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seawater systems 

Gert-Jan Jeunen a,*, Sadie Mills c, Stefano Mariani d, Jackson Treece b, Sara Ferreira b, 
Jo-Ann L. Stanton b, Benjamín Durán-Vinet b, Grant A. Duffy a, Neil J. Gemmell b, Miles Lamare a 

a Department of Marine Science, University of Otago, Dunedin 9016, New Zealand 
b Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand 
c National Institute of Water and Atmospheric Research, Wellington 6021, New Zealand 
d School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Passive samplers scale eDNA bio-
monitoring in our oceans, bypassing 
water filtration. 

• Novel sampler design reduces handling 
time, connects to vessels seamlessly, 
without interfering with onboard 
activities. 

• Passive eDNA sampling shows potential 
during a voyage from New Zealand to 
Antarctica when compared to water 
filtration. 

• Passive samplers detect more phyla and 
recover more ZOTUs than water 
filtration. 

• Passive eDNA sampler enables large- 
scale biomonitoring when deployed on-
board the world’s oceanic fleet.  
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A B S T R A C T   

Passive samplers are enabling the scaling of environmental DNA (eDNA) biomonitoring in our oceans, by cir-
cumventing the time-consuming process of water filtration. Designing a novel passive sampler that does not 
require extensive sample handling time and can be connected to ocean-going vessels without impeding normal 
underway activities has potential to rapidly upscale global biomonitoring efforts onboard the world's oceanic 
fleet. Here, we demonstrate the utility of an artificial sponge sampler connected to the continuous pump un-
derway seawater system as a means to enable oceanic biomonitoring. We compared the performance of this 
passive sampling protocol with standard water filtration at six locations during a research voyage from New 
Zealand to Antarctica in early 2023. Eukaryote metabarcoding of the mitochondrial COI gene revealed no sig-
nificant difference in phylogenetic α-diversity between sampling methods and both methods delineated a 
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progressive reduction in number of Zero-Radius Operational Taxonomic Units (ZOTUs) with increased latitudes. 
While both sampling methods revealed comparable trends in geographical community compositions, distinct 
clusters were identified for passive samplers and water filtration at each location. Additionally, greater vari-
ability between replicates was observed for passive samplers, resulting in an increased estimated level of 
replication needed to recover 90 % of the biodiversity. Furthermore, traditional water filtration failed to detect 
three phyla observed by passive samplers and extrapolation analysis estimated passive samplers recover a larger 
number of ZOTUs compared to water filtration for all six locations. Our results demonstrate the potential of this 
passive eDNA sampler protocol and highlight areas where this emerging technology could be improved, thereby 
enabling large-scale offshore marine eDNA biomonitoring by leveraging the world's oceanic fleet without 
interfering with onboard activities.   

1. Introduction 

The effectiveness of marine conservation efforts is hampered, due to 
a lack of detailed knowledge on current biodiversity trends (Katsane-
vakis et al., 2020; Pendleton et al., 2018). This missing information 
stems from barriers to marine biodiversity monitoring across the tree of 
life (Luypaert et al., 2020; Stat et al., 2017). The lack of information on 
ecosystem functioning is further exacerbated for the open ocean, deep 
sea, and remote regions, such as the Southern Ocean, as the added 
logistical and expense constraints, as well as the inhospitable environ-
ment, limit research opportunities (Danis et al., 2020; Glover and Smith, 
2003; Liu et al., 2022; Ramírez et al., 2022). 

Traditionally, marine biomonitoring has relied on morphological 
characteristics for species identification through direct human obser-
vation. Frequently-used monitoring techniques for the marine environ-
ment include underwater visual censuses by diver, video, or acoustic 
sensors (Mallet and Pelletier, 2014; Rajan et al., 2019; Steenweg et al., 
2017), trawling (Pusceddu et al., 2014), and plankton tows (Reid et al., 
2003). However, these biomonitoring methods may often be biased, 
invasive, and require taxonomic expertise to identify species (Ayma 
et al., 2016; Kwong et al., 2018; de Mendonça and Metaxas, 2021; 
Trebitz et al., 2017). Moreover, traditional monitoring methods can be 
time-consuming, expensive, and fail to detect the true biodiversity 
present at the site of interest due to a focus on a limited number of 
taxonomic groups during the survey and an inability to identify juve-
niles, cryptic species, and damaged specimens (Hernández-Becerril 
et al., 2023; Zhang et al., 2020). With the increased urgency of obtaining 
accurate marine biodiversity data for conservation purposes, scientists 
are currently exploring novel tools to aid marine biodiversity moni-
toring efforts (Danovaro et al., 2016). 

One biomonitoring technique that offers great potential is environ-
mental DNA (eDNA) metabarcoding (Ficetola et al., 2008). Through the 
examination of the DNA signature present in environmental samples, 
which stems from genetic material released by all organisms into their 
surroundings (Thomsen and Willerslev, 2015), eDNA metabarcoding 
circumvents the need for invasive sampling procedures (Stat et al., 
2019) and automates taxonomic identification by matching DNA frag-
ments to online reference databases (Jeunen et al., 2022b). This 
approach obviates the necessity for direct visual identification of species 
to infer presence (Afzali et al., 2020; Fernández et al., 2021; Stat et al., 
2019) and quantify abundance (Rourke et al., 2022; Stoeckle et al., 
2017; Uthicke et al., 2018). 

While aquatic eDNA has become a pivotal data source for marine 
ecosystem assessment (Takahashi et al., 2023), the eDNA biomonitoring 
workflow is still undergoing innovation to overcome current challenges 
(Rishan et al., 2023; Takahashi et al., 2023). One of the major hurdles to 
scale eDNA for global monitoring is the need to collect large volumes of 
water to increase detection probabilities (Govindarajan et al., 2022), 
while filtering and processing of samples upon collection is also required 
to halt DNA degradation (Hunter et al., 2019). The time-consuming 
process of water filtration is currently limiting the number of samples 
included in eDNA surveys (Bessey et al., 2021) and immediate filtration 
is not always logistically feasible (Jeunen et al., 2024). Additionally, this 
in-field sample handling step in the eDNA workflow increases the risk of 

contamination, either between samples when gear is not properly ster-
ilized or from outside sources (Sepulveda et al., 2020b). 

A promising recently explored approach to circumvent the necessity 
for water filtration in eDNA biomonitoring are passive samplers (Bessey 
et al., 2021), a process whereby various substrates are placed in the 
water to passively accumulate eDNA on or within the surfaces of the 
submerged matrix (Bessey et al., 2021; Jeunen et al., 2022a; Verdier 
et al., 2021). Inspired by the action of powerful filtering organisms such 
as sponges (Phylum Porifera) (Mariani et al., 2019), mesocosm and in 
situ experiments have indicated that artificial sponges can serve as 
suitable passive samplers (Jeunen et al., 2022a), with a deployment time 
of minutes to hours deemed sufficient for passive samplers to collect the 
eDNA signals of the residing marine community (Bessey et al., 2022). By 
eliminating the need for the time-consuming process of water filtration, 
passive samplers enable increased replication within a location (Jeunen 
et al., 2022a). Furthermore, with effective submergence times for pas-
sive eDNA samplers reported as low as several minutes, passive eDNA 
samplers enable an increased number of locations to be incorporated in 
eDNA biomonitoring surveys (Bessey et al., 2021). Nevertheless, passive 
eDNA sample collection thus far has still either restricted a vessel's 
movement or required specific circumstances for sample deployment. 
For example, the use of modified plankton samplers limits a vessel's 
speed to ≤5 knots (Pochon et al., 2024) and the metaprobe passive 
eDNA sampler used to monitor fish catch and bycatch has been deployed 
inside trawling nets (Maiello et al., 2023, 2022). Such limitations may 
have slowed the adoption of these developments. 

With the aim of enabling large-scale eDNA biomonitoring across a 
greater proportion of the marine biome, this study investigated the 
deployment of passive eDNA samplers without impeding a vessel's 
movement or requiring specialised gear that limits implementation of 
eDNA collection to a subset of ocean-going vessels. By connecting arti-
ficial sponges to the continuous pump underway seawater system, we 
monitored the eukaryote biodiversity during a voyage from New Zea-
land to Antarctica in early 2023. Such continuous pump underway 
seawater systems are present on a majority of ocean-going vessels to cool 
a vessel's engine, as well as separate secondary systems for research 
purposes. Simultaneous eDNA sampling through standard water filtra-
tion approaches (Jeunen et al., 2023) enabled us to compare meta-
barcoding results between both methods and answer the following 
questions: (i) can passive eDNA samplers be deployed without hindering 
a boat's manoeuvrability and/or requiring extensive handling time to 
limit the impact of the day-to-day activity of crew members, (ii) are 
eDNA metabarcoding results between passive and active sampling 
comparable, and (iii) are observed biodiversity patterns with eDNA 
reflective of known large-scale ecological patterns and physical features 
in the Southern Ocean (i.e., water masses and oceanic fronts). 

2. Materials and methods 

2.1. Flow through system for passive eDNA collection 

New Zealand's research vessel, RV Tangaroa's Underway Flow 
Through System (TUFTS) continuously collects seawater at ~25 l min− 1 

through a variable speed mono pump via an intake at about 5 m water 
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depth in the vessel's hull from the keel of the ship. Water was diverted 
into a 50 l insulated flow-through tank for environmental DNA sampling 
by connecting a hose to a fitting drilled into one side near the top of the 
insulated tank. To ensure the tank remained near-full of seawater with a 
continuous flow of ~1.5 l min− 1, an overflow tube covered with a 2 mm 
mesh was fitted to the plumbing at the base of the tank on the opposite 
side of the water entry point (Fig. 1c). 

2.2. Sample collection 

Sixty eDNA samples were collected onboard the RV Tangaroa during 
the TAN2023 Antarctic voyage between 17 January and 14 February 
2023 at six locations, including three open ocean sites and three coastal 

regions (Fig. 1; Supplement 1). At each location, five passive eDNA 
samplers in the form of 1cm3 excised subsamples from artificial Whirl- 
Pak® Speci-Sponges® (henceforward referred to as “artificial sponges”) 
were submerged for 24 h in the insulated flow-through tank while the 
vessel was moving. A 24 h deployment was chosen to limit the impact of 
the crew collecting eDNA samples, whereby retrieval and deployment 
could be achieved at a single time during the day on consecutive sam-
pling days. After the 24 h deployment, artificial sponges were placed 
into 5 ml Eppendorf tubes prefilled with ethanol. Upon retrieval of the 
artificial sponges, five 500 ml water samples were collected from the 
insulated flow-through tank and filtered using eDNA syringe mini kits 
(1.2 μm cellulose acetate encapsulated syringe filter, Sartorius Cat # 
17953; Wilderlab, New Zealand; henceforward referred to as “aquatic 
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Fig. 1. (a) Map of the Southern Ocean displaying average sea surface temperature between 2010 and 2020 (data source: https://www.bio-oracle.org/). The sampling 
region is indicated by a black rectangle. (b) Sampling region in the Ross Sea showing sampling locations as black circles. Numbers inside black circles denote location 
ID used throughout the document. The coastal sampling region is indicated by a black rectangle (c) Photograph of passive eDNA sampler set up onboard the RV 
Tangaroa during the 2023 Antarctic voyage. Photo credit @Miles Lamare. (d) Coastal sampling region in the Ross Sea showing sampling locations as black circles. 

G.-J. Jeunen et al.                                                                                                                                                                                                                              

https://www.bio-oracle.org/


Science of the Total Environment 946 (2024) 174354

4

eDNA”), following the methodology of Jeunen et al. (2023). Wilderlab 
collection filters were submerged in DNA/RNA Shield (Zymo Research, 
US) to halt DNA degradation. Hence, total water volume per method 
differed between methods, with 500 ml for water filtration and 2160 l 
for passive eDNA samples (1.5 l min− 1 continuous flow x 24 h). Passive 
eDNA samples and filters were stored in the dark at − 20 ◦C during the 
Antarctic voyage and transported to the designated PCR-free eDNA fa-
cilities at Portobello Marine Laboratories (PML), University of Otago, 
New Zealand at the completion of the voyage. Upon arrival, samples 
were kept in the dark at − 20 ◦C until further processing. 

2.3. Laboratory processing 

Before commencing laboratory processing of eDNA samples, bench 
spaces and equipment were sterilized using a 10-min exposure to 10 % 
bleach solution (0.5 % hypochlorite final concentration) and wiped with 
ultrapure water (UltraPure™ DNase/RNase-Free Distilled Water, Invi-
trogen™) to reduce the risk of contamination(Prince and Andrus, 1992). 
Additionally, six negative field controls (Whirl-Pak® Speci-Sponges® 
subsampled to 1 cm3 stored in 500 ml ultrapure water; one control at 
each sampling location), eight negative extraction control samples (50 μl 
ultrapure water; one control during each DNA extraction round), and 
two PCR no-template controls (2 μl ultrapure water; one control per 96- 
well PCR plate) were processed and sequenced alongside eDNA samples 
to investigate cross-contamination at various stages of the laboratory 
processing workflow. 

As detailed in Supplement 2, seventy-six samples (sixty field samples 
and sixteen negative controls), including five biological replicates per 
site and per method, were extracted using Qiagen's DNeasy Blood & 
Tissue Kit (Cat # 69506; Qiagen GmbH, Germany) with slight modifi-
cations from the manufacturer's specifications. DNA extracts were stored 
at − 20 ◦C until further processing. Before library preparation, each 
sample was investigated for optimal input DNA, low-template samples, 
and inhibitors through quantitative PCR (qPCR) screening of a dilution 
series (undiluted, 10-fold dilution, 100-fold dilution) (Murray et al., 
2015). Quantitative PCRs were carried out on a QuantStudio™ 3 
(ThermoFisher Scientific, USA). Amplification was carried out in 
duplicate in 25 μl reactions. The qPCR mastermix consisted of 1× Sen-
siFAST SYBR Lo-ROX Mix (Bioline, London, UK), 0.4 μmol/l of each 
primer (Integrated DNA Technologies, Australia), 2 μl of template DNA, 
and ultrapure water as required. Samples were amplified using the 
mlCOIintF/jgHCO2198 primer set (Geller et al., 2013; Leray et al., 
2013), targeting a ~313 bp fragment of the cytochrome c oxidase sub-
unit I (COI) gene region (mlCOIintF: 5′-GGWACWGGWTGAACWGTW-
TAYCCYCC-3′; jgHCO2198: 5′-TAIACYTCIGGRTGICCRAARAAYCA-3′). 
The thermal cycling profile included an initial denaturation step of 95 ◦C 
for 3 min; followed by 50 cycles of 30 s at 95 ◦C, 30 s at 51 ◦C, 45 s at 
72 ◦C; and a final meltcurve analysis. We opted to investigate eukaryotic 
eDNA signals for this experiment over standard eDNA fish monitoring, 
as the shifts in phyto- and zooplankton communities are well-described 
in the sampling region (Pinkerton et al., 2020). 

Library preparation followed a one-step amplification protocol using 
fusion primers, containing an Illumina adapter, a modified sequencing 
primer, a 6–8 bp barcode tag and the template-specific primer (Murray 
et al., 2015). Quantitative PCR conditions followed the protocol as 
described above, with each sample amplified in duplicate and assigned a 
unique barcode combination with differing forward and reverse barc-
odes. PCR replicates, assigned identical barcode combinations, were 
pooled to reduce stochastic effects from amplification (Alberdi et al., 
2018; Leray and Knowlton, 2015). Size selection and qPCR clean-up 
followed the AMPure XP (Beckman Coulter, USA) standard protocol. 
Samples were visualized using gel electrophoresis to determine the 
presence of a single band and molarity was measured on Qubit (Qubit™ 
dsDNA HS Assay Kit, ThermoFisher Scientific, USA). Samples were 
pooled in equimolar concentrations to produce a single DNA library. The 
resultant library was size selected using Pippin Prep (Sage Science, USA) 

and purified with Qiagen's QIAquick PCR Purification Kit (Qiagen 
Gmbh, Hilden, Germany) prior to final library quantitation on QIAxcel 
Advanced System (Qiagen Gmbh, Hilden, Germany) and Qubit. 
Sequencing was performed at the Otago Genomics sequencing facility on 
an Illumina MiSeq® using a 2 × 250 bp V2 Illumina sequencing kit, 
following the manufacturer's recommendations, with 5 % PhiX to 
minimize issues associated with low-complexity libraries. 

2.4. Bioinformatic analysis and taxonomy assignment 

Upon quality investigation of raw sequence files using FastQC v 
0.12.1 (Andrews, 2010), forward and reverse reads were merged 
(function: ‘–fastq_mergepairs’) using default settings in VSEARCH v 
2.23.0 (Rognes et al., 2016). Once the forward and reverse reads were 
merged, data was demultiplexed, i.e., reads assigned to samples, by 
allowing for a maximum of 2 errors (parameter: ‘-e’) and no indels 
(parameter: ‘–no-indels’) in the barcode and primer binding region using 
cutadapt v 4.4 (Martin, 2011). Demultiplexed reads were quality filtered 
using the ‘–fastq_filter’ function in VSEARCH based on a maximum ex-
pected error of 1.0 (parameter: ‘–fastq_maxee’), an amplicon length of 
313 bp (parameters: ‘–fastq_minlen’; ‘–fastq_maxlen’), and without 
allowing for ambiguous base calls (parameter: ‘–fastq_maxns 0’). To 
determine only high-quality reads remained after filtering, FastQC re-
ports between raw and processed reads were compared. Reads passing 
the quality filtering thresholds were dereplicated using the ‘–der-
ep_fulllength’ function in VSEARCH with default parameters. Unique 
sequences were denoised using the unoise3 algorithm (Edgar, 2016) as 
implemented in the ‘–cluster_unoise’ function in VSEARCH with default 
parameters. Chimeric sequences were removed using the uchime3 al-
gorithm (Edgar, 2010) as implemented in the ‘–uchime3_denovo’function 
in VSEARCH with default parameters, thereby retaining ZOTU se-
quences (Zero-Radius Operational Taxonomic Unit) used to generate a 
count table (function: ‘–usearch_global’) using VSEARCH. 

A custom curated reference database for the mlCOIintF/jgHCO2198 
primer set was generated using CRABS v 0.1.8 (Jeunen et al., 2022b). 
COI gene fragments were downloaded from the NCBI (Federhen, 2012) 
and BOLD (Ratnasingham and Hebert, 2007) online repositories using 
the `db_download` function. Data from both sources were merged using 
the ‘db_merge’ function. Amplicons were retrieved through an in silico 
PCR step (function: ‘insilico_pcr’), while amplicons with missing primer- 
binding information were retrieved through pairwise global alignments 
(function: ‘pga’) by using the amplicons extracted by the in silico PCR 
step as seed sequences. The database was further curated through der-
eplication (function: ‘dereplicate’) and various filtering parameters 
(function: ‘seq_cleanup’), including (i) removal of amplicons containing 
ambiguous base calls, (ii) amplicon length restrictions, and (iii) exclu-
sion of environmental sequences and sequences without species-level 
taxonomic information. Finally, the local curated reference database 
was formatted to BLAST specifications using the ‘tax_format’ function 
within CRABS and the ‘makeblastdb’ function within the BLAST 2.10.1+
command-line tool suite (Altschul et al., 1990). 

The taxonomic identification of all ZOTU sequences was accom-
plished by employing a locally executed BLASTn analysis with default 
settings against the curated reference database. To gain access to the 
private reference barcode sequences on the BOLD repository, a sec-
ondary taxonomic ID was generated using the v3 BOLD Identification 
Engine and automated through the BOLDigger v 2.2.1 command-line 
tool (Buchner and Leese, 2020) with default settings. The final taxo-
nomic ID for each sequence was set to the BLAST identification and only 
switched to the BOLD ID when a private sequence on the BOLD re-
pository obtained an improved classification over the local reference 
database. 

Once a taxonomic ID was assigned to each ZOTU, artefact sequences 
were filtered by merging child-parent reads based on taxon-dependent 
co-occurrence patterns as implemented in tombRaider v 0.1.0 using 
default settings. Negative control samples were treated for potential 
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contamination using the microDecon v 1.0.2 R package (McKnight et al., 
2019) with default settings. Finally, samples that neither reached the 
rarefaction plateau when plotting ZOTU richness against sequencing 
depth, nor showed a curvature index above 0.40 were discarded, 
whereby rarefaction curves and curvature indices were generated using 
the DivE v 1.3 R package (Laydon et al., 2014) to assess sufficient 
sequencing coverage was obtained. A custom python script was used (htt 
ps://github.com/gjeunen/ALEX) to parse and update all output files, as 
well as generate a taxonomic lineage for each taxonomic ID. 

2.5. Statistical analysis and visualization 

All statistical analyses were conducted in R v 4.3.1 and RStudio v 
2023.06.1 + 524. Due to the limited number of available reference 
barcodes for Southern Ocean eukaryotes (Jeunen et al., 2023), statistical 
analyses were based on ZOTU sequence diversity, henceforward referred 
to as taxonomic diversity (TD) and phylogenetic diversity (PD). 
Bayesian phylogenetic trees were generated using BEAST v 2.7.6 
(Bouckaert et al., 2019) after aligning ZOTU sequences using the 
‘AlignSeqs’ function of the DECIPHER v 2.28.0 R package (Wright, 2020). 
Phylogenetic tree construction was performed with a Markov chain 
Monte Carlo (MCMC) chain length of 108 iterations, sampling trees 
every 1000. Convergence of the MCMC chains and effective sample size 
was checked using TRACER v 1.7.2 (Rambaut et al., 2018). The 
maximum credibility tree from the posterior sample of phylogenetic 
time-trees with a burn-in percentage of 85 % was identified through 
TreeAnnotator v 2.7.6 (Bouckaert et al., 2019) and used for subsequent 
analyses. As the correlation between eDNA signal strength and species 
abundance has not yet been established for metabarcoding approaches 
using universal primer sets (Fonseca, 2018), the count table was trans-
formed to presence-absence prior to statistical analysis. 

Differences in ⍺-diversity were assessed through Faith's PD using a 
two-way ANOVA with eDNA sample type and location as factors, fol-
lowed by post hoc Tukey multiple comparisons of means to assess sig-
nificant differences between factors and interactions. Venn diagrams 
and phylogenetic trees were drawn to visualise differences in ⍺-di-
versity. Additionally, the total number of observed ZOTUs were 
compared between eDNA sampling methods using a Wilcoxon signed- 
rank test. Furthermore, after transforming the count table to an 
incidence-frequency data type, the total taxonomic diversity for each 
sampling method and location was estimated for Hill order q =
0 through inter- and extrapolation calculations in the iNEXT.3D v 1.0.1 
R package (Chao et al., 2021) (function: ‘estimate3D’). A Wilcoxon 
signed-rank test was used to assess differences in ⍺-diversity under 
optimal replication conditions within each sampling method. Phyloge-
netic diversity (PD) estimates for Hill order q = 0 were also calculated 
from the incidence-frequency data table (function: ‘estimate3D’; pack-
age: iNEXT.3D) to assess the required replication at 90 % eDNA signal 
coverage. Significant differences in estimated replication between eDNA 
sample types was tested through a paired t-test. Differences in β-diversity 
were examined through PERMANOVA and PERMDISP analyses on an 
unweighted unifrac (PD) distance matrix using the ‘adonis2’ and ‘beta-
disper’ functions in the vegan v 2.6–4 R package (Dixon, 2003), 
respectively. Non-metric Multi-Dimensional Scaling (NMDS) ordination 
plots were drawn using the ‘ordinate’ function in the phyloseq v 1.44.0 R 
package (McMurdie and Holmes, 2013) to visualise β-diversity patterns. 
The raw sequence data files, as well as bioinformatic and R scripts are 
available on figshare (https://figshare.com/projects/Marsden_Obj3_Ta 
ngaroa_Underway/189474). 

3. Results 

3.1. Sequencing results 

After quality filtration, our dataset included a total of 4,414,466 
reads, with an average (±s.e.) of 73,574 reads (±4168.23) across 60 

samples (30 aquatic eDNA samples: 70,135 ± 4871.59; 30 artificial 
sponge eDNA samples: 77,013 ± 6793.14). The plateauing of rarefac-
tion curves and curvature indices reaching the threshold indicated suf-
ficient sequencing coverage was obtained for all samples (Supplement 
3). Spearman rank correlation between sequencing depth and detected 
number of ZOTUs was not significant (ρ (58) = 0.24; p = 0.06), hence 
data was not rarefied prior to statistical analysis (Supplement 3). 

3.2. ZOTU and species overlap 

We detected a total of 3051 ZOTUs (Fig. 2a). Across all locations, 
number of ZOTUs detected was similar between artificial sponges (2393; 
78.4 %) and aquatic eDNA (2318; 76.0 %). A total of 1660 ZOTUs (54.4 
%) overlapped between sample types across all sites, while 733 (24.0 %) 
and 658 (21.6 %) ZOTUs were detected only by artificial sponges and 
aquatic eDNA, respectively. ZOTU overlap between sample types within 
each sampling location ranged from 26.6 % for location 4 to 43.6 % for 
location 5 (Supplement 4). 

Due to the limited availability of reference barcodes for Southern 
Ocean organisms, only 673 (22.06 %) ZOTUs could be taxonomically 
identified to phylum level when employing an 85 % sequence similarity 
threshold (Fig. 2b). Non-assigned ZOTUs comprised 1,797,447 (40.72 
%) reads in the total data set and ranged between 28.75 % and 56.36 % 
within each sampling location for artificial sponges and between 33.28 
% and 69.73 % for aquatic eDNA. A total of 25 phyla were detected 
across all samples. The most abundant phylum, based on read count, was 
Haptophyta (total: 24.17 %; artificial sponges: 19.79 %; aquatic eDNA: 
28.97 %), followed by Bacillariophyta (total: 9.80 %; artificial sponge: 
8.26 %; aquatic eDNA: 11.5 %), Arthropoda (total: 9.70 %; artificial 
sponge: 17.09 %; aquatic eDNA: 1.58 %), and Ochrophyta (total: 4.09 %; 
artificial sponge: 1.89 %; aquatic eDNA: 6.51 %). Bacillariophyta con-
sisted of the most amount of ZOTUs (total: 194; artificial sponge: 180; 
aquatic eDNA: 161), followed by Ochrophyta (total: 95; artificial 
sponge: 77; aquatic eDNA: 78), Amoebozoa (total: 80; artificial sponge: 
77; aquatic eDNA: 34), and Arthopoda (total: 58; artificial sponge: 49; 
aquatic eDNA: 39). All 25 phyla were detected by artificial sponges, 
while aquatic eDNA failed to detect ZOTUs assigned to Nemertea, 
Annelida, and Placozoa (Fig. 2b). A total of 48 (1.57 %) ZOTUs matched 
perfectly to a reference barcode, with 41 ZOTUs detected by artificial 
sponges and 36 ZOTUs by aquatic eDNA (Supplement 5). The most 
abundant ZOTU with a perfect similarity score matched to Phaeocystis 
antarctica (Haptophyte, relative read abundance: 13.30 %), followed by 
Pseudo-nitzschia subcurvata (Diatom, relative read abundance: 4.15 %), 
Clausocalanus brevipes (Copepod, relative read abundance: 2.51 %), 
Calanus simillimus/propinquus (Copepod, relative read abundance: 1.81 
%), and Fragilariopsis kerguelensis (Diatom, relative read abundance: 
1.09 %). 

3.3. Alpha and beta diversity comparison 

The total number of observed ZOTUs between eDNA sampling 
methods within each location was not significantly different according 
to a Wilcoxon signed-rank test (W = 9, p > 0.2; Fig. 3a). However, the 
estimated total number of ZOTUs detectable with each method, calcu-
lated through inter- and extrapolation, was found to be significantly 
higher for artificial sponges compared to aquatic eDNA (W = 0, p <
0.001**; Fig. 3b). Furthermore, a two-way ANOVA revealed significant 
differences in α-diversity for Faith's PD (F5,48 = 7.24, p < 0.0001***; 
Fig. 3c) within the interaction between location and sample type. The 
post hoc Tukey HSD revealed this difference to be driven by sample 
location, rather than sample type (Supplement 6). For all α-diversity 
measures (observed ZOTUs, estimated total ZOTUs, Faith's PD), a gen-
eral pattern of a reduced number of ZOTUs with increasing latitudes was 
observed for both eDNA sampling methods (Fig. 3). 

Significant differences were also observed in β-diversity among 
sampling locations and sample types according to PERMANOVA 
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(sampling location: pseudo-F5,48 = 13.55, p < 0.001; sample type: 
pseudo-F1,48 = 17.49, p < 0.001). PERMANOVA revealed sampling 
location (R2 = 0.43) to be the largest explanatory variable for the 
observed variation in the dataset, while sample type had a more limited 
effect on community composition (R2 = 0.11, p < 0.001). Significant 
differences in dispersion were also observed according to PERMDISP 
(F11,48 = 7.62, p < 0.001). PERMANOVA and PERMDISP results were 
corroborated by ordination analysis (Fig. 4a). The NMDS plot revealed 
sample location to separate along the primary axis and sample type 
separating along the secondary axis (stress = 0.086). Variation in 
dispersion between sample type was also observed in the NMDS plot, 
with filtered biological replicates within a sampling location clustering 
more closely together compared to artificial sponge biological replicates 
(Fig. 4a). 

The increased variability between biological replicates within a 
sampling location for artificial sponges compared to aquatic eDNA 
resulted in a significant difference in estimated required level of repli-
cation to detect 90 % of the diversity within a site according to a paired t- 
test (t [5] = 4.65, p < 0.01). Inter- and extrapolation calculations esti-
mated 3.17 ± 0.60 and 8.14 ± 0.68 biological replicates per site for 
aquatic eDNA and artificial sponges, respectively (Fig. 4b). 

Differences in relative read abundance and proportional ZOTU count 
for specific taxonomic groups were observed between geographical re-
gions, with artificial sponges and aquatic eDNA displaying similar pat-
terns (Fig. 2b; Supplement 7). Both eDNA sampling methods identified 
an increased relative read abundance of Haptophyta for coastal loca-
tions compared to open ocean sampling sites. Additionally, artificial 
sponges identified a higher relative read abundance for Arthropoda and 
Gastrotricha at open ocean locations compared to coastal regions 
(Fig. 2b; Supplement 7). A similar pattern was observed for Ochrophyta, 
however, this pattern was more apparent with aquatic eDNA compared 
to artificial sponges (Fig. 2b; Supplement 7). 

3.4. Diversity per unit effort and cost 

In our study design, passive samplers required less in-field handling 
time (~1 min to place an artificial sponge in a prefilled ethanol tube vs 
~30 min of manual filtration per sample for aquatic eDNA), were more 

cost-effective (aquatic eDNA cost per sample: $20 NZD; artificial sponge 
cost per sample: $0.13 NZD), and has the potential to reduce the risk for 
contamination by fewer in situ handling steps. When factoring in the 
unit effort on ⍺-diversity measures (eDNA α-diversity/time), we 
observed a significant difference between passive samplers and aquatic 
eDNA for observed total ⍺-diversity (artificial sponge: 853.0 ± 310.8; 
aquatic eDNA: 26.9 ± 8.7), estimated total ⍺-diversity (artificial sponge: 
1234.0 ± 426.3; aquatic eDNA: 32.0 ± 9.6) and average observed 
⍺-diversity (artificial sponge: 45.2 ± 17.3; aquatic eDNA: 1.7 ± 0.5). A 
similar observation was made when factoring in the cost of a sample 
(eDNA α-diversity/cost) for the observed total ⍺-diversity (artificial 
sponge: 6561.5 ± 2391.0; aquatic eDNA: 40.3 ± 13.1), estimated total 
⍺-diversity (artificial sponge: 9492.6 ± 3279.1; aquatic eDNA: 48.1 ±
14.4), and average observed ⍺-diversity (artificial sponge: 347.6 ±
133.1; aquatic eDNA: 2.5 ± 0.8). 

4. Discussion 

Aquatic eDNA has transformed how scientists monitor the biodi-
versity of marine ecosystems (Takahashi et al., 2023), providing 
essential evidence, from populations to ecosystems, to inform conser-
vation efforts (Aglieri et al., 2021; Pochon et al., 2017; Sigsgaard et al., 
2016). However, the implementation of large-scale eDNA monitoring to 
assess global patterns is hindered by current methodological ap-
proaches, such as time-consuming water filtration processes (Bessey 
et al., 2022; Hunter et al., 2019), automated samplers that can be cost- 
prohibitive (Hendricks et al., 2023; Sepulveda et al., 2020a), or passive 
sampling approaches that require specific deployment conditions (Jeu-
nen et al., 2024; Maiello et al., 2022) or limit the day-to-day activity of 
either the vessel and/or the crew (Pochon et al., 2024). 

When connected to the continuous pump underway seawater system, 
artificial sponges can be used as a cost-effective passive eDNA sampler 
without interfering with a boat's manoeuvrability or day-to-day activ-
ities. Furthermore, passive eDNA samplers, as implemented in this 
study, require less sample handling time and expertise to acquire eDNA 
samples. During sampling, we made use of the continuous pump un-
derway seawater system dedicated for research purposes on the RV 
Tangaroa. To further expand upon the application of the method, we 
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Fig. 2. (a) Bayesian phylogenetic tree of 3051 ZOTU sequences detected using the mlCOIintF/jgHCO2198 primer set and the occurrence within O-SP (light yellow; 
artificial sponge eDNA data grouped for location 1, 2, and 3), O-W (light blue; aquatic eDNA data grouped for location 1, 2, and 3), C-SP (dark yellow; artificial 
sponge eDNA data grouped for location 4, 5, and 6), and C-W (dark blue, aquatic eDNA data grouped for location 4, 5, and 6). Samples were pooled by region to 
visualise differences between open ocean and coastal sites, while also showing the similarity in ZOTU detection between sample types within each region. (b) Dot plot 
displaying relative read abundance for each phylum separated by sample type and location. NA denotes ZOTUs not obtaining a taxonomic identification at 90 % 
threshold. Bar plot displaying ZOTUs detected by artificial sponges (yellow) and aquatic eDNA (blue). X-axes are log10 transformed. Phyla are sorted by total 
read count. 
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recommend future studies to implement this approach by by-passing a 
small volume of water from the intake of continuous pump systems to 
cool a vessel's engine, thereby enabling passive eDNA sampling onboard 
most ocean-going vessels, including commercial ships. Additionally, 
improving on our insulated flow-through tank by developing smaller 
individual flow-through sampler that can be easily swapped out will 
facilitate standardised sampling. 

Our passive sampler captured large-scale biogeographical diversity 
patterns, such as a reduced total diversity with increased latitudes and 
shifts in krill species and abundance between latitudes 48◦ to 61◦, pre-
viously described in global studies of marine biodiversity (Chaudhary 
et al., 2021; Edgar et al., 2017). While metabarcoding results between 
artificial sponges and aquatic eDNA revealed similar spatial biodiversity 
patterns (Fig. 2) (Jeunen et al., 2023), passive eDNA sampling required 
less in-field handling time (~10 min to process all sponge eDNA samples 

vs ~30 min of manual filtration per sample for aquatic eDNA) and was 
more cost-effective (aquatic eDNA cost per sample: $20 NZD; artificial 
sponge cost per sample: $0.13 NZD). The reduced cost and handling 
time for passive eDNA sampling facilitate implementation of eDNA 
biomonitoring over larger scales, with higher replication, and an 
increased number of locations (Bessey et al., 2021, 2022). With the 
advent of robotic assistance for DNA extraction (e.g., QIAcube Qiagen 
GmbH, Germany) (Guthrie et al., 2023), ultra-high-throughput 
sequencing systems (e.g., Illumina NovaSeq® X Plus), and scalable 
bioinformatic pipelines (Buchner et al., 2022; Mathon et al., 2021), 
passive eDNA sampling could be the solution to overcome a major 
hurdle to global scale-up of eDNA biomonitoring. 

While the observed biogeographical patterns in this study match 
known records (Chaudhary et al., 2021; Edgar et al., 2017), only a small 
subset of ZOTUs could be assigned a species ID due to the lack of 
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Fig. 3. Bar plots depicting (a) total number of observed ZOTUs across all replicates within each sample type and location and (b) average estimated total number of 
ZOTUs per replicate between artificial sponges (yellow) and aquatic (blue) eDNA samples at each location (open ocean: light; coastal: dark). Error bars represent 
standard error of the diversity estimation. (c) Boxplot depicting phylogenetic α-diversity comparisons (Faith's PD). (d) Metadata measurements collected every 
minute during the 2023 RV Tangaroa expedition, with date on the x-axis and latitude (grey), chlorophyll a (green), salinity (purple), temperature (red) on the y-axis. 
Shaded grey areas link date and metadata measurements to sampling location and are not representative of the 24 h sampling window for passive eDNA samplers. 
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reference barcodes (Weigand et al., 2019). Barcoding efforts are being 
undertaken globally (Grant et al., 2021), but focussing these efforts on 
understudied and relatively pristine environments, such as the Southern 
Ocean, will strengthen the use of eDNA biomonitoring to provide 
baseline data against expected community shifts influenced by 
increasing anthropogenic impacts and climate change (He and Silliman, 
2019), with passive eDNA samplers aiding in the simplification and 
scaling of monitoring efforts. 

Although the spatial biodiversity patterns obtained were similar 
between both eDNA sampling techniques, artificial sponges were esti-
mated to detect a significantly higher fraction of the biodiversity 
(Fig. 3b) and detected three phyla not observed by aquatic eDNA 
(Fig. 2), two of which (Nemertea, Annelida) are important taxa often 
used in the characterisation of marine ecosystems (Capa and Hutchings, 
2021). The increased total estimated biodiversity for artificial sponges 
could have been influenced by the 24 h submergence time, enabling 
passive samplers to detect organisms from a larger geographical area, as 
compared to the point sampling of water filtration. With the high spatial 
resolution previously reported for aquatic eDNA in the marine envi-
ronment, capturing eDNA from a larger geographical area could have 
resulted in the increased biodiversity estimated for passive samplers 
(Jeunen et al., 2019a; Minamoto et al., 2017; O'Donnell et al., 2017; Port 
et al., 2016). The higher water volume processed by passive samplers 
could also have influenced total biodiversity estimates. Our manual 
filtration protocol, adapted from (Jeunen et al., 2023), filtered 2.5 l 
every five samples, while passive samplers captured DNA from ~2160 l 
of seawater (~1.5 l min− 1 × 24 h). While the sample processing effort is 
considerably less for passive samplers, the variation in water volume 
could plausibly account for the observed differences in estimated total 
biodiversity, given the recognised impact of water volume on eDNA 
detection (Hunter et al., 2019; Li et al., 2018; Sepulveda et al., 2019). 
Therefore, we recommend future studies to investigate the temporal 
aspect of eDNA accumulation in passive samplers (Bessey et al., 2022) to 
disentangle the scenarios of eDNA accumulation saturation and eDNA 
signal turnover, i.e., optimal submergence time and the possibility of 
eDNA replacement within the passive sampler substrate for prolonged 
submergence times. 

The prolonged sampling time of passive monitoring likely increased 
the detection probability of low-abundance, highly motile organisms, 
which are difficult to accurately detect with water filtration (Eble et al., 
2020; Jensen et al., 2022; Leray and Knowlton, 2017). For example, 
metazoans were detected more frequently and consistently with passive 
samplers compared to aquatic eDNA in our data. Longer submergence 
times may also take advantage of diel vertical migration patterns 
(Bandara et al., 2021; Brierley, 2014; Hays, 2003), facilitating the 

capture of DNA from diurnal and nocturnal organisms (Canals et al., 
2021; Easson et al., 2020; Feng et al., 2022). Due to the vertical struc-
turing of eDNA in the water column (Canals et al., 2021; Jeunen et al., 
2019b) and the passive sampler's use of a continuous flow of surface 
water, this methodology is especially well-suited to detect biogeo-
graphical patterns of epi- and mesopelagic communities. For the 
detection of organisms residing deeper in the water column and benthic 
species, we suggest future studies to investigate alternative strategies of 
passive eDNA sampler placement, such as remotely operated vehicles, 
CTD casts, and fishing gear (Maiello et al., 2022). 

Even though the estimated total diversity of artificial sponges was 
higher compared to aquatic eDNA (Fig. 3), passive samplers detected a 
lower number of ZOTUs on a per sample basis, as well as displayed a 
larger variation between replicates within a sampling location. Both 
observations suggest that passive eDNA sampling would benefit from 
optimisation of sampling protocols and laboratory techniques. During 
the last decade, a multitude of studies have optimised aquatic eDNA 
workflows and investigated the impact of eDNA capture substrates (i.e., 
filter membrane choice) and extraction protocols on downstream 
detection probabilities (Cowart et al., 2022; Deiner et al., 2018; Djur-
huus et al., 2017; Hinlo et al., 2017; Jeunen et al., 2018; Kawato et al., 
2021; Minamoto et al., 2016; Spens et al., 2016; Turner et al., 2014). 
Such optimisation for passive samplers is still in its infancy, with several 
studies having investigated the effects of substrate choice (Bessey et al., 
2021, 2022; Jeunen et al., 2022a) and submergence times (Bessey et al., 
2022). Based on the increased detection efficiencies observed with 
optimised methods for aquatic eDNA, we predict the current variability 
in biodiversity detection between passive eDNA samplers within a 
location to reduce in the future as methodologies improve. With ongoing 
efforts towards augmenting DNA sequence repositories globally, it is 
reasonable to expect that coordinated campaigns to leverage existing 
underway facilities from a variety of vessels will open up huge oppor-
tunities for large scale ocean biodiversity assessment. 
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