.
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Table 4. Comparison of the precision and recall values evaluated on the test data set at the fiducial thresholds for the ML models.

Model G29 G30 G34 G42
P R P R P R P R
Benchmark 0.15 0.98 045 0.91 0.09 1.00 021 0.97
MLP 047 0.64 0.59 0.57 0.35 0.65 0.54 0.54
MLP + 0.54 0.59 0.56 0.56 0.41 0.55 0.50 0.63
galaxy features
TML 0.46 0.73 0.58 0.55 0.32 0.72 0.54 0.60
XGBoost 0.49 0.70 0.58 0.58 0.36 0.68 0.54 0.58
MLP +
galaxy features TML XGBoost
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Figure 4. Distribution of the FPs in the test set in the [a/Fe]-[Fe/H] plane (top row) and in the Toomre diagram (bottom row). Columns from left to right
correspond to the MLP, MLP + galaxy features, TML, and XGBoost models, respectively. For each panel, the top and side subpanels show the probability
density function of the FP distributions (yellow) and of the accreted (grey) and in-situ (blue) training examples. For each model, we also show the FP fraction
(frp) of the total number of stars in the test data set. The metrics are evaluated at the fiducial threshold values listed in Table 3.

4.2 Model comparison on physical diagnostics

So far, we have shown that all ML models trained on the optimal
features perform similarly well, which is remarkable given that
accreted stars comprise only a small fraction of the total stellar
budget. However, despite the similar overall performance, the models
may still perform differently in certain regions of the physical
parameter space covered by the accreted/in-situ stars. If the models
are truly able to extract the physical properties of the two stellar
populations, we expect that they will perform better in regions where
the two populations are clearly distinct in physical parameters (e.g.
kinematics, or metallicity) and less well in regions where these prop-
erties overlap. To investigate this possibility, we map the distribution
in a chemodynamical parameter space of false positives (in-situ stars
misclassified as accreted) and of false negatives (accreted stars mis-
classified as in-situ) in different models. In Section 3.1, we introduced
several physically motivated chemodynamical diagnostics, such as
the Toomre diagram, or the [a/Fe]-[Fe/H] and E-L, planes, which
we use here to evaluate how well can the models identify accreted
stars in these parameter spaces.

MNRAS 531, 4363-4382 (2024)

Fig. 4 shows the distribution of the FPs in the entire test galaxy
set in the [a/Fe]-[Fe/H] plane (top row) and in the Toomre diagram
(bottom row), for four models: MLP, MLP + galaxy features, TML,
and XGBoost, respectively. Each panel has a corresponding set
of top and side subpanels, in which we compare the probability
density functions of the FPs (shown in yellow) with that of the
accreted stars (grey), and of the in-situ stars (blue) in the training
set. This figure shows that the FPs tend to be located in regions
of the parameter space with low rotational velocities (vy ~ 0) and
lower metallicities ([Fe/H] <—1), which are regions dominated by
accreted stars. This indicates that the models can learn to identify
accreted stars as typically more metal-poor and characterized by
more chaotic motion, which are properties expected for this category.
However, models find it more difficult to identify in-situ stars in
this chemodynamical region. This behaviour is seen across all four
models, which indicates that they all learn similar physical patterns
for accreted stars. This result suggests that the similar classification
performances of the models, found earlier, are in fact physically
motivated.
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Similarly, in Fig. 5, we investigate the distribution of FNs in
the same chemodynamical parameter space. This figure shows
that, although the MLP, TML, and XGBoost models retrieve the
majority of the accreted stars in the test galaxies (see Table 4), some
accreted stars are still missed, despite them having relatively distinct
motions and chemical abundance distributions from those of the in-
situ stars (compare, again, the yellow, grey, and blue probability
distribution functions). All models present a similar behaviour in
this respect, as was the case for FPs. We note here, too, that the
FNs represent only a small fraction of the total number of stars, with
frn & Sper cent — 7 per cent across different models.

The mis-classification in the case of FNs is likely due to the in-
situ stars greatly outnumbering the accreted stars in the examples
available to these models. To elucidate this, we also investigate
the spatial location of the FNs. For the MLP, TML, and XGBoost
models, we find that the majority of mis-classified accreted stars
(76 per cent, 77 per cent, and 73 per cent, respectively) lie within a
galactocentric radius of 5 kpc. This suggests that the models tend to
identify more accurately the stars originating from late accretions,
which are generally located in the outer regions of galaxies, while
struggling to retrieve the stars that originate from early accretion
events and which are now fully phase-mixed in the inner region.
A possible solution to improving the classification of models can
be provided by data augmentation techniques, which can be used
to generate a higher number of accreted stars in the training sets
in the inner region. Outside the 5kpc range, the MLP, TML, and
XGBoost models identify 93 per cent, 94 per cent, and 91 per cent of
the accreted stars in the test data set, with a precision of 0.57, 0.56,
and 0.59 at the fiducial classification threshold, respectively.

Furthermore, since the XGBoost model has a built-in degree
of explainability, it can be used to determine more quantitatively
the contribution of each input feature during the classification.
Specifically, at each decision node, it is possible to calculate the
information gain from a given feature by subtracting the impurity
(i.e. a measure of the entropy in the tree) before and after the
splitting. The information gain of a specific feature in the XGBoost
model can be estimated by averaging over all trees in the ensemble.
Fig. 6 shows that the rotational velocity (vy) and the distance from
the centre of the galaxy (R) are the most important parameters for
distinguishing between the accreted and in-sifu stars in this model.
Surprisingly, [a/Fe] has a significantly lower information gain. Given
the high importance of the [Fe/H] parameter, it is possible that the
model considers the information provided by [«/Fe] as redundant.
Therefore, although the abundance of «-elements can be used to
characterize individual accreted substructures, the information from
[Fe/H] may be sufficient to remove the in-situ background.

We note that the model performances reported here depend on the
chosen classification threshold. For example, for the MLP model, the
average purity of the accreted stars sample at the fiducial threshold
is >~ 50 per cent (see Table 4). Purer samples can be obtained by
increasing the classification threshold, however, this is done at the
cost of completeness. This is shown in Fig. 7, where we plot the
predictions of this model in the E-L, plane, for different threshold
values (0.25, 0.5, and 0.75, respectively). Here, E denotes the total
energy of a star, composed of the sum of kinetic and potential energy,
while colours indicate the stellar mass fraction of accreted stars,
as predicted by the model. The results are shown individually, for
the four galaxies in the test data set. The regions of the accreted
components which are identified with more confidence by the models
are those in the upper parts of the energy spectrum, which represent
mostly stars originating from late accretions. These regions are
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dominated by clumpy structures which correspond to tidal debris
not yet fully mixed with the rest of the halo.

This result is encouraging and indicates that ML models are
sensitive to physical patterns in the data, and may be used in the future
to not only identify the bulk of accreted stars in the halo, but also to
find individual tidal streams. Adjusting the classification threshold
could provide an advantage compared with traditional methods of
selecting halo stars which are fixed (see the next section), whereas
ML models can be customized to provide the most appropriate
samples for different types of analysis. For instance, the identification
of accreted substructures in integrals-of-motion space requires a
sample of high purity to avoid the identification of spurious clusters,
whereas a characterization of substructures based on a large number
of chemical abundances may be conducted at a lower purity, as the
contamination of in-situ stars can be more easily identified. In this
case, the model would represent a pre-processing step for reducing
the number of stars to analyse.

4.3 The ML performance in separating components versus
observational cuts

Observational studies of accreted substructures in the MW often
focus on regions dominated by halo stars, for example away from the
disc. For instance, halo stars are often identified by imposing cuts
in the stellar rotational velocities, vertical distances above or below
the disc plane, metallicities, or a combination thereof. These cuts
are physically motivated, however they may exclude also accreted
structures embedded in or near the disc. In the previous sections, we
have shown that ML methods are able to identify accreted stars even
in the regions which are dominated by in-situ stars (the fractions
of FPs and FNs are low even in the disc). This suggests that it
may be feasible to apply them directly on the observational data,
without making recourse to specific selection cuts. To investigate this
possibility, we choose a few representative examples of selection cuts
from the literature, and compare the composition of accreted versus
in-situ stellar distributions in these cases with the corresponding
distributions predicted by the ML models.®

Specifically, we consider three examples of selection criteria for
halo stars in the Galactic Solar neighbourhood: (i) a cut in velocity,
|V — Visr| > 210kms~! (Helmi et al. 2018; Koppelman, Helmi &
Veljanoski 2018; Lovdal et al. 2022), where the velocity of the local
standard of rest is Viggr = 232 km s~! (McMillan 2017); (ii) a
selection in the [Fe/H]-vy plane, used by Myeong et al. (2018) to
remove the disc stars in order to find accreted substructures in the
halo, namely imposing [Fe/H] < —0.5 and vy < 150 kms~!; and (iii)
a kinematic selection used by Massari, Koppelman & Helmi (2019)
to construct a sample of accreted globular clusters, by imposing ¢ >
0.5, where ¢ = L,/L, i (the latter was used for larger regions of the
Galaxy, however we adapt it here for the Solar neighbourhood).

For this comparison, we focus on the Solar neighbourhood regions
in the simulations, which are defined as ring tori with a minor radii
of 2.5 kpc. The major radii of the tori are determined on a galaxy-by-
galaxy basis, by multiplying the Solar radius in the MW (assumed
here to be 8 kpc) with the ratios between the disc scale lengths of the

SWe note that, in the analysis of observations, these types selection cuts
are just a first step, and further algorithms are applied to the samples to
identify accreted substructure/tidal streams, for example, HDBSCAN, or k-
means. As already mentioned, the motivation of this exercise is to investigate
whether ML methods could discover more accreted stars in the regions that
are typically overlooked by observational methods.
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202 AINf 10 U 159nB Aq 657889 L/E9EH/Y/ L £G/IOE/SEIUL/WOD dNO"0IWePED.//:SAYY WOl papeojumoq



4374

A. Sante et al.

MLP +
galaxy features

XGBoost

G LA L

102

[Fe/H]

. - .
—0250 0 250 -250 0 250

vp [kms~!] vg[kms™1]

Number of Stars

10!

Vg [kms~!]

Figure 5. Same as in Fig. 4, but for the accreted stars mis-classified as in sifu, that is, the false negatives.
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Figure 6. Information gain values describing the importance of the input
features used by the XGBoost model to distinguish between accreted and
in-situ stars.

simulated galaxies and the scale length of the thin disc of the MW,
taken as 2.6 kpc (Bland-Hawthorn & Gerhard 2016). This accounts
for the differences in size between the disc of the MW and the discs
of the simulated galaxies.

We apply the three selection criteria above on the four galaxies
from the test data set (G29, G30, G34, and G42) and label stars
as accreted or in sifu according to these cuts. In doing this, we
assume that halo stars in the Solar neighbourhoods are the equivalent
of stars of accreted origin, and disc stars are equivalent to those
formed in situ. Note that, while these selection criteria are designed
to exclude most of the stars of in-situ origin, the real compositions
are a mixture of accreted and in situ, both in and outside the cut-out
regions. The fractions of accreted stars in these two regions vary
from galaxy-to-galaxy, and also on the type of selection cut that is
applied. The fractions of accreted stars in the disc-like regions are
very small, although the accreted stars in these regions are likely to
be representative of early merger events (i.e. mostly old and metal-

MNRAS 531, 4363-4382 (2024)

poor stars). The labels assigned by these cuts are then compared
with the true labels obtained from simulations, and we compute the
equivalents of FPs and FNs.

‘We then apply the ML models on the simulated Solar neighbour-
hoods in the test galaxies (this time, without any selection cuts)
to predict the accreted stars in these regions. As before, we use
the models trained on the optimal set of features. For the sake
of conciseness, we only present here the results for the MLP, but
note that the XGBoost and TML models have similar classification
performances.

In Fig. 8, we compare the distributions in the [e/Fe]-[Fe/H] plane
of accreted and in-situ stars in the Solar neighbourhood regions
predicted by the three selection criteria and by the MLP model. A
similar comparison is shown in Fig. 9 for the distributions in the
Toomre diagram. Both figures illustrate the difference in complexity
between the two approaches, with the MLP model being able to
provide a closer description of the true distribution of accreted
stars in the chemodynamical space for all the test galaxies. This
result is expected, considering that traditional observational methods
are based on the assumption of a simple disc—halo dichotomy. For
example, the selection cut of Myeong et al. (2018), which assumes
a distinct dichotomy in terms of [Fe/H], overpredicts the number
of accreted stars the [a/Fe]-[Fe/H] space compared with the other
methods that do not employ a [Fe/H] cut (see Fig. 8). Overall, the
MLP retrieves the accreted stars most accurately, compared with all
the selection cut methods. This is the case not only in the overall
distribution of accreted stars in the chemical abundance space, but
also in terms of the number of accreted stars (compare, e.g. the
accreted fractions, f;., in the corresponding panels for each galaxy
in Fig. 8).

Likewise, since all selection cuts employ some type of vy thresh-
old, they all underperform compared with the MLP model (see
Fig. 9). The criterion of Massari et al. (2019), which allows for
the inclusion of counter-rotating stars in the disc, gives a closer
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Figure 7. The distribution in the E-L; plane of the accreted sample retrieved by the MLP model, at different classification thresholds (left to right panels),
for each of the galaxy in the test data set (top to bottom rows corresponding to galaxies G29, G30, G34, and G42, respectively.). The completeness (R) of the
retrieved sample is also reported. The distribution is colour-coded by the actual fraction of accreted stars as defined by the simulation label.

description of the distribution of stars in the Toomre diagram than
the other two selection criteria, although it still provides a very
simplified version of the true distribution of the two populations.
As in the case for chemical abundances, the MLP model is able to
retrieve the overall patterns in the kinematical distribution of the two
stellar populations, in all four test galaxies.

Table 5 includes the purity (P) and completeness (R) of the samples
of accreted stars retrieved by the MLP model, using three different
classification thresholds (the fiducial value of 0.33, 0.10, and 0.75).
These metrics are compared with the equivalent P and R values
computed using the labels inferred from the three selection cuts
versus the true labels from simulations. All values are computed
for the Solar neighbourhoods in each of the four galaxies in the test
data set. At the fiducial threshold, the MLP model retrieves the purest
samples of accreted stars for all test galaxies. When the classification
threshold is lowered to 0.10, the model identifies consistently more
than 95 per cent of the accreted stars, while maintaining a precision
level very similar to the purest sample retrieved by the selection
criteria. As the classification threshold is increased, progressively
purer samples of accreted stars are retrieved, however, at the expense
of completeness. When the threshold is set to 0.75, the MLP model

is able to create samples of accreted stars, on average, twice as purer
as the ones obtained through the observational selection criteria.

In addition to being more accurate in identifying the accreted
stars than the selection cuts, the MLP model also retrieves fewer
stars labelled accreted (on average, 20 percent fewer than using
the selection cuts). This makes it less computationally expensive,
especially when applied on large observational data sets. This
could be the preferred methodology for the initial processing of
observational data to use for subsequent analysis, for example using
clustering algorithms to identify tidal stellar streams.

4.4 Visualization of accreted and in-situ structures with UMAP

Further insights on the behaviour of the ML models can be obtained
from the distribution of accreted and in-situ stars in a 2D plane
constructed by the UMAP model. Through the UMAP algorithm,
stars with similar properties are pulled together, revealing structures
which may be hidden in the usual spatial or chemodynamical
parameter spaces.

In Fig. 10, we show the distribution of the training and test
examples obtained using the UMAP model. The 2D planes are
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Figure 8. The [«a/Fe]-[Fe/H] distribution, colour-coded by the fraction of accreted stars, fyc. for stars in the simulated Solar neighbourhoods. From top to
bottom, the rows correspond to galaxies G29, G30, G34, and G42, respectively. In the columns, the accreted stars are defined by: (1) the simulation label; (2)—(4)
the observational selection criteria; and (5) the label predicted by the MLP model. In each panel, we show the actual (column 1) and predicted (columns 2-5)

overall fractions of accreted stars in the simulated Solar neighbourhoods.

colour-coded based on the fraction of accreted stars, using the
simulation labels (left and middle panels) and the predictions of the
MLP model (right panel), respectively. As before, the MLP model is
considered representative of all ML models. The training distribution
indicates a clear separation between the accreted and in-situ stars.
The accreted stars appear to be clustered in two main regions: the
smallest cluster comprises stars located outside R ~ 15 kpc, while
the other includes stars with a broader range of properties, which
are also more gradually changing. The stars in this second cluster
typically have high velocity dispersions and low [Fe/H] abundances.
The in-situ stars appear to be mostly clustered in an L-shaped region
characterized by high-rotational motions. Smaller clusters of in-situ
stars with specific features are also present in this plane. For instance,
the top cluster in this figure is comprised of young, metal-rich stars,
located in the inner region of the galaxy; while the rightmost cluster
is composed of stars orbiting in the plane of the disc, but at large
distances from the centre of the galaxy.

In Fig. 11, we show the distribution of the training data, colour-
coded by each of the stellar properties in the optimal set of input
parameters. All properties are presented as normalized values. The
same structures are observed in the distribution of the test examples
once projected in the UMAP-defined space (central panel, Fig. 10);
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however, the largest region of the accreted stars shows a significant
contamination of in-situ examples. This seems to suggest that some
in-situ stars in the test data set have stellar parameters that resemble
those in the accreted examples from the training data set. As expected,
these are the examples which the ML models struggle to associate to
either the accreted or the in-situ classes (as shown in the right panel
in Fig. 10), and which comprise the majority of the misclassified
stars (in both the FP and FN cases). Moreover, the MLP predictions
in the largest accreted region appear to follow a gradient as the
model outputs progressively higher probabilities of being accreted,
for stars occupying the higher parts of this region. In Fig. 11, a
similar, although much shallower, gradient is observed in the R plot,
suggesting that the accreted stars from late mergers are identified
with higher probabilities by the model, as already concluded from
Fig. 5.

5 TESTING THE MODELS ON THE AURIGA
SIMULATIONS

We further test the performance of our models with an independent
data set, drawn from the AURIGA simulations (Grand et al. 2017).
This allows us to investigate whether there are any biases introduced
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Figure 9. Same as in Fig. 8, but showing results for the distributions of accreted stars in the Toomre diagram.
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Table 5. Comparison of the purity (P) and completeness (R) of the sample of accreted stars retrieved by using observational selection cuts (top three rows)
and by the MLP model (bottom three rows) evaluated at different thresholds, in the simulated Solar neighbourhoods of galaxies G29, G30, G34, and G42.

Halo (accreted) G29 G30 G34 G42
Selection criterion P R P R P R P R
Helmi et al. (2018) |V — Visrl > 210kms™! 0.28 0.81 0.47 0.83 0.21 0.79 0.47 0.54
Myeong et al. (2018) [Fe/H] < —0.5 A vg < 150kms™! 0.28 0.93 0.49 0.65 0.09 0.87 0.48 0.76
Massari et al. (2019) e>0.5 0.28 0.65 0.48 0.67 0.21 0.68 0.49 0.52
MLP (0.33, fiducial) 0.35 0.75 0.52 0.71 0.22 0.93 0.51 0.56
MLP (0.10) 0.27 0.98 0.46 0.97 0.11 1.00 0.48 0.95
MLP (0.75) 0.70 0.03 0.88 0.05 0.55 0.04 0.76 0.02

in our models due to training only on the ARTEMIS simulations, and
to test the classification performance of the models outside their
development environment. For this purpose, we use the ‘level 3’ set
of six galaxies from the Auriga Project public data release (Grand
et al. 2024): Au6, Aul6, Au2l, Au23, Au24, and Au27. These are
also disc galaxies of MW mass, with total masses ranging between
1.04 — 1.74 x 10'> Mg and disc-to-total ratios, D/T, ranging from

0.63 to 0.83 (Grand et al. 2017).

The simulations were run with the hydrodynamical code AREPO
(Springel 2010), which includes physical subgrid prescriptions (Vo-
gelsberger et al. 2013) that are significantly different from those
implemented in the EAGLE code which was used for ARTEMIS.
Furthermore, these simulations have somewhat higher numerical

resolution than ARTEMIS, with dark matter particle masses of ~
4 x 10*My, and baryonic masses of ~ 5 x 103 Mg, respectively.
However, we find that the simulated galaxies in AURIGA have similar
spatial distributions of in situ of accreted stars as in the ARTEMIS (not
shown here). The level of differences in the spatial distributions
between galaxies drawn from these two suites of simulations is
comparable with the differences seen between galaxies from the
same suite.

We apply the same ML models on these six systems and test
their performance. First, we divide the sample into a training and
a test data set, setting aside a fraction of stars in the training data
set for validation purposes. Galaxies Au6 and Au2l experienced
the most massive merging events with mass ratios of 0.54 and 0.53
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Figure 10. Distribution of stars in the training (left panel) and test (central and right panels) data sets in the parameter space defined by UMAP to maximize the
separation between the accreted and in-situ populations. Colours represent the fraction of accreted stars in each region of the plane, as defined by the simulation

labels (left and central panels) and by the predictions of the MLP model (right panel).
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Figure 11. UMAP projections of the distribution of accreted and in-situ examples in the training data, weighted by the value of the corresponding physical
parameters from the optimal set of features, used as input to the UMAP model. All values are normalized.

(Grand et al. 2018), respectively, and were thus selected for the
test data set. The rest of the galaxies in the sample (Aul6, Au23,
Au24, and Au27) were used to provide training examples to the
models.

Fig. 12 shows how the ANNs and decision-tree models perform
when developed on the AURIGA data. The MLP, MLP + galaxy
features, and the TML models have a slightly better classification
performance than XGBoost. This may be caused by a missed
optimization of the XGBoost hyperparameters (as we use the the
same hyperparameters tuned for the ARTEMIS data). Alternatively,
there could be more complex non-linear relations between the
features describing the accreted stars which are better modelled by
the ANNs. Nevertheless, similarly to what it was found for ARTEMIS,
all these four models have a similar classification performance.
This is encouraging, as it suggests that the models are able to
extract the relevant relationships between the accreted and in-situ
stars, regardless of the type of simulation they were developed on.
The benchmark model shows an improved performance compared
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to the ARTEMIS analogue (PR-AUC score of 0.45 versus 0.36)
suggesting a clearer chemical distinction between accreted and in-
situ stars in the AURIGA galaxies. Nevertheless, the benchmark model
returns samples of the lowest purity compared to the other models
developed in AURIGA, showing that, as for ARTEMIS, the addition of
kinematic and photometric informations improves significantly the
classification.

The MLP, MLP + galaxy features, and the TML models share
a similar classification performance, with PR-AUC scores of 0.59,
0.60, and 0.62, respectively, while the XGBoost model shows a drop
in performance (0.53). These scores are similar to those found for
ARTEMIS, which are 0.59 (MLP), 0.55 (MLP + galaxy features), 0.57
(TML), and 0.59 (XGBoost), respectively (see Section 4).

We perform an additional test, whereby the models developed
on the training data set from ARTEMIS are applied on the AU-
RIGA test dataset, and vice versa (purple lines and orange dots
in Fig. 13, respectively). This allows us to further investigate
the robustness of the models. We also compare the performance
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Figure 13. Comparison of the classification performance of models trained
on ARTEMIS (continuous lines) and AURIGA (dotted lines). The performance
of models tested on data from the same simulation is represented using the
same colour, as indicated in the legend.

of criss-crossing the simulations with the performance of using
sets from the same type of simulation (shown by orange lines
for ARTEMIS models and purple dots for the AURIGA ones in
Fig. 13).

Interestingly, when the models trained on AURIGA are applied to
the test data from ARTEMIS, the classification performance drops
drastically. The same is observed when the models trained on the
ARTEMIS data are applied to the AURIGA test data. The lack of
consistency in the classification performance of the model can be
explained in terms of both data and model complexity.
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Differences in the code, physical model, or the numerical resolu-
tion of the two simulations inevitably result in a domain shift between
the two data sets; consequently, the models trained and tested on
different simulations show a drop in classification performance.
Domain adaptation techniques, such as described in Ciprijanovi¢
et al. (2020), could be explored to develop models that can maintain
a consistent classification performance when applied across simula-
tions or on observational data. Models with a high level of complexity
can be affected by overfitting as they capture simulation-specific
patterns while learning the distinction between accreted and in-situ
stars. Combined with domain shift, overfitting leads to more drastic
performance drops. As shown in Fig. 13, this is the case of the
XGBoost model, which has sufficient complexity to extract external
patterns from the data, being effectively fine-tuned on the set of
simulations it is trained on. The MLP with galaxy features model
also performs better on the simulation it is trained on. This can be
due to the galaxy-specific properties may be affected by the different
galaxy formation models used in ARTEMIS and AURIGA simulations.
For the MLP and TML methods, the models developed on ARTEMIS
data have a better out-of-sample classification performance then their
AURIGA counterparts. Despite being similar in size, the ARTEMIS
training data set comprises a larger number of assembly histories
leading to a wider variety of accreted star properties learned by the
models.

Fig. 13 shows that the MLP model trained on ARTEMIS data is the
only model that maintains a consistent classification performance
across the two simulations. This is probably due to its simpler model
architecture, which makes it less sensitive to overfitting, as well as
to the larger sample of assembly histories in the ARTEMIS training
set (12 galaxies versus 4 in the AURIGA set). Because of its more
consistent performance when applied to an entirely different set of
simulations, the MLP model is perhaps better suited to be applied on
entirely unseen data, such as observational data from the MW.

6 CONCLUSIONS

In this study, we have investigated the performance of different

ML models in separating accreted from in-situ stars in MW-mass

galaxies, using data from the ARTEMIS simulations. We developed

and compared models based on ANN and decision trees algorithms

and compared the performance of these models using the usual

performance metrics and other physically motivated diagnostics.
The main conclusions of this study are as follows:

(i) We find that the optimal set of stellar features for the models
includes a combination of positions and kinematics (R, z, vg, 0),
photometry (Mg, BP — RP), and chemical abundances ([a/Fe]
and [Fe/H]). A similar classification performance is found with a
slightly reduced set of features, including positions, kinematics, and
photometry (Fig. 1).

(ii)) All ML models investigated here have good classification
performances (Fig. 3). Moreover, MLP, TML, and XGBoost perform
similarly well also in terms of the distribution of FPs and FNs in a
chemodynamical parameter space (Figs 4 and 5). The majority of
mis-classified accreted stars are within a 5 kpc radius from the centres
of the test galaxies. However, the models perform reasonably well in
the regions dominated by in-situ stars (e.g. the disc), and typically,
the fractions of FPs and FNs are only a few percent. In the outer
regions of galaxies, the MLP, TML, and XGBoost models retrieve
more than 90 per cent of the accreted stars with an accuracy close to
60 per cent, at the fiducial thresholds. These results are remarkable,
given that these models belong to different families of ML methods,
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suggesting that the similar underlying patterns related to accreted
and in-situ stars are learned in all cases. Similar patterns are also
retrieved by the UMAP dimensionality reduction method (Figs 10
and 11).

(iii) Of all models investigated here, MLP is less sensitive to
performance drops due to domain shift related to the specificity
of accretion history of any given galaxy, and could be the preferred
option to use on observational data. However, developing an ML
model that is able to learn the galaxy-specific properties (namely,
the accretion histories of galaxies) remains a challenge. We have
found that adding average galaxy properties, such as stellar masses
or metallicities, to the set of input features does not improve the
classification performance (specifically, the MLP + galaxy features
model), and on the contrary, it leads to overfitting (Fig. 3). Also, com-
bining the predictions of multiple models using ensemble learning
(i.e. the TML model) does not provide an improvement, and more
complex domain adaptation techniques may be needed to address
this issue.

(iv) As shown by the importance gain in the XGBoost model, the
parameters which provide the most accurate distinction between the
two populations are: the rotational velocity (vy), the galactocentric
distance in the plane of the disc (R), and the [Fe/H] abundance
(Fig. 6).

(v) The purity (P) of the sample of accreted stars retrieved by the
models can be increased by adjusting the classification threshold
(Fig. 7), however this comes at the cost of completeness (R).
The accreted stars identified more accurately by the models have
chemodynamical properties associated with late accretions, and are
located in the outer regions of galaxies. This suggests that adjusting
the classification threshold of ML models can also be used to identify
tidal streams in the outer halo.

(vi) We also compared the performance of the ML models versus
imposing common observational selection cuts (either in space,
kinematics or chemistry) to separate accreted stars from those formed
in situ. We have found that ML models outperform in purity these
more traditional methods (Figs 8 and 9). Therefore, ML models
may be applied directly on observational data without the need of
additional selection criteria. Thus, they may help in the search for
accreted substructures even in the regions dominated by the disc.

(vii) Finally, we have tested the models on a different suite of
cosmological simulations (namely, on AURIGA), to evaluate their
performance on unseen data (Figs 12 and 13). In general, we find
that the models perform similarly well on AURIGA as on ARTEMIS,
which suggests that they may be also suitable to be applied on other
types of previously unseen data, for example, on observations. Of all
the models, XGBoost has the least performance on an unseen data
set, possibly because it uses more detailed properties, which differ
between the two sets of simulations. In contrast, the MLP appears to
be using more broadbrush properties that are relevant to the overall
trends between features. These results highlight the importance of
testing not only of different ML models, but of different training sets
as well.

Our study has shown that ML methods can efficiently separate
accreted from in-situ stars in galaxies like the MW. These methods
perform optimally with a combination of kinematics and chemical
abundances, and can improve the detection of accreted substructures
in regions of the Galaxy that are highly dominated by in-situ stars,
and which have not been fully explored to date for identifying
substructure. A wealth of high precision data are already available
for millions of MW stars, from both astrometric observations, for
example, with Gaia (Gaia Collaboration 2018, 2023), and spectro-
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scopic measurements of chemical abundances, from surveys such as
the SDSS Apache Point Observatory Galactic Evolution Experiment
(APOGEE, Majewski et al. 2017), the Galactic Archaeology with
HERMES (GALAH, De Silva et al. 2015), the Large Sky Area
Multi-Object Fibre Spectroscopic Telescope (LAMOST, Zhao et al.
2012), the William Herschel Telescope Enhanced Area Velocity
Explorer (WEAVE, Dalton et al. 2014), or the 4-metre Multi-Object
Spectroscopic Telescope (4MOST, de Jong et al. 2019). ML methods
such as the ones developed here can be directly deployed on this
combined, multidimensional parameter space to help in the discovery
of accreted substructures.
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