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A B S T R A C T   

C-tactile afferents (CTs) are a class of unmyelinated, mechanosensitive nerve fibre that respond optimally to skin 
temperature, slow moving touch typical of a caress. They are hypothesised to signal the rewarding value of 
affiliative tactile interactions. While CT firing frequency is positively correlated with subjective ratings of touch 
pleasantness, trait differences in sensitivity to the specific hedonic value of CT targeted touch have been 
reported. 

Inter-individual differences in vagally mediated, high frequency heart rate variability (HF-HRV) have been 
linked to variation in visual social cognition. Thus, the aim of the present study was to examine the relationship 
between resting state HF-HRV and sensitivity to socially relevant CT targeted touch. 

58 healthy participants first had a 5-minute electrocardiogram. They then rated the pleasantness of 5 
randomly presented velocities of robotically delivered touch. Three velocities fell within (1, 3, 10 cm/s) and two 
outside (0.3, 30 cm/s) the CT optimal range. Each velocity was delivered twice. 

On a group level, affective touch ratings were described by a negative quadratic function, with CT optimal 
velocities rated as more pleasant than slower and faster speeds. Simple regression analysis confirmed partici-
pants’ HF-HRV was significantly predicted by the quadratic curve fit of their touch ratings, with higher HF-HRV 
associated with a better quadratic fit. 

These findings indicate that, in line with previous observations that higher HF-HRV is associated with 
enhanced sensitivity to visual social cues, trait differences in autonomic control could account for previously 
reported individual differences in CT sensitivity.   

1. Introduction 

Positive social bonds promote resilience and enhance well-being, 
while social isolation and loneliness are significant risk factors for 
poor physical and mental health [1–4]. Altered social functioning, 
including changes in the perception of and sensitivity to social cues, is a 
hallmark of a range of mental health conditions [5]. While to date 
studies of social cognition have primarily focused on visual cues, 
particularly facial expressions, social interactions occur in a multisen-
sory environment and vocal, olfactory, and tactile cues also contribute to 
social perception [6]. 

Touch is the first sense to develop and is fundamental to early infant- 
caregiver interactions [7,8]. Indeed, nurturing touch has been proposed 
to provide a sensory foundation on which social cognitive development 
is built [9–11]. Over the past decade, the role a specific subclass of 

somatosensory afferent plays in the formation and maintenance of 
mammalian social bonds has received a great deal of attention [12]. 
C-tactile afferents (CTs) are unmyelinated, low threshold mechano-
sensitive nerves which respond optimally to a low force, low velocity 
(1–10 cm/s), skin temperature stimulus [13,14]. The observation that 
CT firing frequency correlates positively with subjective ratings of touch 
pleasantness led to the affective touch hypothesis that CTs signal the 
rewarding value of affiliative touch [15,16]. Indirect support for this 
hypothesis comes from observational studies which show that people 
spontaneously caress their loved ones using velocities that optimally 
activate CTs [17,18,21]. Furthermore, such CT targeted touch reduces 
autonomic arousal and buffers against the physiological and behav-
ioural consequences of stress [19–22]. 

Psychophysical studies of affective touch demonstrate a negative 
quadratic relationship between touch velocity and perceived 
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pleasantness across skin sites [23–25], with higher ratings given to CT 
optimal velocities between 1–10 cm/s than to slower or faster strokes. 
While this classic hedonic function is reliably observed on a group level, 
stable individual differences have also been reported [26–29], with 
some people showing a linear and others a random relationship between 
stroking velocity and perceived pleasantness. Such large inter-individual 
variation in hedonic functions is common across sensory systems and 
can reflect measurement error, as well as sensory and cognitive level 
factors including state and trait differences between participants [30, 
31]. 

Changes in affective touch perception have been reported across a 
range of clinical populations including anorexia nervosa [32], autism 
[33], and depression [34], though other studies have found no clear 
relationship between individual differences in affective touch sensitivity 
and mental health diagnoses [17]. Interestingly, self-reported previous 
and current experiences of social touch appear to be reliably associated 
with psychophysical measures of affective touch perception [29,34,35]. 
Indeed, further evidence a person’s social history shapes their psycho-
physical ratings of affective touch comes from studies reporting both 
insecure attachment and childhood adversity are associated with 
blunted ratings of CT optimal touch [36,37]. Taken together this liter-
ature indicates that cognitive factors account in part for individual dif-
ferences in CT sensitivity, however their specific nature remains 
unknown. 

Heart rate variability (HRV), that is beat-to-beat changes in heart 
rate, is an indirect, well-validated index of vagal modulation [38]. 
Higher levels of resting HRV, reflecting higher parasympathetic nervous 
system activity, are associated with better emotional and behavioural 
regulation and enhanced health and well-being [39,40]. Clinically, low 
levels of vagally mediated HRV (vmHRV) have been associated with a 
range of mental health conditions, including depression [39,41]. So-
cially, while secure attachment has been linked to higher efficiency in 
vmHRV and cognitive abilities [42], childhood trauma and attachment 
insecurity have been reported to predict reduced vmHRV [43]. Indeed, 
there is evidence people with higher levels of resting state vmHRV are 
more successful at forming and maintaining social relationships [44,45], 
while chronic loneliness predicts lower vmHRV [46]. 

Several influential bio-behavioural models posit that the autonomic 
nervous system (ANS) functions to support mammalian social engage-
ment [47,48]. For example, the neurovisceral integration model [49] 
posits that vmHRV is an index of the engagement of prefrontal brain 
networks during emotional and cognitive processing. Accordingly, 
enhanced ability of people with higher resting vmHRV to form and 
maintain social relationships is proposed to reflect adaptive perceptual 
and attentional responses to social cues [50,51]. A variety of experi-
mental studies also provide support for the relationship between mea-
sures of vmHRV and facial emotion recognition based on performance of 
the widely used, Reading the Mind in the Eyes task [52]. Specifically, it 
appears to be greater sensitivity to positive rather than negative 
emotional cues in other’s faces which underpins this association [53], 
supporting the notion people higher in vmHRV display higher levels of 
approach motivation. In addition to making judgements about higher 
order mental states, people make rapid attributions about signals of 
safety and threat from faces [54] and in a recent study higher levels of 
resting vmHRV were associated with more positive ratings of the 
trustworthiness of stranger’s faces [55]. 

It has been proposed that affective touch, as with faces, can act as 
social signal of safety and proximity [56]. Given studies to date indicate 
social and cognitive factors account for some inter-individual differ-
ences in hedonic ratings of CT targeted affective touch, the aim of the 
present study was to determine whether autonomic nervous system 
function, as indexed by resting state vmHRV, also predicts affective 
sensitivity to CT targeted touch. 

2. Methods 

2.1. Participants 

Participants were 64 students recruited though email advertising 
from Liverpool John Moores University (LJMU). Participants all pro-
vided written informed consent before completing the study and 
received a £10 shopping voucher as compensation for their time. The 
study received ethical clearance from LJMU Research Ethics committee 
(15/NSP/004). 

Participants were excluded from participation if they had an allergy 
to sticking plasters, a heart condition, or were currently taking cardiac, 
antipsychotic, antihypertensive or antidepressant medication. 

Of the original sample, six participants were lost, two due to failure 
of either the touch robot or participant PC, two due to failure to follow 
instructions, one due to excessive noise in their ECG and one due to 
missing questionnaire data. The final sample therefore consisted of 58 
participants of whom 38 were female and 20 male. The mean age of the 
sample was 22.3 years (SD = 3.7 years). 

2.2. Measures 

2.2.1. Heart rate variability 
A three lead ECG was used to record heart rate during a 5 minute 

baseline period. Disposable electrodes were placed just below the par-
ticipant’s left and right clavicle and above their left hip. Data were 
digitised using an AD Instruments PowerLab recording from an AD In-
struments BioAmp. The ECG trace was sampled at 2000 Hz and offline 
bandpass filtered between 5 Hz and 30 Hz before being exported as a tab 
delimited text file. Vagal tone can be estimated using HRV measured in 
the time domain using calculations such as the root mean square of 
successive beat-to-beat intervals (IBIs) or by extracting the high- 
frequency component of the power spectrum once a series of IBIs has 
been transformed into the frequency domain [57]. HF-HRV is one valid 
operationalisation of vmHRV [58] that has been used in previous rele-
vant studies [53,59]. Kubios (version 2.2, Kubios Oy, Kuopio, Finland) 
was used to extract values for the percentage of the heart rate variability 
power spectrum represented by the high-frequency bandwidth of 
0.15–0.40 Hz (HF-HRV). 

2.2.2. Touch stimuli 
To remove confounding social factors and to precisely control the 

velocity, pressure and onset of the touch stimuli, a specially designed 
robot, or ‘Rotary Tactile Stimulator’ (RTS – Dancer Design) was used. 
The RTS uses online speed and force feedback to deliver precise veloc-
ities and pressures of touch, administered with an ‘arm’ ending in a soft 
brush tip (Boots No.7). The RTS was pre-programmed to deliver touch 
stimuli at velocity 0.3, 1, 3, 10 and 30 cm/second, with constant pres-
sure of 0.3 N. Each ‘stroke’ from the RTS covered an aperture of 
approximately 8.1 cm, with the five velocities of touch taking approxi-
mately 27, 8.1, 2.7, 0.8 and 0.3 seconds respectively to cover the 
aperture. The velocities and pressure were chosen to include what 
microneurography-based research indicates to be the optimal quality of 
touch to activate CT’s, velocities of between 1 and 10 cm/second [13, 
14], as well as control velocities outside of this range. In the current 
experiment the RTS delivered touch stimuli to the volar surface of the 
forearm, an area of hairy skin innervated by CTs [14]. The onset of each 
stimulus was controlled by the computer on which the participants 
completed their ratings of touch pleasantness. This machine sent a 
transistor–transistor logic (TTL) trigger down a parallel port cable to 
activate the RTS each time a touch stimulus was to be delivered. 

2.2.3. Touch ratings 
Touch rating scales were presented using EPrime (Psychology Soft-

ware Tools, Sharpsburg, PA, USA). The scale consisted of an unbroken 
horizontal line anchored with the values -10 and +10 at the left and 
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right ends respectively, and with the words ‘unpleasant’ and ‘pleasant’ 
in the same respective locations. The numerical anchors were provided 
as an additional aid to participants when deciding how pleasant they 
found each touch stimulus, but the scale recorded the participant’s click 
in an analogue manner with possible scores ranging from 0 at the un-
pleasant extreme and 99 at the pleasant extreme, in increments of one. 

2.2.4. International physical activity questionnaire (IPAQ) 
[60]: All participants completed an adapted paper version of the 

IPAQ which assessed their levels of regular physical activity over the last 
three months. The questions in the IPAQ focused on regularity and 
duration per week of vigorous and medium intensity exercise, walking 
and sitting. Following the protocol described by [61] participant’s re-
sponses were translated into MET-minutes per week. Here each type of 
activity is weighted by its energy requirements, (MET = multiples of the 
resting metabolic rate). A MET-minute is computed by multiplying the 
MET score by the minutes performed. 

2.3. Procedure 

Upon entering the laboratory participants were briefed about the 
upcoming tasks. Participants completed the IPAQ and were then fitted 
with ECG electrodes. They sat in a comfortable reclining chair with a 
computer screen suspended in front of them. They were given a lap tray 
on which a keyboard and mouse were placed. Next baseline ECG was 
recorded while the participant relaxed and watched a five-minute clip 
from a nature documentary featuring coral reefs and fish, with an audio 
commentary (i.e. “vanilla baseline” [62]). After the baseline recording 
the experimenter placed the participant’s left arm on a vac-cushion arm 
rest so that the arm was comfortably outstretched horizontally, with the 
palm turned upwards so that the inner surface of the forearm could be 
stimulated by the RTS. The air was removed from the vac-cushion to fix 
the participant’s arm in place, before the RTS probe (brush) was lowered 
into place and calibrated. 

After the RTS had been calibrated, the participants were familiarised 
with the rating scale used to record perceptions of touch pleasantness. 
The Touch Task consisted of 10 stimulations, with each of the 5 veloc-
ities repeated twice. The presentation order of the touch stimuli was 
quasi-randomised so that it consisted of two blocks of five stimulations, 
with each block containing all five velocities in a random order. Each 
trial began with a 2000 ms fixation cross presented centrally on the 
computer screen in front of the participant. The participants were 
instructed to look at the cross when it appeared and to remain looking at 
the screen and not the RTS during stimulation. The fixation cross was 
followed by the onset of the touch stimulus, immediately after which the 
rating scale was presented on screen. After the participant had respon-
ded, by using the mouse to click on the appropriate location on the 
rating scale, the screen changed to a ‘please relax’ message, which lasted 
for 28,000 ms, minus the participant’s response time to the scale. This 
meant that in combination with the fixation period, each touch stimulus 
was separated from the previous stimulus by an ISI of 30 seconds. 

After completing the Touch Task, the ECG electrodes were removed, 
and the participant moved to a second PC where they completed a short 
series of cognitive tasks (data not reported here). Upon completion of 
this last section of the study the participant was debriefed and provided 
with their compensatory payment. 

2.4. Data processing and analysis 

2.4.1. Touch rating response analysis 
Ratings of the five velocities of touch were expected to reflect the 

negative quadratic shape described in the introduction, with higher 
ratings given to CT optimal stimuli (1, 3 and 10 cm/second) than non- 
CT-optimal stimuli (0.3 and 30 cm/second). To test for the presence of 
this pattern of ratings, mean ratings for each velocity were calculated at 
the participant level by averaging across their two ratings of each 

stimulus. These ratings were entered into a repeated measures ANOVA 
(anova_test, rstatix package, r 4.2.3) with the within participants vari-
able of Velocity (0.3, 1, 3, 10, 30) and the dependent variable of mean 
rating. Greenhouse-Geisser correction was used to account for violations 
of sphericity. Post-hoc Bonferroni corrected t-tests were used to perform 
pairwise comparisons of the different touch velocities (pairwise_t_test, 
rstatix package, r 4.2.3). Before this analysis was conducted, data from 
three participants who were identified as outliers in the main analysis 
(as described below) were removed. 

2.4.2. Relationship between heart rate variability and CT touch sensitivity 
To examine the relationship between HF-HRV levels and sensitivity 

to CT touch, HF-HRV was regressed against coefficients representing the 
fit of each participants’ touch ratings to the linear and quadratic terms of 
a regression model. It was expected that HF- HRV levels would be 
positively related to the strength of the quadratic fit, but not the linear 
fit. 

The first stage in the analysis involved the extraction of outliers from 
the HF-HRV scores, which lead to the removal of two participants whose 
scores were lower than the first quartile or higher than the third quartile 
by 1.5 times the inter-quartile range. Next the influence of three non- 
psychological factors that might affect HF-HRV [63] – the partici-
pant’s age, sex and exercise levels in MET-minutes per week – were 
controlled for. To achieve this, HF-HRV scores for the remaining 56 
participants were entered as the output variable into a multiple 
regression (lm, r 4.2.3) with age, a dummy coded sex variable, and 
MET-minutes as predictors. Standardised residuals from this model were 
saved (HF-HRVstnd), as per Quintana et al [59]. 

Following a similar approach to that used in Ali et al. [35] 
beta-coefficients for the fit of each participants’ touch ratings to a linear 
and quadratic term were generated in R. An outlier analysis of the 
quadratic and linear coefficients lead to the removal of one further 
participant because their quadratic score was lower than the first 
quartile by more than 1.5 times the interquartile range. The remaining 
55 participants’ data were entered into a hierarchical regression where 
the first model tested whether Quadratic Fit predicted HF-HRVstnd, and 
the second model tested whether Quadratic Fit + Linear Fit predicted 
HF-HRVstnd. 

3. Results 

Descriptive statistics are presented in Table 1 and Pearson’s corre-
lations between variables are presented in Table 2. 

The analysis of the touch ratings across all participants revealed the 
expected main effect of Velocity, F(2.62, 141.52) = 14.3, p < .001, ηp 2 

= 0.21, reflecting the negative quadratic pattern shown in Fig. 1. Post- 
hoc comparisons showed that touch at all CT-optimal velocities was 
rated as more pleasant than non-CT optimal touch (corrected ps <
0.005), except for the comparison of 1 cm/second and 30 cm/second (p 
= .19). All CT optimal velocities were rated as similarly pleasant, as 
were non-CT optimal velocities. As such, the robotically delivered touch 
stimuli resulted in the expected pattern of ratings, reflecting the higher 
hedonic quality of CT optimal touch. 

We next explored whether individual differences in sensitivity to the 
hedonic quality of CT touch (quadratic fit of touch ratings) might be 
related to levels of vagal modulation (HF-HRV). Quadratic Fit was a 
significant predictor of HF-HRV, F(1,53) = 4.8, p = .034, accounting for 

Table 1 
Descriptive statistics.  

Variable Mean SD 

Age (years) 22.11 3.50 
MET Mins 5462.85 3605.69 
HF-HRV 30.47 17.04 
HF-HRVstnd -0.0085 1.0070  
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8.2% of the variance (adjusted R2 = 0.07), β = 0.069, β SE = 0.031, p =
.034. Analysis of variance revealed that a second model including both 
Quadratic Fit and Linear Fit as predictors of HF-HRV did not provide 
significantly improved predictive power (p = .85). In this second model, 
which accounted for 8.3% of the variance (adjusted R2 = 0.05), 
Quadratic Fit remained a significant predictor of HF-HRV, β = 0.070, β 
SE = 0.033, p = .036, but Linear Fit was not in its own right predictive of 
HR-HRV, β = 0.0034, β SE = 0.018, p = .85. 

This analysis was repeated using the scores for HF-HRVstnd. Again, a 
model using just the Quadratic Fit scores to predict HF-HRVstnd was 
significant, F(1,53) = 4.4, p = .040, accounting for 7.7% of the variance 
(adjusted R2 = 0.06), β = 0.004, β SE = 0.001, p = .040, and a model 
using both the Quadratic Fit and Linear Fit scores which accounted for 
8.3% of the variance (adjusted R2 = 0.05), did not significantly improve 
predictive power (p = .67). In this second model, Quadratic Fit remained 
a significant predictor of HF-HRVstnd, β = 0.004, β SE = 0.0019, p =
.038, but Linear Fit was not in its own right predictive of HF-HRVstnd, β =
0.00046, β SE = 0.0011, p = .67. The relationship between HF_HRVstnd 
and Quadratic Fit scores can be seen in Fig. 2. The results support the 
notion that higher levels of vagal modulation, as indexed by HF-HRV, 
are associated with greater sensitivity to the hedonic quality of CT 
touch. 

4. Discussion 

In this study, we investigated whether inter-individual differences in 
sensitivity to the specific hedonic value of CT optimal touch are 

positively associated with individual variation on HF-HRV. Consistent 
with previous studies, when averaged across the whole sample, we saw 
the standard negative quadratic relationship between touch velocity and 
perceived pleasantness, with CT optimal touch rated as more pleasant 
than faster or slower strokes. We also found that the degree to which a 
participant’s ratings of the different touch velocities fitted a negative 
quadratic curve positively predicted resting state HF-HRV, indicating 
increased affective-tactile discrimination with increasing autonomic 
nervous system regulation. 

Several previous studies have reported stable individual differences 
in sensitivity to CT touch [26,28,64], however mechanistic explanations 
for this variation are currently lacking. The present findings indicate 
that variation in vmHRV can account for some of the individual differ-
ences seen. The rationale for the present study was grounded in the af-
fective touch hypothesis of CT function which posits CTs signal the 
rewarding value of affiliative tactile interactions and thus, through early 
nurturing experiences, support the formation and maintenance of 
mammalian social bonds [15,16]. There is indirect support for this hy-
pothesis in that CT optimal velocities of touch are ecologically relevant, 
reduce physiological arousal and hedonic ratings are grounded in 
developmental experiences of CT input [17,18,21,65,66]. Higher 
vmHRV is associated with greater sensitivity to visual social cues, 
particularly positive ones and is proposed to result in greater approach 
motivation, perhaps explaining the apparently enhanced ability of those 
with high vmHRV to form and maintain social relationships [44,52,55]. 
The present findings suggest that sensitivity to the hedonic value of 
socially relevant touch is also enhanced in people with higher levels of 
resting vmHRV. However, future studies are required which replicate 
and extend the present one to determine whether, consistent with our 
proposal, vmHRV predicts sensitivity to both CT targeted touch and 
facial cues in the same study. Furthermore, social interactions depend on 
interpreting the emotional states of others and this capacity is in part 
dependent on a person’s ability to interpret their own emotional state, 
termed alexithymia [67]. It has previously been found that individuals 
with high HF-HRV show less alexithymia than individuals with low 
HF-HRV [50]. Thus, it could be that levels of alexithymia mediate the 
relationship between HF-HRV, and both facial emotion recognition and 

Table 2 
Correlations between variables.   

Age Sex MET Mins Quad Fit Lin Fit HF-HRV 

Sex -0.10      
MET Mins -0.27* .0011     
Quad Fit .085 -0.073 .26    
Lin Fit -0.024 -0.19 -0.12 .22   
HF-HRV -0.11 -0.14 .027 .29* .038  

*p<.05 **p<.001 

Fig. 1. Mean ratings of pleasantness on a 100-point VAS scale (where 0 = unpleasant and 99 = pleasant), in response to each of the five velocities of touch. Dots 
represent the mean rating for individual participants (averaged over two ratings of each velocity). Horizontal bars represent the sample mean for each velocity. 
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CT sensitivity. 
It is noteworthy that in psychophysical studies of affective touch, 

including the present one, ratings are made in a highly controlled 
experimental setting, stripped of the typical context in which social 
tactile interactions occur. Several studies have provided evidence a 
person’s social world, past and present, shapes these ratings. For 
example, greater sensitivity to CT over non-CT optimal touch is seen in 
people who report more positive attitudes towards and greater experi-
ence of social touch [35,34], while insecure attachment and adverse 
childhood experiences are associated with both blunted ratings of CT 
optimal touch [36,37] and low levels of resting vmHRV [43]. Thus, 
while the utility of psychophysical ratings to specifically probe CT 
function, given the concomitant input from Aβ afferents, has been 
questioned [68], taken together these finding support the hypothesis 
judgements are in part shaped by affective evaluations of the sensory 
signal, grounded in past social experience. 

While the effect size in the present study is small, with HF-HRV 
explaining just 8.2% of the variance in CT sensitivity, it is consistent 
with the extant literature reporting positive associations between 
vmHRV and social cognition. For example, a similarly designed study 
reported that HF-HRV accounted for 8.4% of variance in performance of 
the Reading the Mind in the Eyes task [59]. While controlling for ex-
ercise frequency, age and sex had no impact on our study findings, 
several other factors that could affect vmHRV, including medication, 
recent caffeine and food intake, as well as drug and alcohol use were not 
accounted for [52]. Furthermore, inferences around causality cannot be 
drawn from correlational studies such as this. A further limitation of the 
present study is the fact our sample were all healthy young adults; thus, 
it remains to be determined whether the study findings generalise to 
older adults or clinical populations. 

As previous studies have reported affective touch perception is 
atypical in anorexia [32], autism [33] and depression [34], and atypical 

vmHRV has been reported in all three conditions [39,41,69,70], future 
between group studies should determine whether differences in HRV 
can account for any part of these findings. Also, while the present study 
considered the relationship between tonic levels of vmHRV and CT 
touch sensitivity, future experimental studies should investigate 
whether phasic changes in vmHRV heighten sensitivity to CT optimal 
over non-CT optimal touch. Additionally, it is noteworthy that CT 
optimal touch increases phasic vmHRV [20] and enhances ratings of 
approachability of previously neutral faces it is paired with [71]. Thus, it 
would be of interest to determine whether the mechanism by which 
affective touch modulates processing of subtle social cues, like facial 
trustworthiness, is mediated by touch induced changes in vmHRV. 

In summary, this study provides evidence that autonomic nervous 
system function can explain some of the reported variation in sensitivity 
to CT targeted affective touch, a sensory input hypothesised to have a 
social developmental function. This relationship was observed even 
after controlling for a variety of variables that are known to influence 
vmHRV. As reduced vmHRV and blunted sensitivity to CT targeted 
touch has been reported in several clinical conditions, the results pro-
vide a trans-diagnostic mechanistic target for future investigation. 
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