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A B S T R A C T

Propionate production and consumption are influenced by thermodynamic constraints, microbial competitions,
and metabolic inhibition. Accumulation of propionate in wastewater can destabilize anaerobic digestion and
lead to process failure. Anaerobic digestion is one of the viable biological methods for its recovery and utili-
zation. Additives have been shown to modulate propionate production and consumption, effectively influencing
the overall performance of anaerobic digestion. This mini review systematically examines the application of
various additives and their effects on: (I) propionate production and recovery (less CH4 and more propionate)
and (II) propionate degradation (less propionate and more CH4) goals in anaerobic digestion. This review studied
and listed recent studies on the most used anaerobic digestion additives and classified them according to their
impact on propionate concentration. To our knowledge, limited research has been conducted on the role of
additives in propionate recovery. No studies have reviewed the impact of additives on propionate recovery from
anaerobic digestion or their potential to mitigate its inhibitory effects. This mini review enables researchers to
select the most suitable additive to recover propionate or boost CH4 production by mitigating its inhibition, as
well as discussing the role of modern bioreactors.

1. Introduction

Anaerobic digestion (AD) is a biological process that plays a crucial
role in waste management and renewable energy production. AD relies
on microorganisms to break down organic matter in the absence of
oxygen, transforming it into valuable byproducts. AD generally begins
with the hydrolysis stage, during which complex biopolymers are
broken down into their monomers. It then progresses to the acidogen-
esis stage, where the biochemicals are converted into intermediate
biochemicals, primarily volatile fatty acids (VFAs). Following acid-
ogenesis, the acetogenesis stage ensues, during which all intermediate
biochemicals are further degraded into simpler forms, mainly acetate
(Ac). Finally, AD concludes with the methanogenesis stage, where the
remaining biochemicals are converted into biogas [1]. These inter-
mediate products are key to the overall efficiency of the AD system [2].

Among these intermediates, propionate (Pr) stands out as a central
player with significant implications for the success of the process. Pr
(molecular weight = 76 g/mole) is the conjugate base of propionic acid
(CH3CH2COOH), which is the second VFA, being a colorless, water-
soluble, and corrosive carboxylic acid (pKa = 4.87) with a sharp,
somewhat unpleasant odor [3]. The intricate balance of Pr's metabolism
depends heavily on the symbiotic relationship between different groups
of complex microbes, such as acidogens, sulfate-reducing bacteria
(SRB), acetogens, and methanogens, during its production in the hy-
drolytic acidification phase and subsequent biodegradation [4].
Therefore, understanding Pr in AD such as thermodynamics, micro-
biology, and inhibition, which can be observed at a low concentration
of 10 mM [5], is essential for optimizing and manipulating AD [3,6].

Pr's importance in AD goes beyond its role as a metabolic inter-
mediate. It exerts a profound influence on the thermodynamics of the
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process and plays a crucial role in complex microbiological interactions
[3]. The delicate balance of Pr within the AD can significantly impact
the quality and efficiency of CH4 production [2,7]. On the other hand,
Pr serves as a valuable chemical with diverse applications, including its
role as a food additive, preservative, pesticide, industrial precursor, etc.
[8,9]. Therefore, recent scholarly attention has been directed toward
the recovery of Pr from AD, recognizing it as a valuable end product
with potential applications beyond its role as an intermediate [10].

To enhance the efficiency of AD, few researchers have explored the
impact of various additives and chemicals on the process, focusing
specifically on Pr. These additives play a critical role in directing Pr
metabolism toward desired outcomes. The choice of additives becomes
crucial, depending on whether the goal is to increase Pr degradation for
improved CH4 production or to accumulate Pr for recovery purposes.
This review consolidates insights from significant recent studies pro-
viding a comprehensive understanding of how additives can influence
Pr in the context of AD [11,12]. While there exist numerous additives
employing various mechanisms to alleviate Pr inhibition, including
Iron-based and carbon-based materials, the most prevalent ones sui-
table for the recovery purposes are antimethanogens like phenol,
chloroform, and hydrogen peroxide [11–13].

This paper seeks to enhance current understanding by providing a
brief mini review of the impact of additives on Pr in AD. By reviewing
recent findings, it addresses the existing research gap concerning the
lack of publications reviewing the control of Pr metabolic balance in AD
by various additives, as well as the oversight in previous studies fo-
cusing solely on CH4 production without considering the role of ad-
ditives in regulating intermediate biochemicals, particularly Pr. This
review summarizes and lists the additives and their mechanism and
applications for manipulating Pr in AD. The insights presented in this
paper are intended to inform future research directions and practical
applications in the fields of biochemicals (Pr) recovery and production
as well as renewable energy production from AD.

2. Common AD additives affecting propionate

In AD, there is a consistent connection between the pathways that
produce and break down Pr. Various additives can be employed to raise
Pr levels to increase Pr production, resulting in more Pr being generated
than consumed. On the other hand, additives can also be utilized to
lower Pr levels to enhance Pr breakdown, leading to less Pr being
generated than consumed. This may entail using additives for the
purpose of recovering Pr or for improving Pr degradation.

These additives have various effects on pH, conductivity, direct in-
terspecies electron transfer (DIET), changing available surface and ac-
tive area, inhibiting special microbial activity, and enzymic activity
[11,12].

DIET involves syntrophic bacteria exchanging electrons directly,
bypassing the need for intermediate compounds. Certain bacteria form
electrically conductive connections, such as pili or nanowires, enabling
the transfer of electrons between bacteria, and enhancing the efficiency
of AD by facilitating direct electron exchange in the degradation of
complex organic matter. DIET significantly impacts Pr generation, a
bottleneck in AD, by promoting the efficient breakdown of substrates
into Pr. This improved Pr generation is vital for maintaining a balanced
microbial community and preventing intermediate accumulation. DIET
also contributes to effective Pr consumption, preventing its inhibitory
effects and ensuring a stable microbial community in the face of sub-
strate fluctuations, ultimately improving the overall performance and
resilience of AD systems [14–17].

Iron-based additives are commonly used additives in anaerobic di-
gester reactors, particularly in the context of Pr metabolism. The ad-
dition of iron compounds, such as ferrous sulfate or magnetite, has been
found to enhance the performance of the anaerobic digester reactors by
promoting syntrophic interactions among microorganisms. In Pr-rich
environments, iron serves as a crucial mediator in electron transfer
reactions, facilitating the conversion of Pr to Ac through the reduction
of electron carriers. This mechanism is attributed to the role of iron as a
redox catalyst, aiding in the transfer of electrons within microbial
consortia. Iron supplementation is recognized for reducing the in-
hibitory effects of high Pr concentrations on methanogenic archaea,
leading to a more stable and efficient anaerobic digestion process. The
use of Iron-based additives is crucial in enhancing Pr degradation and
increasing biogas production in anaerobic digestion systems [18].

Zero valent iron (ZVI) is a promising additive in anaerobic digester
reactors, particularly in addressing the accumulation of Pr. ZVI func-
tions as a catalyst in AD systems, promoting the reduction of organic
compounds and facilitating microbial metabolism. In the context of Pr,
ZVI's mechanism involves its ability to serve as an electron donor,
promoting the conversion of Pr to less inhibitory substances like Ac.
The electron transfer reactions mediated by ZVI help mitigate Pr
buildup, enhancing the overall efficiency of AD. Additionally, ZVI can
aid in the precipitation of metals and improve the settling character-
istics of biomass, contributing to the stability and effectiveness of AD
systems. Overall, the incorporation of ZVI holds promise for optimizing
the anaerobic digester reactors, particularly in managing Pr con-
centrations and improving biogas production [19–22].

Zeolite and magnetite, both with unique properties, have emerged
as promising additives in AD, particularly in addressing the accumu-
lation of Pr. Zeolite's porous structure and ion-exchange capabilities
provide a favorable habitat for syntrophic microorganisms and adsorb
inhibitory substances, promoting Pr reduction and overall AD stability.
Meanwhile, magnetite acts as an electron transfer mediator, facilitating
syntrophic interactions and enhancing Pr reduction. Its magnetic
properties also facilitate separation and reuse. These innovative ap-
proaches hold the potential for optimizing AD systems and advancing
sustainable waste treatment [23–25].

Carbon-based additives, including activated carbon (AC), biochar/
hydrochar, and conductive carbon cloth, have emerged as promising
additives in AD, particularly in addressing challenges associated with Pr
accumulation. These additives with their high surface area and porosity
facilitate the adsorption of inhibitory substances like Pr, providing a
favorable environment for microbial consortia and promoting syn-
trophic interactions. Additionally, they serve as electron shuttles, en-
hancing electron transfer processes and improving microbial activity.
The incorporation of these additives represents a promising strategy to
optimize AD and address challenges associated with Pr accumulation
[26–28].

The inclusion of trace elements and bioavailable metals such as zinc,
copper, nickel, and molybdenum as additives in AD holds significant
promise for addressing Pr accumulation. These elements serve as vital
cofactors for key enzymes involved in microbial metabolic pathways,
particularly those responsible for Pr degradation. The presence of
bioavailable metals enhances the activity of syntrophic microbial con-
sortia engaged in Pr oxidation, promoting the conversion of Pr to Ac.
Additionally, these elements play a crucial role in electron transfer
reactions, optimizing the efficiency of Pr degradation. The strategic
supplementation of trace elements and bioavailable metals not only
fosters Pr metabolism but also contributes to the overall stability and
resilience of the anaerobic microbial community. This approach proves
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valuable in fine-tuning the anaerobic digester reactors, ultimately
leading to enhanced Pr degradation and improved biogas production
[29,30].

SO4
2 , as an additive in the anaerobic digester reactors, plays a

crucial role in shaping microbial communities and influencing meta-
bolic pathways, particularly in the context of Pr degradation. The ad-
dition of SO4

2 promotes syntrophic associations between SRBs and
methanogenic archaea. In the presence of SO4

2 , SRB outcompete me-
thanogens for H2, forming H2S as a byproduct. This competition leads
to a redirection of metabolic pathways, suppressing the accumulation of
Pr, which is often a bottleneck in AD systems. The SO4

2 reduction
process acts as an electron sink, enhancing the conversion of Pr to Ac
and ultimately improving overall CH4 production efficiency. Therefore,
the inclusion of SO4

2 as an additive in the anaerobic digester reactors
provides a strategic means to mitigate Pr accumulation and optimize
the performance of the system by fostering syntrophic interactions
among key microbial players [31,32].

In addition to the aforementioned additives, researchers employed
various methods and supplementary additives. The forthcoming dis-
cussion will center on these alternative approaches and additives, em-
phasizing their impact on Pr, while some additives might cause both Pr
better degradation and its generation pathway due to their dual me-
chanisms. The effectiveness of these additives depends on a variety of
factors such as the conditions of anaerobic digestion, the type and
composition of feedstock, the amount used, and the method of adding
the additive. For instance, although ZVI is commonly known as an iron-
based additive for degrading phosphorus, Yu et al. [33] found that nano
ZVI initially inhibited methane production and led to phosphorus ac-
cumulation in small quantities, but when used with additional material,
it resulted in improved Pr degradation and CH4 production. Ad-
ditionally, certain additives expedite both Pr and CH4 production si-
multaneously, without inhibiting methanogens or accumulating Pr.
Thus, these additives are not solely effective for Pr accumulation goals
and are best utilized in conjunction with other methods. For instance,
activated carbon, as reported by Wang et al. [34], or hydrochar, as
reported by Wu et al. [35] and Wang et al. [36], are examples of this.
Moreover, the precise mechanisms of certain additives remain unclear,
with researchers reporting conflicting results, necessitating further in-
vestigation. For example, as already explained, the mechanism for
zeolite additive is enhancing microbial syntrophy leading to enhanced
PR degradation, but Wang et al. [37] reported Clinoptilolite, a type of
zeolite, to be a Pr-accumulating additive.

3. Propionate degradation and propionate-degrading additives

Pr is a crucial intermediate in AD, but its excessive accumulation
can lead to system failure. When Pr levels rise beyond the optimal
range, it can cause several detrimental effects. Firstly, it can inhibit the
activity of methanogens, the microorganisms responsible for CH4 pro-
duction, leading to reduced biogas generation. Secondly, high Pr con-
centrations can cause acidification, lowering the pH of the digester and
disrupting the delicate microbial balance. Additionally, Pr can directly
exert toxic effects on certain microbial populations, further hindering

the overall digestion process. These cumulative effects of excessive Pr
accumulation can result in a significant decline in digester performance
and CH4 production [7,38].

Additives and the use of different materials, particles, or chemicals
in AD have been extensively studied to enhance Pr degradation and
performance. Several studies have investigated the effects of various
additives on microbial communities, degradation rates, and CH4 pro-
duction. The utilization of different materials, particles, or chemicals in
AD systems offers promising strategies for enhancing Pr degradation,
improving system performance, and mitigating the accumulation of Pr.
These studies provide valuable insights into the effects of various ad-
ditives and their mechanisms on microbial communities, degradation
rates, and CH4 production [13]. Fig. 1 depicts the schematic effect of Pr-
degrading additives in AD.

The crucial role of Pr in influencing overall efficiency has led to the
investigation of various additives and chemicals aimed at directing Pr
metabolism toward desired outcomes. A detailed analysis of these ad-
ditives is provided in this section, illuminating their mechanisms and
effectiveness in promoting Pr degradation. Table 1 provides a concise
summary of the various additives that have been studied recently and
their effects on Pr, showcasing some of the most important cases. This
compilation of key findings aims to offer readers a comprehensive un-
derstanding of advancements in Pr degradation enhancement, facil-
itating informed decision-making for future research efforts and prac-
tical applications in the field of AD. The additives include iron-based
(e.g., Fe3O4, FeCl2), carbon-based (e.g., activated carbon, biochar, hy-
drochar, graphene, zero-valent iron), bioavailable metals (e.g., Zn, Cu,
Ni, and Mo), and other metallic-based additives (e.g., Se, Co, Ni, and
Mo).

In addition to the aforementioned additives, there are also several
unclassified additive methods and hybrid additive methods (using
multiple additives or mechanisms) that influence Pr degradation, as
shown in Table 2. These methods have not been fully studied or char-
acterized, but they have the potential to significantly impact Pr de-
gradation (e.g., tire particles, Urea, NaOH, Polyacrylamide, ashes,
NH4HCO3). Further research is needed to better understand these
methods and their effects.

Based on Tables 1 and 2, as well as the broader industrial applic-
ability of Pr-degrading materials, sulfate additives (which enhance
syntropy between SRB and methanogens), iron-based materials (parti-
cularly ZVI, to control redox conditions and inhibit Pr production), and
conductive materials (such as metallic ions or conductive carbon par-
ticles, which improve the DIET mechanism) appear to be the most
promising for mitigating Pr accumulation and inhibition. Optimal
combinations of these materials could be particularly effective in
achieving these goals [11,15].

4. Propionate recovery methods and additives

In the second quarter of 2023, the global Pr market exhibited mixed
trends. The US market experienced robust growth, driven by steady
demand in the food, pharmaceutical, and agriculture sectors. In Asia,
the Indian Pr market faced a bearish trend with declining prices, while

Fig. 1. The schematic effect of Pr-degrading additives in AD (causing Pr reduction and CH4 production enhancement).
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in Europe, the market saw steady growth across key industries. Overall,
the global Pr market is anticipated to grow at a compound annual
growth rate of 3.3%, reaching USD 1801 million by 2028. Factors
driving market growth include the increased demand for food pre-
servatives and the use of Pr in the pharmaceutical industry and as an
effective pesticide. Europe currently dominates the global market,
while Asia-Pacific is expected to experience the highest growth rate
[101–103].

Common chemical methods for producing Pr include the hydro-
carboxylation of ethylene and the Reppe synthesis. The hydro-
carboxylation of ethylene involves the reaction of ethylene, carbon
monoxide, and water in the presence of a catalyst, typically involving
nickel or cobalt, to produce Pr. This method is energy-intensive and
relies on petrochemical feedstocks, contributing to environmental
concerns due to the carbon footprint associated with fossil fuel use. The
Reppe synthesis is a different approach that includes the combination of
ethylene with carbon monoxide and water at elevated pressure and
temperature while using a metal catalyst, commonly nickel. Although
this method is effective, it also demands a lot of energy and involves the
use of dangerous substances and conditions, which can be harmful to
both the environment and human health.

Both methods emphasize the need for sustainable alternatives due to
their reliance on non-renewable resources and significant environ-
mental impact. However, biochemical and fermentation-based pro-
cesses, such as AD, have some advantages over those methods [8,104].

AD offers a more sustainable and cost-effective alternative by uti-
lizing organic waste materials, which reduces feedstock costs and aids
in waste management. It operates under milder conditions and gen-
erates fewer pollutants. The primary goal of AD is to treat organic

waste, with product recovery, such as Pr, being a beneficial side goal.
This dual-purpose functionality enhances its appeal, providing multiple
benefits simultaneously. Furthermore, AD is generally simpler and less
energy-intensive compared to chemical methods [104–107]. Pr pro-
duction and recovery from AD presents a promising biological and
green method for sustainable resource recovery. This approach holds
significant potential for advancing sustainable practices and resource
utilization [10]. Pr and other VFA production, recovery, and separation
from AD have been studied from different sources, such as potato waste
[108], organic fraction of municipal solid waste [109], rice straw
[110], olive mill wastewater [111], swine manure (SM) [112], tuna
waste [113], landfill leachate [114], sewage sludge (SS) and food waste
(FW) [115], microalgae biomass [116], fruit waste [117], and animal
wastewater [118]. Fig. 2 shows the schematic effect of Pr-accumulating
additives in AD.

Pr recovery and separation in AD have been studied using various
methods such as membrane-based techniques [119], solvent and in situ
extraction [120,121], and Electrodialysis [111]. Different operational
manipulations, such as pH control and micro-oxygenation, can enhance
its production [122].

Two-stage and arrested AD are two modified AD methods that aim
to enhance the production and recovery of VFAs, particularly Pr. Two-
stage AD separates the acidogenesis and methanogenesis stages into
two distinct reactors [25,123], while arrested AD intentionally halts the
final methanogenesis step [124–127]. Both methods offer advantages
over single-stage AD, including higher VFA production, improved
process control, and reduced CH4 inhibition. However, the common
single-staged-4-step AD is still widely used due to its simplicity and
cost-effectiveness. The use of additives can help to fill the gap between

Fig. 3. Mechanism of Pr-accumulating additives in AD (blocking Pr degradation pathways, especially methanogenesis).

Fig. 2. The schematic effect of Pr-accumulating additives in AD (causing Pr accumulation and less CH4 production).
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single-stage AD and more modern methods, and can also be used in
these modern anaerobic digester reactors to further enhance their
performance [128].

While the conventional AD goal is CH4 production, the process can
be manipulated to favor VFA production, particularly Pr, through the
addition of specific additives and chemical particles. This strategy in-
volves inhibiting methanogenesis, allowing VFAs to accumulate instead
of converting to CH4. This happens because methanogens are more
vulnerable than acidogens, and antimicrobial agents have more effect
on them [129]. Additives like biochar, persulfate, and iron-based ma-
terials can suppress methanogenic activity, while chemical particles
like zeolites can adsorb VFAs and prevent their degradation [118]. By
selectively controlling the microbial community and manipulating the
reaction environment, AD can be transformed into a valuable source of
VFAs, especially Pr, with potential applications in biofuel production
and chemical synthesis [127,130,131]. Fig. 3 illustrates the general
mechanism of Pr-accumulating additives in AD (deviating the common
biochemical pathway by inhibiting the Pr degradation pathway which
leads to Pr production > Pr degradation).

Recognizing Pr as a valuable end product with applications
beyond its role as an intermediate, researchers have investigated

various additives and chemicals to optimize conditions for Pr ac-
cumulation. This section provides a comprehensive analysis of
these additives, elucidating their mechanisms and effectiveness in
promoting Pr recovery. Table 3 is an important resource that pro-
vides a summary of significant recent cases. It offers a brief over-
view of various additives that have been studied and their effects
on Pr.

The most common Pr-accumulating additives include agents that
alter microbial balance by eliminating methanogens (e.g., Phenol,
Chloroform, Hydrogen peroxide, alkylbenzene sulfonate,
Lincomycin, Persulfate), along with chemicals (e.g., AC, zeolite,
ZVI, Hydrochar). The compilation of key findings in Table 3 pro-
vides readers with a nuanced understanding of the advancements in
Pr recovery strategies using additives. Based on Table 3 and the
previously discussed mechanism of Pr-accumulating additives, an-
timethanogenic agents such as phenol, chloroform, and hydrogen
peroxide are likely the most effective for Pr accumulation. How-
ever, due to the limited research on the role and mechanism of these
additives, it is recommended to combine them with advanced
bioreactor techniques to enhance Pr-accumulating efficiency and
improve Pr recovery.

Table 3
Overview of Recent Cases Investigating Additives for Enhanced Pr Production Purposes.

Method Source/Waste Remark Reference

Phenol Pr accumulated to 2750mg/l and CH4 yield was not inhibited [128]
Biodiesel waste glycerin Municipal wastewater

sludge
1.35% (v/v) biodiesel waste glycerin increased Pr concentration [132]

AC Starch wastewater AC increased Pr and CH4 production [34]
Cardboard FW and cardboard Reduces acid accumulation, slightly increases Pr, maintains CH4 yield at

increasing substrate loads
[133,134]

Chloroform and acetylene Solid waste chloroform enhances the production of Pr and inhibits CH4 production [135]
Clinoptilolite (zeolite) Kitchen Waste Increased Pr and CH4 production, shorter lag phase, and can both inhibit

acidification and improve CH4 production
[37]

Glycerol trioleate Manure Increased the methanogenesis of Pr in particles > 200 µm and the 50-200 µm
fraction

[136]

Hydrochar WAS Increased the production of Ac and Pr, which resulted in improved CH4

production
[35,36]

Hydrogen peroxide (H2O2) Significantly reduced CH4 production and led to higher VFA concentrations,
including Pr

[137]

Lincomycin Alcohol wastewater Increased CH4 production by 20.8% in anaerobic granular sludge, while
impaired Pr and Bu utilization

[138]

Linear alkylbenzene sulfonate Inhibited the degradation of Pr and CH4, with a 50% immediate inhibition of Pr
degradation at a concentration of 27mg/L

[139]

Nano ZVI Inhibited CH4 production in the initial stage, but more of it promoted CH4

production and Pr degradation
[33]

Pentachlorophenol Inhibited the activity of methanogenic bacteria significantly reducing CH4

production (less Pr degradation)
[140]

Polystyrene microplastics FW In different sizes (1mm, 100 µm, and 1 µm) decreased CH4 production
(33.08%) and increased Pr accumulation (58.3%)

[141]

Sodium dodecyl benzene sulfonate SS, FW, and green waste This anionic detergent inhibited methanogenesis and increased Pr
accumulation

[142]

Sulfamethoxypyridazine sodium and zinc SM and wheat straw Sulfamethoxypyridazine increased Pr and CH4 production, zinc decreased Pr
and CH4 production

[143]

Tylosin and chlortetracycline SM Chlortetracycline enhanced initial hydrolysis reactions and inhibited CH4,
while tylosin did not affect CH4

[144]

Persulfate and Biochar Animal wastewater Pr and VFA production increased by 12.4% [118]
Valine and threonine CM At concentrations of 0.2-5.0%, enhanced Pr and Bu production and decreased

the proportion of Ac from 83% to 47%
[145]

Note: AC, Activated Carbon; ZVI, Zero Valent Iron; FW, Food Waste; WAS, Waste-Activated Sludge; Bu, Butyrate; SS, Sewage Sludge; SM, Swine Manure; CM, Chicken
Manure; Pr, Propionate; VFA, Volatile Fatty Acid
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5. Conclusion and future perspectives

Research on additives in Pr recovery from AD is limited while no
studies have specifically examined their effects on Pr recovery or their
potential to mitigate its inhibitory effects. This mini review explores
how additives influence Pr concentrations, impacting AD efficiency and
direction. By categorizing various additives, the review provides in-
sights for more efficient Pr recovery and enhanced renewable energy
production. Protein plays a crucial role in the management of waste-
water and AD, serving as both an inhibitor and a valuable bioproduct.

Some additives enhance Pr degradation to reduce inhibition and
boost biogas production, while others aid in Pr recovery and utilization:

• Carbon-based, iron-based, and metallic-based additives show po-
tential for better Pr degradation.

• Antimethanogen agents such as Phenol, Chloroform, Hydrogen
peroxide, alkylbenzene sulfonate, Lincomycin, Persulfate, and other
chemicals can be used for Pr recovery.

• Coupling modern bioreactor technologies along with proper ad-
ditive, holds potential for Pr recovery.

Future work is suggested to focus on the simultaneous use of modern
digesters, such as two-stage and arrested digesters, with appropriate
additive selection to enhance Pr recovery for a more efficient and
economic process. Furthermore, it is important to conduct further re-
search on the combination of multiple additives, which will require
additional optimization and modeling studies. It is also recommended
to examine the effects of these techniques by optimizing process para-
meters such as temperature and pH for both improved Pr recovery and
degradation. It is crucial to explore the impact of these additives and
digester techniques in specific wastewater systems with much higher Pr
concentrations, like those present in the dairy waste and food in-
dustries, as the main goal of AD is biogas production, which can be
hindered by Pr accumulation.
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