
Yazdani, D, Yazdani, D, Blanco-Davis, E and Nguyen, TT

 A survey of multi-population optimization algorithms for tracking the moving
optimum in dynamic environments

http://researchonline.ljmu.ac.uk/id/eprint/23718/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Yazdani, D, Yazdani, D, Blanco-Davis, E and Nguyen, TT (2024) A survey of
multi-population optimization algorithms for tracking the moving optimum
in dynamic environments. Journal of Membrane Computing. ISSN 2523-
8906

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Vol.:(0123456789)

Journal of Membrane Computing
https://doi.org/10.1007/s41965-024-00163-y

REVIEW PAPER

A survey of multi‑population optimization algorithms for tracking
the moving optimum in dynamic environments

Delaram Yazdani1 · Danial Yazdani2 · Eduardo Blanco‑Davis1 · Trung Thanh Nguyen3

Received: 25 April 2024 / Accepted: 17 June 2024
© The Author(s) 2024

Abstract
The solution spaces of many real-world optimization problems change over time. Such problems are called dynamic opti-
mization problems (DOPs), which pose unique challenges that necessitate adaptive strategies from optimization algorithms
to maintain optimal performance and responsiveness to environmental changes. Tracking the moving optimum (TMO) is
an important class of DOPs where the goal is to identify and deploy the best-found solution in each environments Multi-
population dynamic optimization algorithms are particularly effective at solving TMOs due to their flexible structures and
potential for adaptability. These algorithms are usually complex methods that are built by assembling multiple components,
each of which is responsible for addressing a specific challenge or improving the tracking performance in response to changes.
This survey provides an in-depth review of multi-population dynamic optimization algorithms, focusing on describing these
algorithms as a set of multiple cooperating components, the synergy between these components, and their collective effec-
tiveness and/or efficiency in addressing the challenges of TMOs. Additionally, this survey reviews benchmarking practices
within this domain and outlines promising directions for future research.

Keywords  Dynamic optimization problems · Tracking the moving optimum · Multi-population optimization algorithms ·
Benchmarking

1  Introduction

Dynamic optimization problems (DOPs) evolve over time,
causing changes in their search spaces [1]. These changes
can be influenced by various factors, such as evolutionary
processes within the algorithm, variable interactions, spon-
taneous environmental changes, or time-linkage effects,
where current solutions impact future problem states [2, 3].
These problems are common across numerous real-world
scenarios, including energy management systems for hybrid
electric vehicles [4], dynamic scheduling issues [5, 6], and
dynamic trajectory optimization tasks [7–9]. Within these
dynamic scenarios, the efficiency of previously optimal solu-
tions can significantly decrease after environmental changes.
This requires the application of dynamic optimization algo-
rithms (DOAs) that excel in detecting and adapting to chang-
ing optima over time [10–12].

DOPs are categorized by several factors, including
whether their search spaces are continuous [13] or discrete
[14], aimed at single [15] or multiple objectives [16–18], and
whether they focus on tracking optimal solutions or finding
solutions robust to upcoming environmental changes [19,

Danial Yazdani, Eduardo Blanco-Davis and Trung Thanh Nguyen
are equal contributing to this work.

 *	 Trung Thanh Nguyen
	 T.T.Nguyen@ljmu.ac.uk

	 Delaram Yazdani
	 delaram.yazdani@yahoo.com

	 Danial Yazdani
	 danial.yazdani@gmail.com

	 Eduardo Blanco‑Davis
	 E.E.BlancoDavis@ljmu.ac.uk

1	 Faculty of Engineering and Technology, Liverpool
Logistics, Offshore and Marine (LOOM) Research Institute,
Liverpool John Moores University, Liverpool L3 3AF,
United Kingdom

2	 Faculty of Engineering & Information Technology,
University of Technology Sydney, Ultimo 2007, Australia

3	 Faculty of Engineering and Technology, Liverpool Logistics,
Offshore and Marine (LOOM) Research Institute, Liverpool
John Moores University, Liverpool L2 2ER, United Kingdom

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-024-00163-y&domain=pdf

	 D. Yazdani et al.

20]. While several surveys offer reviews of different DOP
types, encapsulating multiple categories within a single
review [1, 10, 11, 21], others dedicate their focus to a spe-
cific type of DOPs. Numerous surveys have reviewed vari-
ous types of DOPs, including multiple categories within one
study [1, 10, 11, 21]. In contrast, other surveys focus on a
specific type of DOP, aiming for a more in-depth exploration
and detailed insights, such as those on robust optimization
over time (ROOT) [22, 23], multi-objective DOPs [16, 17,
24], combinatorial DOPs [14], and continuous single-objec-
tive DOPs [15, 25]. Additionally, some surveys concentrate
on algorithmic or benchmarking aspects, with topics cover-
ing dynamic benchmark generators [26], self-adaptive meth-
ods for solving DOPs [27], and hyper-heuristics for DOPs
[28].

Single-objective unconstrained continuous DOPs with the
goal of tracking the moving optimum (TMO) represent a
widely studied area with an extensive body of literature.
The mechanisms and methods developed for addressing this
specific type of DOP can be readily adapted and extended
to address various other DOPs, such as ROOT [29] and
constrained DOPs [30]. In this survey, we focus on single-
objective unconstrained continuous DOPs which can be for-
mulated as follows:

where x is a d-dimensional solution within the search space
� . The objective function is denoted as f, influenced by
a vector of time-dependent control parameters � , which
can trigger changes in the search space. The time index is
t ∈ [0, T] . The TMO literature mainly focuses on scenarios
where environmental changes happen at discrete time inter-
vals, that is, t ∈ {1,… , T} . In the context of a problem fea-
turing T environmental states, it is assumed that there exists
a sequence of T stationary environments. In the literature, it
is commonly presumed that successive environmental states
share a degree of similarity, a characteristic that is often
observed in real-world problems [3, 31]. The dynamic objec-
tive function f (t)(x) across T environments can be restruc-
tured as follows:

The main objective in TMO is to find and deploy the opti-
mum solution in each environment t.

The two-part survey in [15, 25] focuses on this specific
class of DOPs. DOAs are typically constructed by combin-
ing multiple components to address the unique challenges
posed by TMOs, thus enhancing and accelerating the opti-
mization process in response to each environmental change.

(1)f (t)(x) = f
(
x,�(t)

)
, x = {x1, x2,⋯ , xd}, x ∈ �

(2)
Maximize ∶f (t)(x) =

{
f (x,�(k))

}T

k=1

=
{
f (x,�(1)), f (x,�(2)),… , f (x,�(T))

}
.

Existing classifications [1, 11, 21] for DOAs are basically
performance-based, which can lead to significant overlap,
with a single algorithm potentially falling into multiple cat-
egories. Additionally, these classifications may not compre-
hensively cover essential components such as convergence
detection and computational resource allocation. To address
these issues, the survey in [15] proposes a comprehensive
taxonomy for the components of DOAs. By utilizing a com-
ponent-based taxonomy, the survey aims to achieve a clearer
categorization of the different components of DOAs, effec-
tively reducing overlaps. These components include:

Population management:
Includes strategies for organizing and managing the
population, incorporating multi-population approaches
that utilize multiple subpopulations to explore differ-
ent regions of the search space and maintain exploration
capability [13, 32].
Explicit Memory:
Includes storing information from past environments,
such as the locations of promising regions, to accelerate
the optimization process in new environments by utilizing
historical data [33].
Diversity Control:
Concerns strategies to manage the diversity within a
population, divided into global diversity control (aiming
to maintain exploration capabilities) and local diversity
control (aiming to boost exploitation efforts in areas of
promise) [34–36].
Convergence Detection:
Refers to methods for determining if a population or sub-
population has converged on a promising area [37, 38].
Environmental Change Detection:
Covers methods for detecting changes in the environment
[39, 40].
Static Optimization:
Comprises various optimization algorithms originally
designed for static environments [10, 11]. When com-
bined with the components mentioned previously, these
optimization techniques are effective at navigating the
unique characteristics, requirements, and challenges
posed by DOPs.

In [15, 25], the authors review and explain the methods
of how each component works. However, discussing each
component separately makes it hard to understand how they
come together to form DOAs. This approach may prevent
readers from seeing how these parts interact as a unified
whole. Each DOA involves complex interactions among dif-
ferent components, and understanding these interactions is
essential for fully understanding DOAs.

Identifying this critical gap, our survey aims to provide
a detailed review of DOAs in their entirety, emphasizing

A survey of multi‑population optimization algorithms for tracking the moving optimum in dynamic…

the cohesive interaction among their components for solv-
ing TMOs. This approach aims to offer a bird’s-eye view,
facilitating a deeper understanding of the construction and
operational dynamics of DOAs. By reviewing the collec-
tive functionality and connection of components as a unified
system, we aim to equip researchers with a more comprehen-
sive insight into the architectural structures of DOAs, thus
enhancing their understanding of the design and effective-
ness of DOAs in tackling dynamic optimization challenges.

Based on the classification outlined in existing surveys
[10, 11, 15] in the field, DOAs for TMO can be categorized
into single-, bi-, and multi-population algorithms. Among
these, multi-population algorithms stand out as the current
state-of-the-art in navigating the complexities of TMO in
dynamic environments. While this survey focuses on multi-
population algorithms, it is important to distinguish these
from co-evolutionary and divide-and-conquer strategies.
Multi-population algorithms explore different regions of the
search space with several subpopulations that may interact
through information exchange. Co-evolutionary algorithms
also use multiple populations but emphasize their interac-
tions through competition or cooperation, crucial for prob-
lems with interdependent components [41]. Thus, multi-pop-
ulation algorithms can be seen as a subset of co-evolutionary
approaches when such interactions are present. In contrast,
divide-and-conquer strategies solve a problem by breaking it
into smaller, independent subproblems and combining their
solutions [42].

Multi-population algorithms are proven to be effective
and widely utilized for solving TMOs. Their prominence
can be attributed to their inherent flexibility in incorporating
multiple diverse components, their compatibility with vari-
ous optimization strategies, and their capacity to enhance or
preserve diversity by managing multiple populations simul-
taneously [13]. Given these compelling attributes, this sur-
vey narrows its focus to multi-population DOAs (mDOAs),
on explaining how these advanced algorithms benefit from
their complex structures and diverse components to address
TMO challenges.

In this survey, we explain the mDOAs by describing
their components and illustrating how these components
are assembled to build an mDOA framework. Our analysis
utilizes the component classification proposed in [15], with
Fig. 1 serving as a visual guide. For a more in-depth under-
standing of these classifications, we refer readers to [15].
To improve readability, we categorize the explanation of
algorithms based on two distinct factors rather than introduc-
ing a new taxonomy. These factors ensure that algorithms
within one category do not overlap with those in another.
The two factors considered are the nature of the subpopula-
tions and the population size. In Sects. 2 and 3, we catego-
rize the algorithms according to whether their subpopula-
tions shows homogeneity (i.e., are identical to each other) or

heterogeneity, and by whether the population size remains
constant or varies over time.

Moreover, this survey reviews the benchmarking methods
used for evaluating the performance of mDOAs. We describe
the commonly used and state-of-the-art dynamic benchmark
generators and performance indicators. Concluding our sur-
vey, we explore potential avenues for future research, aiming
to inspire continued advancements in the field.

The rest of this survey paper is organized as follows:
Sect. 4 reviews dynamic benchmark generators commonly
used in the TMO literature, alongside well-known per-
formance indicators. It also explores the applications of
mDOAs in real-world problems. Section 5 outlines poten-
tial future research directions in the field. Finally, Sect. 6
concludes this survey.

2 � mDOAs with homogeneous
subpopulations

Homogeneous subpopulations imply that all subpopu-
lations are identical to each other [15]. This uniformity
means that they all use the same optimizer and parameter
settings. Additionally, they share identical tasks and roles.
Furthermore, all subpopulations have an equal number of
members. Homogeneous subpopulations are often uti-
lized in multi-population DOAs that use the indices of
individuals to form subpopulations [13, 43] and in those
that employ clustering methods where the number of indi-
viduals is predefined as an input parameter [44–46]. The
population size of mDOAs can either remain constant or
be adjusted by replacing or generating subpopulations
that resemble the existing ones. In the following, mDOAs
with homogeneous subpopulations are described in detail.
For further clarification, we categorize them based on
whether the overall population size is modified or remains
unchanged during the process.

2.1 � Homogeneous mDOAs with constant
population size

Some mDOAs employ index-based clustering methods to
create subpopulations, leading to homogeneity among these
subpopulations. Blackwell and Branke [47] introduce two
mDOAs: mCPSO and mQSO, where the population divided
into subpopulations based on the index of the individuals,
and both the number of subpopulations and their sizes are
predetermined. To enhance global diversity, these mDOAs
utilize an exclusion method, randomizing redundant subpop-
ulations when the Euclidean distance between the best-found
positions of any two subpopulations falls below a predefined
threshold rexcl . Meanwhile, local diversity is preserved over
time in mCPSO by employing charged particles [35], and in

	 D. Yazdani et al.

mQSO, through the use of quantum particles within a radius
around each sub-population’s best-found position. Addition-
ally, a classic round-robin approach ensures the equitable
distribution of computational resources among subpopula-
tions. To adapt to environmental changes, the algorithms
detect changes by reevaluating the best positions within
each subpopulation and respond by updating their memory.

Further enhancements to these mDOAs in [13] have intro-
duced an anti-convergence method, aimed at increasing
global diversity by randomizing the worst-performing sub-
populations once convergence is achieved. The convergence
is determined when the maximum distance along any dimen-
sion between individuals within a subpopulation falls below
a predefined threshold.

Components of Multi-population
Optimization Algorithm in Dynamic

Environments

Managing Population

Diversity Loss Handling

Explicit Memory

Convergence Dete ction

Population Size and
Number of the
Subpopulations

Homogeneity of
Subpopulations

Methods of
popu lation cluste ring

Cluste ring frequency

Controlling
Comp utational

Resources

Both constant

Both changeable

Constant population size and changeable
number of subpopulations

Heterogeneous

Homogeneous

By position and tness value

By dividing the search space

By index

At some speci points of time

Highly frequent

Using a local search operator around the
best found position

Performance based subpopulation selection

Subpopulation size control

Deactivation converged subpopulations

Round robin/ Parallel

Local diversity Increasing local diversity afte r
environmental change

Maintaining over time

Prediction

Randomization in a
limited area

Global diversity

Randomizing redundant subpopulations /
individuals

Maintaining global diversity overtime

Other

Randomization afte r environmental change

Randomizing converged subpopulations

Others/hybrid

Spatial size
monitoring

Fitness monitoring

Environmental Change
Detection Fitness monitoring

based method

Reevaluation based
method

Static Optimization Evolutionary
compu tation

Local search

Swarm intelligence

Fig. 1   Classification of the components of mDOAs [15]

A survey of multi‑population optimization algorithms for tracking the moving optimum in dynamic…

The mDOA proposed in [43], DynDE, introduces a multi-
population structure with predetermined member counts in
each subpopulation and a fixed number of subpopulations. It
utilizes the exclusion method outlined in [13] to randomize
redundant subpopulations, thus increasing global diversity.
To preserve local diversity over time, DynDE employs three
methods: the use of quantum individuals [47], the incorpora-
tion of Brownian individuals with a Gaussian distribution,
and the implementation of entropic models that introduce a
Gaussian step in each iteration. Moreover, an equal distribu-
tion of computational resources among subpopulations is
achieved through the classic round-robin method, ensuring
that all subpopulations receive an equitable share of compu-
tational resources. The algorithm has been further enhanced
as detailed in [48] by utilizing two methods for managing
computational resources. The first method adjusts the size of
subpopulations by a migration strategy, effectively reallocat-
ing more individuals to better-performing subpopulations
and transferring individuals from inferior ones. The second
method implements a prioritization mechanism, focusing all
computational resources on higher performing subpopula-
tions for a given iteration, while temporarily deactivating
inferior ones. This prioritization is based on the fitness value
of the best-found position within a subpopulation.

Brest et al. [49] introduce a mDOA that adopts the same
multi-population structure as described in [47], employ-
ing several methods to effectively manage global diversity.
First, it randomizes redundant, inferior subpopulations that
overlap by utilizing an exclusion method similar to [47],
but with a modification wherein the exclusion radius is a
fixed, user-defined number. Secondly, the algorithm includes
an aging-based method to introduce additional randomiza-
tion among individuals or subpopulations. If the age of a
non-best individual exceeds a predetermined threshold, it
is randomized with a specified probability. Similarly, if the
best individual of a subpopulation ages beyond a different
threshold, the entire subpopulation is randomized, also with
a specified probability. Moreover, if the distance between
the individual and the best individual within a subpopula-
tion is less than another threshold, the individual itself is
randomized. Note that there are two modes for the location
of randomization. Individuals can be randomized across the
search space or around one of the best found positions in the
previous environments, which are stored in explicit memory.
Computational resources are evenly distributed among sub-
populations through the application of a classic round-robin
method. The algorithm detects a change by reevaluating the
best found position within each subpopulation and responds
by reevaluating all solutions to address outdated memory,
and storing the best found position of each subpopulation in
explicit memory from the previous environment.

Plessis and Engelbrecht [50] propose an improved ver-
sion of the DynDE algorithm [43], with some modifications.

Herein, to maintain local diversity over time, Brownian indi-
viduals [43] are used. Additionally, the exclusion method
has been modified to address the challenge of differentiat-
ing between subpopulations located in the same promising
regions or in extremely close ones. This method involves
finding the midpoint between the best positions of overlap-
ping sub-populations. If the fitness of this midpoint is worse
than that of the best positions of both sub-populations, then
neither sub-population should be re-initialized; otherwise,
the inferior subpopulation is randomized to increase global
diversity. Furthermore, the allocation of computational
resources is managed by prioritizing subpopulations based
on performance. First, all subpopulations run for two itera-
tions, during which the improvement in fitness of the best
position is calculated. Then, the difference between the fit-
ness of the best position of a subpopulation and the worst
best-found fitness among all sub-populations is considered.
Based on these two factors, performance is assessed. In each
iteration, only the subpopulation with the highest perfor-
mance is activated and allowed to continue, ensuring effi-
cient use of resources until another subpopulation demon-
strates superior potential.

In [51], an mDOA is introduced, similar to the approach
found in [13]. This approach involves a fixed number of
subpopulations, each maintaining a set population size. To
ensure local diversity during iterations, two randomiza-
tion methods are employed. First, randomization around
each individual, and secondly, a Levy distribution-based
approach. Moreover, global diversity is enhanced through
three randomization methods. The first method involves
randomizing converged non-best subpopulations, which
are identified by observing each member’s fitness pro-
gress over a set period. A subpopulation is considered to
be converged if its members fail to demonstrate signifi-
cant progress within this duration. Second, individuals that
have not shown sufficient improvement within a certain
number of iterations are randomized. Third, redundant
subpopulations are randomized through the exclusion
method [13], wherein inferior overlapping subpopulations
are randomized.

Zuo and Xiao [52] also utilize a multi-population
approach similar to [13]. The proposed mDOA uses explicit
memory to store and retrieve solutions. After a change
occurs, a predefined number of individuals within a sub-
population are replaced with the stored solutions, while the
remaining members are randomized, leading to increased
global diversity. Furthermore, fair distribution of com-
putational resources among subpopulations is achieved
through the classic round-robin method. Change detection
is facilitated by reevaluating the best-found position of each
subpopulation.

The mDOA presented in [53] utilizes a multi-population
method with a constant number of subpopulations. The

	 D. Yazdani et al.

local diversity of each subpopulation is preserved over time
through randomizing individuals within a self-adaptive
radius from the best individual within the subpopulation,
termed as quantum individuals. In the proposed mDOA,
change is detected by reevaluating the best individual in the
entire population.

Vafashoar and Meybodi [54] propose a multi-population
approach with a fixed number of subpopulations. In the pro-
posed mDOA, the global diversity is increased in three ways.
Firstly, by employing an anti-convergence method that ran-
domizes converged subpopulations during the environment,
noting that the algorithm benefits from explicit memory to
archive the best-found position before randomization. Sec-
ondly, after each environmental change, individuals within
each sub-population with fitnesses below the median of
the sub-population’s fitnesses are randomized. Thirdly, by
randomizing redundant subpopulations through exclusion
method [13]. The convergence of a subpopulation in the
proposed mDOA, is determined by monitoring the fitness
of its best-found position; if there is no improvement for a
predefined iteration, it is considered the subpopulation is
converged. Through the classic round robin method, com-
putational resources are distributed evenly among subpop-
ulations. The change detection component operates by re-
evaluating the best individual of each sub-population at each
generation. For change reaction, the best individual of each
sub-population is added to explicit memory. Additionally,
the median fitness of the individuals in each sub-population
is calculated, and those with fitness worse than the median
are randomized across the search space before all individuals
are re-evaluated.

Novoa et al. [55], propose an mDOA with an adaptive
number of subpopulations, while maintaining the overall
size of the population and the number of members constant.
The local and global diversity both increase after an envi-
ronmental change through a grouping strategy. After each
environmental change, individuals in each sub-population
are sorted and divided into three predefined groups. The
best group’s individuals retain their previous positions. The
second group’s individuals are randomized around the best-
found position using a Gaussian distribution to enhance local
diversity. The last group, containing the worst individuals of
the sub-population, is randomized across the search space
to boost global diversity. Additionally, this algorithm incor-
porates exclusion and anti-convergence methods from [13]
to further increase global diversity through the randomiza-
tion of subpopulations. Computational resources are man-
aged by deactivating low-quality subpopulations that have
converged, based on a specific convergence determination
rule. The quality of each subpopulation is assessed using a
fuzzy decision rule, considering various factors, including
the best fitness value, the average fitness of all sub-popula-
tions, and the fitness of each individual sub-population. If a

subpopulation is considered converged and of low quality,
without any recent environmental change, it is temporar-
ily deactivated until the next environmental change occurs.
Detect a change is by reevaluating the best-found position
among all subpopulations. This is followed by a reaction that
includes reevaluating all solutions to ensure the memory is
updated.

In the mDOA proposed in [56], a fixed number of sub-
populations are formed according to the division of the
search region. This involves a master node as a controller
and several slave nodes. The master node first scans the
entire search space and, depending on the number of slave
nodes, generates population bounds. The search space and
bounds are evenly divided, and within these bounds, random
individuals are generated until each sub-population reaches
a predetermined size. To maintain global diversity, the algo-
rithm employs two methods: reinitialization based on suc-
cess rate and a population aging mechanism. For the first
method, if a sub-population is ineffective in finding better
solutions, indicated by its success rate, it is reinitialized with
random individuals. For the second method, a predefined
threshold value as population age is set, and if a sub-pop-
ulation does not contribute to finding better solutions after
this period, it is re-initialized with random individuals. The
algorithm also benefits from two explicit memories. The first
memory, collects the best individuals from all sub-popula-
tions, while the processed results, representing the optimal
solutions up to the current iteration, are stored in second
memory. These stored information are used under certain
conditions. First, when an environmental change is detected,
the algorithm uses historical information to quickly adapt
to the changes. Second, when sub-populations are reinitial-
ized, the historical information may be used to ensure that
the new individuals generated are not just random but are
somewhat informed by past successes. To detect an envi-
ronmental change, some test points are reevaluated at each
iteration, which are randomly selected individuals from the
population. If there is a difference in the fitness of the chosen
test points between iterations, a change is happen.

2.2 � Homogeneous mDOAs with varying population
size

Blackwell [57] introduces AmQSO, an adaptive version
of the mQSO algorithm proposed in [13]. In AmQSO, the
number of individuals within each subpopulation remains
constant, but the number of subpopulations can dynami-
cally vary over time, leading to a flexible overall population
size. Initially, AmQSO starts with a single population. As
it converges, additional subpopulation is initialized. Once
multiple subpopulations exist, they must all converge before
a new one can be added. The anti-convergence method [13]
is removed here, as the algorithm’s adaptation in the number

A survey of multi‑population optimization algorithms for tracking the moving optimum in dynamic…

of subpopulations to discover promising regions enhances
global diversity. Similar to [13], local diversity is maintained
over time using quantum particles [47]. AmQSO employs
the exclusion method [13] with modifications, opting to
remove the inferior subpopulation in case of a collapse
instead of randomizing it. This modification saves compu-
tational resources and prevents unnecessary exploitation and
overcrowding. The allocation of computational resources
among subpopulations follows a classic round-robin method,
ensuring fairness. As part of AmQSO, detecting a change
involves reevaluating the best-found position of the entire
population, followed by reevaluating all solutions to update
outdated memory.

Rezazadeh et al. [58] introduce an mDOA where the
number of subpopulations adjusts adaptively to the discov-
ered promising regions. Global diversity is enhanced by ini-
tializing new subpopulations. To achieve this, if the count of
non-converged subpopulations falls below a certain thresh-
old, a new subpopulation is initiated. However, there is an
upper bound for the maximum number of subpopulations. If
the count exceeds this threshold, the worst subpopulations
are removed until their number reaches the maximum limit.
This strategy of controlling the number of subpopulations
helps prevent overcrowding and minimizes the wastage of
computational resources. In the proposed mDOA, the local
diversity is increased under certain conditions during the
optimization process by modifying the core optimizer rule.
The mDOA introduced in [58] has been further improved
in [59]. This enhancement addresses the issue of diversity
loss after environmental changes. When a change occurs, the
sub-populations are divided into two groups, the better and
worse ones. The individuals in the better sub-populations
are randomized around their best-found positions to increase
local diversity. Meanwhile, those in the worse sub-popu-
lations are randomized across the search space to enhance
global diversity. Moreover, two methods are employed to
manage computational resources. First, by deactivating sub-
populations with velocity vectors below a certain thresh-
old for a set number of iterations. Secondly, by allocating
additional computational resources to the best-performing
subpopulation. This is achieved by performing a local search
around the best-found position among all subpopulations in
each iteration.

The mDOA proposed in [60] uses a population structure
similar to [61] which features an adaptive number of subpop-
ulations. Global diversity is increased by initializing a new
subpopulation whenever all current subpopulations have
converged. A subpopulation is considered converged when
the longest Euclidean distance between any pair of individu-
als in a subpopulation is less than a threshold. Local diver-
sity is enhanced after an environmental change by modifying
the rules of the core optimizer. To manage computational
resources more effectively, more resources are allocated for

the best found position among all subpopulations through
performing a local search around it.

An adaptive mDOA is introduced in [62], utilizing a
population management approach similar to [61], where ini-
tially, there is a single population exploring the search space,
and as this population converges, a new subpopulation is
generated and introduced to explore other regions. The con-
vergence of a subpopulation is determined by comparing the
best position found in the current iteration with predefined
previous iterations, indicating convergence if the difference
is below a certain threshold. This mechanism enables the
number of subpopulations to adaptively change based on
the discovered promising regions, thus increasing the global
diversity. Local diversity is enhanced after an environmental
change by randomizing non-best individuals around the best
individual within a radius. To effectively manage computa-
tional resources, more resources are allocated to the best-
performing subpopulation, and by reevaluating a single indi-
vidual, a change is detected. The proposed mDOA has been
further improved in [63], first by utilizing the method for
controlling fitness resources through deactivating converged
subpopulations from [64], and second by detecting changes
through the reevaluation of the best-found positions of each
subpopulation rather than one.

Plessis and Engelbrecht [65] introduce a multi-population
structure adapted from the AmQSO [61], wherein the num-
ber of subpopulations is adaptive, and the overall population
size can change. This adaptability ensures the preservation
of global diversity. Local diversity is maintained over time
by utilizing the Brownian individuals [50]. To effectively
manage fitness resources, the algorithm employs two strat-
egies. First, an improved version of the resource alloca-
tion method from [50] is added, using a penalty value in
each sub-population’s performance measurement, which
decreases when there is no improvement in their best-found
position from previous iterations. The second method is a
modified version of the exclusion from [50], where instead
of randomizing the inferior subpopulation, it removes that
subpopulation to prevent the unnecessary consumption of
computational resources. In the proposed mDOA, the con-
vergence status of a subpopulation is determined based on
the fitness monitoring of the best-found position. If fitness
does not improve from the last predefined iteration, it is con-
sidered to have converged. By re-evaluating the best indi-
viduals of each sub-population an environmental change is
detected.

The proposed mDOA in [66] has been improved in [67].
The approach to population handling changed, allowing the
overall population size to adaptively change. This adjust-
ment is made by comparing the number of overall individu-
als, which meets the increasing global diversity condition, to
the previously met condition. The increasing global diversity
condition is defined based on a time period parameter. If the

	 D. Yazdani et al.

ratio of the difference between the number of subpopulations
in the current fitness evaluation and the current fitness evalu-
ation itself is less than a threshold, the mDOA will initiate a
diversity-increasing process. Herein, if there are more indi-
viduals than the previous count, new individuals are reini-
tialized. If the number is less but the difference exceeds a
threshold, some individuals are removed to decrease the
population. If the number remains the same, the population
size is maintained, and no changes are made.

Qin et al. [68] introduce a multi-population algorithm
with an adaptive number of subpopulations. The number of
individuals within subpopulations is fixed; however, due to
adaptability, the overall population size can vary. Subpopula-
tions can be either active or inactive. Initially, the algorithm
starts with one active subpopulation to explore the search
space. Upon convergence, it becomes inactive, and a new
active subpopulation is created, which will maintain global
diversity over time. An active subpopulation is considered
converged by monitoring its spatial size, particularly when
the average distance of its individuals from its best-found
position is less than a predefined threshold. Inactive sub-
populations remain deactivated until the environment ends,
thus preventing overexploitation and conserving computa-
tional resources. Another method to avoid computational
resource wastage is by removing redundant subpopulations
when a new active subpopulation enters the search range of
an inactive one, and the one with inferior best-found fitness
is removed. After an environmental change, local diversity is
enhanced by reactivating inactive subpopulations and rand-
omizing subpopulation members around the best-found indi-
vidual within the subpopulation. A detection subpopulation
is employed to identify changes, separate from the active
and inactive subpopulations. Each iteration re-evaluates each
individual of the detection subpopulation, and a difference
in fitness signifies a change.

3 � mDOAs with heterogeneous
subpopulations

Heterogeneous subpopulations in mDOAs differ in various
aspects, such as optimization components, parameter set-
tings, tasks, or roles [15]. For example, in some mDOAs
that use the parent–child approach [69], subpopulations are
heterogeneous, with some dedicated to exploring the search
space to find promising regions and others focusing on
exploiting these discovered regions [64]. These subpopula-
tions usually vary in size. Additionally, they may utilize dif-
ferent core optimizers [70]. Clustering methods that use the
position and/or fitness of individuals (e.g., k-means [71] and
Nearest Better Clustering [72]) often result in heterogeneous
subpopulations, forming groups with different member sizes.
The overall number of individuals in these mDOAs may

either vary throughout the optimization process or remain
constant. In the following, the components of mDOAs that
have heterogeneous subpopulations are described in details,
and they are categorized based on the modification of the
population size.

3.1 � Heterogeneous mDOAs with constant
population size

Biswas et al. [73] introduce an mDOA that utilizes a posi-
tion-based clustering method to form subpopulations using
the k-means algorithm. Clustering occurs at the beginning
of each environment, and the number of subpopulations
remains fixed. An explicit memory is employed to store
the best-found position of converged subpopulations before
randomization in the proposed mDOA. Subpopulation con-
vergence is determined by the average Euclidean distance
of its members to the center, which represents the average
position of all members. These stored positions in explicit
memory serve a crucial role, as they are utilized to replace
the worst individuals within the population after an envi-
ronmental change. Furthermore, local diversity is enhanced
after a change by adding a random number generated from
a normal distribution to the positions of all individuals.
Computational resources are allocated fairly among sub-
populations by employing the classic round-robin method.
Additionally, the change detection mechanism involves
re-evaluating a single individual to identify environmental
changes accurately.

Moradi et al. [71] suggest a clustering multipopulation
approach that relies on k-means algorithm which use the
position of the individuals. At the start of each environment,
this clustering technique creates diverse sub-populations.
The number of sub-populations and the overall population
size remain constant throughout the process. To enhance the
algorithm’s performance, an explicit memory is employed.
This memory is initialized alongside the population using
a Logistic Chaotic function and is updated every random
number of iterations. The update process involves calculat-
ing the center of all sub-populations and determining the
closest sub-population center for each archived solution in
the explicit memory. Any memory solutions that are farthest
from their closest sub-population center are replaced with
new entries. Updating the population includes finding the
center of clusters, assigning all individuals to their nearest
cluster centers, and replacing the individual farthest from
its corresponding cluster center with the best explicit mem-
ory solution of that cluster. If a cluster does not have any
members, a nearest memory solution is chosen for replace-
ment. The algorithm also maintains local diversity over
time through the modification of optimizer rules. Detecting
change involves re-evaluating a randomly chosen individual

A survey of multi‑population optimization algorithms for tracking the moving optimum in dynamic…

and a change reaction that updates the explicit memory, re-
evaluates the archived solutions, and retrieves memory.

Oppacher and Wineberg [74] introduce a multi-popu-
lation algorithm, SBGA, inspired by the Shifting Balance
Theory. This algorithm begins with a large central popula-
tion known as the Core Group, responsible for exploitation.
To explore the search space and increase global diversity, the
Core Group generates subpopulations, referred to as colo-
nies, by distributing individuals. The number of colonies is
variable and controlled by the Core Group. To prevent over-
lap between colonies and between colonies and the Core, the
algorithm employs an exclusion method based on Hamming
distance, pushing individuals of redundant colonies away if
they lie within the search region of the Core Group, which
also improves global diversity. Computational resources are
evenly allocated among subpopulations using the classic
round-robin method.

The Self-Organizing Scouts (SOS) algorithm, introduced
in [75], employs a multi-population approach wherein the
overall population size remains constant; however, the num-
ber of subpopulations and the members within each can vary.
The algorithm starts with a single explorer population as
the parent. Upon discovering a new promising region, some
individuals split off to form a child population as exploiters.
Resource allocation is managed through two methods: one is
setting a threshold for the number of exploiters. If this num-
ber is reached, the least effective exploiter is removed. Sec-
ondly, by prioritizing better exploiters, more individuals are
allocated to them. Utilizing an exclusion method increases
the global diversity by randomizing the redundant subpopu-
lations. If any individuals from the explorer population are
found within an exploiter search space, they are randomly
relocated to positions outside the exploiter search range.
Furthermore, if the best individual of an exploiter is within
the search space of another exploiter, it will be removed.
Each child subpopulation exploits a hyper-ball search space
with a specific diameter centered around its best individual,
thus maintaining local diversity over time. In the proposed
mDOA, there is no component for detecting changes, and
all individuals are updated frequently to prevent outdated
memory.

In [76], a mDOA is proposed, utilizing species-based
clustering based on both position and fitness. Clustering
occurs at every iteration. While the total population size
remains constant, the number of subpopulations varies. The
clustering procedure initiates by sorting individuals accord-
ing to their fitness values. The individual with the best fit-
ness is selected as the initial seed. This seed, along with
any subsequent seeds, is stored in a seed set, denoted as S,
while a non-seed set, M, remains empty at the start. Each
individual in the sorted list is evaluated against the seeds in
S: if its Euclidean distance to all seeds in S is greater than a
predefined threshold, it is added to S; otherwise, it is placed

in M. After the entire sorted list has been processed, individ-
uals in M are assigned to their nearest seed in S, determined
by Euclidean distance. Global diversity is enhanced in two
ways. Firstly, redundant individuals are randomized when
overlap between subpopulations occurs; they are merged
using an exclusion method. If the number of individuals sur-
passes a specific threshold, the inferior ones are randomized.
This randomization also happens post-clustering if a subpop-
ulation becomes overly large. Secondly, solo seeds without
any members after clustering are randomized. Utilizing a
traditional round robin method, computational resources are
equally distributed among subpopulations.

Li et al. [77], introduce an enhanced version of the
mDOA from [76], named SPSO, by utilizing some key
modifications. Firstly, to enhance global diversity, it uti-
lizes an anti-convergence method from [13]. This method
randomizes the worst-performing converged subpopulation
when all subpopulations have converged. Subpopulation
convergence is defined as the maximum Euclidean distance
between the best individual and others, falling below a spe-
cific threshold. Secondly, for managing local diversity, the
algorithm utilizes quantum individuals [47] to ensure con-
tinual diversity maintenance. Moreover, when subpopulation
diversity falls below a predefined threshold, half of the non-
optimal individuals are transformed into quantum particles
within a defined radius to enhance local diversity. Lastly, the
algorithm adopts a reevaluation-based approach for the top
five best individuals of the entire population to detect envi-
ronmental changes. This approach has been further refined
in [61] with modifications to the SPSO components. In the
improved SPSO (iSPSO), local diversity control is adjusted
to be maintained only after environmental changes by con-
verting neutral individuals into quantum ones for a single
iteration, and the convergence status of subpopulations is
calculated differently using the Euclidean distance between
the two farthest individuals in each subpopulation.

The parent–child concept from [70] is utilized in [69],
where a mDOA is proposed with a variable number of
subpopulations but a fixed overall population size. In this
algorithm, once the explorer converges, determined by the
largest Euclidean distance between its individuals, it uses
some of its best individuals to form the exploiter subpopula-
tion, while the remaining individuals are randomized. This
post-convergence randomization of the explorer contributes
to increased global diversity. Additionally, the use of the
exclusion method [47] aids in enhancing global diversity
by randomizing redundant subpopulations in two situations.
First, by randomizing the inferior exploiter if two of them
enter into each other search range, and second, by randomiz-
ing the explorer if it gets closer to an exploiter than a pre-
defined threshold. Local diversity within each exploiter is
maintained over time by incorporating immigrant individu-
als that shows behavior similar to the quantum individuals

	 D. Yazdani et al.

[47]. Computational resources are equally distributed among
exploiters using the classic round robin method. By reevalu-
ating the best-found positions within each subpopulation,
changes are detected. This is followed by a response that
involves reevaluating all solutions to address outdated
memory.

Woldesenbet and Yen [78], introduce a mDOA that uti-
lizes a density-based clustering method [79] to form sub-
populations. This method clusters a fixed number of indi-
viduals based on their positions, where individuals within a
predefined threshold distance are connected to form groups.
These groups become subpopulations if their membership
exceeds a predefined lower bound threshold. Any individ-
ual not belonging to a group is assigned to the closest one.
This clustering process occurs after environmental changes,
resulting in varying subpopulation sizes. Local diversity is
increased after environmental changes through a variable
relocation method. This method monitors individual pro-
gress in terms of fitness and position, using this information
to estimate the severity of changes and adjust subpopula-
tion distributions accordingly. Computational resources are
distributed evenly among subpopulations using the classic
round robin approach. The algorithm detects changes by
reevaluating some individuals and responds by perform-
ing the variable relocation method on individuals, which
changes their positions.

Li and Yang [80] introduce a mDOA that uses a clus-
tering method on a fixed number of overall individuals at
the beginning of each environment. This clustering algo-
rithm starts with a randomized population, assigning each
individual a single neighbor based on Euclidean distance to
distribute them into sub-regions. Then, a bi-phase single-
linkage hierarchical clustering process occurs. The first
phase clusters individuals until each group has at least two
members, forming temporary sub-populations, while the
second phase refines these sub-populations based on dis-
tance and spatial size. Then, the neighborhood topology
shifts to a global star configuration, where the best indi-
vidual in each sub-population becomes the attractor. After
an environmental change, the best positions of each sub-
population is kept and the remaining individuals randomly
redistributed throughout the search space. This approach not
only enhances global diversity and exploration capability but
also avoids the loss of local diversity. By utilizing the mutual
exclusion method, if more than a predefined percentage of a
sub-population’s individuals lie inside the search region of
another sub-population, they will be merged. To effectively
manage computational resources, the converged subpopula-
tions are deactivated until the end of the environment. The
convergence of a subpopulation is determined by measuring
its spatial size, which is defined as the average distance of
all its members to the center.

The mDOA proposed in [80] has been further improved
in [81] with several modifications. First, an upper bound
limit is set for the maximum number of individuals in a
subpopulation. Second, the method used for clustering is
changed. Each individual initially forms its own cluster.
Then the Euclidean distances between all pairs of clus-
ters are calculated. Next, the closest clusters are identified,
ensuring that their combined population does not exceed
the specified upper limit, and are merged. After each merge,
the distances between all clusters are updated based on the
Euclidean distance between their closest individuals. This
iterative process continues until all clusters contain at least
two individuals. Third, after performing mutual exclusion,
if the number of individuals exceeds the upper bound, the
remaining inferior individuals are removed to prevent wast-
age of computational resources. Finally, a change detection
component is also incorporated to detect environmental
changes by reevaluating the best found position in each
subpopulation.

Turky and Abdullah [82] further modified the [81],
through two modifications. First, an explicit memory is
added to store the best-found positions of subpopulations
during convergence. The memory has a limited capacity,
and if full, it replaces the worst archived solutions with new
ones. Second, redundant individuals, through exclusion, are
not removed but replaced with a solution from the explicit
memory.

Daneshyari and Yen [83] introduce a mDOA where the
total number of individuals and the number of individuals
in each subpopulation are fixed. At the beginning of each
environment, clustering is performed using the k-means
algorithm. This method relies on the positions of the indi-
viduals, and the resulting subpopulations are distinct from
each other. A migration strategy, is performed after envi-
ronmental changes, aids in enhancing global diversity. By
modifying some rules of the subpopulations’ core optimizer,
local diversity is maintain over time. Equal distribution of
computational resources among subpopulations is achieved
through the classical round-robin method. The proposed
mDOA utilizes a cultural framework, which includes a
memory for storing information about individuals and pro-
cedures. By re-evaluating positions in the cultural memory,
changes can be detected. Change reaction involves re-evalu-
ating individuals to address the outdated memory issue and
boosting global diversity.

The mDOA proposed in [84] introduce a new method for
clustering individuals. This clustering is done at every itera-
tion and considers the position of the individuals to form
subpopulations. First, for each individual, a predefined num-
ber of close individuals, measured by Euclidean distance, are
connected to form a group. In this case, some individuals can
be members of multiple groups. If this occurs, the groups
with shared members will be merged, and the best individual

A survey of multi‑population optimization algorithms for tracking the moving optimum in dynamic…

among them becomes the cluster head. If two cluster heads
become closer than a predefined threshold, they also merge.
The total number of the individuals is fixed and there is a
limitation on the maximum number of subpopulations and
their members. Setting such thresholds controls the com-
putational resources by avoiding overcrowding. Hence, the
redundant inferior individuals or those from redundant sub-
populations are randomized, help enhance global diversity.
Allocation of computational resources among subpopula-
tions follows a classic round robin method to ensure equal
access.

Wang et al. [85] introduce a mDOA that employs a clus-
tering method based on the positions and fitness of indi-
viduals. While the number of subpopulations can vary, the
overall population size remains constant. In the proposed
mDOA, there are two ways to increase global diversity. The
first is by randomizing the converged subpopulations. To do
so, the best-found position of a converged subpopulation is
stored in explicit memory before the subpopulation is rand-
omized. Convergence status is defined based on the average
Euclidean distance of all members of a subpopulation to the
center of that subpopulation. The second method uses an
exclusion method to randomize redundant subpopulations.
This exclusion applies to the best position of a subpopula-
tion and the archived solutions in memory. If the Euclidean
distance between them falls below a specific threshold, the
subpopulation is randomized. To manage resource alloca-
tion, more resources are allocated to the best found posi-
tion among all subpopulations using a local search operator.
Changes are detected by reevaluating the best-found position
of the entire population.

Li and Yang [66] introduce a framework that modifies
[81]. This mDOA uses the same population managing
approach, but the change detection component is removed.
To address the outdated memory issue, all solutions are re-
evaluated every iteration. In the proposed mDOA, global
diversity is increased under various conditions. Herein,
when the ratio of remaining individuals to the initial overall
number falls below a specified threshold, a re-diversification
process is initiated. During this process, the best positions
found by converged subpopulations are stored in memory,
and the remaining individuals are randomized.

Luo et al. [72] propose a multi-population clustering
approach with a varying number of subpopulations, but the
overall number of individuals remains constant. To form
subpopulations, both the position and fitness of individu-
als are considered, and the population is clustered using a
NBC method, which is based on graphs. Initially, distances
between all individuals are calculated. Then, each individual
is connected to its nearest better individual, creating a span-
ning tree. After that, the average of all edges in the tree is
calculated, and edges longer than a threshold are removed.
The remaining connected individuals form subpopulation.

The mDOA also benefits from explicit memory [86], into
which solutions are injected into the population after an
environmental change, thus increasing global diversity. To
maintain local diversity over time, Brownian individuals
using a normal distribution are applied to the best-found
position of each sub-population.

Zhu et al. [87] add an explicit memory component to [76],
which aids in increasing global diversity after environmental
changes. At the beginning of each environmental change, the
algorithm identifies and marks sub-populations that have
converged to local optima. If the number of marked sub-
populations falls below a certain threshold, the best non-
converged sub-populations are marked until the threshold
is met. The best individuals from these marked sub-popu-
lations are then stored in explicit memory. If the memory
reaches its capacity, existing solutions may be replaced by
new ones based on predefined criteria. To update the popu-
lation after changes, two methods are employed: the fittest
memory solutions are distributed equally among sub-popu-
lations to replace their worst individuals, and a species seed
detection procedure is used to distribute the fittest memory
seeds among sub-populations similarly.

Liu et al. [88] utilize affinity propagation clustering
(APC) to automatically generate subpopulations through
a message-passing process. This approach considers each
individual within the population as a potential exemplar
(or cluster center). Subpopulations are then created based
on the similarities between individuals, determined by the
negative Euclidean distance, effectively grouping individu-
als into subpopulations. The overall population size remains
constant; however, the number of subpopulations and their
sizes can change. Exclusion method from [61] is utilized to
avoid overlapping. Herein, when two subpopulations over-
lap, they are merged, and an equivalent number of the worst-
performing individuals from the inferior subpopulation are
randomized. This randomization of redundant individuals
improves global diversity. The algorithm also incorporates
a memory; when a subpopulation converges based on a
threshold, it stores its best-found position in memory. A
subpopulation is considered converged if the average Euclid-
ean distance between individuals within a subpopulation and
the subpopulation’s centroid, the average position of all its
members, is less than a threshold. When a change in the
environment is detected, through fitness re-evaluation, the
algorithm utilizes the information stored in memory about
these exemplars to quickly relocate and adapt to the new
conditions.

3.2 � Heterogeneous mDOAs with varying
population size

In [70], a multi-population approach, FMSO, is introduced,
featuring an adaptive number of subpopulations to allow a

	 D. Yazdani et al.

variable overall population size while maintaining a pre-
defined number of individuals within each subpopulation.
FMSO utilizes a parent–children approach, creating het-
erogeneous subpopulations using different core optimizers.
Here, the parent acts as the explorer, exploring the search
space to locate promising regions. Once the parent con-
verges, a child, as the exploiter, is created. This is done by
randomizing individuals within a hyper-ball centered around
the best-found position of the explorer population, defined
by a radius. This radius determines the search area for each
exploiter subpopulation, taking inspiration from SPSO
[76]. The exploration also increased using the exclusion
method; it randomizes any explorer’s individual that enters
an exploiter’s search region. Additionally, if two exploiter
subpopulations encroach upon each other’s search regions,
the inferior one is removed to save computational resources.
To prevent overcrowding and efficiently manage resources,
a maximum number of exploiters is set. When this limit is
reached, if a new exploiter needs to be introduced, the one
that has not improved the best-found position for a specified
number of iterations is removed first. Alternatively, if no
new exploiter is created but the cap is reached, the worst-
performing one is randomized using the anti-convergence
method [13]. Through the use of a classic round robin
method, computational resources are evenly divided among
subpopulations.

Kamosi et al. [89] present a modified version of the
FMSO [70]. In the proposed mDOA, both the explorer
and exploiter utilize the same core optimizer. The process
starts with one explorer population. When the best-found
position of the explorer improves, a hyperball within a
predefined radius around its best-found position is formed.
Any individuals inside this hyperball create the exploiter.
If the number of individuals within the hyperball exceeds
the exploiter population size, the best ones are chosen as
the exploiter members. Otherwise, additional individu-
als are randomly generated within the hyperball. After
that, all explorer individuals within the hyperball are
randomized. Using the explorer, global diversity is main-
tained over time. The proposed mDOA also addresses
the issue of local diversity by increasing it within each
exploiter after an environmental change. Within the pro-
posed mDOA, the exclusion method removes the inferior
exploiters if two of them overlap. However, if the explorer
and exploiter overlap, and the fitness of the best-found
position of the explorer is better than that of the exploiter,
the best-found position of the exploiter is replaced with
that of the explorer, and only the best-found solution of
the explorer is randomized. Allocation of computational
resources among subpopulations follows a classic round-
robin method to ensure equal access. Additionally, changes
are detected through a reevaluation of the best-found posi-
tion of each exploiter.

In [90], resource allocation is added to the approach
described in [89], a hibernation method similar to the deac-
tivation method from [80]. If a sub-population converges,
meaning the maximum Euclidean distance between all pairs
of individuals within that sub-population falls below a pre-
defined threshold, and the difference in fitness between its
best-found position and the best-found position of the entire
population falls below another threshold, that sub-population
is deactivated until the next environmental change.

Halder et al. [91] introduce a mDOA that employs
k-means clustering, based on the positions of individu-
als. This clustering occurs every predetermined number of
iterations. The overall population size and the number of
subpopulations can change, and there are upper and lower
bounds for the number of subpopulations. Additionally, there
is a threshold for the number of individuals within each sub-
population. Controlling the number of subpopulations and
subpopulation sizes helps prevent wastage of computational
resources by avoiding overcrowding. The algorithm benefits
from explicit memory. To further manage computational
resources, when a subpopulation converges, its best-found
position is stored in explicit memory, and then the subpopu-
lation is removed. A subpopulation is considered converged
if the average Euclidean distance between the individuals
and the midpoint of all individuals is less than a thresh-
old. Global diversity is increased under certain conditions.
First, after each environmental change, the whole popula-
tion is reinitialized. Second, the best-found position does
not improve for a predefined set number of iterations, new
individuals are initialized throughout the search space to
form a new sub-population. Third, by utilizing exclusion, in
the case of overlap between two subpopulations, they will be
merged, and if the number of members exceeds the thresh-
old, the redundant ones will be randomized. A change is
detect by reevaluating a sentry.

Yazdani et al. [64] propose a mDOA with an adaptive
number of subpopulations and a varying overall popula-
tion size. The subpopulations differ from each other; one
is a free or explorer subpopulation responsible for explor-
ing the search space. When the explorer subpopulation is
considered to have converged, a new subpopulation, termed
an exploiter, is created. Then, the explorer is randomized to
discover another promising region, thus increasing global
diversity. The free subpopulation’s convergence is deter-
mined by monitoring the fitness of its best-found position
over a predefined number of previous iterations. If the differ-
ence is less than a threshold, it is considered to be converged.
Moreover, randomizing the explorer subpopulation through
the exclusion method [61], when it is within the exploit-
er’s search range, further increases global diversity. Local
diversity is enhanced after environmental changes through
randomization; the individuals of each subpopulation are
distributed in a limited area around their best-found position

A survey of multi‑population optimization algorithms for tracking the moving optimum in dynamic…

with a uniform distribution. Resource allocation is managed
in several ways. First, by deactivating converged subpopula-
tions, excluding the best one, until the next environmental
change; second, by applying a local search operator on the
best-found position of the best exploiter subpopulation; and
third, by removing an inferior exploiter subpopulation when
two exploiters enter each other’s search range. In the pro-
posed mDOA, change is detected by reevaluating a single
individual.

Li et al. [32], propose a multi-population approach that
uses a position-based clustering method to form subpopula-
tions. The overall number of individuals and the number of
subpopulations can change over time. Clustering is initiated
when the average radius of non-stagnating sub-populations,
those still actively exploring and improving solutions, falls
below a predefined percentage of the search range, known
as the diversity adjustment point. Initially, each individual
forms a cluster. Then, the clustering process merges the
closest clusters until the total distance within each cluster
becomes smaller than the distance between clusters, result-
ing in distinctly different subpopulations. Computational
resources are saved under two conditions. First, when a
subpopulation has converged, it becomes inactive until the
next diversity adjustment point occurs. A subpopulation is
converged if the average distance of individuals to the sub-
population center is less than a threshold. Second, redundant
inferior subpopulations are removed by exclusion method if
two sub-populations have at least one individual overlap-
ping in each other’s search areas. When the diversity adjust-
ment point is reached, individuals previously removed by
the exclusion mechanism are reinitialized, along with any
new individuals added the population if the size needed to
be increased. This reinitialization of individuals increases
global diversity. Moreover, using Brownian individuals with
a Gaussian distribution, local diversity is maintained over
time. The proposed mDOA is change-independent and do
not use any specific method to detect a change.

Kordestani et al. [92] describe a multi-population
approach with varying number of subpopulations and overall
population sizes. In the proposed mDOA, the local diversity
is maintain over time by modifying the core optimizer rule.
Additionally, global diversity is preserved by introducing
new subpopulations when all existing ones have converged.
Herein, a subpopulation is considered converged when the
fitness of its best-found position has not improved in the
previous iteration. Resource allocation is managed in three
ways. First, by employing a local search operator around
the best position found among all subpopulations; second,
by controlling the size of the subpopulations. This control
is achieved by calculating the Euclidean distances between
the best-found positions of all subpopulations and the global
best-found position. Subpopulations closer to the global best
position than a predefined percentage of the longest distance

will receive more individuals, while the others will have
fewer. Third, the exclusion method [61] is used to remove
redundant inferior subpopulations in case of a collapse.
Change detection is done by reevaluating three individuals,
prompting a comprehensive reevaluation of all individuals
to address the outdated memory issue.

The mDOA proposed in [37] utilizes the same cluster-
ing method as [45], where individuals are clustered based
on their fitness and positions. The number of subpopula-
tions adapts to the discovered promising regions. Cluster-
ing occurs at each iteration, and the subpopulation size is
predetermined. Subpopulations differ in their tasks and are
divided into tracker and non-tracker subpopulations. A non-
tracker subpopulation becomes a tracker when it is consid-
ered to have converged. Convergence is detected if the maxi-
mum Euclidean distance between the best-found position
in the subpopulation and any other member is less than a
threshold. To increase global diversity, when all subpopula-
tions have converged, new randomly initialized individuals
are injected into the population. Local diversity is increased
after an environmental change for tracker subpopulations
by randomizing the positions of all members around the
best-found position, within a subpopulation in a hyper-ball.
The radius of this hyper-ball is determined by the estimated
environment shift severity. Computational resources are
managed in three ways. First, by introducing an innovative
adaptive deactivation mechanism that systematically allo-
cates computational resources to the subpopulations. This
resource allocation component deactivates subpopulations
that have sufficiently converged to their local optima, thus
saving computational resources. These saved resources are
then allocated to subpopulations that are still actively explor-
ing and to the best-performing subpopulation. Second, by
removing redundant subpopulations when they overlap,
using the exclusion method. Third, by setting an upper limit
for the maximum number of subpopulations to avoid over-
crowding. If the number of species reaches this limit and
all subpopulations have converged, an anti-convergence is
employed to re-initialize the individuals of the subpopu-
lations with the worst performance, which also improves
global diversity. The algorithm is informed of environmental
changes and does not have any specific component to detect
changes.

4 � Benchmarking methods for evaluating
mDOAs

Benchmarks play a crucial role in evaluating and compar-
ing the performance of various evolutionary optimization
algorithms. These benchmarks consist of standardized test
problems that allow researchers to assess the strengths
and weaknesses of their algorithms under controlled and

	 D. Yazdani et al.

reproducible conditions. Selecting the right benchmarks is
crucial for effectively evaluating and comparing mDOAs. In
addition, utilizing the proper performance indicators is also
crucial for evaluating the effectiveness of the algorithms in
solving optimization problems. A performance indicator is
an statistical indicator used to assess and compare the per-
formance of different solutions or algorithms.

The following presents a review of state-of-the-art bench-
mark generators, along with commonly used performance
indicators that measure the effectiveness of algorithms based
on the fitness or error of obtained solutions.1 For a com-
prehensive survey of dynamic benchmark generators and
a complete list of performance indicators, researchers can
refer to [26] and [25], respectively. In the last part of this
section, the real-world applications of DOAs are reviewed.

4.1 � Dynamic benchmark generators

Dynamic benchmark generators can be classified into two
types, those that construct the problem landscape and those
that generate dynamic datasets. The majority of research in
this field employs dynamic landscape generators, character-
ized by solution spaces that feature “multiple moving peaks"
[25]. These benchmark generators are favored for their ease
of understanding and implementation, and offering high con-
figurability to produce numerous dynamic scenarios with
varied, controlled characteristics. Recently, a dynamic data-
set generator has been introduced [95], designed specifically
for creating dynamic datasets for clustering in dynamic envi-
ronments. This new tool is capable of generating real-world
morphological and dynamical characteristics that were not
previously captured by dynamic landscape generators. In the
subsequent sections, we will explore widely used moving-
peaks-based dynamic landscape generators, as well as this
innovative dynamic dataset generator.

4.1.1 � Dynamic landscape generators

Constructed landscapes in moving peaks baseline func-
tions are created by utilizing multiple elements. Typically, a
max(⋅) function is employed to establish the attraction basin
for these components. Each element within the moving

peaks baseline functions often includes a peak, the charac-
teristics of which, like height and position, change with time.
The Moving Peaks Benchmark (MPB), as introduced in [39],
stands as one of the initial DOP benchmarks to utilize mov-
ing peaks baseline functions. The foundational function of
MPB is described as follows:

where c (t)

i,j
 is the jth dimension of the center of ith peak in

the tth environment ( c (t)

i
 ), h(t)

i
 and w(t)

i
 are the height and

width of the ith peak in the tth environment, respectively, xj
is the jth dimension of a solution ( x ) in a d-dimensional
problem space, and m is the number of peaks. The second
version of MPB, which is known as Scenario 2 in the litera-
ture [2] uses a baseline function that generates landscapes
with conical peaks:

The Generalized Dynamic Benchmark Generator (GDBG)
offers six different types of dynamic scenarios to create
benchmark landscapes [96], including small step changes,
large step changes, random changes, chaotic changes, recur-
rent changes, and recurrent changes with noise [25]. Among
these scenarios, the baseline function for scenario F1 of the
GDBG, which is frequently utilized in the DOP literature, is
the Dynamic Rotation Peak Benchmark Generator (DRPBG)
[97], formulated as follows:

Yazdani et al. [98] introduce the Generalized Moving Peaks
Benchmark (GMPB), the most state-of-the-art benchmark
that produces landscapes by combining several compo-
nents. Unlike the typical moving peaks baseline functions,
the components generated by the GMPB baseline function
can range from smooth to extremely uneven, from unimodal
to multimodal, and from symmetric to asymmetric forms.
Additionally, these components might have circular contours
or could be significantly ill-conditioned. The baseline func-
tion used by GMPB is outlined as follows:

where 𝕋 (y, i) ∶ ℝ
d
↦ ℝ

d is calculated as

(3)f (t)(x) = max
i∈{1,…,m}

h
(t)

i

1 + w
(t)

i

∑d

j=1

�
xj − c

(t)

i,j

�2
,

(4)f (t)(x) = max
i∈{1,…,m}

{
h
(t)

i
− w

(t)

i

‖‖‖x − c
(t)

i

‖‖‖
}
.

(5)
f (t)(x) = max

i∈{1,…,m}

h
(t)

i

1 + w
(t)

i

�
∑d

j=1

(xj−c
(t)

i,j
)2

d

.

(6)

f (t)(x) = max
i∈{1,…,m}

⎧

⎪

⎨

⎪

⎩

h(t)i −

√

�
(

(

x − c (t)
i

)⊤
R(t)

i
⊤
, i
)

W(t)
i �

(

R(t)
i

(

x − c (t)
i

)

, i
)

⎫

⎪

⎬

⎪

⎭

,

1  Evolutionary Dynamic Optimization Laboratory (EDOLAB) [93]
is an open-source [94] MATLAB platform that provides a compre-
hensive library, which includes the benchmark landscape genera-
tors and performance indicators reviewed in this section, as well as
a collection of 25 DOAs. EDOLAB features two main modules. The
Experimentation Module allows for extensive configuration and com-
parison of algorithms, and the Education Module is designed to visu-
ally demonstrate the optimization process and enhance learning about
dynamic optimization challenges.

A survey of multi‑population optimization algorithms for tracking the moving optimum in dynamic…

where W(t)

i
 represents a diagonal matrix of size d × d , where

the diagonal elements indicate the width of the ith compo-
nent across different dimensions. The parameters �(t)

i,k∈1,2,3,4

and � (t)
i

 characterize the irregularity of the ith component.
R

(t)

i
 stands for the rotation matrix of the ith component in the

tth environment. Finally, yj refers to the jth dimension of the
vector y . Similar to other baseline functions involving mov-
ing peaks, GMPB offers control over the position, height,
and width of individual components. Moreover, GMPB
allows for variations in component width across different
dimensions, providing control over the condition number
of components. By employing a rotation matrix for each
component, the degree of variable interactions within each
component can be adjusted. Additionally, the irregularity
degree and modality can be regulated through parameters � (t)
and �(t)

k∈1,2,3,4
 . Lastly, adjusting the values of �(t)

k∈1,2,3,4
 allows

for control over the symmetry of the components, with sym-
metric components generated when all four �k values are
the same.

Li et al. [99] introduce the Free Peaks benchmark (FPs),
which generates landscapes featuring multiple moving peaks.
FPs divides the landscape into hypercubes, which define the
basins of attraction for the peaks. This characteristic of FPs
distinguishes it from other moving peaks baseline functions,
which typically employ the max(⋅) function to determine
basin boundaries. Within each hypercube, there is precisely
one peak, and its boundaries are restricted to that hypercube.
Both the position of a component within a hypercube and the
boundaries of the hypercube are adjustable. Additionally, [99]
propose several single-peak baseline functions, such as the
conical peak, to be utilized within each hypercube.

Figure 2 illustrates landscapes generated by reviewed
benchmark. The parameter settings for the baseline functions
in (3), (4), and (5) are the same among them for a fair com-
parison. These landscapes have five peaks, and the same val-
ues for height and width are used for all of them. The search
range for (4) is [−50, 50] , and for (3) and (5), it is [−5, 5] . To
generate peak positions in all baseline functions according to
their search ranges, the same random seed numbers are used.
Figure 2(d) shows a landscape created by baseline function
(6). This landscape includes three components characterized
by high irregularity and asymmetry, two of which are also
ill-conditioned and rotated. Figure 2(e) illustrates a landscape
generated using FPs [99], featuring three conical peaks, each
defined by its surrounding hypercubes that dictate the basins
of attraction.

(7)�
(

yj , i
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

exp
(

log(yj) + �(t)i
(

sin (�(t)i,1 log(yj)) + sin (�(t)i,2 log(yj))
))

if yj > 0

0 if yj = 0

− exp
(

log(|yj|) + �(t)i
(

sin (�(t)i,3 log(|yj|)) + sin (�(t)i,4 log(|yj|))
))

if yj < 0,

4.1.2 � Dynamic dataset generator

The Dynamic Dataset Generator (DDG) proposed in [95] is
a benchmark generator tool designed for creating dynamic
datasets with known and controllable characteristics, specifi-
cally for evaluating clustering algorithms in dynamic envi-
ronments. The DDG simulates a broad range of dynamic
scenarios using multiple dynamic Gaussian components
(DGCs), enabling the systematic performance evaluation of
clustering algorithms across diverse and realistic dynamic
conditions. DDG utilizes these DGCs for data generation,
with each DGC in the tth environment defined as follows:

where at time N(t)

i

(
c
(t)

i
,�

(t)

i
,�(t)

)
 represents the ith DGC.

The equation describes the relationship where r is a d(t)
-dimensional random vector, with each component drawn
from a standard normal distribution N(0, 1) . The vector c(t)

i

represents the mean or center position of the ith DGC within
the tth environment, and d(t) denotes the number of variables
at time t. Additionally, �(t)

i
 is a d(t)-dimensional vector indi-

cating the standard deviation, reflecting the spread of the ith
DGC across each dimension. The d(t) × d(t) matrix �(t)

i
 is

pivotal in determining the rotation of each component. In the
context of DDG, m(t) DGCs are utilized for data generation,
each assigned a weight w(t)

i
 governing the probability of gen-

erating a data point via the ith DGC. The DDG structure,
utilizing DGCs, provides an easy approach for adjusting
parameters to generate a range of dynamic scenarios. Param-
eters such as the number of DGCs (m(t)) , probability weights
for data generation ( w(t)

i
 ), DGCs’ standard deviations ( �(t)

i
 ),

number of variables ( d(t) ), rotation angles ( �i,j,k = �
(t)

i
(j, k) ),

and center positions ( c(t)
i

 ) can all be modified over time
through various patterns of change including random, cha-
otic, circular, or pendulum movements, as discussed in [25].

4.2 � Performance indicators

Performance indicators are crucial for assessing how effec-
tively mDOAs adapt to changing environments, track mov-
ing optima, and maintain solution quality over time. Among
the different types of performance indicators, those based on
fitness or error are most commonly utilized in the DOP lit-
erature. These include offline error ( EO ), best before change
error ( EBBC ), and offline performance indicator ( PO ) [25], as
described below.

When the details about the global optimum in each envi-
ronment are known, it is possible to measure the error of

(8)N
(t)

i

(
c
(t)

i
,�

(t)

i
,�(t)

)
= r�

(t)

i
ℝ
(
�

(t)
)
+ c

(t)

i
,

	 D. Yazdani et al.

solutions. However, in practical real-world scenarios,
accessing the global optimum’s data is often unfeasible,
though such information is mostly available in numerous
DOP benchmarks. One performance indicator requiring the

global optimum’s details is EO , as outlined by [2]. This indi-
cator, widely referenced in academic studies, determines the
mean error of the optimal position identified across all evalu-
ations of fitness, according to a specific formula:

-5 -4 -3 -2 -1 0 1 2 3 4 5
x1

-5

-4

-3

-2

-1

0

1

2

3

4

5

x 2

(a) Contour plot of the generated land-
scape by (3).

-50 -40 -30 -20 -10 0 10 20 30 40 50
x1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x 2

(b) Contour plot of the generated land-
scape by (4).

-5 -4 -3 -2 -1 0 1 2 3 4 5
x1

-5

-4

-3

-2

-1

0

1

2

3

4

5

x 2

(c) Contour plot of the generated land-
scape by (5).

-50 -40 -30 -20 -10 0 10 20 30 40 50
x1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x 2

(d) Contour plot of the generated land-
scape by (6).

-50 -40 -30 -20 -10 0 10 20 30 40 50
x1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x 2

(e) Contour plot of the generated landscape
by FPs.

Fig. 2   Landscapes generated by MPB (3), MPB Scenario 2 (4), DRPBG (5), GMPB (6), and FPs [25]

A survey of multi‑population optimization algorithms for tracking the moving optimum in dynamic…

where in the tth environment, x⋆(t) represents the global
optimum position, T is the total number of environments,
� denotes the change frequency, c is the fitness evaluation
counter for each environment, and x∗((t−1)�+c) denotes the
best-found position at the cth fitness evaluation.

Another performance indicator is EBBC [100], which consid-
ers only the final error at the end of each environment.

where x∗(t) , fetched at the end of the tth environment, repre-
sents the best-found position.

The EO and EBBC both require knowledge of the global
optimum’s position and fitness, which does not align well
with practical dynamic optimization problems. Branke [39]
proposed the offline-performance indicator ( PO ), which does
not require such details. Instead, it calculates the average fit-
ness of the best position found across all evaluations, accord-
ing to the provided formula:

For a fair assessment with PO , it is crucial that environmen-
tal aspects of the problem, including peak features in the
moving peaks baseline scenario, are kept constant across
every algorithm being evaluated.

4.3 � Real‑world applications of DOAs

Exploring the application of DOAs in real-world scenarios
offers a rich field for discovery and innovation. Various stud-
ies have demonstrated the practical utility of DOAs across
different domains. Rakitianskaia et al. [101, 102] utilized
DOAs to train supervised feed-forward neural networks,
addressing dynamic classification challenges caused by con-
cept drift. Similarly, Kalita and Singh [103] employed DOAs
to optimize the hyper-parameters of support vector machines
(SVMs) in dynamic environments, considering both gradual
and batch data inflows. In the coal mining industry, Liu et al.
[104] proposed a cutting pattern recognition method based
on an SVM optimized by a DOA.

In the agricultural sector, Jin et al. [105] applied DOAs
to develop adaptive farming strategies, maximizing income
through optimal mixed grazing techniques. For dynamic
load balancing, Sesum and Kuhn [106] employed DOAs

(9)EO =
1

T𝜗

T∑
t=1

𝜗∑
c=1

(
f (t)

(
x⋆(t)

)
− f (t)

(
x∗((t−1)𝜗+c)

))
,

(10)EBBC =
1

T

T∑
t=1

(
f (t)

(
x⋆(t)

)
− f (t)

(
x∗(t)

))
,

(11)PO =
1

T�

T∑
t=1

�∑
c=1

f (t)
(
x∗((t−1)�+c)

)
.

to achieve optimal workload distribution among resources,
enhancing system efficiency.

The work done in [107] utilize DOAs to optimize the
parameters of a control strategy for a distribution static com-
pensator on an all-electric ship power system, focusing on
maintaining consistent bus voltage regulation. In the realm
of robotics, Jatmiko et al. [108] applied DOAs to solve the
Odor Source Localization problem, enabling mobile robots
to locate chemical odor sources in dynamically changing
environments.

In energy management, Wang et al. [109] utilized DOAs
to tackle the dynamic economic dispatch problem, aiming to
minimize operational costs in electrical power systems. Liu
et al. [110] addressed contaminant source identification in
water distribution networks using DOAs, where the search
space evolved with new information.

The adaptability of DOAs in existing applications pave
the way for their use in emerging fields. One key applica-
tion is in dynamic facility location problems [111]. DOAs
optimize facility placement and relocation to minimize
costs and response times as demand and geographical fac-
tors change. This is crucial for strategic redeployment, such
as relocating security forces in response to crowd dynam-
ics or incidents. In real-time data analysis and concept drift
management [112], DOAs are essential. They help main-
tain accurate clustering in fields like finance, marketing, and
cybersecurity, where data patterns constantly evolve. Online
deep clustering methods, for instance, adjust to new data
without retraining, keeping data analysis relevant and pre-
cise. Resource allocation and management also benefit from
DOAs [113]. They dynamically adjust resources to meet
fluctuating demands in logistics, supply chain management,
and smart city infrastructures. In disaster response, DOAs
optimize the deployment of search and rescue operations,
improving efficiency and outcomes in critical situations.

5 � Future directions

Despite extensive research in the field, a significant gap
remains between academic research and practical applica-
tion. To bridge this gap, future research should focus on top-
ics that narrow it. Considering the current state of research,
we identify several potential future research directions aimed
at reducing the disparity between academic research and
their real-world applicability.

5.1 � Adaptive parameter tuning over time

mDOAs typically comprise several components, each gov-
erned by its own set of parameters. Conventionally, these

	 D. Yazdani et al.

parameters operate based on fixed values, optimized accord-
ing to the initial state of the problem. Given that commonly
used benchmarks in the field often exhibit homogeneous
behavior over time, this static tuning approach is usually
sufficient; there is no compelling need to adjust parameters
dynamically as the problem’s characteristics remain consist-
ent. However, real-world problems frequently show dynamic
behavior, evolving significantly over time. This evolution
calls for strategies that can adaptively modify parameter
values in response to the current state of the problem. Con-
sequently, the development of adaptive parameter tuning
methods represents a crucial direction for future research,
promising to bridge the gap between the static assumptions
of academic models and the fluid dynamics of real-world
applications.

5.2 � Designing algorithms for problems with high
temporal severity

Current mDOAs are primarily designed for scenarios where
environmental changes occur at discrete intervals. Yet, the
real world presents numerous challenges where changes
unfold continuously over time. The current methodologies,
being reactive in nature, activate certain mechanisms and
components only in direct response to these changes. This
approach, while effective for discrete adjustments, may
prove detrimental in the face of continuous or highly fre-
quent temporal changes, as the frequent triggering of reac-
tions can lead to inefficiency. A crucial direction for future
research lies in developing components and algorithms
specifically designed to excel in environments that undergo
continuous change.

5.3 � Handling problems with multiple types
of changes

The body of existing research has mainly concentrated on
problems showing regular characteristics, including con-
sistent frequencies and severities of changes, along with
uniform dynamics during environmental changes. How-
ever, the real-world often presents scenarios where multiple
types of environmental changes occur over time, each dis-
tinguished by its own spatial and temporal severities, pat-
terns of change, and domains of influence. Current methods
are designed to address a singular type of change, assuming
static characteristics over time, and therefore fall short when
confronted with multiple types of environmental changes.
Addressing these challenges necessitates mDOAs capable
of identifying the specific nature of each change and deploy-
ing appropriate responses designed for each situation. The
development of such algorithms, equipped to differentiate
and react suitably to various types of changes, represents
a critical avenue for future research. This approach would

allow for more effective handling of the complex dynamics
characteristic of real-world problems.

5.4 � Solution deployment and quick recovery

The design of most existing mDOAs does not take
into account the time in which a new solution must be
deployed. In real-world scenarios, there often exists a
deadline or temporal constraint for selecting and deploying
a solution following each environmental change, necessi-
tating what is termed as “quick recovery” [3]. To enhance
the optimization of the best-found solution before this
deadline, mDOAs require strategic allocation of compu-
tational resources along with other mechanisms aimed at
acceleration. Such considerations, however, have largely
been overlooked in the current algorithmic designs within
the field. Developing components for mDOAs that incor-
porate the need for quick recovery and efficient solution
deployment under tight deadlines represents an important
direction for future research.

5.5 � Changes in the boundaries of the search range

One significant challenge that has not been investigated in
the field is the change in the boundaries of the search space.
This challenge poses a significant difficulty for mDOAs
in many real-world problems where the search range, or
at least the effective search range, changes over time. For
example, in facility location problems, the effective search
range includes areas where there are demands. A change
in the distribution of demands causes the effective search
range to change over time. When the search ranges change
over time, they may not remain hypercubes. In fact, assum-
ing hypercubes is a simplistic assumption. However, when
there is a disparity between the range in different dimen-
sions, many components of the algorithms that assume the
search range is a hypercube face difficulties. For example,
many mechanisms rely on Euclidean distances and hyper-
balls around specific points, such as the best-found solution,
which may become ineffective when the search range is not
a hypercube. One initial way to address this challenge is to
normalize the ranges. However, normalizing the ranges itself
introduces new dynamics into the system, which affects the
algorithm. Therefore, developing methods that can dynami-
cally adjust to non-hypercube search ranges without intro-
ducing additional complexities remains a crucial area for
future research.

A survey of multi‑population optimization algorithms for tracking the moving optimum in dynamic…

6 � Conclusion

In this survey, we focused on the domain of single-objective
unconstrained continuous dynamic optimization problems
(DOPs), with a specific focus on multi-population dynamic
optimization algorithms (mDOAs) as a main approach for
tracking the moving optimum (TMO). We commenced a
comprehensive review of mDOAs by providing a detailed
analysis of mDOAs’ components, their assembly into cohe-
sive algorithms, and how these elements collectively create
a framework for addressing TMO challenges. Additionally,
we reviewed benchmarking methodologies, highlighting
the use of dynamic benchmark generators and performance
indicators to assess the effectiveness of mDOAs. By offer-
ing insights into the current state-of-the-art and suggesting
avenues for future research, this survey aims to advance the
understanding and development of mDOAs in the context
of TMO in dynamic environments.

Funding  This research is supported by a Liverpool John Moores Uni-
versity Vice-Chancellor PhD Scholarship.

Data availability  This is a survey paper, with no source codes or data.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Jin, Y., & Branke, J. (2005). Evolutionary optimization in
uncertain environments-a survey. IEEE Transactions on Evo-
lutionary Computation, 9(3), 303–317.

	 2.	 Branke, J., & Schmeck, H. (2003). Designing evolutionary
algorithms for dynamic optimization problems. In: Ghosh, A.,
Tsutsui, S. (eds.) Advances in Evolutionary Computing, pp.
239–262. Springer.

	 3.	 Nguyen, T.T. (2011). Continuous dynamic optimisation
using evolutionary algorithms. PhD thesis, University of
Birmingham.

	 4.	 Kessels, J. T. B. A., Koot, M. W. T., Bosch, P. P. J., & Kok,
D. B. (2008). Online energy management for hybrid electric
vehicles. IEEE Transactions on Vehicular Technology, 57(6),
3428–3440.

	 5.	 Barlow, G. J., & Smith, S. F. (2008). A memory enhanced evolu-
tionary algorithm for dynamic scheduling problems. In M. Giac-
obini, A. Brabazon, S. Cagnoni, G. A. Di Caro, R. Drechsler, A.
Ekárt, A. I. Esparcia-Alcázar, M. Farooq, A. Fink, J. McCor-
mack, M. O’Neill, J. Romero, F. Rothlauf, G. Squillero, A. Ş

Uyar, & S. Yang (Eds.), Applications of Evolutionary Computing
(pp. 606–615). Berlin, Heidelberg: Springer.

	 6.	 Yang, S., & Yao, X. (2005). Experimental study on population-
based incremental learning algorithms for dynamic optimiza-
tion problems. Soft Computing, 9(4), 815–834.

	 7.	 Chai, R., Tsourdos, A., Savvaris, A., Chai, S., & Xia, Y.
(2019). Two-stage trajectory optimization for autonomous
ground vehicles parking maneuver. IEEE Transactions on
Industrial Informatics, 15(7), 3899–3909.

	 8.	 Chai, R., Savvaris, A., Tsourdos, A., Chai, S., & Xia, Y.
(2018). Unified multiobjective optimization scheme for aer-
oassisted vehicle trajectory planning. Journal of Guidance,
Control, and Dynamics, 41(7), 1521–1530.

	 9.	 Chai, R., Savvaris, A., Tsourdos, A., Xia, Y., & Chai, S.
(2020). Solving multiobjective constrained trajectory optimi-
zation problem by an extended evolutionary algorithm. IEEE
Transactions on Cybernetics, 50(4), 1630–1643.

	 10.	 Nguyen, T. T., Yang, S., & Branke, J. (2012). Evolutionary
dynamic optimization: a survey of the state of the art. Swarm
and Evolutionary Computation, 6, 1–24.

	 11.	 Mavrovouniotis, M., Li, C., & Yang, S. (2017). A survey of
swarm intelligence for dynamic optimization: algorithms and
applications. Swarm and Evolutionary Computation, 33, 1–17.

	 12.	 Yazdani, D. (2018). Particle swarm optimization for dynami-
cally changing environments with particular focus on scalabil-
ity and switching cost. PhD thesis, Liverpool John Moores
University, Liverpool, UK.

	 13.	 Blackwell, T., & Branke, J. (2006). Multiswarms, exclusion,
and anti-convergence in dynamic environments. IEEE Transac-
tions on Evolutionary Computation, 10(4), 459–472.

	 14.	 Yang, S., Jiang, Y., & Nguyen, T. T. (2013). Metaheuristics for
dynamic combinatorial optimization problems. IMA Journal
of Management Mathematics, 24(4), 451–480.

	 15.	 Yazdani, D., Cheng, R., Yazdani, D., Branke, J., Jin, Y., &
Yao, X. (2021). A survey of evolutionary continuous dynamic
optimization over two decades - Part A. IEEE Transactions on
Evolutionary Computation, 25(4), 609–629.

	 16.	 Raquel, C., & Yao, X. (2013). Dynamic multi-objective optimiza-
tion: a survey of the state-of-the-art. In: Evolutionary Computa-
tion for Dynamic Optimization Problems, pp. 85–106. Springer.

	 17.	 Azzouz, R., Bechikh, S., & Said, L.B. (2017). Dynamic multi-
objective optimization using evolutionary algorithms: a survey.
In: Recent Advances in Evolutionary Multi-objective Optimi-
zation, pp. 31–70. Springer.

	 18.	 Azzouz, R. (2017). Evolutionary approaches for dynamic
multi-objective optimization. PhD thesis, Computer Science
Department, University of Tunis.

	 19.	 Yazdani, D., Yazdani, D., Branke, J., Omidvar, M.N., Amir H.
Gandomi, & Yao, X. (2022). Robust optimization over time by
estimating robustness of promising regions. IEEE Transactions
on Evolutionary Computation 27(3), 657–670.

	 20.	 Yu, X., Jin, Y., Tang, K., & Yao, X. (2010). Robust optimi-
zation over time-a new perspective on dynamic optimization
problems. In: Congress on Evolutionary Computation, pp. 1–6.
IEEE.

	 21.	 Cruz, C., González, J. R., & Pelta, D. A. (2011). Optimization
in dynamic environments: a survey on problems, methods and
measures. Soft Computing, 15(7), 1427–1448.

	 22.	 Yazdani, D., Omidvar, M.N., Yazdani, D., Branke, J., Nguyen,
T.T., Gandomi, A.H., & Jin, Y., Yao, X. (2023). Robust optimiza-
tion over time: A critical review. IEEE Transactions on Evolu-
tionary Computation (Early Access, 2023).

	 23.	 Novoa-Hernández, P., Puris, A., & Pelta, D. A. (2023). Robust
optimization over time problems-characterization and literature
review. Electronics, 12(22), 4609.

http://creativecommons.org/licenses/by/4.0/

	 D. Yazdani et al.

	 24.	 Jiang, S., Zou, J., Yang, S., & Yao, X. (2022). Evolutionary
dynamic multi-objective optimisation: a survey. ACM Comput-
ing Surveys, 55(4), 1–47.

	 25.	 Yazdani, D., Cheng, R., Yazdani, D., Branke, J., Jin, Y., & Yao,
X. (2021). A survey of evolutionary continuous dynamic opti-
mization over two decades - Part B. IEEE Transactions on Evo-
lutionary Computation, 25(4), 630–650.

	 26.	 Yazdani, D., Branke, J., Omidvar, M.N., Li, X., Li, C., Mavro-
vouniotis, M., Nguyen, T.T., Yang, S., & Yao, X. (2021). IEEE
CEC 2022 competition on dynamic optimization problems gen-
erated by generalized moving peaks benchmark. arXiv preprint
arXiv:​2106.​06174

	 27.	 Novoa-Hernández, P., Corona, C. C., & Pelta, D. A. (2016). Self-
adaptation in dynamic environments- a survey and open issues.
International Journal of Bio-Inspired Computation, 8(1), 1–13.

	 28.	 Macias-Escobar, T., Dorronsoro, B., Cruz-Reyes, L., Rangel-
Valdez, N., & Gómez-Santillán, C. (2020). A survey of hyper-
heuristics for dynamic optimization problems. Intuitionistic and
type-2 fuzzy logic enhancements in neural and optimization
algorithms: Theory and applications, pp. 463–477.

	 29.	 Yazdani, D., Nguyen, T. T., & Branke, J. (2019). Robust optimi-
zation over time by learning problem space characteristics. IEEE
Transactions on Evolutionary Computation, 23(1), 143–155.

	 30.	 Bu, C., Luo, W., & Yue, L. (2016). Continuous dynamic con-
strained optimization with ensemble of locating and tracking
feasible regions strategies. IEEE Transactions on Evolutionary
Computation, 21(1), 14–33.

	 31.	 Branke, J. (2012). Evolutionary Optimization in Dynamic Envi-
ronments vol. 3. Springer.

	 32.	 Li, C., Nguyen, T. T., Yang, M., Mavrovouniotis, M., & Yang, S.
(2016). An adaptive multipopulation framework for locating and
tracking multiple optima. IEEE Transactions on Evolutionary
Computation, 20(4), 590–605.

	 33.	 Yang, S. (2006). Associative memory scheme for genetic algo-
rithms in dynamic environments. In: Rothlauf, F., Branke, J.,
Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E.,
Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero,
G., Takagi, H. (eds.) Applications of Evolutionary Computing,
pp. 788–799. Springer.

	 34.	 Yang, S. (2008). Genetic algorithms with memory-and elitism-
based immigrants in dynamic environments. Evolutionary Com-
putation 16(3), 385–416.

	 35.	 Blackwell, T.M., & Bentley, P.J. (2002). Dynamic search with
charged swarms. In: Conference on Genetic and Evolutionary
Computation, pp. 19–26. Morgan Kaufmann Publishers Inc.

	 36.	 Das, S., Mandal, A., & Mukherjee, R. (2014). An adaptive dif-
ferential evolution algorithm for global optimization in dynamic
environments. IEEE Transactions on Cybernetics, 44(6),
966–978.

	 37.	 Yazdani, D., Yazdani, D., Yazdani, D., Omidvar, M. N., Gan-
domi, A. H., & Yao, X. (2023). A species-based particle swarm
optimization with adaptive population size and deactivation of
species for dynamic optimization problems. ACM Transactions
on Evolutionary Learning and Optimization, 3(4), 1–25.

	 38.	 Yazdani, D., Cheng, R., He, C., & Branke, J. (2022). Adaptive
control of subpopulations in evolutionary dynamic optimization.
IEEE Transactions on Cybernetics, 52(7), 6476–6489.

	 39.	 Branke, J. (1999). Memory enhanced evolutionary algorithms for
changing optimization problems. In: Congress on Evolutionary
Computation 3, 1875–1882. IEEE.

	 40.	 Hu, X., & Eberhart, R.C. (2002). Adaptive particle swarm opti-
mization: detection and response to dynamic systems. In: Con-
gress on Evolutionary Computation, 2, 1666–1670. IEEE.

	 41.	 Floreano, D., & Nolfi, S. (1997). Adaptive behavior in competing
co-evolving species. In: 4th European Conference on Artificial
Life, 378–387.

	 42.	 Valenzuela, C. L., & Jones, A. J. (1993). Evolutionary divide and
conquer (I): a novel genetic approach to the TSP. Evolutionary
Computation, 1(4), 313–333.

	 43.	 Mendes, R., & Mohais, A.S. (2005). DynDE: a differential evolu-
tion for dynamic optimization problems. In: Congress on Evolu-
tionary Computation, 3, 2808–2815. IEEE.

	 44.	 Kundu, S., Basu, D., & Chaudhuri, S.S. (2013). Multipopulation-
based differential evolution with speciation-based response to
dynamic environments. In: Panigrahi et al., B.K. (ed.) Swarm,
Evolutionary, and Memetic Computing, pp. 222–235. Springer.

	 45.	 Luo, W., Yi, R., Yang, B., & Xu, P. (2019). Surrogate-assisted
evolutionary framework for data-driven dynamic optimization.
IEEE Transactions on Emerging Topics in Computational Intel-
ligence, 3(2), 137–150.

	 46.	 Liu, X.-F., Zhou, Y.-R., Yu, X., & Lin, Y. (2019). Dual-archive-
based particle swarm optimization for dynamic optimization.
Applied Soft Computing, 105876.

	 47.	 Blackwell, T., & Branke, J. (2004). Multi-swarm optimization in
dynamic environments. In: Raidl et al., G.R. (ed.) Applications
of Evolutionary Computing, 3005, pp. 489–500. Lecture Notes
in Computer Science.

	 48.	 du Plessis, M.C., & Engelbrecht, A.P. (2008). Improved differen-
tial evolution for dynamic optimization problems. In: Congress
on Evolutionary Computation, pp. 229–234. IEEE.

	 49.	 Brest, J., Zamuda, A., Boskovic, B., Maucec, M.S., & Zumer,
V. (2009). Dynamic optimization using self-adaptive differen-
tial evolution. In: Congress on Evolutionary Computation, pp.
415–422. IEEE.

	 50.	 Plessis, M. C., & Engelbrecht, A. P. (2012). Using competi-
tive population evaluation in a differential evolution algorithm
for dynamic environments. European Journal of Operational
Research, 218(1), 7–20.

	 51.	 Bose, D., Biswas, S., Kundu, S., & Das, S. (2012). A strategy
pool adaptive artificial bee colony algorithm for dynamic envi-
ronment through multi-population approach. In: Panigrahi et al.,
B.K. (ed.) Swarm, Evolutionary, and Memetic Computing, pp.
611–619. Springer.

	 52.	 Zuo, X., & Xiao, L. (2013). A de and pso based hybrid algo-
rithm for dynamic optimization problems. Soft Computing, 18(7),
1405–1424.

	 53.	 Novoa-Hernández, P., Corona, C. C., & Pelta, D. A. (2013).
Self-adaptive, multipopulation differential evolution in dynamic
environments. Soft Computing, 17(10), 1861–1881.

	 54.	 Vafashoar, R., & Meybodi, M.R. (2019). A multi-population dif-
ferential evolution algorithm based on cellular learning autom-
ata and evolutionary context information for optimization in
dynamic environments. Applied Soft Computing, 106009.

	 55.	 Novoa-Hernández, P., Pelta, D.A., & Corona, C.C. (2010). In:
González et al., J.R. (ed.) Improvement Strategies for Multi-
swarm PSO in Dynamic Environments, pp. 371–383. Springer.

	 56.	 Raghul, S., & Jeyakumar, G. (2023). A hybrid multi-population
reinitialization strategy to tackle dynamic optimization problems.
IEEE Access, 11, 114270–114282.

	 57.	 Blackwell, T. (2007). In: Yang, S., Ong, Y.-S., Jin, Y. (eds.) Par-
ticle Swarm Optimization in Dynamic Environments, pp. 29–49.
Springer.

	 58.	 Rezazadeh, I., Meybodi, M.R., & Naebi, A. (2011). Adaptive
particle swarm optimization algorithm in dynamic environments.
In: Computational Intelligence, Modelling and Simulation, pp.
74–79. IEEE.

	 59.	 Rezazadeh, I., Meybodi, M.R., & Naebi, A. (2011). Particle
swarm optimization algorithm in dynamic environments: Adapt-
ing inertia weight and clustering particles. In: European Sympo-
sium on Computer Modeling and Simulation, pp. 76–82. IEEE.

	 60.	 Sepas-Moghaddam, A., Arabshahi, A., Yazdani, D., & Dehshibi,
M.M. (2012). A novel hybrid algorithm for optimization in

http://arxiv.org/abs/2106.06174

A survey of multi‑population optimization algorithms for tracking the moving optimum in dynamic…

multimodal dynamic environments. In: International Conference
on Hybrid Intelligent Systems, pp. 143–148. IEEE.

	 61.	 Blackwell, T., Branke, J., & Li, X. (2008). Particle swarms for
dynamic optimization problems. In: Blum, C., Merkle, D. (eds.)
Swarm Intelligence: Introduction and Applications, pp. 193–217.
Springer.

	 62.	 Yazdani, D., Akbarzadeh-Totonchi, M.R., Nasiri, B., & Meybodi,
M.R. (2012). A new artificial fish swarm algorithm for dynamic
optimization problems. In: Congress on Evolutionary Computa-
tion, pp. 1–8. IEEE.

	 63.	 Yazdani, D., Nasiri, B., Sepas-Moghaddam, A., Meybodi, M., &
Akbarzadeh-Totonchi, M. (2014). mNAFSA: a novel approach
for optimization in dynamic environments with global changes.
Swarm and Evolutionary Computation, 18, 38–53.

	 64.	 Yazdani, D., Nasiri, B., Sepas-Moghaddam, A., & Meybodi, M.
R. (2013). A novel multi-swarm algorithm for optimization in
dynamic environments based on particle swarm optimization.
Applied Soft Computing, 13(4), 2144–2158.

	 65.	 du Plessis, M. C., & Engelbrecht, A. P. (2013). Differential
evolution for dynamic environments with unknown numbers of
optima. Journal of Global Optimization, 55(1), 73–99.

	 66.	 Li, C., & Yang, S. (2012). A general framework of multipopula-
tion methods with clustering in undetectable dynamic environ-
ments. IEEE Transactions on Evolutionary Computation, 16(4),
556–577.

	 67.	 Li, C., Yang, S., & Yang, M. (2014). An adaptive multi-swarm
optimizer for dynamic optimization problems. Evolutionary
Computation, 22(4), 559–594.

	 68.	 Qin, J., Huang, C., & Luo, Y. (2021). Adaptive multi-swarm in
dynamic environments. Swarm and Evolutionary Computation,
63, 100870.

	 69.	 Wang, H., Wang, N., & Wang, D. (2008). Multi-swarm optimiza-
tion algorithm for dynamic optimization problems using forking.
In: Control and Decision Conference, pp. 2415–2419. IEEE.

	 70.	 Li, C., & Yang, S. (2008). Fast multi-swarm optimization for
dynamic optimization problems. In: International Conference on
Natural Computation, vol. 7, pp. 624–628. IEEE.

	 71.	 Moradi, M., Nejatian, S., Parvin, H., & Rezaie, V. (2018).
Cmcabc: clustering and memory-based chaotic artificial bee
colony dynamic optimization algorithm. International Journal of
Information Technology & Decision Making, 17(04), 1007–1046.

	 72.	 Luo, W., Yang, B., Bu, C., & Lin, X. (2017). A hybrid particle
swarm optimization for high-dimensional dynamic optimization.
In: Shi et al., Y. (ed.) Simulated Evolution and Learning, pp.
981–993. Springer, Cham.

	 73.	 Biswas, S., Bose, D., & Kundu, S. (2012). A clustering parti-
cle based artificial bee colony algorithm for dynamic environ-
ment. In: Panigrahi et al., B.K. (ed.) Swarm, Evolutionary, and
Memetic Computing, pp. 151–159. Springer.

	 74.	 Oppacher, F., & Wineberg, M. (1999). The shifting balance
genetic algorithm: Improving the ga in a dynamic environment.
In: Conference on Genetic and Evolutionary Computation, 1,
504–510. ACM.

	 75.	 Branke, J., Kaussler, T., Schmidt, C., & Schmeck, H. (2000). A
multi-population approach to dynamic optimization problems. In:
Evolutionary Design and Manufacture, pp. 299–307. Springer.

	 76.	 Parrott, D., & Li, X. (2004). A particle swarm model for tracking
multiple peaks in a dynamic environment using speciation. In:
Congress on Evolutionary Computation, 1, 98–103. IEEE.

	 77.	 Li, X., Branke, J., & Blackwell, T. (2006). Particle swarm with
speciation and adaptation in a dynamic environment. In: Con-
ference on Genetic and Evolutionary Computation, pp. 51–58.
ACM.

	 78.	 Woldesenbet, Y. G., & Yen, G. G. (2009). Dynamic evolution-
ary algorithm with variable relocation. IEEE Transactions on
Evolutionary Computation, 13(3), 500–513.

	 79.	 Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-
based algorithm for discovering clusters a density-based algo-
rithm for discovering clusters in large spatial databases with
noise. In: Knowledge Discovery and Data Mining, pp. 226–231.
AAAI Press.

	 80.	 Li, C., & Yang, S. (2009). A clustering particle swarm optimizer
for dynamic optimization. In: Congress on Evolutionary Compu-
tation, pp. 439–446. IEEE.

	 81.	 Yang, S., & Li, C. (2010). A clustering particle swarm optimizer
for locating and tracking multiple optima in dynamic environ-
ments. IEEE Transactions on Evolutionary Computation, 14(6),
959–974.

	 82.	 Turky, A. M., & Abdullah, S. (2014). A multi-population har-
mony search algorithm with external archive for dynamic opti-
mization problems. Information Sciences, 272, 84–95.

	 83.	 Daneshyari, M., & Yen, G.G. (2011). Dynamic optimization
using cultural based pso. In: Congress of Evolutionary Compu-
tation, pp. 509–516. IEEE.

	 84.	 Nickabadi, A., Ebadzadeh, M. M., & Safabakhsh, R. (2012). A
competitive clustering particle swarm optimizer for dynamic
optimization problems. Swarm Intelligence, 6(3), 177–206.

	 85.	 Wang, H., Yang, S., Ip, W. H., & Wang, D. (2012). A memetic
particle swarm optimisation algorithm for dynamic multi-modal
optimisation problems. International Journal of Systems Science,
43(7), 1268–1283.

	 86.	 Luo, W., Sun, J., Bu, C., & Liang, H. (2016). Species-based parti-
cle swarm optimizer enhanced by memory for dynamic optimiza-
tion. Applied Soft Computing, 47, 130–140.

	 87.	 Zhu, T., Luo, W., & Yue, L. (2014). Combining multipopulation
evolutionary algorithms with memory for dynamic optimiza-
tion problems. In: Congress on Evolutionary Computation, pp.
2047–2054. IEEE.

	 88.	 Liu, Y., Liu, J., Jin, Y., Li, F., & Zheng, T. (2020). An affin-
ity propagation clustering based particle swarm optimizer for
dynamic optimization. Knowledge-Based Systems, 195, 105711.

	 89.	 Kamosi, M., Hashemi, A.B., & Meybodi, M.R. (2010). A new
particle swarm optimization algorithm for dynamic environ-
ments. In: Panigrahi et al., B.K. (ed.) Swarm, Evolutionary, and
Memetic Computing, pp. 129–138. Springer.

	 90.	 Kamosi, M., Hashemi, A.B., & Meybodi, M.R. (2010). A hiber-
nating multi-swarm optimization algorithm for dynamic envi-
ronments. In: Nature and Biologically Inspired Computing, pp.
363–369. IEEE.

	 91.	 Halder, U., Maity, D., Dasgupta, P., & Das, S. (2011). Self-adap-
tive cluster-based differential evolution with an external archive
for dynamic optimization problems. In: Panigrahi et al., B.K.
(ed.) Swarm, Evolutionary, and Memetic Computing, pp. 19–26.
Springer, Berlin, Heidelberg.

	 92.	 Kordestani, J. K., Firouzjaee, H. A., & Reza Meybodi, M. (2017).
An adaptive bi-flight cuckoo search with variable nests for con-
tinuous dynamic optimization problems. Applied Intelligence,
48(1), 97–117.

	 93.	 Peng, M., She, Z., Yazdani, D., Yazdani, D., Luo, W., Li, C.,
Branke, J., Nguyen, T.T., Gandomi, A.H., Jin, Y., et al. (2023).
Evolutionary dynamic optimization laboratory: A matlab opti-
mization platform for education and experimentation in dynamic
environments. arXiv preprint arXiv:​2308.​12644

	 94.	 Peng, M., She, Z., Yazdani, D., Yazdani, D., Luo, W., Li, C.,
Branke, J., Nguyen, T.T., Gandomi, A.H., Jin, Y., et al. (2023).
Evolutionary Dynamic Optimization Laboratory (EDOLAB).
GitHub repository. https://​github.​com/​Danial-​Yazda​ni/​
EDOLAB-​MATLAB

	 95.	 Yazdani, D., Branke, J., Khorshidi, M.S., Omidvar, M.N., Li,
X., Gandomi, A.H., & Yao, X. (2024). Clustering in dynamic
environments: a framework for benchmark dataset generation
with heterogeneous changes.

http://arxiv.org/abs/2308.12644
https://github.com/Danial-Yazdani/EDOLAB-MATLAB
https://github.com/Danial-Yazdani/EDOLAB-MATLAB

	 D. Yazdani et al.

	 96.	 Li, C., & Yang, S. (2008). A generalized approach to construct
benchmark problems for dynamic optimization. In: Simulated
Evolution and Learning, pp. 391–400. Springer.

	 97.	 Li, C., Yang, S., Nguyen, T. T., Yu, E. L., Yao, X., Jin, Y.,
Beyer, H.-G., & Suganthan, P. N. (2008). Benchmark generator
for cec’2009 competition on dynamic optimization. Center for
Computational Intelligence: Technical report.

	 98.	 Yazdani, D., Omidvar, M. N., Cheng, R., Branke, J., Nguyen, T.
T., & Yao, X. (2022). Benchmarking continuous dynamic opti-
mization: survey and generalized test suite. IEEE Transactions
on Cybernetics, 52(5), 3380–3393.

	 99.	 Li, C., Nguyen, T.T., Zeng, S., Yang, M., & Wu, M. (2018).
An open framework for constructing continuous optimization
problems. IEEE Transactions on Cybernetics, 1–15

	100.	 Trojanowski, K., & Michalewicz, Z. (1999). Searching for optima
in non-stationary environments. Congress on Evolutionary Com-
putation, 3, 1843–1850.

	101.	 Rakitianskaia, A. & Engelbrecht, A.P. (2009). Training neural
networks with pso in dynamic environments. In: Congress on
Evolutionary Computation, pp. 667–673. IEEE.

	102.	 Rakitianskaia, A. S., & Engelbrecht, A. P. (2012). Training feed-
forward neural networks with dynamic particle swarm optimisa-
tion. Swarm Intelligence, 6(3), 233–270.

	103.	 Kalita, D. J., & Singh, S. (2020). Svm hyper-parameters optimi-
zation using quantized multi-pso in dynamic environment. Soft
Comput., 24(2), 1225–1241.

	104.	 Liu, X., He, S., Gu, Y., Xu, Z., Zhang, Z., Wang, W., & Liu, P.
(2020). A robust cutting pattern recognition method for shearer
based on least square support vector machine equipped with
chaos modified particle swarm optimization and online correct-
ing strategy. ISA transactions, 99, 199–209.

	105.	 Jin, N., Termansen, M., Hubacek, K., Holden, J., & Kirkby,
M. (2007). Adaptive farming strategies for dynamic economic
environment. In: Congress on Evolutionary Computation, pp.
1213–1220. IEEE.

	106.	 Sesum-Cavic, V., & Kuhn, E. (2010). Comparing configurable
parameters of swarm intelligence algorithms for dynamic load
balancing. In: 2010 Fourth IEEE International Conference on
Self-Adaptive and Self-Organizing Systems Workshop, pp.
42–49. IEEE.

	107.	 Mitra, P., & Venayagamoorthy, G. K. (2009). An adaptive con-
trol strategy for dstatcom applications in an electric ship power
system. IEEE Transactions on power electronics, 25(1), 95–104.

	108.	 Jatmiko, W., Nugraha, A., Effendi, R., Pambuko, W., Mardian,
R., Sekiyama, K., & Fukuda, T. (2009). Localizing multiple odor
sources in a dynamic environment based on modified niche parti-
cle swarm optimization with flow of wind. WSEAS Transactions
on Systems, 8(11), 1187–1196.

	109.	 Wang, Y., Zhou, J., Lu, Y., Qin, H., & Wang, Y. (2011). Chaotic
self-adaptive particle swarm optimization algorithm for dynamic
economic dispatch problem with valve-point effects. Expert Sys-
tems with Applications, 38(11), 14231–14237.

	110.	 Liu, L., Ranjithan, S. R., & Mahinthakumar, G. (2011). Contami-
nation source identification in water distribution systems using
an adaptive dynamic optimization procedure. Journal of Water
Resources Planning and Management, 137(2), 183–192.

	111.	 Karatas, M. (2021). A dynamic multi-objective location-allo-
cation model for search and rescue assets. European Journal of
Operational Research, 288(2), 620–633.

	112.	 Moulton, R.H., Viktor, H.L., Japkowicz, N., & Gama, J. (2019).
Clustering in the presence of concept drift. In: Machine Learning
and Knowledge Discovery in Databases, pp. 339–355. Springer.

	113.	 Li, T., Chen, L., Jensen, C.S., Pedersen, T.B., Gao, Y., & Hu, J.
(2022). Evolutionary clustering of moving objects. In: Interna-
tional Conference on Data Engineering, pp. 2399–2411. IEEE.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Delaram Yazdani  received her
M.Sc. degree in Information
Technology Engineering from
Azad University, Iran, in 2019.
She is currently pursuing a Ph.D.
degree at the Faculty of Engi-
neering and Technology, Liver-
pool John Moores University,
Liverpool, U.K. Her research
interests include optimization
and evolutionary in dynamic
environments, operational
research, and optimization solu-
tions for port operations and
logistics.

Danial Yazdani  received his Ph.D.
degree in computer science from
Liverpool John Moores Univer-
sity, Liverpool, U.K., in 2018.
He is currently a Research Fel-
low at the Data Science Institute,
University of Technology Syd-
ney. Prior to that, he was a
Research Assistant Professor
with the Department of Com-
puter Science and Engineering at
the Southern University of Sci-
ence and Technology, Shenzhen,
China. His primary research
interests include learning and
optimization in dynamic envi-

ronments, where he has contributed as the first author in over 20 peer
reviewed publications in this field, nine of which were published in
prestigious IEEE/ACM Transactions. He is an IEEE Senior Member
and was a recipient of the 2023 IEEE Computational Intelligence Soci-
ety Outstanding PhD Dissertation Award, the Best Thesis Award from
the Faculty of Engineering and Technology at Liverpool John Moores
University, and the SUSTech Presidential Outstanding Postdoctoral
Award from Southern University of Science and Technology.

Eddie Blanco‑Davis  is a Reader
in Marine Engineering at the
Faculty of Engineering and
Technology, Liverpool John
Moores University, Liverpool,
U.K. He started his position as a
Senior Lecturer and a member of
the Liverpool Logistics Offshore
and Marine Research Institute
(LOOM) in 2015. He earned his
B.Sc. in Marine Engineering and
Shipyard Management from the
United States Merchant Marine
Academy, Kings Point, N.Y., in
2004. He holds an M.Sc. and a
Ph.D. in Naval Architecture,

Ocean, and Marine Engineering from the University of Strathclyde,
Glasgow. His research interests include human factors applied to ship-
board and pilotage operations; Life Cycle Assessment applied to

A survey of multi‑population optimization algorithms for tracking the moving optimum in dynamic…

marine operations and machinery; sustainable development, energy
efficiency, and renewable energy; marine environmental protection and
regulation, including emission control, ship ballast water management
and alternatives, and environmentally sound marine propulsion
systems.

Trung Thanh  Nguyen is a Profes-
sor of Operational Research in
Transportation and Co-Director
of the Liverpool Logistics, Off-
shore and Marine (LOOM)
Research Institute at Liverpool
John Moores University, Liver-
pool, U.K. He leads the Smart
Green Things group, focusing on
optimization, simulation, data
analytics, and machine learning
for various transportation and
smart city applications. He has
received multiple awards,

including the LJMU Vice-Chancellor’s Award for Excellence in
Research Impact in 2023. His recent work includes projects on zero-
emission vessels, smart city solutions, and traffic congestion
mitigation.

	A survey of multi-population optimization algorithms for tracking the moving optimum in dynamic environments
	Abstract
	1 Introduction
	2 mDOAs with homogeneous subpopulations
	2.1 Homogeneous mDOAs with constant population size
	2.2 Homogeneous mDOAs with varying population size

	3 mDOAs with heterogeneous subpopulations
	3.1 Heterogeneous mDOAs with constant population size
	3.2 Heterogeneous mDOAs with varying population size

	4 Benchmarking methods for evaluating mDOAs
	4.1 Dynamic benchmark generators
	4.1.1 Dynamic landscape generators
	4.1.2 Dynamic dataset generator

	4.2 Performance indicators
	4.3 Real-world applications of DOAs

	5 Future directions
	5.1 Adaptive parameter tuning over time
	5.2 Designing algorithms for problems with high temporal severity
	5.3 Handling problems with multiple types of changes
	5.4 Solution deployment and quick recovery
	5.5 Changes in the boundaries of the search range

	6 Conclusion
	References

