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A B S T R A C T   

Flooding is a major hazard that is responsible for substantial damage and risks to human health 
worldwide. The 2018 flood event in Kerala, India, killed 433 people and displaced more than 1 
million people from their homes. Accurate and timely information can help mitigate the impacts 
of flooding through better preparedness (e.g. forecasting of flood impacts) and situational 
awareness (e.g. more effective civil response and relief). However, good information on flood 
impacts is difficult to source; governmental records are often slow and costly to produce, while 
insurance claim data is commercially sensitive and does not exist for many vulnerable pop-
ulations. Here we explore “social sensing” – the systematic collection and analysis of social media 
data to observe real-world events – as a method to locate and characterise the impacts (social, 
economic and other) of the 2018 Kerala Floods. Data is collected from two social media platforms, 
Telegram and Twitter, as well as a citizen-produced relief coordination web application, Kerala 
Rescue, and a government flood damage database, Rebuild Kerala. After careful filtering to retain 
only flood-related social media posts, content is analysed to map the extent of flood impacts and 
to identify different kinds of impact (e.g. requests for help, reports of medical or other issues). 
Maps of flood impacts derived from Telegram and Twitter both show substantial agreement with 
Kerala Rescue and the damage reports from Rebuild Kerala. Social media content also detects 
similar kinds of impact to those reported through the more structured Kerala Rescue application. 
Overall, the results suggest that social sensing can be an effective source of flood impact infor-
mation that produces outputs in broad agreement with government sources. Furthermore, social 
sensing information can be produced in near real-time, whereas government records take several 
months to produce. This suggests that social sensing may be a useful data source to guide de-
cisions around flood relief and emergency response.   

1. Introduction 

Flooding is a major global hazard. Floods are expected to increase in frequency and severity as a consequence of climate change, as 
well as urbanisation and land use change, especially in the developing world [1,2]. In this paper, we will examine the Kerala flood 
event in 2018. The flood is generally agreed to have peaked on 16th August 2018, but heavy rains before this date caused floods and 
landslides in hilly areas, while floodwaters did not recede until many days later [3]. A major relief effort was launched, with more than 
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3000 camps opened to temporarily house displaced people and substantial financial commitments by state and national governments 
[4]. These floods caused an estimated $4.4 billion in economic damage, including the destruction of 17,000 homes with an additional 
217,000 damaged [5], and resulted in the deaths of over 430 people [5]. In addition to their direct impacts, the floods also had a 
number of subsequent impacts, including disease outbreaks, [6,7] and landslides [8]. 

Climate change and land use changes look set to dramatically increase the number of extreme flood events in India [9,10]. As the 
Indian population urbanises, with 52% of the population expected to live in cities by 2050 [11], urban flood planning and resilience 
will become more important [12], although impacts in 2018 were widespread in both rural and urban areas. The 2018 Kerala floods 
have been studied extensively and variously linked to climate change [13], land use change, such as deforestation [14], mining [15], 
and poor reservoir management [3]. These studies are part of a growing body of literature on major floods in India, with prior events in 
Uttarakhand (2013), Srinagar (2014), Chennai (2015) and Gujarat (2017). Ray et al. [16] emphasise the urgent need for improved 
planning, response and resilience measures in Indian flood management. 

Good information is crucial for all of these goals. Modelling and forecasting flood events is an important task but a key part of 
informing risk and forecast models is post-crisis data acquisition so that models and plans can be evaluated and improved. A number of 
data sources have been investigated in this regard. Avashia and Garg [17] used a combination of satellite data (Landsat) and newspaper 
data to study the effects of land use change on urban flooding over a period from 1991 to 2017. Gupta and Nikam [18] used 35 
automatic weather stations to monitor rainfall in Mumbai and provide live information to emergency responders and the public.2 

Publicly available satellite data has also been used to survey the flood extent [19,20]. 
In the wake of the Kerala floods, some have pointed to the failure of local and state governments to respond appropriately and made 

the case for a more community-focused disaster response plan [21]. Especially in the wake of the Chennai floods in 2015, academics 
have started to recognise the importance of social media as a means for communities to share vital information, request help and 
communicate during flood events [22,23]. Social sensing is a way for the concerns and impacts of floods on communities to be 
collected and heard by the government at mass scale. Across the world, National Meteorological and Hydrological Services (NMHS) are 
increasingly moving towards impact-based forecasting [24,25], with forecasts including details of expected impacts to people and 
property as well as the expected weather conditions. Validation and evaluation of these forecasts requires reliable impact data which 
provides details of how and where people and property were affected. Information on social and economic impacts in the wake of an 
extreme weather event is typically not as easily accessible as traditional meteorological observations, not widely dispersed, not in the 
correct format and is often only available with a significant time lag after a weather event has occurred [26]. Having information on 
impacts more readily available close to the time of a weather event occurring would help to improve situational awareness about 
where and how impacts of a weather event are being experienced. 

Sources of impact data include news reports, social media, citizen data collated by government or official agencies, insurance data 
and eye-witness accounts. While citizen data collected by government or official agencies are usually of good quality, they can be slow 
and costly to gather and are not consistently produced for all events. Social sensing is an approach developed in recent years to utilise 
unsolicited social media data to detect and analyse real-world events. It has been applied in a variety of contexts, such as earthquakes 
[27], floods [28,29], heatwaves [30], hurricanes [31,32] and wildfires [33]. It has proved its usefulness as a source of information 
about where, when and how individuals are being impacted by a specific event [28,30,34]. Therefore its use as a source of social and 
economic impact information in the wake of a natural disaster, such as widespread flooding, would greatly assist with the collation of 
data to support improved emergency management, response and resilience. 

Here we explore the utility of social sensing to measure impacts of flooding using the 2018 Kerala event as a case study. We focus on 
social media data from the platforms Telegram and Twitter, with comparison to data from the Kerala Rescue citizen relief coordination 
web application3 and the Rebuild Kerala database of government aid for property damage.4 Despite having the third-highest number of 
active Twitter accounts (24 million [35]), India’s immense population means that the proportional coverage of Twitter is low. This has 
limited the resolution of previous Twitter social sensing studies in India [36–38]. Conversely, Telegram has 220 million users in India, 
with the platform having recently experienced significant growth [39]. Telegram is a messaging platform that is widely used in some 
parts of the world, including Kerala, and permits large groups of up to 200,000 users to be created [40]. Specifically in this project, we 
study the “KeralaGram” group on Telegram, which had 15,000 users at the time of the 2018 flood and was focused on issues/e-
vents/news related to the state of Kerala. While Twitter has been extensively used for social sensing, the use of Telegram is less 
common. Most relevant Telegram research involves either the production of Telegram bots for distributing hazard information on the 
platform [41,42], or contains limited investigation and validation of hazard impacts and spatio-temporal trends from the event 
[43–45]. Additionally, to the best of our knowledge, all previous Telegram social sensing studies were carried out on Telegram 
Channels, where an admin broadcasts messages to channel followers (one-to-many communication). Channels are appropriate for 
news distribution, however, are not conducive to promoting organic conversation for social sensing. This work investigates Telegram 
chats called supergroups. These allow for many-to-many conversations, providing a much richer form of social impact data. The Kerala 
Rescue application was set up initially by student volunteers as a mechanism to coordinate requests and offers of help during the 2018 
flood event, quickly becoming a widely used service supported by Kerala’s state government. This citizen science initiative differs from 
social sensing using social media, in that the information it utilises is structured into a database format designed for the purpose, 
whereas social media content is unsolicited and unstructured. The processing requirements for these platforms therefore differ. The 

2 http://dm.mcgm.gov.in/livefullpage. 
3 https://keralarescue.in/. 
4 https://rebuild.lsgkerala.gov.in/rebuild2018/. 
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Rebuild Kerala database was put together by the Government of Kerala after the 2018 event to manage the distribution of financial aid 
related to property damage [46]. Reports were collected by citizen surveys, validated by local officials, and then either approve-
d/rejected for aid by the state government. More details on these data sources and how the data from each was processed is given 
below. 

The experiment performed in this study is a triangulation between the different data sources. While accurate “ground truth” in-
formation may be constructed for the extent of floodwaters [20], it is very difficult to collate accurate ground truth information for the 
social impacts of flooding. A disastrous flood event such as Kerala 2018 affected many people in many ways, with each individual 
having their own story. As such, the true social and economic impacts of the flood may never be known completely. Sources of 
economic information such as the financial losses and compensation, property damage, damage to agricultural land, and disruption to 
economic activities and livelihoods, are diverse and difficult to unify into a single metric. Measurement of social impacts beyond the 
tragic loss of life is also hard to perform; the level of distress, loss of health and wellbeing, and impacts on families and communities are 
almost impossible to quantify. Therefore our study does not seek to use the social sensing approach to accurately recover some known 
ground truth observation. Instead, it compares and contrasts the view of the flood impacts that are offered by several different sources: 
two social media platforms, a citizen relief app, and a governmental database. The rigorous analysis of Telegram in this study is novel, 
providing clear evidence that the platform can and should be used for social sensing. Additionally, social sensing studies are rarely 
validated to this depth. This systematic comparison of four very different data sources is a unique approach for investigating and 
validating flood impacts and social sensing itself. Each of the sources might be expected to reveal a part of the overall situation during 
the flood event. Their agreement in when and where flood impacts are observed, and the nature of the information they contain, will 
help to evaluate the potential for such data to be used in future flood events to support decision-making and planning. 

The paper is structured as follows. Section 2 covers the Data Collection & Methodology by which information was obtained from 
each source. This is followed by Results in section 3, covering the findings from the study, before the Discussion in section 4 highlights 
some of the main implications and limitations of the work. 

2. Data Collection & Methodology 

Here we explore the potential for detecting the impacts of the Kerala floods using publicly accessible data from Telegram and 
Twitter. Data from both platforms is collected and filtered for relevance, then used to create time series plots and spatial maps of flood- 
related activity. These are compared to similar figures based on public submissions to the Kerala Rescue app, a citizen-generated web 
service set up during the flood event to allow affected people to submit requests for help [47]. A further comparison is made to damage 
data collected after the event by the government-sponsored Rebuild Kerala initiative [46]. While it is known that WhatsApp was 
widely used during the event to coordinate rescue and relief efforts [48], we are not able to study WhatsApp data due to privacy 
restrictions on the platform. As well as considering the ability of Telegram and Twitter data to accurately map the social impacts of the 
flood event, we also examine content from each platform as a source of data about what kinds of impact were experienced. 

2.1. Telegram 

Telegram is a social media messaging platform which, like many other messaging services, allows for end-to-end encrypted con-
versations and groups. The feature that differentiates Telegram from its competition is public group chats called supergroups. With up to 
200,000 members [40], supergroups promote conversation within local communities [49]. For this work, conversations from the 
supergroup ‘KeralaGram’ were downloaded using the inbuilt ‘Export Chat’ function in the Telegram desktop application. Messages 
were received in JSON format, and shared media was received in its original format (i.e. MP3 for audio and JPEG for images). With 
around 15,000 members, ‘KeralaGram’ is the largest public community discussion group in Kerala. The data used within this study is 
publicly accessible, with all processing and analysis following the Telegram terms of service. 

During the flood period, a rise in the amount of posts sharing other media was detected, with a 450% increase in shared images 
compared to the same date range within the previous month. These images consisted largely of flood photos, alongside screenshots of 
warnings and messages from other platforms. To utilise this media increase, basic computer vision was applied, automatically 
adjusting the image color and contrast to optimise the extraction of English and Malayalam text using the OCR library Tesseract [50]. 
Next, the language detection Python library “langdetect” was applied to the messages [51]. While this package occasionally mis-
classifies text, its purpose here is to provide a rough overview of the languages present. With only 28% of the dataset being detected as 
English, machine translation was needed. To translate the remaining text, the XLSX document translation Google Translate5 feature 
was used. Bots are often found in social media data, however, due to the presence of admins and strict rules within this chat, the 
conversation post-translation was highly regulated and did not require bot filtering. Additionally, after location inference (see section 
2.5), relevance filtering was not required as the flood caused a large shift in messaging content and structure, with a 98% relevance of 
located messages (see Fig. 1). A post was only considered relevant if it was directly discussing the 2018 Kerala flood, for instance 
requesting help or sharing information about the event. If there was any ambiguity, the entry was classified as irrelevant. A sample 
filtered Telegram message is shown in Table 1. The final dataset contained 13,614 messages and 1188 images containing text between 
1st August - 23rd August. 

5 https://translate.google.co.uk/?sl=auto&tl=en&op=docs. 
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2.2. Twitter 

Twitter is a social media microblogging platform, where users produce character restricted messages called tweets. Tweets are 
stored in JSON format and can be collected for free in real-time or purchased retrospectively from Twitter’s Historical PowerTrack 
service. For this work, the PowerTrack service was used to obtain all tweets identified by Twitter as originating from India (that is, 
having an ‘IN’ country code in their location metadata) between 1st August to 23rd August. This collection contained 1,363,659 
tweets. All tweets in this collection contain either exact tweet coordinates from GPS enabled devices or a user-defined tweet ‘place’ 
attribute, which is used by Twitter to designate their country code. The following analysis and investigation is consistent with the 
Twitter terms of service. 

The first filtering step was extracting English language tweets. While machine translation of tweets in other local languages is 
possible, it is slow to perform and therefore infeasible for the high volume of tweets in the dataset. Despite this, the language attribute 
within the tweet JSON objects highlighted that English was the most common language in our dataset, with 90% of tweets in English; 
therefore, simply extracting the English tagged tweets was deemed sufficient. Location inference (see section 2.5) was used to locate 
and identify tweets that both concerned and originated from Kerala. This decreased the dataset to 24,414 tweets. Inspection of tweet 
volumes suggested that bot removal was not required as no account had tweeted excessively (following the >1% rule successfully 
implemented by Arthur et al. [28]. The tweet collection was geographic, rather than thematic, so to extract relevant tweets a list of 
keywords was produced, containing both common English-language flood terms and words frequently used in Kerala Rescue requests 
(Appendix A.1). If the tweet text did not overlap with this list (i.e. contained no words in the keyword list), the tweet was ignored. This 
resulted in 7097 tweets related to floods. 

Next, a manual inspection of the remaining tweets highlighted numerous duplicates, with only minor differences such as the tagged 
user or a hashtag. The majority of these posts originated from automated and institutional Twitter accounts and did not include useful 
on-the-ground observations of flood impacts. To remove these, tweet texts were vectorised by word frequency using the scikit-learn 
package [52] in Python and the cosine similarity between them was calculated. To decrease computation times, stop words and 
punctuation were removed from tweets before vectorisation. If any two vectors had a 97% or above cosine similarity between them, 
then they were deemed as duplicates, and only the tweet posted first was kept. This successfully removed obvious duplicates. However, 
large groups of messages that differed by only a few words remained. To remove these, if at least 10 vectors showed a cosine similarity 
above 90%, the corresponding messages were classified as duplicates and once again only the original tweet was kept in the dataset. 
While the 97% and 90% thresholds were heuristically chosen, manual inspection showed they were appropriate for removing un-
wanted messages. Removal of duplicates left 6936 tweets for further analysis. Manual inspection (using the same criteria as section 
2.1) of a randomly selected 20% sample of the remaining tweets showed a 96% relevance indicating that further relevance filtering was 
not required. A sample filtered tweet is shown in Table 1. 

2.3. Kerala Rescue 

Kerala Rescue is an emergency request platform, allowing those impacted by the flood to submit a request for services including 
rescue, food, water, clothing, and medicine. It was created by a college student from Kerala during the early stages of the flood [47]. 
After 10 days, an additional 200 software developers were actively developing the site, with 50,000 registered Kerala volunteers 
responding to and validating the 45,000 requests [47]. The data was collected with permission from the developers in JSON format 
from a public Slack channel active during the floods. Since the data is potentially sensitive, data was anonymised prior to analysis and 
no identifiable results are displayed. 

The Kerala Rescue database contains help requests formatted as records that each contain 27 columns including location fields, 
rescue details, and requester contact number. The first processing step was the removal of duplicate entries. Due to the ambiguity 
between duplicate requests and follow up requests, if two entries with the same contact number were posted within an hour of each 
other, and if either their location or requester attributes were duplicated, then only the original entry was kept. This removed over 
5000 entries, which upon manual inspection were correctly classified as duplicates. Location information was provided as both co-
ordinate fields and as entries in a text field. To remove inaccurate location coordinates, if the ‘coordinate_accuracy’ attribute was over 
1000 m, the corresponding coordinates were removed and other location data was favoured. The aforementioned language translation 
technique was applied to the text-form location field, before applying location inference to provide accurate coordinates for mapping 
(see below). 

2.4. Rebuild Kerala 

The Rebuild Kerala Initiative (RKI) was set up by the Government of Kerala to assist in the rebuilding and recovery efforts after the 
flood event [46]. The RKI includes a diverse range of projects, including the development and promotion of the Rebuild Kerala 

Table 1 
Overview of Telegram and Twitter messages after filtering.  

Platform Fictitious posts using similar language to the datasets Average post 
length (words) 

Percentage of messages in 
English pre-translation 

Telegram We have 50 students trapped in the Munnar engineering college. While we are safe, we need 
water and food urgently. Please call us on the number below. 

77.52 28% 

Twitter @PMOIndia @CMOKerala, please help us to arrange rescue for over 5000 people stuck in 
Kuttanad, Alappuzha. We need rescue boats and a helicopter immediately. 

24.95 90%  
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Development Programme, the strategic roadmap for reconstruction across the state. Relevant to this study, RKI collected data by 
surveying affected citizens about property damage and made it publicly available as a database, with each report then verified by a 
local overseer. From this database, we extracted records for verified flood-damaged houses that were accepted for financial aid by the 
state government. 

This data is stored in a comma-separated format with each row corresponding to one of the 1034 Kerala local administrative bodies 
(Municipalities, Corporations, and Gram Panchayats). Each record is the number of damaged properties approved for financial support 
within that local body. Manually assigning each location to a corresponding map polygon was the only preprocessing required. A few 
assumptions were necessary due to alternative spellings and duplicate place names in the data; however, these are unlikely to make an 
impact due to the volume of the data. In the dataset, most local bodies had corresponding values in the ‘Total’, ‘Verified’, ‘Approved’ 
and ‘Rejected’ surveys columns. For this work, the difference between the ‘Verified’ and ‘Rejected’ columns was taken as a conser-
vative estimate of the true ‘Approved’ value, as many entries did not have a value for ‘Approved’. 

2.5. Location inference 

To find on-the-ground observations rather than long-distance “news” posts, the data was geolocated, keeping only the data located 
in Kerala. Location inference is an automated procedure that identifies place names in the post and then assigns a map polygon 
(shapefile) for each location. To perform this location inference process, a package developed by Arthur et al. [28] was used, which is 
based on the work of Schulz et al. [53]. This involved cross-referencing words within a tweet/message/request to various gazetteers 
(GADM, DBpedia and Geonames [54–56]), before inferring the most likely location. Previous work has found this approach to provide 
highly accurate locations but, due to the lack of ground truth, this is difficult to quantify. Manual checks of outcomes were performed 
on an ad hoc basis to ensure validity throughout the process. Due to differences in the platforms, this final filtering step was applied as 
follows: 

• Telegram: Location inference was applied to the extracted text from translated messages and images. If this approach was un-
successful, and if a Kerala landline phone number was present in the message’s ‘phone’ attribute, the location could be inferred 
using the area code as sourced from the Kerala Government website.6  

• Twitter: Despite the dataset being a geographic collection, manual inspection showed that the exact location discussed in the tweet 
text frequently did not correspond to the (often large and unspecific) bounding box within the ‘place’ field in tweet metadata. While 
the cause of this is unknown, two potential explanations are from the incorrect entry of the ‘place’ attribute from the user, or from 
tweets being posted on behalf of someone, with the place tag related to the user location, rather than where they are referring to. 
Therefore, location inference was applied to the tweet text, with a manual sample showing that this approach had a higher accuracy 
in determining the location referenced by the post than when the ‘place’ attribute was used. If the tweet had geotagged coordinates, 
and if no location was inferred from the text, these coordinates were taken as the inferred location.  

• Kerala Rescue: A similar approach to that used for Twitter was taken, with the user-entered ‘location’ field prioritised over the 
automated ‘coordinate’ field due to occasional coordinate inaccuracies. These inaccuracies were primarily from requests on behalf 
of those affected, with the coordinates corresponding to the individual sending out the request, and the ‘location’ field corre-
sponding to the individual in need of help. If geolocating with this approach was unsuccessful, phone area codes were used as with 
Telegram posts.  

• Rebuild Kerala: Location inference was not required as the data was reliably located and verified. 

Within the administrative divisions of Kerala, there was ambiguity regarding duplicate place names, resulting in assumptions being 
made during location inference for the social platforms. For instance, there is a district, taluk (administrative subdivision) and city all 
called Thiruvananthapuram. As a general rule, unless the administrative level was stated, it was assumed that people were always 
being specific about their mentioned location (i.e. Thiruvananthapuram city in the previous example). The final filtered and geo-
located data counts are shown in Table 2. 

2.6. Characterising flood impacts 

When a request was made through Kerala Rescue, the requester had the option to select ‘True’ or ‘False’ concerning several specific 
needs they may have had. The options were for rescue, food, water, medicine, clothes, kitchen utensils and toiletries, with each having 
a follow-up section for more information. For this investigation, the food and kitchen utensils columns were combined due to their 
similarity, as were the medicine and toiletries columns. To compare the specific needs of those using Kerala Rescue to the other 
platforms, all of the location inferred Telegram messages and Twitter posts (tweets) were manually categorised. This categorisation 
removed messages that were not directly requesting help (i.e. messages providing information/offering help), before categorising the 
remaining data into the five groups: rescue, food, water, medicine, and clothes. As Kerala Rescue users had the option to select multiple 
requests (i.e. food and medicine), the categorisation of tweets/telegrams was not limited to single classes. The data tended to be 
relatively easy to categorise, so a single human coder was employed to perform this task. To ensure validity, a sample of 50 labelled 
messages was independently categorised by 3 human coders, finding an almost perfect agreement (Fleiss’s Kappa: 0.897, Krippen-
dorff’s Alpha: 0.865). This was seen as good evidence that the manual coding process was robust. 

6 https://kerala.gov.in/std-codes. 

J.C. Young et al.                                                                                                                                                                                                       

https://kerala.gov.in/std-codes


International Journal of Disaster Risk Reduction 74 (2022) 102908

6

3. Results 

Fig. 1 shows a time series for the volume of filtered and located messages from Telegram, Twitter, and Kerala Rescue binned into 
12-h time intervals from 1st August until 23rd August. Kerala Rescue was not created until 12th August so that platform only has data 
after that date. The data from Rebuild Kerala was not timestamped so is not plotted. There is a large difference in the volume of records 
from each platform, with Kerala Rescue having by far the highest number of relevant posts. All time series follow a similar trend, with a 
sharp increase in messages/requests from 15th August, peaking around 18th August, before decreasing again. This is consistent with 
the general consensus that the rainfall peaked in severity around 16th August [3]. Note that the 12-h period shows apparent decreases 
in activity during night time (2400–1200), seen most sharply on 17th August. 

Fig. 2 shows filtered and located posts from the four data sources as a choropleth map (heatmap) of Kerala. Data is grouped at both 
district and taluk level to capture administrative units relevant to the region. To reflect the uncertainty in location inference at the scale 
of taluks, a moving average filter was used to assign to each taluk the average value across itself and its neighbouring taluks within the 
same district. This was done for all four data sources. As there was only uncertainty between place names within individual districts 
and not between multiple districts (as discussed in section 2.5), this filter was applied to each district separately. Data from the three 
timestamped platforms has been restricted to the main flood period between 12th - 23rd August. Since the counts between platforms 
vary considerably, values for each map were linearly scaled into the range [0,1] to create the color scale. Qualitatively, there are clear 
spatial similarities between maps, with two main clusters of activity seen in the taluk-level comparison - the first around Kochi, and the 
second between Alappuzha and Kollam. There is a visual agreement with these hotspots and the flooded areas identified using satellite 
imagery by Tiwari et al. [20]. The activity on Telegram and Twitter is more evenly distributed throughout Kerala, whereas on Kerala 
Rescue and Rebuild Kerala the activity hotspots are more tightly focused. 

Fig. 3 quantitatively summarises the relationships between the variables plotted on the district and taluk maps in Fig. 2. Fig. 3 is a 
logarithmic scatter plot, with each subplot comparing the data from the corresponding column and row. Statistical analysis shows that 
all pairs of data sources have strong positive correlations at both taluk scale (Pearson’s r > 0.69, p < 0.001) and district scale (Pearson’s 
r > 0.76, p < 0.001). District-level correlations are stronger than taluk-level correlations. However, this was anticipated as location 
inference is more reliable at the larger district scale, where small errors are less important and the data less noisy. To check whether 
these results are explained as an artefactual consequence of population, with highly populated areas producing a stronger ‘flood signal’ 

Table 2 
Data volume before and after filtering from the four separate platforms.  

Platform Type Initial volume Filtered and geolocated volume 

Telegram Messages and Images 14,898 962 
Twitter Tweets 1,363,659 6936 
Kerala Rescue Requests 45,322 39,950 
Rebuild Kerala Surveyed Houses 330,578 330,578  

Fig. 1. Time series comparison of filtered social data sources, split into 12-h intervals.  
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due to larger user populations, we calculated correlations with population size. Appendix A.2 shows that observation counts for both 
taluks (Fig. 2) and districts (Fig. 3) are uncorrelated with population (p > 0.24). 

Fig. 4 shows time series for help requests communicated on the timestamped platforms, alongside time-aggregated distributions of 
request types. Despite the distribution of needs on the platforms being different, the timing of requests across platforms is similar. For 
instance, requests for rescue peak before requests for provisions on all platforms, with the exception of medicine requests through 
Twitter, where they peak on the same day. From the bar charts, we can see that excluding rescue requests, the distribution of request 
types on Twitter and Telegram is similar. On all platforms, clothing is the least requested, and excluding Telegram, rescue is the most 
requested. It is worth mentioning that both Telegram and Twitter contained two additional categories, namely, requests for volunteers 
and links for financial aid. As these categories were both lower in volume than the others, and were not present in Kerala Rescue, they 
have been omitted from this analysis. Rebuild Kerala has also been excluded as it does not provide additional impact information 
beyond property damage. 

Table 3 shows a qualitative assessment of the strengths and weaknesses of each platform for measuring flood impacts. It should be 
noted that these platforms were not used independently of each other, for instance, messages from the same people were found on 
Telegram, Twitter and Kerala Rescue. Additionally, links to Kerala Rescue were widely distributed on Telegram and Twitter. 
Furthermore, these platforms are not the only platforms that were used to report impacts of the Kerala 2018 floods, with others such as 
WhatsApp being widely used. 

Fig. 2. Map of Kerala comparing the spatial distribution of data from the four platforms. Top: District-scale distribution. Bottom: Smoothed Taluk-scale distribution.  
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4. Discussion 

In this paper, we have compared social media data from two platforms (Twitter and Telegram), as well as one citizen-produced web 
application (Kerala Rescue) and a governmental disaster relief survey (Rebuild Kerala). The aim was to map and characterise the social 
impacts of the major flood event in Kerala in 2018. Results show that there is good agreement between the outputs from social sensing 
using Telegram/Twitter, the semi-formal relief requests database of Kerala Rescue, and the formal property damage assessment 
performed by Rebuild Kerala. Data from Twitter and Telegram also showed similarity between the types of impact reported, to the 
types of help request collated by Kerala Rescue. These findings build confidence that observation using unsolicited social media data 
can be an effective way to understand the effects of flooding. While Kerala Rescue was a platform rapidly created by volunteers 
specifically to coordinate requests for help during the flood, and might therefore be expected to perform well in this scenario, it is 
noteworthy that data derived from the general-use social media platforms Twitter and Telegram also show strong correlations with the 
structured observations provided by Rebuild Kerala. This study, therefore, adds to the evidence base (e.g. Arthur et al. [28,29] 
demonstrating the potential for informal social media data to assist with flood response and impact assessment. Here the use of 
Telegram data offers additional novelty, since (to our knowledge) this platform has not previously been used for this purpose. 

The Kerala Rescue dataset contains a large amount of highly relevant data about flood impacts, relative to the smaller (post- 

Fig. 3. Log scatter plot, comparing the Taluk (blue) and District (red) counts for flood observations from each data source: Rebuild Kerala (RK), Kerala Rescue (KR), 
Telegram (TG), Twitter (TW). The legend shows the Pearson’s r value between the platforms, with all values having P < 0.001. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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filtering) volumes and greater ambiguity of data available from Twitter and Telegram. However, Kerala Rescue was a one-off platform, 
created in the early days of the flood by volunteer software developers. This ad hoc and spontaneous aspect to Kerala Rescue may add 
to its authenticity as a source of on-the-ground observations, but also brings uncertainty in that we do not know how widely it was 
adopted and by whom. By contrast, Twitter and Telegram both have established user populations in Kerala with an observable history 
of activity on those platforms. This means that while Kerala Rescue is very useful for situational awareness and community organi-
sation during the event, it does not offer an effective “baseline” of activity against which observations can be situated. For example, it is 
hard to understand why more requests were made on Kerala Rescue in the Kollam region relative to activity on Twitter and Telegram. 
This could be due to Kerala Rescue genuinely capturing more impacts in that region, or could just reflect greater adoption of the 
application in that area; without a historic baseline of platform usage in that area, it is hard to determine. For citizen-generated apps 
such as Kerala Rescue there is no guarantee that the skilled volunteer workforce that created the app will be replicated in future floods 
or similar extreme weather events. However, Kerala Rescue shows that such applications can be effective in coordinating relief efforts 
during the event and also as a data source for post hoc analysis. 

While the social media platforms Twitter and Telegram generate fewer observations of flood impacts in the present case study, they 
offer a number of contrasting advantages. As referenced above, their established user populations, geographic coverage and generality 
permit the analysis of the 2018 Kerala flood event in a wider context. This might allow the 2018 Kerala floods to be assessed against 
other flood or weather events at different times or places, or against other types of social disruption, with a reasonably consistent 
underlying study population. The use of a temporal baseline allows the severity of an event to be estimated based on the level of social 
media activity relative to the long-term expected level; cf. identification of storm events using a percentile threshold for social media 
activity [34]. The establishment of social media as a routine form of communication avoids any special effort to set up a platform when 
an event occurs since events are observed within the continual flow of communications. Another interesting feature of Twitter and 
Telegram is that they are relatively unstructured in the ways they support communication between users. They enable conversational 
interactions between pairs or groups of users, in which a greater depth of understanding can be achieved about an unfolding event. 

Fig. 4. Temporal comparison of the 5 largest Kerala Rescue request types, compared to the same request types found within Telegram messages and tweets.  
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This more natural form of discussion may provide insights that more constrained platforms such as Kerala Rescue do not. The converse 
of this lack of structured communication is that a greater effort is required to derive robust observations. It is not feasible to manually 
analyse large datasets that may contain hundreds of thousands of messages, while natural language processing can be difficult to apply 
successfully for short-form messages such as social media posts. 

In summary, all of the platforms studied here offer distinct opportunities but also unique drawbacks to resilience planners and flood 
responders. These are summarised in Table 3 above. Twitter and Telegram allow the potential for routine monitoring and can provide 
highly relevant impact information. Kerala Rescue was a crucial platform during the flood, generating flows of highly structured and 
highly relevant data. However, it was created out of necessity and the next flood, or floods in other areas, could easily use a different 
platform or coordinate through channels like Telegram or WhatsApp. Finally, Rebuild Kerala is probably the most reliable and sys-
tematic data collection, but is retrospective, much slower, and focuses on only a single impact type. 

One important consideration for any systematic usage of social media or other citizen-generated data sources for flood monitoring 
and emergency response is that of sample bias. While Internet penetration and smartphone usage are rapidly increasing in Kerala, India 
and most other parts of the world, it is still more frequent amongst younger, more affluent and urbanised populations. Reliance on such 
data sources could result in an unintended bias towards their user populations and away from those without access to digital resources. 
Careful management of data and appropriate consideration of bias might help to alleviate some of the harmful effects of such “digital 
divides”, but should be considered from the outset of any project to operationalise these methodologies. 

5. Conclusion 

This paper shows that social sensing via popular social media platforms like Twitter and Telegram, or bespoke platforms like Kerala 
Rescue, can be a useful way to gather validation data and study flood resilience in India. While social media (typically Twitter) has 
been studied previously to show that it can generate useful insights around natural disasters, here we have focused on the comparison 
of different platforms, including novel sources such as Telegram and KeralaRescue, and validation against qualified governmental 
sources. We have shown that social media sources allow the rapid collection of data from people on the ground which is difficult to 
gather in other ways. A combination of channels could provide excellent coverage across a range of flood impacts - e.g. routine 
monitoring of Twitter and Telegram for situational awareness and to pick up early impacts. Kerala Rescue or similar could then be used 
as a central place for the coordination of community action and relief. Post-disaster analysis of all data sources, including formal efforts 
like Rebuild Kerala, could then provide a detailed record of the range of impacts and enable the creation of better flood resilience 
planning and infrastructure. As the global penetration of the internet and social media increases, we believe this study’s methodology 
is not geographically bound to Kerala and can be of real value in other flood-prone areas. Additionally, as the platforms are not 
specifically tailored to flood events, this study’s approach could be applied to other extreme weather hazards. 

Table 3 
Qualitative comparison of data types.  

Platform Format Strengths Weaknesses 

Telegram Social Media: 
Messaging  

- Data is available for both real  
- time and retrospective collection  
- Conversations are often regional i.e. from 

those directly impacted  
- Low volume of unsolicited content/“fake 

news” in messages as admins often 
regulate chats  

- Group chats have a trade-off between volume 
and quality  

- Conversational nature of messages makes it hard 
to extract robust measurements  

- Users often delete their messages, leaving large 
gaps in conversations/data 

Twitter Social Media 
Microblogging  

- Data can be collected for free in real  
- time through the Twitter API  
- Original posts are mostly independent 

providing separate observations  
- High volume of raw data  

- Relevant data is mixed with larger volumes of 
irrelevant data, requiring multiple filtering steps  

- Expensive to obtain tweets retrospectively 
without a research account  

- The retweet function and trending topics can 
distort the signal, preventing balanced impact 
analysis 

Kerala Rescue Rescue Request 
Platform  

- Data was publicly accessible  
- Requests were highly structured  
- High relevance as the platform was 

created for the 2018 flood - High volume  

- Created during the flood so difficult to determine 
the extent of adoption  

- One-off platform so cannot be relied on for future 
events 

Rebuild Kerala Government Housing 
Damage Data  

- Highly structured  
- Data is reliable as the surveys were 

verified by government volunteers  

- Surveys were manually collected post-event over 
the following months, expending significant 
human effort  

- The platform only measures one impact type 
(property damage)  
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A. Appendix 

A.1. 

Keywords for filtering tweets. Tweets were omitted from analysis if they did not contain any of the words in either list.   

Flood Terms landslide, flood, rain, storm, water, boat, drown, dam, disaster, weather 
Kerala Rescue Derived 

Terms 
stuck, please, help, stranded, rescue, trapped, family, emergency, families, terrace, urgent, location, kid, pregnant, homeless, baby, 
old, elderly, immediate, evacuation, child, father, mother, aunt, uncle, brother, sister, friend, evacuate, pray, death, relief  

A.2. 

Correlation between district and taluk population and the flood signal from the four platforms (Figs. 2 and 3). The weak corre-
lations are not statistically significant, showing that the levels of observed activity related to floods is not explained by underlying 
variation in population density across taluks/districts.    

Pearson’s R P Value 

Taluk Population District Population Taluk Population District Population 

Telegram − 0.0145 0.2244 0.9004 0.4406 
Twitter − 0.0104 0.2223 0.9285 0.4449 
Kerala Rescue − 0.1350 0.0861 0.2417 0.7697 
Rebuild Kerala − 0.0389 0.1648 0.7371 0.5734  
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